

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material from
their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy
of their work to be used subject to the conditions specified on the Library Thesis
Consent Form and Deposit Licence.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm

Presentation Methods for Open Data

Jimmy Oh

A thesis submitted in fulfilment of the requirements for the degree of PhD
in Statistics, the University of Auckland, 2015.

i

Abstract

This thesis examines ways to make Open Data more open, more accessible and

thus more useful to a wider audience. It begins with a Literature Review of Open

Data in New Zealand to understand what data is out there and to identify what

barriers currently exist that hinder the usage of the data. To address a major problem

identified in the Literature Review, it then presents TableToLongForm, an R package

that automatically converts hierarchical tables intended for a human reader into a

simple longform dataframe that is machine readable, making it easier to access and

use the data for analysis. Once data is in a useful format, one of the most effective

ways to communicate it to a wider audience is through visualisations, so the thesis

continues with a Literature Review of Graphical Tools examining what is currently

available for creating web-based interactive graphics. It then presents WeBIPP a web-

based interactive tool for building statistical graphics from scratch without writing

any code. The graphical user interface can be used to build graphics from scratch,

but as the user does this, they are not simply creating a graphic, they are writing

code in the background. For those who have no coding knowledge, this fact can be

ignored, making WeBIPP accessible to this audience. But for those who have coding

knowledge, they can utilise it to examine the code, to tweak it and to reuse it. This

makes WeBIPP much more powerful than other tools of similar nature. The thesis

concludes with summarising remarks and possibilities for future work.

Acknowledgments

I want to begin by thanking the people from the many State Sector Organisations covered

in the Literature Review of Open Data in New Zealand, without their help the Literature

Review would be far less informative. Thanks to Richard Penny and Peter Crosland from

Statistics New Zealand, who felt the perspective of a PhD student was valuable to Statistics

New Zealand and Official Statistics; the opportunity to present my work to more people

led to interesting discussions that informed my work. Thanks to Keith Ng, who pointed

out other interesting data visualisations tools in development and gave helpful comments

on WeBIPP’s interface. And of course I must thank my supervisor and co-supervisor, Paul

Murrell and Ross Ihaka, their wealth of knowledge supported everything I did, and guided

me not only to the completion of this thesis, but also my growth as a programmer and an

academic.

ii CONTENTS

Contents

Contents ii

List of Figures iv

List of Tables xii

1 Introduction 1

2 Open Data in New Zealand 5

2.1 Introduction . 6

2.2 What is Open Data? . 7

2.3 Overview of Open Data in New Zealand . 19

2.4 Conclusion . 40

3 TableToLongForm 41

3.1 Introduction . 42

3.2 How to Use . 48

3.3 Vocabulary . 51

3.4 Implementation Details . 53

3.5 Identification . 53

3.6 Discern Parentage . 60

3.7 Reconstruction . 68

3.8 Summary . 70

4 Graphical Tools 73

4.1 Introduction . 74

4.2 GUI Tools . 76

4.3 High-level Languages . 80

4.4 Low-level Languages . 85

4.5 Other Relevant Topics . 95

4.6 Conclusion . 101

CONTENTS iii

5 WeBIPP 103

5.1 Introduction . 105

5.2 What is WeBIPP . 108

5.3 How to Use . 113

5.4 Creating a Scatterplot . 115

5.5 Creating a Population Pyramid . 125

5.6 How WeBIPP Works . 161

5.7 Creating an Object Addon . 168

5.8 Creating a Value Interface . 183

5.9 Core’s Set Attribute . 188

5.10 Discussion and Limitations . 194

5.11 Conclusion and Future Work . 197

6 Conclusion 199

Bibliography 201

iv List of Figures

List of Figures

2.1 An example of an XLS-Longform. The data is active-customers-by-entity-type-

2001-to-2011.xls from Inland Revenue. 12

2.2 An example of an XLS-Table. While this may be quite easy for the human brain

to decipher, it is a nightmare for a computer. Consider for instance trying to

obtain all the information for the first ‘piece’ of data. First we need to get the

Rank from B8, understand this number is a ‘Rank’ by getting the column label

from A5 (noting this is a different column to where the actual Rank value is

stored). Second we need the name from D8, and the label for this from C6.

Third we need to get the count of babies from E8 with label from E6. Finally

we need the year from C5. The data is Top100BabyNamesNewZealand2011.xls

from the Department of Internal Affairs. 12

2.3 An example of an XLS-Table. Once again, this may be relatively easy for a

human brain to decipher, but a nightmare for a computer. Note that in this

instance in-cell indentation and the Excel Grouping feature are used to com-

municate the hierarchical relationships in the data rows. Such information will

typically be lost when converting the XLS file to another format, effectively forc-

ing the user to a) Use Excel and b) Conduct any analysis manually. As Excel

itself understands some of this information, it may be possible to write code in

VBA (Visual Basic for Applications, a slightly modified version of Visual Basic

integrated with Microsoft Office applications) to extract this information, but a

cursory look at the code suggests this might be quite a challenge. The data is

Oil.xls from the Ministry of Economic Development (now a part of the Ministry

of Business, Innovation & Employment). 13

List of Figures v

2.4 An example of an XLS-PivotTable. The Pivot Table is an interactive feature of

Excel that allows dynamic creation and modification of tables via a graphical user

interface. It greatly enhances data exploration that can be done within Excel,

though at first glance appears to be a significant barrier to analysis outside

Excel. However, this is not the case, as it is possible to extract the underlying

data using Show Details from the right-click menu. The data is Pivot-Table-

Student-Numbers-by-Age.xls from the Ministry of Education. 14

2.5 An example of the XLS-PivotTable from Figure 2.4 after clicking Show Details

from the right-click menu. Note that the data is presented in long-form and

could now be converted to a CSV for analysis in different software. 14

2.6 An example of an XLS-ReportTable. Much like an XLS-Table, these are rela-

tively easy for a human brain to decipher. However, we classify an XLS file as

ReportTable if there are substantial barriers to machine reading. Generally any

data released as an XLS-ReportTable can only be used manually and presents

significant barriers to any re-use, even by manual means. The data is jtei-july-

08.xls from the Department of Labour. 15

2.7 An example of an HTML-Table. The data is Income bands for salaries and

wages, 2002 to 2011 found under the Wage/salary distributions for individual

customers category from Inland Revenue. 16

2.8 An example of an HTML-Table that does not use HTML Table code (instead

utilising div and span for visual formatting). This means the data is not struc-

tured making it extremely difficult to extract the data. Luckily in this case, a

link is provided (not shown) to download the data as an XLS-Table. The data

is a Results by Subject and Standard report from the New Zealand Qualifications

Authority. 17

3.1 An example of a hierarchical Table. The Table is of the Labour Force Status

data (Statistics New Zealand, 2013) and in total spans 240 columns. The Table

is too large to be immediately useful for humans, and yet cannot be manipulated

easily with a computer. 44

3.2 An example of a LongForm dataframe. This is the Table in Figure 3.1 after

automatic conversion with TableToLongForm and in total spans 660 rows. While

it is still not immediately useful for humans, all related information can be found

in the same row or column, making the data much easier to manipulate with a

computer. 45

3.3 Row Labels excerpted from NZQA Scholarships data displaying both Empty

Right (red) and Empty Below (green) patterns. 47

3.4 Using Empty Right to segment the labels into the children of the Subject headings. 47

vi List of Figures

3.5 Using Empty Below to segment the labels into the children of the Ethnic headings. 47

3.6 An example Table that will be used to define the vocabulary. 52

3.7 A breakdown of the Identification step of the workflow. The arguments Ident-

Primary and IdentAuxiliary specify the respective algorithms to use. 54

3.8 This is a Table of New Zealand GDP Data (Statistics New Zealand, 2013) and is

an example of a (comparatively) good Table as it is consistent in format with no

weird features. However, the row labels are numbers, posing some complications

as the main Identification algorithm looks for numbers to identify the data. In

cases such as this, TableToLongForm uses pattern recognition (e.g. sequences of

numbers such as 1972, 1973, 1974... are more likely to be labels than data) to

attempt to identify such numbers to be labels, but this process is far from perfect. 55

3.9 This is a Table of NZQA Scholarship Data (New Zealand Qualifications Author-

ity, 2012) and is the original motivating dataset that resulted in the creation of

TableToLongForm. The Table contains a title and metadata in a form typical

of Tables, but also displays some clear dividing rows and columns. This seems

like an attractive way to attempt Identification of the features of this Table, but

closer inspection reveals that these dividers are not very informative. Consider

for instance the dividing columns 6 and 11. Though appearing to be the same,

column 6 is only a (meaningless) sub-divider, while column 11 is a divider that

splits the Decile groups. This problem can be overcome with pattern recognition,

but as dividing rows and columns are an uncommon feature in Tables, such an

algorithm is of limited value. The current method of Identification searches for

blocks of numbers, and this is mostly successful for this Table. There is a slight

problem with column headings due to misaligned column label, e.g. Decile 1-3

in (3, 4) should be in (3, 3) to be aligned with # of Entries. This problem is

resolved not in Identification, but in the next stage, Discern Parentage. 56

3.10 This is a Table of UK NEET Data (Department for Education (UK), 2013),

displaying another case of number labels. In this case the current pattern recog-

nition fails to correctly recognise the number labels as labels and manual input

is required for correct conversion. The manual specification would be: 57

3.11 This is a Table of Top 100 Baby Girls’ Names in New Zealand (Department of

Internal Affairs (NZ), 2012), displaying a peculiar mismatch of column labels to

the corresponding data, in addition to number labels. The number labels here are

correctly identified with pattern recognition. The correction of the mismatched

column labels is resolved not in Identification, but in the next stage, Discern

Parentage. However, during Identification the columns identified as ‘data’ must

include all the data and column labels (in this case cols = list(label = 2,

data = 3:26)). 58

List of Figures vii

3.12 A truncated example of the colplist for the Labour Force Status data used in

Figure 3.1. It represents the hierarchical relationships of the column labels. We

can see that it has correctly identified Male as a top-level parent with the ethnic

categories, such as European Only, nested inside. The ethnic categories are in

turn parents to the lowest-level categories, such as Employment Rate. 61

3.13 A truncated example of the colplist from Figure 3.12, printed with the default

list printing method. This is much less useful, but does give better insight into

the internal storage structure for users familiar with R lists. 61

3.14 A breakdown of the Discern Parentage step of the workflow. IdentResult from

the Identification step is used obtain subsets of matFull that correspond to the

labels and the data. These subsets are then processed with the ParePreRow and

ParePreCol algorithms as specified by the respective arguments. These adjusted

subsets are then used by the Main Parentage algorithm to discern the parentage

of the Table. 62

3.15 An example of a rowplist and the reconstructed version (both truncated).

These must then be combined with the reconstructed colplist and the data

for the final dataframe. Broadly speaking, the Reconstruction algorithms simply

iterate down a plist recursively, extracting the information and pasting them

together appropriately to create the dataframe. 68

3.16 A breakdown of the Reconstruction step of the workflow. ReconsRowLabels only

makes Row Labels. ReconsColLabels takes the Row Labels, may make additional

Row Labels (for Col Parents), then combines it with the Col Labels, grabbing the

associated columns of data as it does so. Thus the output of ReconsColLabels

is the final dataframe output. 69

3.17 While there is no data for the total number of downloads across all CRAN

mirrors, there is data from the RStudio mirror. The different colours indicate

different versions of TableToLongForm. The trend has held remarkably steady

across time, to the point I suspect the reliability of this data (the steady down-

loads may be from other mirrors syncing, or other such automated downloads,

and not indicative of ‘real’ users), but it is unfortunately one of the only sources

of data on package downloads. 71

4.1 The Many Eyes ‘interface’. This is a screenshot of one of the webpages used to

create a new plot. Many Eyes is entirely web-based and requires no separate

client software. 77

viii List of Figures

4.2 The Tableau Public interface. In this example, we are looking at a ‘dashboard’,

allowing us to place multiple graphics on the same page. On the right, Tableau

Public suggests some appropriate graph types for the selected data subset (in-

appropriate graph types are greyed out). 79

4.3 A screenshot from https://developers.google.com/chart/interactive/docs/

examples demonstrating interactivity between a Table and a BarChart, sorting

by Name by clicking on the appropriate column in the Table. 81

4.4 A continuation of Figure 4.3, where the Table has been resorted by Salary, with

the BarChart following suit. 81

4.5 A screenshot from http://www.highcharts.com/demo/bar-basic demonstrat-

ing a basic bar chart. 83

4.6 A continuation of Figure 4.5, where clicking on Year 2008 in the legend has

filtered this data and the bar chart (including axis) has updated accordingly. . . 83

4.7 The Test Bargraph that will be used to explore each Low-level Language. I

will attempt to recreate this same bargraph as closely as possible with every

Low-level Language covered. 85

4.8 The Test Bargraph showing a ‘ghost bar’ which displays the potential height

of the updated bar if the user clicks. Note that this screenshot does not capture

the mouse pointer. 86

4.9 Upon clicking in Figure 4.8, the bar height is updated. 86

4.10 A screenshot of the webpage containing the HTML Table from which we will

obtain our data. Source: Inland Revenue and licensed by Inland Revenue for

re-use under the Creative Commons Attribution 3.0 New Zealand Licence. . . . 96

4.11 An example raster graphic of a circle. The original image is a 150 by 150 pixel

image saved as a png. 99

4.12 An example vector graphic of a circle. The circle is drawn in LaTeX using the

tikzpicture package. 99

5.1 The layout of WeBIPP’s Graphical User Interface. Free Form Windows, as their

name implies, are not static elements of the interface, and can be moved about

and closed. The Free Form Window shown here is the WeBIPP Code interface,

an embedded and fully functional code editor. 114

5.2 This scatterplot was drawn using R (R Core Team, 2014). The data is one of the

datasets included with R. Using WeBIPP, we wish to recreate a graphic similar

to this. The R command used to produce this image is: 115

5.3 Read in the data to plot. 116

5.4 Select the Cartesian Frame from the menu and click anywhere on the Graph

Region to place a Cartesian Frame object. 117

https://developers.google.com/chart/interactive/docs/examples
https://developers.google.com/chart/interactive/docs/examples
http://www.highcharts.com/demo/bar-basic

List of Figures ix

5.5 Assign speed from our data to the x-axis. 117

5.6 Click the attribute name (x currently) to open a list of attributes for the Carte-

sian Frame. 118

5.7 Select the attribute y and repeat the process from before to assign dist to the

y-axis. We are done with the Cartesian Frame for now and we can unselect the

object by clicking it again in the Object Menu. 118

5.8 By a similar process as before, a Circle may be placed inside the Cartesian Frame

by selecting the Circle from the menu, then clicking anywhere inside the Frame. 119

5.9 The Quick Menu is an alternative to selecting from the Object Menu and using

the Attribute Interface. It is accessed by right-clicking directly on the Object in

the Graph Region. 119

5.10 Assign speed from our data to cx of the Circle. The Figure shows the data

variable speed highlighted, but not yet clicked. Once clicked, as the data contains

multiple values, the Circle Object will replicate itself to become multiple circles,

with each data value being assigned to a different circle. See Figure 5.11 for how

the interface is changed after the click. 120

5.11 Assign dist from our data to cy of the Circle. The Figure shows the data variable

dist highlighted, but not yet clicked. See Figure 5.12 for how the interface is

changed after the click. 120

5.12 A basic scatterplot is complete, the remaining steps add polish to make it look

better. The first two steps of polish involve giving the axes more informative

names by changing x-name and y-name of the Cartesian Frame. 121

5.13 There are some overlapping points, so it would be better if the circles were not

filled to make it easier to identify the individual points. This is done by changing

the fill attribute of the Circle to "none" (quotation marks are necessary). . . . 121

5.14 WeBIPP’s rgb interface. 122

5.15 Making the circles smaller will reduce overlap and help distinguish each indi-

vidual point. This can be achieved by assigning a smaller value (in this case

5) to the r attribute of the Circle. Unfortunately this won’t help with the two

overlapping points at (13, 34), as they are exactly on top of each other. 123

5.16 Save the final graphic. 123

5.17 This Population Pyramid was drawn using R. The data is of the New Zealand

Population data (Statistics New Zealand, 2011). Using WeBIPP, we wish to

recreate a graphic as close to this as possible. The steps that follow are more

for demonstration purposes, and less to be precise and clear steps to recreate

the graph. See the code at the end, or the tutorial on the website, for concise

instructions. 125

5.18 Setting up the Cartesian Frame. 126

x List of Figures

5.19 Adjust the x-axis domain. 127

5.20 Flip the x-axis to the correct orientation for the left-side of the pyramid. 127

5.21 For similar reasons, adjust the y axis range to make full use of the height. 128

5.22 We only want the x axis labels, so we set axes to [1] (WeBIPP uses the same

system as R for referencing axes). We also want exactly 4 tick marks on the

x axis, so we set axes-opts to {"1":{"ticks":4}}. Unfortunately neither of

these attributes have nice interfaces for assigning these values, so for now, the

user must simply know what to assign directly using a default interface, if they

wish to tweak these settings. 128

5.23 The resize interface for WeBIPP. 129

5.24 The dimensions have been adjusted to roughly the correct value, using the in-

terface. The WeBIPP Code interface is open showing the code. 130

5.25 The dimensions have been computed exactly via manual adjustment of the code. 130

5.26 Shift the Cartesian Frame into position by applying a translation of [20, 80]. . 131

5.27 The line segment button. 132

5.28 A line segment using the default values. 132

5.29 Set the x values for the line segment. 133

5.30 Have the line segment start from the top. 133

5.31 Have the line segment end at the bottom. 134

5.32 Make the line segment dashed. 134

5.33 Rectangle with x centred at 0 pixels. 135

5.34 Rectangle with x centred at 0 according to the x axis scale. 136

5.35 Rectangle with its right-edge at 0 according to the x axis scale. 136

5.36 Assign Male to the widths of the bars. 137

5.37 Set the rectangle height to 1. 138

5.38 With height-useScale set to true, there are now no gaps between the bars. . 138

5.39 As this is Male data, assign an appropriate blue colour to the bars using the

interface. 139

5.40 We could also assign a specific colour by name, in this case "lightblue" (quota-

tion marks necessary). This more closely matches the graph we wish to replicate. 139

5.41 The text button. 140

5.42 A text object is used to draw a label. 140

5.43 Position the text on the left-edge of the graph. 141

5.44 Position the text above the graph. 141

5.45 Anchor the text correctly for correct alignment. 142

5.46 Adjust the size to something appropriate for a label. 142

5.47 Formalised reuse of code using the Functionise interface. 145

List of Figures xi

5.48 Check the highlighted text carefully to ensure only what we want is turned into

arguments. 146

5.49 Sometimes a more cumbersome match may be required to get a unique match. . 146

5.50 In other cases multiple matches may be desirable. As the right-side will be using

Female data, all cases of Male being updated to Female is exactly what we want. 147

5.51 With all the arguments set, we finish creating the function. 147

5.52 Clicking on the newly created button will open an interface to help use the function.148

5.53 The available arguments. 149

5.54 Setting the arguments. 149

5.55 We can also compute argument values, as before. 150

5.56 Be sure to match the text that has been turned into an argument. 150

5.57 Finish off the call. 151

5.58 The right-side of the pyramid complete. 151

5.59 Placing the shared y axis label. 152

5.60 Assign AgeGroup to y for positioning. 153

5.61 Assign AgeGroup to text for the axis labels. 153

5.62 Placing an overall Title for the graph. 154

5.63 To make the Title more prominent, we can bold it. 155

5.64 We can also change the font of the title. 155

5.65 Placing an overall x axis label. 156

5.66 The finished Population Pyramid, which is fully scalable. 157

5.67 The interface resized to 1600 by 720. 157

5.68 The resize interface with the default size of 920 by 720. 158

5.69 The interface resized to 640 by 480. Notice that our chosen font sizes may not

be appropriate at other interface sizes. 158

5.70 The SVG containing the WeBIPP GUI. The first five groups (<g> with IDs

gGraph, gMenuTab, gMenuPri, gMenuSec and gMenuTer) form the GUI, while the

next two groups (with IDs wbip-code-high and wbip-code-low) form the Free

Form Windows that contain ForeignObjects that hold the CodeMirror instances. 162

5.71 An example of Frames and nesting. gELs 1, 2 and 6 are children of the Graph

Region itself. gELs 3 and 4 and children of gEL 2. gEL 6 is a child of gEL 4. . . 163

5.72 The icons that will be used for the Structure diagrams. 164

5.73 Structure of the Initialisation process. Not mentioned are the D3 External Li-

brary and the WeBIPP’s Utils Internal Library. Almost everything in WeBIPP

makes use of the Utils library and all drawing on the SVG is done through D3.

Some utility functions in the D3 library are also used. 165

5.74 Simplified structure of how a Circle is added. Can be generalised to most other

objects, with some variances in complexity. 166

xii List of Tables

5.75 Simplified structure of how a Circle’s attribute is adjusted. Can be generalised

to most other objects, with some variances in complexity. 167

5.76 Two examples of the Numeric Value Interface. Left: Assigning a specific value of

150. Right: Modifying the OV (Original Value), the mouse is over the OV button,

highlighting it and displaying the tooltip (if defined). 187

5.77 How the Circle looks before (left) and after (right). Note that for the right

graph, many of the cx values are the same, resulting in overlapping circles and

the appearance of a smaller number of circles than the 50 that actually exist. . . 192

List of Tables

2.1 Example CSV and CSV-like data using (from left-to-right) a comma, a single

space and a tab as the delimitters. The simplicity of data structure makes it

very easy for this data format to be read and manipulated via a computer, but

the lack of nice alignment of cells makes it unsuited for the naked eye. 11

1

Chapter 1

Introduction

It’s like that basic rule in nutrition: Food that is not eaten has no

nutritional value. Data which is not understood has no value.
— Hans Rosling

In recent times there has been a movement toward Open Data, particularly for government

data1,2 (which also falls under the purview of Open Government). The reasons cited for

this movement are typically intangible3,4,5, but it is easy to appreciate how such benefits

can arise. As Cole (2012) notes however, there are degrees of openness. For instance,

data may only be available on request, or the released data may only be a subset or an

aggregated result of the original data. Additionally, even if the data itself is ‘open’, the

format or content of the data may require additional resources, such as expert knowledge

or significant computing power, to process or understand the data. This presents barriers

around accessibility and usability, limiting the potential benefits of making the data open.

The purpose of this thesis is to examine ways to make Open Data more open, more

accessible and thus more useful to a wider audience. It begins with a Literature Review

of Open Data in New Zealand (Chapter 2) to understand what data is out there and to

identify what barriers currently exist that hinder the usage of the data. It then presents

TableToLongForm (Chapter 3) a tool that attempts to address a major problem identified

1“In many countries across the world, discussions, policies and developments are actively emerging
around open access to government data.” Davies and Bawa (2012a)

2“Over 100 OGD [Open Government Data] initiatives are active across the globe, ranging from
community-led OGD projects in urban India, to a World Bank sponsored OGD programme in Kenya,
government-led developments in Brazil, civil-society initiated work in Russia, and a World Wide Web Foun-
dation supported programme in Ghana.” Davies and Bawa (2012b)

3“We promote open knowledge because of its potential to deliver far-reaching societal benefits which
include... better governance... culture... research... economy” Open Knowledge Foundation (2012)

4“One of the pillars of open and transparent government is open government data and information.”
New Zealand Government ICT (2012a)

5“The online publication of structured datasets by governments is seen as playing an important role in
driving the transparency and accountability of states, enabling new forms of civic participation and action,
and stimulating economic growth and development.” Davies and Bawa (2012b)

2 CHAPTER 1. INTRODUCTION

in the Literature Review, that of data being released in non-machine-readable hierarchical

tables. Once data is in a useful format, one of the most effective ways to communicate

it to a wider audience is through visualisations, so the thesis continues with a Literature

Review of Graphical Tools (Chapter 4) examining what is currently available for creating

web-based interactive graphics. It then presents WeBIPP (Chapter 5) an innovative tool for

prototyping web-based statistical graphics, which works in a way that no other graphical

tool does. The thesis concludes (Chapter 6) with summarising remarks and possibilities for

future work.

Literature Review: Open Data in New Zealand

To examine ways to make Open Data more useful, it is first necessary to understand what

Open Data is and how it is released, accessed and used. This Literature Review begins

by defining Open Data, including key desirable properties and terminology relevant to the

discussion. It then provides an overview of New Zealand State Sector sources of Open Data.

TableToLongForm

TableToLongForm is an R package that automatically converts hierarchical Tables intended

for a human reader into a simple LongForm dataframe that is machine readable, making

it easier to access and use the data for analysis. It does this by recognising positional

cues present in the hierarchical Table (which would normally be interpreted visually by

the human brain) to decompose, then reconstruct the data into a LongForm dataframe.

The chapter motivates the benefit of such a conversion with an example Table, followed

by the core concepts that drive TableToLongForm. It continues with examples of how the

package may be used, including how it may be extended with external algorithms. Finally

it goes into the implementation details that covers in more depth how TableToLongForm

accomplishes its task, but also its limitations and how it can fail.

Literature Review: Graphical Tools

This Literature Review examines free Graphical Tools that produce interactive output ideal

for web-based viewing, ranging from Tableau Public to Google Chart Tools and D3.js. To

compare between the complex tools (defined as Low-level Languages) like Processing and

Raphaël, the same graphic is implemented under each Low-level Language, which serves

both as a method of directly comparing between the tools, and also as an example of how to

use the tool. A brief primer on some graphical terms is also provided, such as the difference

between raster and vector graphics, or how the SVG image file format works, to make the

review more accessible to audiences unfamiliar with such details.

3

WeBIPP

WeBIPP is a web-based interactive tool for building statistical graphics from scratch without

writing any code. It has a Graphical User Interface that can be used to place the building

blocks of graphics (rectangles, circles, lines, etc.) and assign these building blocks data. By

assigning data to the x and y of Circles, a scatterplot can be made. By assigning data to

the widths of Rectangles and by having these rectangles start from 0, a bargraph can be

made. In such ways, simple statistical plots can be built from scratch in minutes. This is

but a part of what WeBIPP can do.

Not only can these building blocks be used to build more complex graphics, WeBIPP has

extensive addon support, and the interface can handle not just the basic building blocks, but

complex objects that can be used to easily build more complex graphics. As the interface

is used to build the graphics, the user is not simply creating a graphic, they are writing

code in the background. For those who have no coding knowledge, this fact can be ignored,

making WeBIPP accessible to this audience. But for those who have coding knowledge,

they can utilise it to examine the code, to tweak it and to reuse it.

Unlike many other tools for creating statistical graphics where the user is limited to

what the tool itself allows, WeBIPP does not limit the user. If the interface currently lacks

support for something, the user can simply write their own code to accomplish it. In this

way, WeBIPP becomes much more powerful than other tools of similar nature.

In addition to an introduction that covers what WeBIPP is, what it seeks to achieve and

how it differs from similar tools, the chapter also has extensive sections demonstrating how

both GUI and code can be used to produce graphics from scratch. This is followed by some

details on how WeBIPP works and how it may be extended with addons. It concludes with

a discussion on its limitations and possible future work.

5

Chapter 2

Open Data in New Zealand

A Literature Review

2.1 Introduction . 6

2.2 What is Open Data? . 7

2.2.1 A Definition . 7

2.2.2 Users of Open Data . 8

2.2.3 Good and Bad Open Data . 9

2.2.4 Data Formats . 10

2.2.5 Other Relevant Topics . 18

2.3 Overview of Open Data in New Zealand . 19

2.3.1 Overview of the Overview . 19

2.3.2 Statistics New Zealand . 22

2.3.3 data.govt.nz . 25

2.3.4 The Template . 26

2.3.5 Major Sources . 27

2.3.6 Minor Sources . 31

2.3.7 Not Sources . 37

2.3.8 Outside Scope . 39

2.4 Conclusion . 40

6 CHAPTER 2. OPEN DATA IN NEW ZEALAND

2.1 Introduction

To examine ways to make Open Data more useful, it is first necessary to understand what

Open Data is and how it is released, accessed and used. This Literature Review aims to

provide an Overview of Open Data in New Zealand giving particular focus to New Zealand

State Sector sources. Of course, Open Data includes more than just government data,

such as data arising from academic research (which also falls under the purview of Open

Research), but the vast amount of data openly available from governments around the world

make it an ideal low-hanging fruit. The scope is limited to New Zealand to attain depth, in

exchange for breadth.

The intent of this review is not to evaluate the performance of the New Zealand govern-

ment and its organisations’ release of data, but instead to understand the current situation,

to understand what barriers currently exist that hinder the utilisation of Open Data. In

the process it becomes necessary to deal with some policy issues and some thoughts are

given on what would be ideal from a Technical Users’ perspective; however such comments

are intended primarily to aid in the understanding of the current situation, rather than be

evaluative remarks on current practice.

Thus this Literature Review will:

1. Define Open Data (Section 2.2), including key desirable properties and terminology

relevant to the discussion. In doing so some policy and procedure issues are considered,

as they are relevant to understanding what makes for Good Open Data.

2. Provide an Overview of Open Data in New Zealand State Sector sources (Section 2.3).

The State Sector organisations covered are those listed as Public Service departments

on the State Services Commission’s website (State Services Commission, 2012), which

includes many of the organisations the general public will be familiar with, such as

the Ministry of Health or Inland Revenue.

This Literature Review was conducted in 2012, and due to the nature of the subject many

details become out-dated at an alarming rate. Many of the points made in the various

summaries should remain valid for some time, but specific details, particularly pertaining

to specific organisations as in Section 2.3, may no longer apply at the time of reading.

2.2. WHAT IS OPEN DATA? 7

2.2 What is Open Data?

2.2.1 A Definition

We all vaguely understand what is meant by Open Data, but let us be more formal with

our definition. The Open Knowledge Foundation (2012) defines Open Knowledge to be

“content that people are free to use, re-use and distribute without legal, technological or

social restrictions.” Davies and Bawa (2012b) observe that:

“Open data” is just one of a number of high-profile labels with the prefix

“open”. Open government, open access, open innovation, open education and

open knowledge are some of the other initiatives and movements in this area.

Many of these draw from the emergence of “open source” as the inspiration for

their development.

Cole (2012) notes that there are degrees of openness. For instance, data may only be

available on request, or the released data may only be a subset or an aggregated result of

the original data. Additionally, even if the data itself is ‘open’, the format or content of the

data may require additional resources, such as expert knowledge or significant computing

power, to process or understand the data. This presents barriers around accessibility and

usability, limiting the potential benefits of making the data open.

For the purposes of this Literature Review, the key features of Open Data are:

Free to use and re-use At a minimum this means there are no legal restrictions on using

the data for any purpose. Ideally, it also means there are no non-legal restrictions,

such as the data format being obfuscated, either intentionally or unintentionally, such

that it is unsuitable for use other than for its ‘intended’ purpose.

Free to distribute Ideally this means we are free to distribute the data itself, as well as

any derived output of the data. Sometimes the case may be that the data is freely

available and we are free to distribute derived output (so long as it is sufficiently

aggregated or processed to no longer be considered raw data), but we are restricted

from re-distributing the data itself1. Such cases, while not ideal, will still be considered

Open Data.

Freely available Meaning the data is readily accessible, ideally on the internet, with little

to no requirements for authentication or approval. Sometimes the case may be that

1This may arise for example, when the raw unaggregated data is subject to privacy restrictions that
cease to be a problem with sufficient aggregation. Due to New Zealand’s privacy laws (see Section 2.2.5) we
must remain wary of potential privacy breaches even if we are using data that has been released ‘openly’ by
another party. N.B. When dealing with data from another state/country, it would be wise to consult the
relevant privacy laws for that state/country.

8 CHAPTER 2. OPEN DATA IN NEW ZEALAND

registration and login is required to access the data. If this process is easy and incurs

no monetary cost, while not ideal, the data is still considered Open. Other times the

data may be ‘freely available on request’, but with some manner of lengthy approval

and response process (often requiring human involvement on the provider side). Such

requirements are considered to be a significant barrier for the wider public, and hence

such data is not sufficiently Open to be considered Open Data.

2.2.2 Users of Open Data

Users of Open Data will be classified into the following categories:

Casual Users The ‘ordinary person’. Generally these users will only use data as is with

little to no independent effort to further process the data. They will appreciate data

being presented in a human-friendly fashion, such as hierarchical tables that make it

easy to locate a specific value, and will value plots of the data, as they are unlikely to

make such themselves.

Semi-Technical Users These are ‘ordinary’ people with some technical knowledge, or

they are in a profession which requires some technical skill with data, such as data

journalists or financial professionals. They may carry out some data manipulation,

usually manually and often with the aid of a GUI tool such as Excel, to draw conclu-

sions from the data. As manipulation is often manual, they generally prefer human-

friendly data formats; machine-readability is a concern to the extent that the data is

easily selected for copying/referencing.

Technical Users These are users who use script-based approaches to data manipulation to

handle very large volumes of data, possibly spread across multiple files. They typically

desire data in as raw and simple a format as possible so that it is machine-readable;

they can then use this to produce any other format they may desire, to conduct more

sophisticated statistical analyses, and to create summaries and visualisations of the

data. Their outputs can often be of value to all three types of users.

Desirable Open Data will depend on the type of user, ideally Open Data should be released

in multiple formats to cater to the different users. Where that is impractical the format

should be one that caters to as many users as possible, ideally encompassing Technical

Users who are capable of taking this data and re-using it in a way that benefits the other

users. Conversely, though Casual Users form the largest user base, as they are usually not

capable of re-using the data to further benefit other users, catering only to Casual Users

will severely limit the benefits of Open Data.

2.2. WHAT IS OPEN DATA? 9

The focus of this Literature Review will typically be from the perspective of a Technical

User, desiring machine-readable data as inputs, with the aim of producing tools and output

that are suitable for use by all three types of users.

2.2.3 Good and Bad Open Data

Within Open Data, it is helpful to have some examples of what might be ideal and desirable

qualities to see in Open Data, and conversely, what might be undesirable qualities. These

are from the perspective of a Technical User (as defined in Subsection 2.2.2).

Open Data is considered Good if it possesses many desirable qualities and few undesirable

qualities. Conversely, Open Data possessing many undesirable qualities (while still classified

as Open Data) will be defined as Bad Open Data. Desirable qualities are:

� Any restrictions (or lack thereof) are made clear, e.g. a known copyright licence is

clearly attached (see Section 2.2.5).

� Data is accessible in a simple, easy way, e.g. the data can be obtained by simply

clicking on a link.

� Data is structured in a simple, easy to use format (see Subsection 2.2.4).

� Any supplementary information is clearly connected to the data. These may include:

1. Details on how the data was collected and processed, including any steps taken

to identify and correct errors in the data (such as mistakes during data entry),

or any modifications made to ensure confidentiality and privacy protection.

2. A clear definition of the headings, groupings or other notation used in the data.

3. Any relevant information that may affect analysis and interpretation, e.g. if there

was a change in how data was collected, processed or classified over time.

The lack of desirable qualities (such as not having a copyright licence) is undesirable. How-

ever in some cases, there may be specific features that are undesirable, such as:

� Data is only accessible via an inconvenient or slow user interface, such as a restrictive

online form.

� Data is structured for presentation and human reading. This could be through ex-

cessive aggregation of the data before release, or a layout that is chosen for aesthetic

appeal rather than ease of data processing. In particular, this makes it very difficult

to use the data in any other way than originally envisaged by the data provider (which

may be intended in some cases), stifling innovation and potential re-use of the data.

10 CHAPTER 2. OPEN DATA IN NEW ZEALAND

2.2.4 Data Formats

The data format can significantly influence how the data can be used. This section discusses

some common data formats used by State Sector Open Data Sources and how these formats

can enable or prevent usage of the data.

Executive Summary

� Releases in CSV are the simplest, and hence enable the greatest data re-use but

requires some experience with data manipulation making it less accessible to non-

technical users.

� Releases in XLS can have significantly different implications for data use and re-use

depending on the specific internal format. Of these internal formats the Pivot Table

is most recommended as it caters to the widest range of users, enabling some data

manipulation by users within Excel, while also making it possible to convert and export

the data to a simpler, machine-readable format. Ideally though, the data should also

be released in a simple multi-platform format, such as a CSV, rather than exclusively

as an XLS file.

� Releases in HTML Tables are easier to share via the web while still being structured to

some extent, making it possible to salvage and convert the data to a more convenient

format. However, where possible the data should also released in a different format

(such as CSV) so such conversions are not necessary.

� Releases in PDF Tables should never be done as the PDF is purely a presentation

format and not suitable for data transfer. While it is acceptable to include tables

of data in PDF documents for presentation purposes, the data itself should also be

released in a better format, and this should be clearly indicated and referred to in the

PDF document.

CSV

Perhaps the most basic data format is the CSV, or Comma Separated Values. Despite

the name, CSV-like files that use other delimiters, such as a blank space or a tab, are

sometimes called CSV. In CSV data is stored in longform, that is each row represents an

individual observation and contains all the information relating to that individual in that

single row, with each piece of information separated (into ‘columns’) by the delimiter. An

analogy would be if we stored information on people, then each row would be a person and

the columns would be attributes like height, weight, gender and age. We do not require

information from any other person (row) in order to obtain information about any given

2.2. WHAT IS OPEN DATA? 11

person. This simplicity of structure makes CSV files very easy to read and manipulate via

a computer as there is no need to decipher relationships in the data, but this simplicity can

make the format cumbersome to work with for users unfamiliar with data manipulation of

such a format (see Table 2.1).

Col1,Col2,Col3

"A",1,19

"B",2,28

"C",3,37

"Longer text",4,46

Col1 Col2 Col3

"A" 1 16

"B" 2 25

"C" 3 34

"Longer text" 4 46

Col1 Col2 Col3

"A" 1 16

"B" 2 25

"C" 3 34

"Longer text" 4 46

Table 2.1: Example CSV and CSV-like data using (from left-to-right) a comma, a single
space and a tab as the delimitters. The simplicity of data structure makes it very easy for
this data format to be read and manipulated via a computer, but the lack of nice alignment
of cells makes it unsuited for the naked eye.

XLS

Another common format is the XLS (Excel Spreadsheet), and this appears to be the preferred

data format for the majority of State Sector Open Data Sources. We will further classify

XLS files as follows:

XLS-Longform - When the data in the spreadsheet are presented in longform. These are

very similar to a CSV, but can add hurdles to users who may wish to work in a software

other than Excel as they must convert the data first. There is little benefit in releasing

data in XLS-Longform rather than CSV, as Excel is perfectly capable of reading both,

while XLS-Longform can only be read by Excel or similar XLS-compatible software.

See Figure 2.1.

XLS-Table - When the data is presented in some form of table that relies on non-trivial

relationships. Unlike a longform where all the information for a piece of data is

essentially contained in a single row, an XLS-Table requires collecting information

across multiple rows to form the full picture. Such tables are relatively easy for a

human brain to decipher and may even be easier to read for a human compared

to a longform, however the non-trivial relationships makes it extremely difficult to

machine-read the data. See Figure 2.2 and Figure 2.3.

XLS-PivotTable - When the data in the spreadsheet is presented using the Pivot Table

feature of Excel. The Pivot Table is an interactive feature of Excel that allows dynamic

12 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Figure 2.1: An example of an XLS-Longform. The data is active-customers-by-entity-type-
2001-to-2011.xls from Inland Revenue.

Figure 2.2: An example of an XLS-Table. While this may be quite easy for the human brain
to decipher, it is a nightmare for a computer. Consider for instance trying to obtain all the
information for the first ‘piece’ of data. First we need to get the Rank from B8, understand
this number is a ‘Rank’ by getting the column label from A5 (noting this is a different
column to where the actual Rank value is stored). Second we need the name from D8, and
the label for this from C6. Third we need to get the count of babies from E8 with label from
E6. Finally we need the year from C5. The data is Top100BabyNamesNewZealand2011.xls
from the Department of Internal Affairs.

2.2. WHAT IS OPEN DATA? 13

Figure 2.3: An example of an XLS-Table. Once again, this may be relatively easy for a
human brain to decipher, but a nightmare for a computer. Note that in this instance in-
cell indentation and the Excel Grouping feature are used to communicate the hierarchical
relationships in the data rows. Such information will typically be lost when converting the
XLS file to another format, effectively forcing the user to a) Use Excel and b) Conduct
any analysis manually. As Excel itself understands some of this information, it may be
possible to write code in VBA (Visual Basic for Applications, a slightly modified version of
Visual Basic integrated with Microsoft Office applications) to extract this information, but
a cursory look at the code suggests this might be quite a challenge. The data is Oil.xls from
the Ministry of Economic Development (now a part of the Ministry of Business, Innovation
& Employment).

creation and modification of tables via a graphical user interface. It greatly enhances

data exploration that can be done within Excel, though at first glance appears to

be a significant barrier to analysis outside Excel. However, this is not the case, as

it is possible to extract the underlying data using Show Details from the right-click

menu. This makes XLS-PivotTables much better than XLS-Tables as it caters to many

different types of users. It does however require the user to have software capable of

using the Pivot Table. See Figure 2.4 and Figure 2.5.

XLS-ReportTable - When the data is presented as some form of report or table that

is highly tuned to human-reading. We classify an XLS file as ReportTable if there

are substantial barriers to machine reading. Generally any data released as an XLS-

ReportTable can only be used manually and presents significant barriers to any re-use,

even by manual means. This form of release is only appropriate if the underlying data

is also released in a simpler form. See Figure 2.6.

14 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Figure 2.4: An example of an XLS-PivotTable. The Pivot Table is an interactive feature of
Excel that allows dynamic creation and modification of tables via a graphical user interface.
It greatly enhances data exploration that can be done within Excel, though at first glance
appears to be a significant barrier to analysis outside Excel. However, this is not the case,
as it is possible to extract the underlying data using Show Details from the right-click menu.
The data is Pivot-Table-Student-Numbers-by-Age.xls from the Ministry of Education.

Figure 2.5: An example of the XLS-PivotTable from Figure 2.4 after clicking Show Details
from the right-click menu. Note that the data is presented in long-form and could now be
converted to a CSV for analysis in different software.

2.2. WHAT IS OPEN DATA? 15

Figure 2.6: An example of an XLS-ReportTable. Much like an XLS-Table, these are rela-
tively easy for a human brain to decipher. However, we classify an XLS file as ReportTable
if there are substantial barriers to machine reading. Generally any data released as an XLS-
ReportTable can only be used manually and presents significant barriers to any re-use, even
by manual means. The data is jtei-july-08.xls from the Department of Labour.

16 CHAPTER 2. OPEN DATA IN NEW ZEALAND

HTML Table

Another format is to release the data as an HTML Table element. Like XLS files, HTML

Tables could also be released in simple longform or in more complex structures, though

practically when HTML Tables are used, they tend toward the former as it is not very

suited for more complex structures. As the data is still stored in a structured format, there

are several tools to convert HTML Tables to a different format, such as a CSV, for analysis

in a variety of software tools. Though easy to share on a website, as HTML Tables do incur

a conversion cost when re-used, the underlying data should also be released in a different

downloadable format such as CSV.

Figure 2.7: An example of an HTML-Table. The data is Income bands for salaries and
wages, 2002 to 2011 found under the Wage/salary distributions for individual customers
category from Inland Revenue.

PDF Table

Finally, the last format we cover is a table embedded inside a PDF document. These can

barely be considered data as PDF documents do not retain any data structure, being purely

a presentation format. Generally, any data released as a PDF can only be used manually

and any re-use will be costly in time and effort. Data should never be released exclusively

in a PDF format, any data included in a PDF document should be released separately in a

proper data format.

2.2. WHAT IS OPEN DATA? 17

Figure 2.8: An example of an HTML-Table that does not use HTML Table code (instead
utilising div and span for visual formatting). This means the data is not structured making
it extremely difficult to extract the data. Luckily in this case, a link is provided (not shown)
to download the data as an XLS-Table. The data is a Results by Subject and Standard report
from the New Zealand Qualifications Authority.

18 CHAPTER 2. OPEN DATA IN NEW ZEALAND

2.2.5 Other Relevant Topics

Licensing

Without going into technical details, a standardised Copyright-Licence, such as one of the

Creative Commons licences or the GNU General Public License, can specify a certain set

of copyright conditions or waivers. By attaching such a licence to Open Data, the legalities

of copyright become clearer, allowing a user to know exactly where they stand with regards

to what they may do with this data.

The Creative Commons licences appears to be the most common licence used by New

Zealand State Sector Open Data Sources, so a brief overview is provided. For more in-

formation visit the Creative Commons website2. The default CC licence is the ‘baseline’

licence. It in effect allows the user to freely copy, distribute or make use of the work, but

still assigns ownership of the copyright to the original holder. A CC licence may attach

additional conditions, such as:

by Attribution - must reference the original author in the manner specified.

nc Noncommercial - can only be used for noncommercial purposes.

nd No Derivative Works - a derivative work that includes major elements of the original

cannot be made. Thus you can still copy and pass on the original to others, but you

cannot make any changes, alterations or additions.

sa Share-alike - derivative works may be made, but they must have a licence identical to

the original.

Thus, a CC by licence would allow free use, modification, distribution, etc, as long as the

correct attribution is given. An alternative to using a Licence is to simply make it Public

Domain, which waives any and all copyright.

Privacy

The relevant legislation in New Zealand is the Privacy Act 1993, which restricts anyone’s

collection, storage and use of data about an identifiable private individual. In essence,

data on an identifiable individual can only be collected for a specific purpose, requires the

person’s permission, should (where possible) be taken directly from the person, should be

stored securely, and should not be released to anyone else. This data should only be used

for the purpose it was originally collected for (which was communicated to the person) and

once it serves its purpose, it should be securely disposed (Penk and Tobin 2010).

2http://creativecommons.org/

http://creativecommons.org/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 19

These restrictions apply not only to the data collector, but extend to anyone who sub-

sequently gains possession of the private data. This creates a problem: if Open Data is

released that is in fact breaching privacy, any user of this ‘Open’ data becomes liable for

any privacy breaches themselves; blame cannot be shifted to the original data provider.

Fortunately, the New Zealand Privacy Commission takes a corrective role rather than a

punitive one, thus in most cases the ‘liability’ will be minor (e.g. required to apologise to

affected individuals), especially if the breach was unintentional.

Obtaining permission directly from any affected individuals, to effectively waive their

privacy rights relating to the particular data collected, is allowed and can be used to avoid

privacy issues. However in the case of Open Data, often the users are separate and distinct

from the data collector and provider, thus obtaining permission is rarely possible.

N.B. It may be of interest to know that private information collected purely for ‘domestic’

use (for personal affairs) is not bound to the restrictions of the Privacy Act 1993.

2.3 Overview of Open Data in New Zealand

2.3.1 Overview of the Overview

Motivation

We give an overview of Open Data in New Zealand for two reasons:

1. It is useful to understand what Open Data is actually out there in practice, by who

and in what form. It is also helpful to know how this data might be acquired.

2. Restricting to New Zealand limits the scope to something that is manageable.

The focus of the overview will be on the State Sector, as this is the most abundant source

of Open Data. In particular, the New Zealand Government is making a push for an Open

and Transparent Government and we can expect to see even more data coming from the

State Sector. Related initiatives include:

Declaration on Open and Transparent Government (New Zealand Government ICT,

2011) - “Building on New Zealand’s democratic tradition, the government commits

to actively releasing high value public data [non-personal and unclassified data.]... To

support this declaration, the government asserts that the data and information it holds

on behalf of the public must be open, trusted and authoritative, well managed, readily

available, without charge where possible, and reusable, both legally and technically.”

NZGOAL (New Zealand Government Open Access and Licensing)(New Zealand Govern-

ment ICT, 2010) - “The Government wants to encourage... individuals and organisa-

20 CHAPTER 2. OPEN DATA IN NEW ZEALAND

tions to be able to leverage State Services agencies’ data stores for their own, agencies’

and others’ benefit... In essence, NZGOAL... sets out a series of open licensing and

open access principles”

The government has also released the 2012 Report On Agency Adoption of the New

Zealand Declaration on Open and Transparent Government (New Zealand Govern-

ment ICT, 2012b). Of particular interest is paragraph 23 which highlights what the various

departments and agencies consider to be barriers to releasing ‘high value public data’.

� Restrictive licensing terms imposed by third parties

� Issues with data quality and inconsistent data

� A lack of data standards, which causes confusion with data format

� A lack of resources to address the above barriers

� A shift in culture is required

� Considerable time is required to analyse the risks of releasing data for re-use

� A perceived lack of data to release

� A lack of analysis of what information is of interest to consumers

As supplement to the report, the government also released information providing details of

Current and Future Data Releases. However, during the Literature Review data releases

were encountered that were not found in either of these lists, so they are not a comprehensive

source of all data releases.

The Method

To gain the overview I desire, I examined the organisations listed as Public Service depart-

ments on the State Services Commission’s website (State Services Commission, 2012). For

each organisation the website was examined to gain some understanding of how they release

data. A small sample of the discovered data was then examined in greater depth to gain

an understanding of any difficulties that might be encountered in obtaining and trying to

make active use the data. The organisations were then contacted to confirm my findings

and to better understand the rationale behind how they release data.

I classified the organisations based on the amount of data they release, as it is reasonable

to expect that organisations that release more data will have better processes in place.

Additionally some were classified as being Outside the Scope of this Literature Review.

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 21

Major Sources Those identified as releasing significant amounts of data regularly and

often have an extensive history of data releases.

Minor Sources Those identified as releasing data regularly, or have otherwise released a

non-trivial amount of data, but not enough to be considered Major.

Not Sources No significant datasets found.

Outside Scope Some organisations only release geospatial data, and these are classified as

Outside the Scope of this Literature Review. The complexity and specialised nature

of geospatial data means it is a topic deserving of its own thesis.

Situation Report

As we might expect, those sources that release large amounts of data tended to have better

data releases than those that release smaller amounts. In particular, those classified as Major

generally have a mandate to release data, often being Tier 1 Statistics (see Section 2.3.2),

and thus have good reason to focus on releasing data. In contrast, the other organisations

must focus first on their primary objectives, with releases of data being a secondary, even

tertiary objective, one with no additional funding attached.

However, a few organisations took the recent government initiatives as an opportunity

to focus on releasing data, and some activity has been seen in attempting to overcome

the lack of resources with a cross-agency solution. LINZ led a working group to develop a

business case for a shared Open Data Service (ODS) (not to be confused with the LINZ Data

Service, a geospatial data service). The ODS Agency Demand Survey (Land Information

New Zealand, 2012b) noted:

At present agencies provide their released information through a variety of

mechanisms ranging from website content though to custom designed database

applications. This variability means that the data can be difficult for users to

find, access and use, thereby limiting its potential reuse and subsequent benefit

to the New Zealand economy.

The goal of the ODS is to reduce duplication and get the best return for

investment in the production of systems that enable government agencies to

release high value, non-personal data, and to provide a portal or portals where

users can seamlessly access information from a number of different agencies.

As noted in the above quote, such a shared effort will standardise how the data is released

across many state organisations, making it much easier to find and obtain data. Unfor-

tunately, the initiative never made it past the consultation stage. Land Information New

Zealand (2012a) noting:

22 CHAPTER 2. OPEN DATA IN NEW ZEALAND

A survey of local, regional and central government agencies found that there

was a strong level of interest in using an ODS if it were available. The same

survey also revealed that agencies were unwilling to prioritise investment in the

development of the service in a constrained fiscal environment.

The working group concluded that while there was strong interest in the

concept of an ODS, the inability to obtain funding to carry out the development

meant that it was not possible to produce a viable business case for an ODS.

Unfortunately this means the current situation, where there is a lack of standardisation

across the different agencies, continues. Each agency has its own website layout that can

make it difficult to find the data, with some agencies even lacking a listing of all data

releases. A data aggregator, like data.govt.nz, alleviates this problem and is currently one of

the best methods for finding data (see Subsection 2.3.3 for details). Once found, it is often

the case that the data is not in a format ideal for re-use (see Subsection 2.2.4 for more on

data formats), requiring extra work to make use of the data.

Though change and improvements are on the horizon, the current situation poses many

challenges in making use of Open Data released by state organisations.

2.3.2 Statistics New Zealand

http://www.stats.govt.nz/

Statistics New Zealand Tatauranga Aotearoa is a government department and New Zealand’s

national statistical office. We’re New Zealand’s major source of official statistics and leader

of the Official Statistics System.

Official Statistics in New Zealand

Statisphere (2012a), “New Zealand’s official statistics portal” managed by Statistics New

Zealand (StatsNZ) “on behalf of all government departments” provides a good explanation

of Official Statistics in New Zealand.

Official statistics are defined in section 2 of the Statistics Act 1975. They

are statistics derived by government departments from:

� statistical surveys

� administrative and registration records and other forms and papers that

are published regularly, or planned to be published regularly, or could be

published regularly.

Statistical survey is defined in the Statistics Act as: “a survey of undertak-

ings, or of the public of New Zealand, whereby information is collected from all

http://www.stats.govt.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 23

persons in a field of inquiry or from a sample, by a Government Department with

the authority of this Act or any other Act, for the purpose of processing and

summarising by appropriate statistical procedures and publishing the results of

the survey in some statistical form”.

Statistics New Zealand is New Zealand’s national statistical office. Statistics

New Zealand is the leader of the Official Statistics System and is the major

producer of official statistics in New Zealand.

The Government Statistician, who is also the Chief Executive of Statistics

New Zealand... [provides] direction to the Official Statistics System and engaging

other government departments to build shared ownership, minimise duplication,

and maximise reuse of data.

Thus Statistics New Zealand is very important on matters relating to policy, as well as

being an important source of data.

Tier 1 Statistics

In 2003 a review conducted by StatsNZ identified a set of key official statistics; these are

known as Tier 1 statistics (Statisphere, 2012c) which...

� are essential to critical decision-making

� are of high public interest

� meet expectations of impartiality and statistical quality, in accordance with the Tier

1 principles and protocols

� require long-term data continuity

� allow international comparability

� meet international statistical obligations.

A principle and protocol of particular interest is Protocol 5: Release Practices. The

following are excerpts from the Principles and Protocols for Producers of Tier 1 Statistics

(Statisphere, 2012b):

� Tier 1 statistics producers will ensure equality of access. Statistics are presented in

an understandable manner and are widely disseminated.

� Release of Tier 1 statistics is by the Chief Executive of the producing agency, according

to a calendar of release dates published at least six months in advance.

24 CHAPTER 2. OPEN DATA IN NEW ZEALAND

� Information dissemination practices are responsive to the needs of users.

� Statistics are released in a variety of formats that meet the needs of users.

� Tier 1 statistics producers endeavour to integrate and harmonise their publications

and products with users’ needs and give them easy access to related statistics through

common gateways or interlinked websites.

� Tier 1 statistics producers respond to changing expectations about access to outputs.

Formats, media, content and support materials are regularly reviewed and are modified

to meet users’ current and future needs.

� The cost of accessing Tier 1 statistics is minimal.

� Catalogues and directories are readily available so that potential users know where

and what statistics are available. A list of official statistics is available at www.

statisphere.govt.nz

� Tier 1 statistics producers provide facilities (by electronic and/or print media) to en-

sure easy, user-friendly access to statistics for everyone, including regular, professional

users as well as casual users and the interested public.

� Regularly recurring statistical releases are delivered in consistent formats. The format

is sufficiently flexible to allow explanations of the data as they vary between periods.

Unfortunately, but understandably, practical application of these protocols appears to be

very difficult, most likely due to limited resources, and these protocols seem more a goal

than a reality.

Statistics New Zealand as a Data Source

The majority of data is released through one of the online tools, of which there are currently

three: Infoshare, Table Builder and NZ.Stat.

NZ.Stat is a new tool released near the end of 2012 that replaces Table Builder. Table

Builder is scheduled to be decommissioned at the end of February 2013. NZ.Stat is also

intended to replace Infoshare in 2014.

The general idea behind all the online tools are the same. They are graphical user

interfaces that are used to:

1. Narrow down user query to a specific category.

2. Provide a breakdown of variables related to the chosen category.

3. Generate a table based on the selection.

www.statisphere.govt.nz
www.statisphere.govt.nz

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 25

4. The output is a table tailored more for human consumption and is not presented in

Longform.

At this stage, it would appear there is no API support for any of the online tools, though

NZ.Stat may have this capability in the future “We will also be providing more functionality,

such as the ability to create your own custom queries that can be shared with colleagues,

and machine-to-machine data transfer.” (Statistics New Zealand, 2012)3

Some data is released via direct download, usually in an XLS format. The internal

format of these files are variable, but they appear to be intended for direct consumption by

human audiences (i.e. Table, not Longform). In some cases, the files mention that more

data can be found via one of the tools, though output generated from Infoshare appeared

to be considerably more aggregated than the data available via direct download.

2.3.3 data.govt.nz

data.govt.nz is a catalogue of Open Data released by New Zealand government agencies. It

is administered by the Department of Internal Affairs and has official support through the

New Zealand Declaration on Open and Transparent Government initiative.

Advantages:

� good coverage of data released by government agencies

� good search engine which includes some metadata (mainly in the form of tags and

categories)

� generally much easier to search for a particular agency in data.govt.nz than it is to

look through the agency’s official website

� Has official backing from the New Zealand Declaration on Open and Transparent

Government initiative.

Disadvantages:

� Not all open government data can be found on data.govt.nz

� A lot of metadata is incomplete or left unfilled, e.g. the RBNZ datasets are missing

information for many of the categories, such as Contact Person, Email, Phone, Date

of creation and Frequency of update.

� data.govt.nz does not hold the data themselves and often does not link directly to the

data, leading instead to a webpage on the agency’s official website, where it may or

may not be obvious how the sought data should be obtained.

3As at Februrary 2015, an API still does not exist for NZ.Stat.

26 CHAPTER 2. OPEN DATA IN NEW ZEALAND

� Lacks a documented API to facilitate computerised calls to search and/or access meta-

data (though DIA plans for a blog post related to this at http://webtoolkit.govt.

nz/).

It is worth noting that data.govt.nz is not the only data catalogue. Some others are:

Statisphere http://www.statisphere.govt.nz/ Serves as a listing of Tier 1 Statistics,

though this feature is currently unavailable “pending a review and update of the

content”.

DigitalNZ http://www.digitalnz.org/ A catalogue of any digital content.

Open Data Catalogue http://cat.open.org.nz/ “an open, independent catalogue of

Government and Local Body datasets.”.

2.3.4 The Template

The data sources are presented using a standard format. This information is recorded

in NZDataSources.xml and is later parsed by script to this Literature Review. As it is a

structured document there are other possible ways of parsing or using this information. The

template is as follows:

Name of Organisation

URL to Organisation's homepage

Organisation’s Purpose, quoted from their homepage.

Comments An overview of the organisation.

Data Grab Pattern Step-by-step instructions for finding the data from main page URL,

generally referring to the names of the links to follow.

Data Format The type of data formats found (see Subsection 2.2.4).

Related Information Where related information (see Subsection 2.2.3) can be found. The

two types found were In-file (where the information is found in the same files as the

data) and webpage (where the information is found on a webpage located near where

the data is found).

Found on data.govt.nz Whether the data is also found on data.govt.nz. Can be TRUE,

FALSE or Partial.

Copyright Licence The copyright licence attached to the data.

http://webtoolkit.govt.nz/
http://webtoolkit.govt.nz/
http://www.statisphere.govt.nz/
http://www.digitalnz.org/
http://cat.open.org.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 27

2.3.5 Major Sources

Ministry of Economic Development

http://www.med.govt.nz/

The Ministry of Economic Development’s purpose is to create the conditions for businesses

to succeed and New Zealanders to prosper.

Comments The Ministry of Economic Development (MED) is one of the organisations

that have been merged under the Ministry of Business, Innovation and Employment (MBIE).

Internally this merge is more or less complete though the merging of website content has

been a low priority. Thus MBIE still makes MED-related releases through the former MED

website.

The MED does not yet have a centralised process for data releases and instead provides

data along two primary groups: Tourism and Energy. These two groups have different

teams involved and hence have different processes.

The Tourism group classes users into three categories based on their data needs: 1) Re-

quiring high level aggregate stats, 2) Requiring flexible cross tabulation (similar to Statistics

NZ’s Table Builder or Infoshare), 3) Microdata (eg respondent-level survey data complete

with weights and replicate weights from standard error estimation). They see the greatest

demand from category 2. Data under category 3 are provided to “bona fide researchers who

asks and we are sure is not going to hurt themselves with it.”

Some data is released via a third-party software called Infoview, which allows for some

interactive visualisations and data exploration.

They face minimal privacy or confidentiality issues, thus the biggest constraints on re-

leasing data are time and resources to communicate required information to users, including

background necessary to understand the data.

The Energy group generally release all data unless there is a good reason not to. They

currently have a number of informal procedures in place to identify potential risks of data

release, and to check data quality.

All Energy data is released via Excel, in some cases using some non-trivial Excel features

to present the data, such as in-cell indentation and Excel’s grouping feature.

Data Grab Pattern Sectors & industries tab ->Energy data and modelling (or) Tourism

research and data.

Some data not found this way, best found via data.govt.nz.

Data Format CSV, XLS-Report-Table, XLS-Table, HTML-Table

Found on data.govt.nz TRUE

http://www.med.govt.nz/

28 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.med.

govt.nz/help-support/about-this-site/legal-notices/copyright

Ministry of Education

http://www.minedu.govt.nz/

Building a world-leading education system that equips all New Zealanders with the knowledge,

skills, and values to be successful citizens in the 21st century.

Comments The Ministry of Education releases its data through a separate website, Ed-

ucation Counts. Note that the New Zealand Qualifcations Authority also releases some

data relating to Secondary Schools, but this data is collected as part of NZQA’s opera-

tions and is often different from the data collected by the Ministry. The Ministry assesses

secondary schooling achievement using NZQA data and non-NQF (National Qualifications

Framework) data collected directly from schools.

The data is typically collected for administrative reasons, rather than for research pur-

poses, though the latter does happen. Generally, the Ministry will publish all such data,

using Education Counts for routine releases.

They carry out several data quality checks, including looking for results and trends out

of the ordinary, checking with schools if necessary to confirm correctness of their data.

National Standards which have been introduced recently with a lot of surrounding con-

troversy (in particular relating to potential misuse of the data by unfairly ranking schools)

are currently catering to the needs of each individual school, and thus standardised na-

tional data collection is not possible. However, it is anticipated that this will eventually be

possible.

The Ministry prefers to release data in tables with accompanying explanatory notes,

rather than simple text. They also make use of XLS-PivotTables to allow end-user explo-

ration of the data. Where applicable they use standardised terms and definitions, usually

defined by Statistics New Zealand. They regularly receive data requests for specific break-

downs of routine data releases, which are answered where possible, subject to privacy and

data quality issues.

Data Grab Pattern NZ Education ->Researchers ->Education Counts

Links to http://www.educationcounts.govt.nz/

Data Format XLS-Table, XLS-PivotTable, HTML-Table

Found on data.govt.nz TRUE

http://www.med.govt.nz/help-support/about-this-site/legal-notices/copyright
http://www.med.govt.nz/help-support/about-this-site/legal-notices/copyright
http://www.minedu.govt.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 29

Copyright Licence Crown Copyright, but also “CC By”, refer to http://www.educationcounts.

govt.nz/help/privacy

Inland Revenue

http://www.ird.govt.nz/

We collect most of the revenue that government needs to fund its programmes. We also

administer a number of social support programmes.

Comments The Inland Revenue Department (IRD), more commonly just “Inland Rev-

enue”, makes regular releases of tax statistics via an easy to use listing of data on their

website. The data release pages themselves provide simple plots along with links to the

data.

They also release some other data that are not on the tax statistics listing (as they

are not tax statistics), such as the quarterly Customer Satisfaction and Perceptions Survey

results or the Industry Benchmarks. These are however not found via data.govt.nz.

The Industry Benchmarks are created by Statistics New Zealand from data provided by

the IRD, the results of which are published on the IRD website.

IRD has a formal 15 point process for releasing data. Broad steps involve quality control,

peer-review, production of tables and graphs and an assessment of confidentiality and other

disclosure procedures (including accompanying notes).

To encourage re-use of the data the IRD clearly releases all data under a Creative

Commons licence (CC BY), and releases all data in both HTML and Excel formats.

Data Grab Pattern About us ->Research and tax statistics

(The sources below are not linked to in data.govt.nz)

Business & employers ->Industry benchmarks ->Find Your Industry Benchmarks

Data Format XLS-Table, HTML-Table

Found on data.govt.nz Partial (Only lists Tax Statistics)

Copyright Licence CC By

Ministry of Transport

http://www.transport.govt.nz/

The Ministry of Transport is the government’s principal transport adviser, and the bulk of

our work is in providing policy advice and support to Ministers.

http://www.educationcounts.govt.nz/help/privacy
http://www.educationcounts.govt.nz/help/privacy
http://www.ird.govt.nz/
http://www.transport.govt.nz/

30 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Comments The Ministry of Transport releases a large volume of data in a reasonably

easy to use format, primarily XLS or CSV. Though some data is only available as part of

a PDF report, in personal correspondence these have been identified as mostly a legacy

feature, and the Ministry intends to release such data in XLS or CSV in the future.

The Ministry considers the main cost to be in collecting data. Once collected, they do

not consider the release process to be a major burden. They also possess more detailed

data (unit-record level, with potential privacy issues) that may be available to researchers

on request.

Data Grab Pattern Research

Data Format XLS-Table, HTML-Table, PDF-Report-Table

Found on data.govt.nz TRUE

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.transport.

govt.nz/copyright-and-disclaimer/

Reserve Bank of New Zealand

http://www.rbnz.govt.nz/

The Reserve Bank of New Zealand is New Zealand’s central bank. We promote a sound and

dynamic monetary and financial system.

Comments The Reserve Bank of New Zealand (RBNZ) releases a significant amount of

data often going back decades. They release data in two formats, HTML-Tables for recent

data and XLS-Tables for historical data (which includes recent data).

They also release Key Graphs on topics of high public interest, such as Inflation, GDP

or Unemployment. These graphs also have accompanying commentary and a link to the

data (XLS).

The RBNZ maintains an Advance Release Calendar which provides details on when data

is updated, or the update frequency (e.g. Daily).

Data Grab Pattern Statistics

Data Format XLS-Table, HTML-Table

Found on data.govt.nz TRUE

Copyright Licence Slightly conflicting. The Statistics page states: ”Material published

in our website Statistical tables may be used without restriction, but acknowledgement

http://www.transport.govt.nz/copyright-and-disclaimer/
http://www.transport.govt.nz/copyright-and-disclaimer/
http://www.rbnz.govt.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 31

would be appreciated.” However, the copyright page states some restrictions: http:

//www.rbnz.govt.nz/0161308.html Most likely, the statement on the Statistics page

is given precendent.

2.3.6 Minor Sources

Department of Building and Housing

http://www.dbh.govt.nz/

Our vision is for a building and housing market that delivers good quality homes and build-

ings for New Zealanders that contribute to strong communities and a prosperous economy.

Comments The Department of Building and Housing (DBH) is one of the organisations

that have been merged under the Ministry of Business, Innovation and Employment (MBIE).

Internally this merge is more or less complete though the merging of website content has

been a low priority. Thus MBIE still makes Building and Housing related releases through

the former DBH website.

As things stand, the website lacks a comprehensive listing of all data releases, and not

all data releases are listed on data.govt.nz, presenting a significant barrier in finding the

data.

The Department releases reports with accompanying commentary, graphs and data, but

this data is not available separately making re-use difficult. They have however indicated

that more data may be available upon request, e.g. they regularly provide raw rental bond

data to those who request it.

They have indicated a desire to release their Key Indicator Reports (currently released

as PDF reports) as ‘live’ spreadsheets, “so that interested people can access the raw data

behind the graphs”, though the integration into MBIE is likely to delay this development.

They have recently made open some data behind their Key Indicator Reports. Currently

this only consists of some market rent data, but the data is in a very simple, machine-friendly

format.

Quality assurance procedures exist for any data releases, including data quality checks

and peer review of analysis.

Data Grab Pattern No Standard Pattern.

Data Format HTML-Table, PDF-Report-Table, XLS-Report-Table

Found on data.govt.nz Partial

http://www.rbnz.govt.nz/0161308.html
http://www.rbnz.govt.nz/0161308.html
http://www.dbh.govt.nz/

32 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.dbh.

govt.nz/disclaimer-and-copyright

Department of Conservation

http://www.doc.govt.nz/

This Department of Conservation (DOC) site has information about the protection of New

Zealand’s natural and historic heritage, how and where you can enjoy public conservation

places and how to get involved in conservation.

Comments The Department of Conservation (DOC) has a history of releasing data even

prior to official government policy on data releases, however there were no formal procedures

or processes in place. While care was given when releasing a dataset, including considera-

tions for using common formats for releases rather than what may be most convenient to

use internally, these have been ad hoc. Their website management model has also meant

that it was easy for data releases to be duplicated, as evidenced by the website currently

having two independent but very similar listings of data (see DataGrabPattern).

Despite this, the data releases are in fairly good condition. Much of the data released

are geospatial released through a third-party provider, Koordinates Limited. Other releases

are provided as HTML-Tables, though a few appear to only be available as part of PDF

reports.

DOC had actively participated in the Open Data Service initiative (see Section 2.3.1),

which they had intended to use for future data releases.

They are now investing in a federated infrastructure for a biodiversity data exchange.

This is intended to enable sharing across agencies (both nationally and internationally) and

also enable access by the public.

Data Grab Pattern About DOC ->Role ->Visitor statistics & research

Publications ->About DOC ->Role ->Maps & statistics

The two pages above have some duplicates between them, but one may have something

the other doesn’t.

Data Format HTML-Table, PDF-Report-Table

Found on data.govt.nz Partial

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.doc.

govt.nz/footer-links/copyright/

http://www.dbh.govt.nz/disclaimer-and-copyright
http://www.dbh.govt.nz/disclaimer-and-copyright
http://www.doc.govt.nz/
http://www.doc.govt.nz/footer-links/copyright/
http://www.doc.govt.nz/footer-links/copyright/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 33

Department of Corrections

http://www.corrections.govt.nz/

The Department of Corrections enforces the sentences and orders of the criminal courts and

parole board. Corrections improves public safety by ensuring sentence compliance and works

to reduce re-offending by providing offenders with rehabilitation programmes, education and

job training.

Comments The Department of Corrections does not release a lot of data, but they do

make regular quarterly releases for “community sentences and orders statistics” and “prison

statistics”. These releases are as HTML-Tables and come with some simple graphs.

They are currently in discussions with the Department of Internal Affairs on how best

to support the Open Data initiative, and are likely to adopt what DIA prescribe.

Data Grab Pattern About Us ->Facts and statistics

Data Format HTML-Table

Found on data.govt.nz FALSE

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.corrections.

govt.nz/utility-navigation/disclaimer-and-copyright.html

Ministry of Health

http://www.health.govt.nz/

The Government’s principal advisor on health and disability: improving, promoting and

protecting the health of all New Zealanders

Comments The Ministry of Health releases data primarily to satisfy various requirements

placed upon the Ministry. This data may be classified under Tier 1 Statistics, or are released

for other accountability purposes, and hence have various requirements on how they are

released. Typically these data releases are for direct human consumption and are often not

ideal for machine-reading.

Internal discussions are underway to adopt the Government’s Open Data Initiative,

including working towards more machine readable formats, but as no additional resources

were provided it may take a while (potentially several years) to incorporate the Open Data

processes into existing projects.

http://www.corrections.govt.nz/
http://www.corrections.govt.nz/utility-navigation/disclaimer-and-copyright.html
http://www.corrections.govt.nz/utility-navigation/disclaimer-and-copyright.html
http://www.health.govt.nz/

34 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Data Grab Pattern Health statistics

Data Format XLS-Report-Table

Found on data.govt.nz TRUE

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.health.

govt.nz/about-site/copyright

Department of Internal Affairs

http://www.dia.govt.nz/

The Department of Internal Affairs serves and connects people, communities and govern-

ment to build a safe, prosperous and respected nation.

Comments The Department of Internal Affairs (DIA) does not release significant amounts

of data but is notable for being the department that administers data.govt.nz, webtoolkit.govt.nz

and ict.govt.nz, which provides the platform, tools and policies that will no doubt affect the

open data releases of other government organisations.

The DIA does not maintain its own independent listing of data, instead opting to utilise

data.govt.nz’s ATOM feed to generate a list of their data releases, which is then presented

to the user. This is good to see as it reduces duplication of effort (DIA does not have to

spend additional resources to update its own independent listing) and makes it more likely

that their listing on data.govt.nz is more comprehensive and up-to-date.

Unfortunately this method of using data.govt.nz to generate a listing automatically has

not been suggested to the other agencies, though our contact with DIA considered it to be

a good idea. It would be good to see the method adopted by other agencies in the future.

Being the agency that administers ict.govt.nz, DIA also has extensive documentation on

data release processes which are available publically at ict.govt.nz:

http://ict.govt.nz/library/3191296DA%20-%20Process%20for%20Prioritisation%

20and%20Release%20of%20High%20Value%20Public%20Data%20for%20Reuse_0.pdf

http://ict.govt.nz/library/3191296DA-Open-Data-Identification-Prioritisation-

and-Planning-Template-Worksheet_0.xls

Data Grab Pattern Data and Statistics

Data Format XLS-Report-Table, XLS-Table, CSV

Found on data.govt.nz TRUE

http://www.health.govt.nz/about-site/copyright
http://www.health.govt.nz/about-site/copyright
http://www.dia.govt.nz/
http://ict.govt.nz/library/3191296DA%20-%20Process%20for%20Prioritisation%20and%20Release%20of%20High%20Value%20Public%20Data%20for%20Reuse_0.pdf
http://ict.govt.nz/library/3191296DA%20-%20Process%20for%20Prioritisation%20and%20Release%20of%20High%20Value%20Public%20Data%20for%20Reuse_0.pdf
http://ict.govt.nz/library/3191296DA-Open-Data-Identification-Prioritisation-and-Planning-Template-Worksheet_0.xls
http://ict.govt.nz/library/3191296DA-Open-Data-Identification-Prioritisation-and-Planning-Template-Worksheet_0.xls

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 35

Copyright Licence Licence generally denoted in the data.govt.nz listing (usually “CC

By”). Where it’s not specified, it is Crown Copyright, restrictions may apply, refer to

http://www.dia.govt.nz/Legal-Copyright-Index

Department of Labour

http://www.dol.govt.nz/

To grow New Zealand’s economy and improve the quality of lives through a high-performing

labour market and immigration system.

Comments The Department of Labour is one of the organisations that have been merged

under the Ministry of Business, Innovation and Employment (MBIE). Internally this merge

is more or less complete though the merging of website content has been a low priority.

Thus MBIE still makes Labour related releases through the former Department of Labour’s

website.

The website links to a Statistics page which leads to a Health and Safety Statistics page

that contains Workplace fatalities, serious harm and prosecutions data. These datasets

cannot be found via data.govt.nz, though data.govt.nz links to several hidden pieces of data

(often contained in reports) that were not found by following the Statistics link from the

website.

No formal policies existed for the release of data. Such work was underway when the

Department was merged into MBIE and has now ceased, presumably to be replaced by a

unified policy from MBIE.

Data Grab Pattern Statistics

Data Format XLS-Report-Table, HTML-Table

Found on data.govt.nz Partial

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.dol.

govt.nz/common/copyright.asp

Ministry for Primary Industries

http://www.mpi.govt.nz/

Our vision is to grow and protect New Zealand. We do this by: maximising export op-

portunities for the primary industries; improving sector productivity; increasing sustainable

resource use; and protecting New Zealand from biological risk.

http://www.dia.govt.nz/Legal-Copyright-Index
http://www.dol.govt.nz/
http://www.dol.govt.nz/common/copyright.asp
http://www.dol.govt.nz/common/copyright.asp
http://www.mpi.govt.nz/

36 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Comments The Ministry for Primary Industries (MPI) releases data collected from their

own activities, and also data sourced from Statistics New Zealand. Some of these are

available only as a part of a report making re-use difficult. For some reports (e.g. Farm

Monitoring Reports) the data is available separately, but only on request.

The Ministry used to release data in both Excel and CSV format, but have since stopped

as they found the process to be too cumbersome. CSV format is still available, but only on

request.

Most of MPI’s data releases are Tier 1 Statistics and follow the guidelines specified for

Tier 1 Statistics (see Section 2.3.2). The Ministry intends to incorporate the NZGOAL

framework (see Section 2.3.1) for future releases.

Data Grab Pattern News & Resources ->Statistics & Forecasting

Data Format XLS-Table

Found on data.govt.nz Partial

Copyright Licence Unusual copyright, restrictions may apply, refer to http://www.mpi.

govt.nz/Copyright.aspx

Ministry of Social Development

http://www.msd.govt.nz/

Our Ministry is all about helping to build successful individuals, and in turn building strong,

healthy families and communities.

Comments While the Ministry collects large amounts of data as part of their core purpose

(of Social Development), much of the data collected is sensitive information and collected

to fulfil the Ministry’s primary objectives. Any release of such data to the wider public

is incidental to their core purpose, which contributes to the manner in which they release

data. The Ministry of Social Development mostly releases data as reports rather than in

formats more conducive to re-use.

The Ministry is aware of some of the limitations in how they currently release the data

but their focus is on fulfilling their core purpose, not on the public release of collected

data. They receive hundreds of Official Information Act requests every year, in addition

to requests from parliament, media and researchers, which provides some idea of what sort

of data is in demand, but the potential for misuse of data limits what they can release as

Open Data.

The Ministry has very detailed data quality procedures which was audited by Pricewa-

terhouseCoopers in 2006 and is periodically audited by Audit NZ.

http://www.mpi.govt.nz/Copyright.aspx
http://www.mpi.govt.nz/Copyright.aspx
http://www.msd.govt.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 37

Their listing on data.govt.nz reveals statistics released by StudyLink (which is one of

the services provided by the Ministry), and links to their Annual Statistical Reports, but

does not link to their primary listing of Statistics found via the Data Grab Pattern steps

below.

Data Grab Pattern Publications & Resources ->Statistics

Data Format HTML-Table, PDF-Report-Table, DOC-Report-Table

Found on data.govt.nz Partial

Copyright Licence Crown Copyright, restrictions may apply, refer to http://www.msd.

govt.nz/about-msd-and-our-work/tools/copyright-statement.html

2.3.7 Not Sources

Ministry of Business, Innovation and Employment

http://www.mbie.govt.nz/

A new ‘parent’ Ministry for: the Department of Building and Housing, the Ministry of Eco-

nomic Development, the Department of Labour and the Ministry of Science and Innovation.

Formed on 1 July 2012, internally the merge is more or less complete but the merging

of website content has been a low priority. MBIE still communicates mainly via the old

websites and because of this, we cover the websites of the above agencies separately.

Crown Law Office

http://www.crownlaw.govt.nz/

No Comments.

Ministry for Culture and Heritage

http://www.mch.govt.nz/

No Comments.

Ministry of Defence

http://www.defence.govt.nz/

No Comments.

http://www.msd.govt.nz/about-msd-and-our-work/tools/copyright-statement.html
http://www.msd.govt.nz/about-msd-and-our-work/tools/copyright-statement.html
http://www.mbie.govt.nz/
http://www.crownlaw.govt.nz/
http://www.mch.govt.nz/
http://www.defence.govt.nz/

38 CHAPTER 2. OPEN DATA IN NEW ZEALAND

Education Review Office

http://www.ero.govt.nz/

ERO is not a true data provider (instead see Ministry of Education for education data), but

the School Reports http://www.ero.govt.nz/Early-Childhood-School-Reports contain

some broad “About the School” information presented as an HTML-Table. Contains infor-

mation like: Decile, School roll, Gender composition, Ethnic composition.

Ministry of Foreign Affairs and Trade

http://mfat.govt.nz/

The Ministry appears to be policy focused and do not release trade-related data.

Government Communications Security Bureau

http://www.gcsb.govt.nz/

No Comments.

Ministry of Justice

http://www.justice.govt.nz/

Some very old data might be found via data.govt.nz, recent data appears to be held by

StatsNZ.

Ministry for Maori Development

http://www.tpk.govt.nz/en/

Only ‘data’ is the Iwi Directory. This is grouped by region but these region names are in

Maori with no English translation provided, reducing accessibility.

However, a simple but effective interactive map is also provided, which can also be used

to navigate to the region sub-pages (still only has Maori names, but can at least go off the

geography).

Beyond the directory, there is also information on each Iwi’s ‘population’ (found in the

individual Iwi’s sub-page).

New Zealand Customs Service

http://www.customs.govt.nz/

Somewhat disappointing that no data is apparently available to the public. Might have been

interesting to see data such as a table of goods with annual tariff revenue. Note StatsNZ

does have some data on imports and exports, such as goods by value and volume by country,

but does not appear to have customs specific data (e.g. tariffs, goods seized, etc.).

http://www.ero.govt.nz/
http://www.ero.govt.nz/Early-Childhood-School-Reports
http://mfat.govt.nz/
http://www.gcsb.govt.nz/
http://www.justice.govt.nz/
http://www.tpk.govt.nz/en/
http://www.customs.govt.nz/

2.3. OVERVIEW OF OPEN DATA IN NEW ZEALAND 39

Ministry of Pacific Island Affairs

http://www.mpia.govt.nz/

Some simple statistics available on their website, but no real data. Statistics are likely

derived from StatsNZ data.

Department of the Prime Minister and Cabinet

http://www.dpmc.govt.nz/

No Comments.

Serious Fraud Office

http://www.sfo.govt.nz/about

No Comments.

State Services Commission

http://www.ssc.govt.nz/

List of state organisations http://www.ssc.govt.nz/state_sector_organisations

Ministry of Women’s Affairs

http://www.mwa.govt.nz/

Only ‘data’ found is Students’ Occupational Choice Study, Dunedin, Auckland, which is

mostly a report but includes some HTML-Tables of data.

It also has a Statistics page http://www.mwa.govt.nz/women-in-nz/stats that links

to some other agencies (Ministry of Social Development, StatsNZ, Department of Labour).

2.3.8 Outside Scope

Ministry for the Environment

http://www.mfe.govt.nz/index.html

Only release geospatial data and all data appears to be released via a third-party provider,

Koordinates Limited (also used by the Department of Conservation).

Land Information New Zealand

http://www.linz.govt.nz/

Geospatial data only, see http://www.geodata.govt.nz/.

http://www.mpia.govt.nz/
http://www.dpmc.govt.nz/
http://www.sfo.govt.nz/about
http://www.ssc.govt.nz/
http://www.ssc.govt.nz/state_sector_organisations
http://www.mwa.govt.nz/
http://www.mwa.govt.nz/women-in-nz/stats
http://www.mfe.govt.nz/index.html
http://www.linz.govt.nz/
http://www.geodata.govt.nz/

40 CHAPTER 2. OPEN DATA IN NEW ZEALAND

2.4 Conclusion

The value of Open Data can be significant but realising this value is dependent on how

easy the Open Data is to find, access and use. This Literature Review has examined

features necessary for Good Open Data - clear copyright terms, easy to find, easy to access,

good data structure and accompanying documentation. It is also clear from Protocol 5

of Principles and Protocols for Producers of Tier 1 Statistics that the government agrees

these, and other considerations, are important. Unfortunately, resource constraints mean

few government agencies are able to fully meet these requirements.

While a lot of Open Data is out there, and while improvements are on the horizon, there

are currently many challenges in making use of this Open Data. This also means there are

many opportunities to create tools that will make this data more useful, and hence help

unlock the benefits of this Open Data.

41

Chapter 3

TableToLongForm

3.1 Introduction . 42

3.1.1 The Problem with Tables . 43

3.1.2 Core Concepts . 44

3.2 How to Use . 48

3.2.1 Obtaining TableToLongForm . 48

3.2.2 Loading the Data . 48

3.2.3 Calling TableToLongForm . 48

3.2.4 Manual Conversion . 48

3.2.5 Diagnostics . 49

3.2.6 Extending TableToLongForm . 50

3.3 Vocabulary . 51

3.4 Implementation Details . 53

3.5 Identification . 53

3.5.1 Purpose . 53

3.5.2 Key Challenges . 55

3.5.3 Limitations and Future Work . 59

3.6 Discern Parentage . 60

3.6.1 Purpose . 60

3.6.2 Key Challenges . 63

3.6.3 Limitations and Future Work . 67

3.7 Reconstruction . 68

3.8 Summary . 70

42 CHAPTER 3. TABLETOLONGFORM

3.1 Introduction

This chapter deals with concepts that, while widely understood, are poorly defined. This

opening section attempts to more clearly define and distinguish the relevant concepts, to

aid in the discussion that follows. I begin by defining the Basic Format. It is basic both

for its properties and the fact that it is a format commonly used by technical users (such

as data analysts). It can be defined as follows:

� A matrix with i rows and j columns.

� Each column, j, represents a variable and is often named.

� Each row, i, represents a single observation.

Users of R will be familiar with this format as the data.frame:

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Above is a data.frame in R, with variables Sepal.Length, Sepal.Width, etc. and where

each row represents a single observation. The Basic Format is well understood by data-

processing software and there exist many tools to make it even easier to manipulate and deal

with this data. The R package tidyr (Wickham, 2014) (which calls the Basic Format tidy

data) can be used to reformat the data, for instance gather can be used to combine multiple

variables/columns into fewer columns (also known as Long-Form data), while spread can

do the opposite, expanding a single variable/column into multiple columns (also known

as Wide-Form data). The R package dplyr (Wickham and Francois, 2015) can be used

to manipulate the data, examples being to take a subset based on some conditions using

filter and to group and take summaries (such as means) with group_by and summarise.

A requirement for these packages however, is that the data must first be in the Basic

Format. Once in this format, the data is much easier to handle, and thus much more use-

ful. Unfortunately, while conducting the Literature Review in the previous chapter it was

discovered that a significant proportion of Open Data released by the New Zealand State

Sector are only released as hierarchical tables1, and not in the Basic Format. Tables are a

1Henceforth be referred to as a Table with a capital T.

3.1. INTRODUCTION 43

method of presenting data for human consumption, with the data grouped in a hierarchical

manner using one or more grouping variables. This grouping information is typically repre-

sented with visual clues, which are sufficient for humans but present significant barriers to

using the data with computer software. The tools mentioned above, such as dplyr, are only

useful once the data is in the Basic Format, meaning conversion of Table data is necessary to

make it more useful. As this conversion task is often time-consuming, it seems like a useful

task to create a tool that can automatically convert these Tables into the Basic Format.

Naming such a tool poses some challenges, as there is no agreed upon naming convention for

concepts like the Basic Format or a Table. I have chosen the terms Table and LongForm

Dataframe, as they carry a balance of recognition (more so than terms such as ‘basic’, or

‘tidy’) while being close enough proxies of the underlying concepts.

3.1.1 The Problem with Tables

An example of a Table is shown in Figure 3.1. For such a Table, the computer will be unable

to easily read in the data due to the difficulty in finding all information related to a piece of

data. Take the number 876 in cell (5, 9) for instance; to collect all the information linked

to that number we must look at cell (5, 1) for the time period (2007Q4), cell (4, 9) for the

data heading (Total Labour Force), cell (3, 2) for the ethnic category (European Only)

and cell (2, 2) for the gender category (Male). Note that, aside from the time period and

the data heading, the other information related to cell (5, 9) were neither in the same row

nor the same column as the data value. The human brain can interpret the positional cues

to understand the hierarchy fairly easily, the computer requires a lot more work.

Preparing such data for use would normally require a non-trivial time investment to

restructure the data in a manner that can be machine read and used. If such preparatory

work was done manually, such work will have to be repeated multiple times as the data is

updated. In some cases the data will be spread across multiple files, which means that much

more preparatory work. Even if the work is scripted, small changes in the format can easily

throw a wrench into the works and break it. All of this quickly adds up to a significant time

cost to make use of data released in Tables.

This trend of releasing data in a human-friendly, but machine-unfriendly Table can be

seen in many organisations, both in private and public sector, in New Zealand and overseas.

TableToLongForm is a tool that automatically converts a family of Tables to a machine-

readable form, once so converted the user is free to use their favourite tool to make full use

of the data. Figure 3.2 shows the result of automatic conversion with TableToLongForm.

44 CHAPTER 3. TABLETOLONGFORM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1 2 3 4 5 6 7 8 9 10 11
Labour Force Status by Sex by Sing/Comb Ethnic Group (Qrtly−Mar/Jun/Sep/Dec)

2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1
2010Q2
2010Q3
2010Q4
2011Q1
2011Q2
2011Q3
2011Q4
2012Q1
2012Q2
2012Q3
2012Q4
2013Q1
Table information:
Units:
Persons Employed in Labour Force: Number, Magnitude = Thousands
Persons Unemployed in Labour Force: Number, Magnitude = Thousands
Not in Labour Force: Number, Magnitude = Thousands
Working Age Population: Number, Magnitude = Thousands
Labour Force Participation Rate: Percent, Magnitude = Units
Unemployment Rate: Percent, Magnitude = Units
Employment Rate: Percent, Magnitude = Units
Total Labour Force: Number, Magnitude = Thousands
Footnotes:

Symbols:
.. figure not available

Male
European Only
Persons Employed in Labour Force

856
863
850
840
855
845
832
813
831
822
825
837
838
830
839
830
842
843
837
833
833
832

Persons Unemployed in Labour Force
20
25
26
30
30
35
35
42
40
36
40
31
40
37
41
35
35
43
38
38
41
36

Not in Labour Force
280
284
281
286
275
279
280
290
277
283
290
287
277
281
279
280
278
283
296
298
298
295

Working Age Population
1,156
1,172
1,157
1,155
1,159
1,160
1,146
1,146
1,148
1,142
1,155
1,155
1,155
1,148
1,159
1,145
1,154
1,169
1,172
1,169
1,173
1,162

Labour Force Participation Rate
76
76
76
75
76
76
76
75
76
75
75
75
76
76
76
76
76
76
75
74
75
75

Unemployment Rate
2
3
3
3
3
4
4
5
5
4
5
4
4
4
5
4
4
5
4
4
5
4

Employment Rate
74
74
74
73
74
73
73
71
72
72
71
72
73
72
72
72
73
72
71
71
71
72

Total Labour Force
876
888
876
869
884
880
866
856
871
859
865
868
878
866
880
865
877
886
875
871
874
868

Maori Only
Persons Employed in Labour Force

71
69
67
72
76
75
74
71
72
72
72
70
71
71
67
70
69
72
66
67
63
70

Persons Unemployed in Labour Force
6
8
6
9
8
8

10
11
14
11
14
14
14
14
10
13
13
11
11
13
12
12

Figure 3.1: An example of a hierarchical Table. The Table is of the Labour Force Status
data (Statistics New Zealand, 2013) and in total spans 240 columns. The Table is too
large to be immediately useful for humans, and yet cannot be manipulated easily with a
computer.

3.1.2 Core Concepts

Despite the many variations of Tables that data is released in, very few have instructions

on how to understand the Table. It is assumed that a human user will be able to read

it without instruction, and this assumption often proves to be true. So then the question

arises, how is it that a human is able to decipher the hierarchical relationships encoded into

the Tables?

A human reader can make use of a variety of features to gather information, such as:

Prior knowledge - If the Table contains two cells named Auckland and New Zealand,

a human may deduce that since Auckland is a city of New Zealand, Auckland is

3.1. INTRODUCTION 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1 2 3 4 5 6 7 8 9 10 11

Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male

European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only
Maori Only

2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1
2010Q2
2010Q3
2010Q4
2011Q1
2011Q2
2011Q3
2011Q4
2012Q1
2012Q2
2012Q3
2012Q4
2013Q1
2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1

Persons Employed in Labour Force
856
863
850
840
855
845
832
813
831
822
825
837
838
830
839
830
842
843
837
833
833
832

71
69
67
72
76
75
74
71
72
72

Persons Unemployed in Labour Force
20
25
26
30
30
35
35
42
40
36
40
31
40
37
41
35
35
43
38
38
41
36

6
8
6
9
8
8

10
11
14
11

Not in Labour Force
280
284
281
286
275
279
280
290
277
283
290
287
277
281
279
280
278
283
296
298
298
295

28
31
27
31
28
36
33
36
33
35

Working Age Population
1,156
1,172
1,157
1,155
1,159
1,160
1,146
1,146
1,148
1,142
1,155
1,155
1,155
1,148
1,159
1,145
1,154
1,169
1,172
1,169
1,173
1,162

105
108
100
111
113
120
117
118
118
118

Labour Force Participation Rate
76
76
76
75
76
76
76
75
76
75
75
75
76
76
76
76
76
76
75
74
75
75
73
71
73
72
75
70
72
70
72
70

Unemployment Rate
2
3
3
3
3
4
4
5
5
4
5
4
4
4
5
4
4
5
4
4
5
4
8

10
8

11
10
10
12
13
16
14

Employment Rate
74
74
74
73
74
73
73
71
72
72
71
72
73
72
72
72
73
72
71
71
71
72
68
64
67
64
67
63
63
60
60
61

Total Labour Force
876
888
876
869
884
880
866
856
871
859
865
868
878
866
880
865
877
886
875
871
874
868

77
77
73
80
84
84
84
82
85
83

Figure 3.2: An example of a LongForm dataframe. This is the Table in Figure 3.1 after
automatic conversion with TableToLongForm and in total spans 660 rows. While it is still
not immediately useful for humans, all related information can be found in the same row or
column, making the data much easier to manipulate with a computer.

probably a Child of New Zealand. Likewise if that same Table also contained a cell

named Australia, they may deduce that New Zealand and Australia are on the same

level of the hierarchy.

Formatting - Bold, emphasis, bigger size, etc. all hint towards a higher place in the hier-

archy.

Layout - Parents tend to be positioned to the left and/or above their Children. This

positioning could be achieved by using physically different cells (as in Figure 3.1), or

by indentation (e.g. by having white space leading the cell contents).

Many of these features communicate the same hierarchical information, introducing redun-

dancy and aiding in the understanding of the Table even if some features are not understood.

Understanding all of these features may require writing some form of an Artificial Intel-

ligence, but some of these can be tapped for information using relatively simple algorithms.

46 CHAPTER 3. TABLETOLONGFORM

TableToLongForm makes use of positional cues, which would be a subset of the layout-

method of communication. In particular, TableToLongForm uses encoding with physically

different cells, which is information that can be accessed quite easily through an algorithmic

process in R.

Consider the Table fragment in Figure 3.3, showing row labels from NZQA Scholarships

data (New Zealand Qualifications Authority, 2012). A human reader can quickly understand

that the hierarchy of the labels goes thus:

1. Subject (Accounting, Biology)

2. Ethnicity (NZ Maori, NZ European)

3. Gender (Male, Female)

Notice that to the right of the Subject headings, we have empty cells. We also have

empty cells below the Ethnicity headings. The core algorithms that form the backbone of

TableToLongForm’s hierarchy deciphering process are the By Empty Right and By Empty

Below algorithms, both of which make use of positional cues encoded through physically

different cells, specifically, empty cells to the right of, or below, a label cell.

As seen in Figure 3.4, by identifying the cells with empty cells to the right, we can

sub-divide the row labels into smaller chunks that are the children of the empty-right cells.

Within these chunks, we can identify the cells with empty cells below, and sub-divide again,

as in Figure 3.5. This process of iteratively dividing and conquering the hierarchy is core

to the deciphering process of TableToLongForm.

How is this is accomplished with algorithms? Here is the simplified process:

ByEmptyRight Check if the most upper-left cell has empty cells to its right.

TRUE Check for any other cells that also have empty cells to the right. For all

cells with empty cells to the right, grab the contents and sub-divide. For each

sub-divided Table, call ByEmptyRight.

FALSE Call ByEmptyBelow.

ByEmptyBelow Find all empty cells in the left-most column. Collect the non-empty cells

and grab the cell contents2. Use the empty cells below to sub-divide the Table. For

each sub-divided Table, call ByEmptyRight.

2Noting that in a ByEmptyBelow pattern, it is possible for parents to have a single child, in which case
they will not have any empty cells below. Thus we must collect all non-empty cells, not just the cells that
are empty below.

3.1. INTRODUCTION 47

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

Figure 3.3: Row Labels excerpted from NZQA Scholarships data displaying both Empty
Right (red) and Empty Below (green) patterns.

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

Figure 3.4: Using Empty Right to segment the labels into the children of the Subject
headings.

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

1
2
3
4
5
6
7
8
9
10

1 2
Accounting
NZ Maori

NZ European

Biology
NZ Maori

NZ European

Male
Female
Male
Female

Male
Female
Male
Female

Figure 3.5: Using Empty Below to segment the labels into the children of the Ethnic head-
ings.

48 CHAPTER 3. TABLETOLONGFORM

3.2 How to Use

3.2.1 Obtaining TableToLongForm

TableToLongForm is implemented in R (R Core Team, 2014), and has been released as a

Package. It can be obtained via CRAN3, or from the official website4. As with all other R

Packages, once installed it must be loaded with the command library(TableToLongForm).

3.2.2 Loading the Data

TableToLongForm’s preferred argument is a matrix of mode character. If a data.frame is

supplied instead, it is coerced to a matrix with a warning. Empty cells should be classed as

NA for correct operation of the algorithms. Currently TableToLongForm does not distinguish

between missing values and empty space, both are treated as NA values.

As the Labour Force Status data used in Figure 3.1 classifies missing values as "..", we

must ensure R correctly reads these, in addition to empty cells, as NA values.

1 LabourForce = as.matrix(

2 read.csv("StatsNZLabourForce.csv",

3 header = FALSE , na.strings = c("", "..")))

3.2.3 Calling TableToLongForm

If the Table can be recognised by TableToLongForm a simple call to TableToLongForm

with just a single argument is all that is needed. TableToLongForm has additional optional

arguments used primarily for diagnostic purposes.

1 LabourForce.converted = TableToLongForm(LabourForce)

3.2.4 Manual Conversion

For comparison the code for manual conversion of the table is provided below. We note

after careful observation of the data that:

� There are 3 gender categories: Male, Female and Total Both Sexes, each 80 columns

in width.

� There are 10 ethnic categories, each a consistent 8 columns in width.

� The data are found in rows 5 to 26.

3http://cran.at.r-project.org/
4https://www.stat.auckland.ac.nz/ joh024/Research/TableToLongForm/

3.2. HOW TO USE 49

Armed with this knowledge, we can write the above code that, with some trial and error

and cross-checking of results, will successfully convert the Table to a LongForm. This

code is fairly compact and efficiency-wise will beat TableToLongForm (which by necessity

is more complicated, and thus computationally expensive). However, it took a non-trivial

investment of time to code and test the results (Approx. 30 minutes), is mostly useless for

any other Table, and if any of the many strong assumptions it makes are violated (e.g.

a new row of data is added), it breaks and requires fixing, which means even more time

consumed. All this work and hassle to just read in the data in a useful format.

1 LFout = NULL

2 chYear = LabourForce [5:26, 1]

3 for(Gender in 0:2)

4 for(Ethni in 0:9){

5 chGender = LabourForce [2, 2 + Gender * 80]

6 chEthni = LabourForce [3, 2 + Ethni * 8]

7 LFout = rbind(LFout ,

8 cbind(chGender , chEthni , chYear ,

9 LabourForce [5:26 ,

10 2 + Gender * 80 + (Ethni * 8):((Ethni + 1) * 8 - 1)])

11)

12 }

13 colnames(LFout) = c("Gender", "Ethnicity", "Time.Period",

LabourForce [4, 2:9])

3.2.5 Diagnostics

The primary limitation of TableToLongForm is that the function will be a black box to most

users. After running the function on a Table, the user will either be given back a data.frame

with no easy way of verifying if the result is correct, or be confronted with an error with

little idea of what went wrong. Based on ad hoc tests conducted so far, TableToLongForm

will either succeed, or fail catastrophically in a manner that is easily recognised as utter

failure. However methods for verifying correct operation (or to understand failures) would

be desirable. TableToLongForm currently does quite poorly in providing useful diagnostics

output, but some methods are available.

The simplest method currently available is to examine the additional output returned

when TableToLongForm is called with the optional argument fulloutput = TRUE. This will

return the ’final product’ of TableToLongForm’s algorithms in the form of IdentResult,

rowplist and colplist (see Section 3.3). Unfortunately this output has two key limita-

tions. First, it is not obvious from this output what went wrong (or if nothing went wrong),

50 CHAPTER 3. TABLETOLONGFORM

requiring some detective work to piece together the evidence. Second, if anything did go

wrong, the user still does not know why.

The option with the potential to provide the most information is calling TableToLongForm

with the optional argument diagnostics = TRUE, which will write diagnostic output to a

file, printing key variables at each major stage of the conversion process. This output can

thus be used to track TableToLongForm’s progress as it works to convert the Table, enabling

fairly accurate assessment of where exactly it went wrong. Unfortunately understanding this

output requires familiarity with the workings of the code and is unlikely to be of much use

to anyone other than the author.

3.2.6 Extending TableToLongForm

It is possible to extend TableToLongForm by writing custom algorithms and registering them

with TableToLongForm. Custom algorithms can be added to the Identification (Section 3.5)

and the Discern Parentage (Section 3.6) stages of the conversion process. Refer to the

respective sections for the necessary requirements of such algorithms.

Registration of new algorithms are accomplished via a call to TTLFaliasAdd, which has

the following arguments:

Type e.g. IdentPrimary

Fname the name of the Function/Algorithm

Falias the alias for the Function/Algorithm, which is used for the call to TableToLongForm

Author (optional) name of the author of the algorithm

Description (optional) a short description of the purpose of the algorithm

The .R file that contains the function(s) should also contain this registration line. Then

during an R session, we can load the TableToLongForm package, then source the custom

algorithm’s .R file to register the new algorithm(s).

We can check if this is successful by then calling TTLFaliasList. The output with no

additional modules is as follows:

1 > TTLFaliasList ()

2 ==Type: IdentPrimary ==

3 Name: IdentbyMostCommonBoundary

4 Alias: combound

5 Author: Base Algorithm

6 Description: Default IdentPrimary algorithm

7

3.3. VOCABULARY 51

8 ==Type: IdentAuxiliary ==

9 Name: IdentbySequence

10 Alias: sequence

11 Author: Base Algorithm

12 Description: Search for fully numeric row labels (e.g. Years)

that were misidentified as data

13

14 ==Type: ParePreCol ==

15 Name: ParePreColMismatch

16 Alias: mismatch

17 Author: Base Algorithm

18 Description: Correct for column labels not matched correctly

over data (label in a different column to data)

19

20 Name: ParePreColMisaligned

21 Alias: misalign

22 Author: Base Algorithm

23 Description: Correct for column labels not aligned correctly

over data (parents not positioned on the far -left ,

relative to their children in the row below)

24

25 Name: ParePreColMultirow

26 Alias: multirow

27 Author: Base Algorithm

28 Description: Merge long column labels that were physically

split over multiple rows back into a single label

If your new algorithms were successfully registered, they should appear on this list, and the

aliases for the new algorithms can be used during a call to TableToLongForm. The default

arguments for TableToLongForm are:

1 TableToLongForm (..., IdentPrimary = "combound",

2 IdentAuxiliary = "sequence", ParePreRow = NULL ,

3 ParePreCol = c("mismatch", "misalign", "multirow"))

3.3 Vocabulary

We must define some vocabulary necessary to better understand TableToLongForm.

52 CHAPTER 3. TABLETOLONGFORM

1
2
3
4
5

1 2 3 4 5 6

Row Parent1

Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
10
11
12
13

Column 2
20
21
22
23

Column 3
30
31
32
33

Column 4
40
41
42
43

Figure 3.6: An example Table that will be used to define the vocabulary.

matFull The entire Table.

matRowLabel Blue region.

matColLabel Green region.

matData Red region.

IdentResult A list containing these two elements:

label - a vector of the rows or columns where the labels are found.

data - a vector of the rows or columns where the data are found.

rowplist/colplist The row and column parentage lists. These are nested list objects

that represent all the hierarchical relationships in the Table. TableToLongForm also

provides a custom print function for the class plist, which results in much more

informative printed output.

For this Table:

1 IdentResult = list(rows = list(label = 1, data = 2:5),

2 cols = list(label = 1:2, data = 3:6))

1 > rowplist

2 + Row Parent1 (1, 1)

3 - + Row Child1 (1, 2)

4 - + Row Child2 (2, 2)

5 + Row Parent2 (3, 1)

6 - + Row Child1 (3, 2)

7 - + Row Child2 (4, 2)

1 > colplist

2 + Column 1 (1, 1)

3 + Column 2 (2, 1)

4 + Column 3 (3, 1)

5 + Column 4 (4, 1)

Note that the cell positions given in the plist refer to positions within matRowLabel and

matColLabel.

3.4. IMPLEMENTATION DETAILS 53

3.4 Implementation Details

The complete conversion process from a Table to a LongForm Dataframe requires more than

just the core algorithms described in Core Concepts (Subsection 3.1.2). There are 3 stages

in the conversion process:

Identification - Identify where in the Table the data is found and where the accompanying

labels are, while ignoring any extraneous information we do not want.

Discern Parentage - Understand the hierarchical structure (the parentage) of the row

and column labels.

Reconstruction - Use the information from the first two stages to reconstruct the Table

as a Dataframe.

In the following sections these stages will be explained in greater depth. Details of the actual

code is sparse - for such details refer to the Literate Document available on the website5.

3.5 Identification

3.5.1 Purpose

The purpose of Identification is to identify the rows and columns in which the labels and data

values can be found, while ignoring any extraneous information we do not want. This task

can be surprisingly difficult, requiring many fringe-case checks and exception handling. The

current core identification algorithm searches for blocks (rectangular regions) of numbers in

the supplied Table. This region is assumed to contain the data and from it the algorithm

infers the locations of the corresponding labels. The result, after some extra work to handle

fringe-cases and the like, is the IdentResult, a list which specifies the rows and columns

in which the labels and the data can be found.

If TableToLongForm fails to correctly identify the correct rows and columns, it is pos-

sible to manually specify the IdentResult as an argument. Even for cases where the

IdentResult must be manually specified, the work required for the conversion with Table-

ToLongForm will be strictly less than for a manual conversion as we would need the same

information, and more, to convert manually.

Identification is comprised of two classes of algorithms. Custom algorithms can be used

to extend functionality (see Subsection 3.2.6).

5https://www.stat.auckland.ac.nz/~joh024/Research/TableToLongForm/

https://www.stat.auckland.ac.nz/~joh024/Research/TableToLongForm/

54 CHAPTER 3. TABLETOLONGFORM

Ident Primary contain Primary Identification algorithms, of which one is chosen when

calling TableToLongForm. They should take a single argument, matFull. They should

return an IdentResult.

Default: IdentPrimary = "combound"

Ident Auxiliary contain Auxiliary Ident algorithms, of which any combination, in any or-

der, can be chosen when calling TableToLongForm. They are called after the Primary

algorithm, to refine the IdentResult. They should take two arguments, matFull and

IdentResult. They should return an IdentResult.

Default: IdentAuxiliary = "sequence"

TableToLongForm

IdentPrimary IdentAuxiliarymatFull

Call the Primary
Ident Algorithm

IdentResult (Init)

Call the Auxiliary
Ident Algorithms, in
the order specified

IdentResult
(Final)

Discern Parentage
Parentage
Arguments

Reconstruction

Figure 3.7: A breakdown of the Identification step of the workflow. The arguments Ident-
Primary and IdentAuxiliary specify the respective algorithms to use.

3.5. IDENTIFICATION 55

3.5.2 Key Challenges

A common feature of Tables is that they do not just contain the data, but extra information

as well (e.g. titles and metadata). For instance in Figure 3.1, we see that row 1 is a title, while

from rows 27 onwards we have metadata. This is useful information for the human user, but

must be ignored for the purposes of automatic conversion. Thus when TableToLongForm is

identifying where the required information is in the Table, it must pick out the right features

while ignoring the rest. The following Figures are examples of actual datasets released as

Tables. The challenges they present are described in the Figure captions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

1 2 3 4 5 6 7 8 9 10 11 12 13
Series, GDP(P), Nominal, Actual, Sector of ownership (Annual−Mar)

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
2007
2008
2009
2010
Table information:
Units:
$, Magnitude = Millions
Footnotes:

Symbols:
.. figure not available
C: Confidential
E: Early Estimate
P: Provisional
R: Revised
S: Suppressed
Status flags are not displayed

Gross Domestic Product − product measure
Market
Private

5,200
5,993
7,013
7,636
8,526

10,450
11,469
12,729
14,707
16,947
20,751
23,525
26,577
30,530
35,104
40,167
43,613
47,816
51,170
53,613

127,531
138,127
137,240
139,525

Central Government Sector
568
649
723
750
840

1,179
1,398
1,685
2,050
2,358
2,770
3,184
3,644
3,924
4,741
6,189
6,957
7,052
6,267
4,970
4,857
5,554
5,783
6,090

Local Government Sector
155
169
183
202
231
295
362
394
501
559
655
759
800
850

1,008
1,160
1,192
1,364
1,364
1,412
2,735
2,962
3,195
3,252

All Sectors
5,923
6,811
7,919
8,588
9,597

11,924
13,230
14,808
17,258
19,864
24,175
27,468
31,021
35,304
40,853
47,515
51,762
56,231
58,800
59,995

135,123
146,644
146,219
148,866

Non−Market
Private

58
68
78
90

108
130
150
180
216
261
316
332
327
361
418
501
582
663
722
801

3,131
3,317
3,742
3,942

Central Government Sector
660
738
880

1,049
1,264
1,431
1,713
2,105
2,434
3,042
3,619
3,975
4,081
4,270
5,012
6,235
6,885
7,410
7,710
7,912

16,257
17,569
19,067
20,007

Local Government Sector
100
118
136
164
202
213
247
306
368
439
542
606
653
720
815
896
961

1,076
1,153
1,228
2,105
2,298
2,470
2,605

All Sectors
818
924

1,093
1,303
1,574
1,774
2,111
2,591
3,018
3,742
4,477
4,913
5,061
5,351
6,245
7,631
8,427
9,149
9,585
9,941

21,493
23,184
25,279
26,553

Total Market and Non−Market
Private

5,258
6,062
7,091
7,727
8,634

10,580
11,620
12,909
14,923
17,207
21,067
23,858
26,903
30,891
35,522
40,667
44,195
48,479
51,892
54,415

130,662
141,444
140,982
143,466

Central Government Sector
1,227
1,387
1,604
1,798
2,104
2,611
3,111
3,789
4,484
5,401
6,388
7,158
7,725
8,194
9,752

12,423
13,842
14,461
13,977
12,882
21,114
23,124
24,850
26,097

Local Government Sector
255
287
318
366
433
508
610
700
869
998

1,197
1,365
1,453
1,570
1,823
2,055
2,153
2,440
2,517
2,640
4,840
5,260
5,666
5,856

All Sectors
6,740
7,735
9,013
9,891

11,171
13,698
15,341
17,398
20,275
23,606
28,652
32,381
36,081
40,655
47,098
55,146
60,190
65,380
68,385
69,936

156,616
169,828
171,498
175,419

Figure 3.8: This is a Table of New Zealand GDP Data (Statistics New Zealand, 2013)
and is an example of a (comparatively) good Table as it is consistent in format with no
weird features. However, the row labels are numbers, posing some complications as the
main Identification algorithm looks for numbers to identify the data. In cases such as this,
TableToLongForm uses pattern recognition (e.g. sequences of numbers such as 1972, 1973,
1974... are more likely to be labels than data) to attempt to identify such numbers to be
labels, but this process is far from perfect.

56 CHAPTER 3. TABLETOLONGFORM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

1 2 3 4 5 6 7 8 9 10 11 12 13
Scholarship Entries and Results by Gender and Ethnicity (Broken down by Decile)

Results

All Subjects

Accounting
NZ Maori

NZ European

Pasifika Peoples

Asian

Other/Unspecified Ethnicity

Agricultural & Horticultural Science
NZ Maori

NZ European

Pasifika Peoples

Asian

Other/Unspecified Ethnicity

Technology
NZ Maori

NZ European

Pasifika Peoples

Asian

Other/Unspecified Ethnicity

Report Parameters
Show gender :
Show ethnicity :
Show decile :
Scholarship Subject :

Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female

Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female

Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female

yes
yes
yes
All Subjects

of
Entries

714

22
2
0
2
3
0
2
6
5
2
0
0

0
0
0
0
0
0
0
0
0
0
0
0

7
1
0
2
0
0
0
1
2
0
1
0

Decile 1−3

Absent

148

4
1
0
0
0
0
0
2
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0

2
0
0
1
0
0
0
1
0
0
0
0

SNA

13

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

Assessed

553

18
1
0
2
3
0
2
4
5
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0

5
1
0
1
0
0
0
0
2
0
1
0

Not
Achieved

462

16
1
0
1
2
0
2
4
5
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0

5
1
0
1
0
0
0
0
2
0
1
0

Scholarship

81

2
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

Outstanding

10

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

of
Entries

6,482

156
2
7

51
44

0
3
4

29
15

0
1

15
0
0

10
5
0
0
0
0
0
0
0

99
2
5

26
34

0
2
2

16
9
1
2

Decile 4−7

Absent

1,772

41
1
2

13
12

0
0
2
4
7
0
0

3
0
0
1
2
0
0
0
0
0
0
0

45
1
0

11
15

0
1
1

10
5
0
1

Figure 3.9: This is a Table of NZQA Scholarship Data (New Zealand Qualifications Au-
thority, 2012) and is the original motivating dataset that resulted in the creation of Table-
ToLongForm. The Table contains a title and metadata in a form typical of Tables, but
also displays some clear dividing rows and columns. This seems like an attractive way
to attempt Identification of the features of this Table, but closer inspection reveals that
these dividers are not very informative. Consider for instance the dividing columns 6 and
11. Though appearing to be the same, column 6 is only a (meaningless) sub-divider, while
column 11 is a divider that splits the Decile groups. This problem can be overcome with
pattern recognition, but as dividing rows and columns are an uncommon feature in Tables,
such an algorithm is of limited value. The current method of Identification searches for
blocks of numbers, and this is mostly successful for this Table. There is a slight problem
with column headings due to misaligned column label, e.g. Decile 1-3 in (3, 4) should be
in (3, 3) to be aligned with # of Entries. This problem is resolved not in Identification,
but in the next stage, Discern Parentage.

3.5. IDENTIFICATION 57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1 2 3 4 5 6 7 8 9 10 11 12 13
TABLE 1: (a) Number of 16−24 year olds Not in Education, Employment or Training (NEET) and (b) associated Confidence Intervals by Region

Quarterly LFS series
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2

Notes:
1) Age refers to academic age, which is the respondent's age at the preceeding 31 August.
2) All estimates should be viewed in conjunction with their Confidence Intervals. Confidence Intervals indicate how accurate an estimate is.
 For example, a 95% CI of +/− 1,000 means that the true value is between 1,000 above the estimate and 1,000 below the estimate, for 95% of estimates.
3) All estimates are taken from the Labour Force Survey.
4) All estimates refer to calendar quarters.
5) Numbers are rounded to the nearest 1,000.
6) The Labour Force Survey has not been reweighted to reflect the Census 2011 population estimates.

2000
2000
2000
2001
2001
2001
2001
2002
2002
2002
2002
2003
2003
2003
2003
2004
2004
2004
2004
2005
2005
2005
2005
2006
2006
2006
2006
2007
2007
2007
2007
2008
2008
2008
2008
2009
2009
2009
2009
2010
2010
2010
2010
2011
2011
2011
2011
2012
2012
2012
2012
2013
2013

(a) Number of 16−24 year olds NEET
England

652,000
750,000
629,000
667,000
650,000
774,000
660,000
699,000
703,000
795,000
660,000
730,000
709,000
813,000
666,000
680,000
700,000
837,000
738,000
735,000
770,000
880,000
827,000
803,000
852,000
969,000
806,000
823,000
825,000
906,000
772,000
799,000
839,000
986,000
850,000
924,000
950,000

1,064,000
888,000
921,000
868,000

1,023,000
934,000
927,000
991,000

1,181,000
969,000
960,000
986,000

1,038,000
890,000
909,000
935,000

North East
61,000
57,000
48,000
53,000
42,000
50,000
46,000
51,000
45,000
49,000
49,000
51,000
51,000
59,000
46,000
51,000
48,000
57,000
54,000
52,000
59,000
68,000
58,000
50,000
51,000
51,000
44,000
47,000
48,000
51,000
45,000
52,000
54,000
65,000
54,000
55,000
66,000
73,000
66,000
61,000
57,000
69,000
62,000
63,000
66,000
71,000
57,000
62,000
72,000
68,000
56,000
65,000
57,000

North West
92,000

113,000
97,000

114,000
112,000
132,000
110,000
114,000
117,000
115,000
100,000

99,000
107,000
134,000
104,000

95,000
110,000
124,000
113,000
109,000
117,000
122,000
112,000
115,000
125,000
138,000
120,000
124,000
130,000
145,000
120,000
134,000
135,000
156,000
137,000
151,000
154,000
181,000
142,000
149,000
133,000
164,000
140,000
137,000
169,000
202,000
155,000
160,000
150,000
147,000
118,000
121,000
119,000

Yorks & Humber
72,000
87,000
72,000
77,000
77,000
84,000
75,000
83,000
84,000

111,000
74,000
95,000
87,000
96,000
78,000
76,000
72,000

101,000
81,000
89,000

102,000
110,000
108,000

95,000
107,000
117,000

94,000
97,000
92,000

106,000
82,000
74,000

102,000
121,000

94,000
111,000
123,000
129,000
112,000
124,000
116,000
124,000
112,000
113,000
130,000
164,000
138,000
139,000
142,000
141,000
111,000
113,000
123,000

East Midlands
60,000
69,000
57,000
58,000
53,000
60,000
50,000
59,000
55,000
58,000
55,000
54,000
59,000
64,000
51,000
53,000
60,000
76,000
69,000
59,000
59,000
65,000
69,000
76,000
73,000
78,000
65,000
71,000
65,000
81,000
70,000
68,000
72,000
83,000
67,000
70,000
76,000
92,000
72,000
80,000
71,000
83,000
66,000
73,000
81,000
84,000
82,000
82,000
74,000
83,000
85,000
77,000
96,000

West Midlands
75,000
89,000
84,000
82,000
75,000
79,000
79,000
88,000
85,000
96,000
77,000
90,000
88,000
97,000
80,000
83,000
85,000
98,000
84,000
79,000
84,000

102,000
90,000
91,000

100,000
113,000

95,000
113,000
103,000
110,000

93,000
98,000

103,000
125,000
106,000
125,000
130,000
123,000
104,000
121,000
104,000
116,000
125,000
131,000
115,000
137,000
120,000
116,000
128,000
136,000
113,000
116,000
127,000

East of England
53,000
64,000
55,000
61,000
62,000
75,000
60,000
61,000
61,000
71,000
69,000
78,000
66,000
71,000
50,000
52,000
62,000
68,000
59,000
58,000
63,000
69,000
75,000
73,000
87,000
91,000
76,000
75,000
83,000
91,000
72,000
83,000
74,000
82,000
80,000
83,000
81,000
90,000
86,000
85,000
82,000

102,000
94,000
98,000

101,000
121,000

89,000
86,000
82,000
88,000
80,000
88,000
81,000

London
127,000
131,000

93,000
100,000
111,000
140,000
116,000
111,000
123,000
143,000
113,000
122,000
112,000
136,000
122,000
136,000
133,000
166,000
142,000
133,000
139,000
159,000
146,000
137,000
143,000
191,000
149,000
121,000
132,000
137,000
123,000
128,000
134,000
152,000
126,000
123,000
113,000
145,000
119,000
109,000
116,000
138,000
128,000
104,000
134,000
158,000
126,000
121,000
130,000
152,000
132,000
123,000
119,000

South East
69,000
91,000
74,000
77,000
68,000
97,000
83,000
83,000
90,000
96,000
75,000
89,000
94,000

102,000
96,000
97,000
84,000
91,000
79,000
92,000
85,000

109,000
107,000
103,000
105,000
114,000

93,000
104,000
108,000
120,000
113,000
100,000
108,000
130,000
123,000
129,000
140,000
144,000
115,000
114,000
116,000
142,000
127,000
119,000
122,000
158,000
126,000
110,000
118,000
135,000
122,000
124,000
119,000

South West
42,000
49,000
48,000
45,000
49,000
58,000
42,000
48,000
42,000
56,000
49,000
52,000
46,000
54,000
39,000
38,000
46,000
57,000
58,000
63,000
61,000
76,000
62,000
62,000
61,000
75,000
69,000
71,000
63,000
67,000
56,000
62,000
56,000
72,000
63,000
76,000
68,000
87,000
73,000
79,000
72,000
86,000
81,000
88,000
74,000
86,000
76,000
86,000
90,000
87,000
73,000
84,000
94,000

Figure 3.10: This is a Table of UK NEET Data (Department for Education (UK), 2013),
displaying another case of number labels. In this case the current pattern recognition fails
to correctly recognise the number labels as labels and manual input is required for correct
conversion. The manual specification would be:

1 IdentResult = list(rows = list(label = 3:4, data = 5:57),

2 cols = list(label = 2:3, data = 4:24))

58 CHAPTER 3. TABLETOLONGFORM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1 2 3 4 5 6 7 8 9 10 11 12 13
Table 1
Top 100 Baby Girls' Names in New Zealand
December 2004−2011 Years

Rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

2,004
Name

Emma
Charlotte
Ella
Sophie
Hannah
Emily
Jessica
Olivia
Grace
Isabella
Georgia
Samantha
Brooke
Lucy
Paige
Lily
Sarah
Holly
Chloe
Ruby
Madison
Amelia
Zoe
Mia
Caitlin
Kate
Jade
Maia
Amy
Jasmine
Amber
Hayley
Molly
Sophia
Paris
Danielle
Jorja
Mackenzie
Tayla
Anna
Elizabeth
Kayla
Alexandra
Ashley
Phoebe
Katie
Summer
Rebecca
Abigail
Ava
Maddison
Brianna
Laura
Alice
Alyssa
Leah
Mikayla
Stella
Trinity

No.

352
330
306
299
286
282
282
275
261
206
201
196
192
190
187
181
161
160
154
143
142
140
132
131
124
123
118
118
116
114
106
102
102
101
100

99
94
90
90
87
87
86
84
83
83
82
82
81
80
80
75
73
73
71
71
70
69
68
65

2,005
Name

Emma
Ella
Charlotte
Olivia
Jessica
Sophie
Grace
Hannah
Emily
Isabella
Paige
Ruby
Lucy
Lily
Maia
Brooke
Georgia
Holly
Chloe
Amelia
Samantha
Jade
Sarah
Kate
Caitlin
Zoe
Madison
Amy
Mia
Jasmine
Hayley
Amber
Anna
Katie
Sophia
Molly
Summer
Elizabeth
Stella
Danielle
Rebecca
Kayla
Alexandra
Jorja
Abigail
Maddison
Trinity
Tayla
Ashley
Paris
Ava
Mikayla
Mya
Aimee
Alyssa
Eva
Victoria
Aaliyah
Alice

No.

315
292
278
274
257
254
248
223
216
180
180
180
174
169
168
162
162
160
150
146
141
137
135
134
130
122
121
119
119
118
114

99
95
92
91
89
88
87
79
77
76
75
73
72
70
69
69
68
67
66
62
62
62
60
60
60
60
58
57

2,006
Name

Charlotte
Ella
Sophie
Emma
Olivia
Emily
Grace
Jessica
Hannah
Lily
Isabella
Lucy
Chloe
Ruby
Georgia
Paige
Amelia
Maia
Zoe
Madison
Brooke
Holly
Samantha
Sarah
Mia
Ava
Jasmine
Kate
Hayley
Caitlin
Jade
Sophia
Amber
Eva
Molly
Amy
Katie
Keira
Anna
Sienna
Summer
Zara
Maddison
Kayla
Elizabeth
Abigail
Isla
Brianna
Danielle
Rebecca
Alyssa
Jorja
Leah
Aaliyah
Alexandra
Tayla
Ashley
MacKenzie
Phoebe

No.

324
320
295
286
278
277
262
261
254
234
224
194
190
174
168
167
164
161
161
157
154
150
150
149
143
142
132
123
122
121
114
105
103
102
100

96
92
91
89
89
88
87
86
84
83
82
82
80
78
77
76
74
72
70
68
68
67
67
67

2,007
Name

Ella
Sophie
Olivia
Emma
Charlotte
Emily
Lily
Grace
Hannah
Isabella
Jessica
Ruby
Amelia
Lucy
Madison
Chloe
Brooke
Ava
Mia
Paige
Zoe
Holly
Kate
Caitlin
Maia
Georgia
Samantha
Sophia
Sienna
Jade
Amber
Maddison
Sarah
Hayley
Amy
Summer
Jasmine
Nevaeh
Abigail
Eden
Eva
Katie
Keira
Mikayla
Isabelle
Anna
Bella
Leah
Poppy
Isla
Kayla
Elizabeth
Molly
Tayla
Alyssa
Danielle
Stella
Zara
Mackenzie

Figure 3.11: This is a Table of Top 100 Baby Girls’ Names in New Zealand (Department
of Internal Affairs (NZ), 2012), displaying a peculiar mismatch of column labels to the
corresponding data, in addition to number labels. The number labels here are correctly
identified with pattern recognition. The correction of the mismatched column labels is
resolved not in Identification, but in the next stage, Discern Parentage. However, during
Identification the columns identified as ‘data’ must include all the data and column labels
(in this case cols = list(label = 2, data = 3:26)).

3.5. IDENTIFICATION 59

3.5.3 Limitations and Future Work

Due to the many variations encountered in how Tables are presented, Identification proves

to be surprisingly difficult to automate. It is perhaps an area where a more AI-orientated

approach (as opposed to a purely algorithmic one) will be more successful as the variations

are often minor. For the same reason however, a human user can very easily identify

the necessary information and TableToLongForm makes it possible for manual input of

IdentResult, enabling use of TableToLongForm with only minor manual input on a much

greater variety of Tables.

Short of implementing some form of AI-orientated approach, the most promising future

development for Identification would be better diagnostics output to aid the end user in

knowing if and when TableToLongForm has gone wrong, and to make it easier to manually

input the IdentResult at that stage if that is the problem.

Implementation of multiple Identification algorithms would also enable a consensus-

based approach to Identification by checking if multiple algorithms agree on the same

IdentResult. However creating algorithms that work beyond a very narrow class of Tables

proves to be surprisingly difficult, and multiple algorithms that can handle a wide range of

Tables would be required for a consensus approach to be practically useful.

While seeming at a glance to be one of the easier tasks, Identification instead proves to

be the greatest hurdle in making TableToLongForm work with a greater variety of Tables.

60 CHAPTER 3. TABLETOLONGFORM

3.6 Discern Parentage

3.6.1 Purpose

The purpose of Discern Parentage is to understand the hierarchical structure (the parentage)

of the row and column labels. The output will be the rowplist and colplist, the row and

column parentage lists. The parentage lists are nested list objects that represent all the

hierarchical relationships in the Table. For easier reading they are assigned the plist class

which has a custom print method. An example of a colplist is shown in Figure 3.12.

The process of Discerning Parentage is comprised of three classes of algorithms. Custom

algorithms can be used to extend functionality for two of the three classes (see Subsec-

tion 3.2.6).

Pare Pre Row Pre-requisite algorithms that tidy up the Row Labels for correct operation

of the Main Parentage algorithm. Any combination of these algorithms, in any order,

can be chosen. The current implementation of TableToLongForm has no Pre Row

algorithms. They should take two arguments, matData and matRowLabel. They

should return a named list containing two elements, matData and matRowLabel.

Default: ParePreRow = NULL

Pare Pre Col Pre-requisite algorithms that tidy up the Column Labels for correct oper-

ation of the Main Parentage algorithm. Any combination of these algorithms, in any

order, can be chosen. They should take two arguments, matData and matColLabel.

They should return a named list containing two elements, matData and matColLabel.

Default: ParePreCol = c("mismatch", "misalign", "multirow")

Pare Main contains the Main algorithm that will recursively call itself until all parentage is

discerned. Unlike the Pre-requisite algorithms, the Main algorithm is not an argument

that can be changed.

3.6. DISCERN PARENTAGE 61

1 > TableToLongForm(LabourForce , fulloutput = TRUE)[["colplist"

]]

2 + Male (1, 2)

3 - + European Only (1, 3)

4 - - + Persons Employed in Labour Force (1, 4)

5 - - + Persons Unemployed in Labour Force (2, 4)

6 - - + Not in Labour Force (3, 4)

7 - - + Working Age Population (4, 4)

8 - - + Labour Force Participation Rate (5, 4)

9 - - + Unemployment Rate (6, 4)

10 - - + Employment Rate (7, 4)

11 - - + Total Labour Force (8, 4)

12 - + Maori Only (9, 3)

13 - - + Persons Employed in Labour Force (9, 4)

14 ## Output truncated

Figure 3.12: A truncated example of the colplist for the Labour Force Status data used
in Figure 3.1. It represents the hierarchical relationships of the column labels. We can see
that it has correctly identified Male as a top-level parent with the ethnic categories, such as
European Only, nested inside. The ethnic categories are in turn parents to the lowest-level
categories, such as Employment Rate.

> colplistNoClass

$Male

$Male$`European Only`

Persons Employed in Labour Force Persons Unemployed in Labour Force

1 2

Not in Labour Force Working Age Population

3 4

Labour Force Participation Rate Unemployment Rate

5 6

Employment Rate Total Labour Force

7 8

attr(,"Loc")

cols

[1,] 4

$Male$`Maori Only`

Persons Employed in Labour Force Persons Unemployed in Labour Force

9 10

Output truncated

Figure 3.13: A truncated example of the colplist from Figure 3.12, printed with the
default list printing method. This is much less useful, but does give better insight into the
internal storage structure for users familiar with R lists.

62 CHAPTER 3. TABLETOLONGFORM

TableToLongForm

Identification

IdentResult
(Final)matFull

Get matrix subsets

matDatamatRowLabel ParePreRow

Call the Pre-requisite
Row algorithms, in
the order specified

matData
(Adjusted)

matRowLabel
(Adjusted)

ParePreColmatColLabel

Call the Pre-requisite
Col algorithms, in
the order specified

matData (Final)
matColLabel
(Adjusted)

Call the Main
Pare Algorithm

Reconstruction

Figure 3.14: A breakdown of the Discern Parentage step of the workflow. IdentResult

from the Identification step is used obtain subsets of matFull that correspond to the labels
and the data. These subsets are then processed with the ParePreRow and ParePreCol
algorithms as specified by the respective arguments. These adjusted subsets are then used
by the Main Parentage algorithm to discern the parentage of the Table.

3.6. DISCERN PARENTAGE 63

3.6.2 Key Challenges

The Main Parentage algorithm consists primarily of the process covered in Core Concepts

(Subsection 3.1.2), and this fairly simple algorithm proves to be surprisingly robust to

many Tables. Unfortunately, even slightly unusual presentation can lead to catastrophic

breakdown. The Pre-requisite algorithms are designed to correct certain known cases of

breakdown, such that the adjusted Table subsets conform to a format the Main algorithm

can handle.

The types of Tables that the Pre-requisite and Main Parentage algorithms can handle are

called the recognised patterns. Any Table that consists of some combination of the recognised

patterns can be successfully handled with TableToLongForm. It is not strictly necessary

for a user to know what the patterns are, as they can simply try calling TableToLongForm

on the Table to see if it converts. All the recognised patterns are listed here primarily for

reference purposes.

For each pattern an example table is first shown using toy data, that displays the pattern,

followed by a short description of the pattern, and ending with the example table converted

with TableToLongForm.

Many of the recognised patterns apply only for row labels. Column labels are recognised

by noticing that the transpose of column labels can often be processed as row labels, though

there are several fringe cases that must be corrected for.

Empty Below

1
2
3
4
5

1 2 3 4 5 6

Row Parent1

Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
10
11
12
13

Column 2
20
21
22
23

Column 3
30
31
32
33

Column 4
40
41
42
43

Above, we have an example of the Empty Below pattern, the most simple type of parentage.
Here the parent and children are in different columns and we can see which of the children
belong to which parent through the use of empty space below each parent. The Table after
conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
10
11
12
13

Column 2
20
21
22
23

Column 3
30
31
32
33

Column 4
40
41
42
43

64 CHAPTER 3. TABLETOLONGFORM

Empty Right 1

1
2
3
4
5
6
7

1 2 3 4 5 6 7

Row Parent1
Row Child1
Row Child2
Row Parent2
Row Child1

Row Child−Child1
Row Child−Child2

Row Child−Child1
Row Child−Child2

Column 1
10
11
12
13
14
15

Column 2
20
21
22
23
24
25

Column 3
30
31
32
33
34
35

Column 4
40
41
42
43
44
45

Above, we have an example of the most basic form of the Empty Right pattern. In this
situation we have children in the same column as their parent. We can still recognise these
as children if the children have children (Child-Child) in a different column, while the parent
does not (and hence the parent is Empty Right). Note the values pertaining to the Parent
(if any) are discarded. This is because they are assumed to simply represent the sum of
their children’s values. The Table after conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child1

Row Child−Child1
Row Child−Child2
Row Child−Child1
Row Child−Child2

Column 1
11
12
14
15

Column 2
21
22
24
25

Column 3
31
32
34
35

Column 4
41
42
44
45

Empty Right 2

1
2
3
4
5
6
7

1 2 3 4 5 6

Row Parent1

Row Parent2

Row Child1
Row Child2

Row Child1
Row Child2

Column 1
10
11
12
13
14
15

Column 2
20
21
22
23
24
25

Column 3
30
31
32
33
34
35

Column 4
40
41
42
43
44
45

Above, we have an example of both Empty Below and Empty Right. Either algorithm can
handle this situation, but simply due to the ordering of the algorithms such situations are
handled as Empty Right. The Table after conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
11
12
14
15

Column 2
21
22
24
25

Column 3
31
32
34
35

Column 4
41
42
44
45

3.6. DISCERN PARENTAGE 65

Empty Right 3

1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8

Row Super−Parent1
Row Parent1
Row Child1
Row Parent2
Row Child1
Row Super−Parent2
Row Parent1
Row Child1
Row Parent2
Row Child1

Row Child−Child1

Row Child−Child1

Row Child−Child1

Row Child−Child1

Column 1
10
11
12
13
14
15
16
17
18
19

Column 2
20
21
22
23
24
25
26
27
28
29

Column 3
30
31
32
33
34
35
36
37
38
39

Column 4
40
41
42
43
44
45
46
47
48
49

Above, we have an example of a complex version of the Empty Right pattern. The “parent-
child in the same column” situation has been extended further and we now have parents
(Super-Parent) who have children (Parent), who each further have children (Child), all in
the same column. Such situations can still be recognised if the lowest-level children in the
column (Child) have children in a different column (Child-Child), while its direct parents
(Parent) each have children in the same column (Child) but not in a different column (is
Empty Right), and the top-most parents (Super-Parents) also have no children in a different
column (is also Empty Right). The algorithm cannot currently handle super-super-parents.
The Table after conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7 8

Row Super−Parent1
Row Super−Parent1
Row Super−Parent2
Row Super−Parent2

Row Parent1
Row Parent2
Row Parent1
Row Parent2

Row Child1
Row Child1
Row Child1
Row Child1

Row Child−Child1
Row Child−Child1
Row Child−Child1
Row Child−Child1

Column 1
12
14
17
19

Column 2
22
24
27
29

Column 3
32
34
37
39

Column 4
42
44
47
49

Multi-row Column Label

1
2
3
4
5
6

1 2 3 4 5 6

Row 1
Row 2
Row 3
Row 4

Column
Child1

10
11
12
13

Column
Child2

20
21
22
23

Column
Child3

30
31
32
33

Column
Child4

40
41
42
43

Above, we have an example of Multi-row Column Labels. Often column labels are physically
split over multiple rows rather than making use of line breaks in the same cell. In such
occurrences, any row not identified as a parent are collapsed into a single row of labels. The
Table after conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6

Row 1
Row 2
Row 3
Row 4

Column Child1
10
11
12
13

Column Child2
20
21
22
23

Column Child3
30
31
32
33

Column Child4
40
41
42
43

66 CHAPTER 3. TABLETOLONGFORM

Mismatched Column Label

1
2
3
4
5

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Child2
20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Above, we have an example of Mismatched Column Labels. Sometimes the column labels
are in a different column to the data, usually due to a misguided attempt at visual alignment
of labels to the data. As long as the correct rows and columns were identified for the data
and the labels, and if there are the same number of data columns as label columns, these
mismatched column labels will be paired with the data columns. The Table after conversion
to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Child2
20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Misaligned Column Label

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Parent1
Col Child2

20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Col Child1
50
51
52
53

Col Parent2
Col Child2

60
61
62
63

Col Child3
70
71
72
73

Col Child4
80
81
82
83

Above, we have an example of Misaligned Column Labels. Often column parents are physi-
cally centred over their children (N.B. where a spreadsheet’s cell-merge feature is used to do
the centering, the actual value is usually stored in the top-left cell and hence causes no prob-
lems). TableToLongForm makes use of pattern recognition to identify repeating patterns in
the labels, or in empty cells surrounding the labels, to correct for the misalignment. For the
Column Parents row, we find (starting from column 2, the first data column) a pattern of
Empty-NonEmpty-Empty-Empty, with the pattern occurring twice. In the Col Child row,
we also find a pattern of length 4 occurring twice. This can be used to correctly align the
Column Parents to its children. The Table after conversion to a LongForm follows.

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Col Parent1
Col Parent1
Col Parent1
Col Parent1
Col Parent2
Col Parent2
Col Parent2
Col Parent2

Row 1
Row 2
Row 3
Row 4
Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13
50
51
52
53

Col Child2
20
21
22
23
60
61
62
63

Col Child3
30
31
32
33
70
71
72
73

Col Child4
40
41
42
43
80
81
82
83

3.6. DISCERN PARENTAGE 67

Misaligned Column Label 2

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Parent1
Col Child2

20
21
22
23

Col Super−Parent

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Col Child1
50
51
52
53

Col Parent2
Col Child2

60
61
62
63

Col Child3
70
71
72
73

Col Child4
80
81
82
83

Above, we have a generalised example of Misaligned Column Labels. We now have Column
Super-Parent which is misaligned to both its direct children, the Column Parents, and to
the lowest-level children. The Table after conversion to a LongForm follows.

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent

Col Parent1
Col Parent1
Col Parent1
Col Parent1
Col Parent2
Col Parent2
Col Parent2
Col Parent2

Row 1
Row 2
Row 3
Row 4
Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13
50
51
52
53

Col Child2
20
21
22
23
60
61
62
63

Col Child3
30
31
32
33
70
71
72
73

Col Child4
40
41
42
43
80
81
82
83

3.6.3 Limitations and Future Work

The Main Parentage algorithms can be considered ‘complete’ as they have been largely

unchanged since inception, the pre-requisite algorithms are the problem. In many ways, the

Pre algorithms share the same problems as Identification, as small changes in the Table,

ones easily understood by humans, can break the algorithms, again suggesting that an AI-

orientated approach might be more helpful. As with Identification, better diagnostics will be

of greatest aid at this stage of development, with manual correction of problematic features

enabling usage of TableToLongForm with a wider variety of Tables for less work than it

would take to undertake the full conversion manually.

Another set of problems are other methods of encoding hierarchical information that

are difficult to access through R, e.g. in-cell indentation in Excel. As by definition these

are difficult to access through R, they are also difficult to solve within R. Possible solutions

include writing in a language more appropriate for the problem, e.g. a VBA script for Excel-

based problems. These scripts can then take care of some of the pre-requisite cleaning, before

the Table is loaded into R for the conversion.

68 CHAPTER 3. TABLETOLONGFORM

3.7 Reconstruction

The purpose of Reconstruction is to take the information from Identification and Parentage

and use it to Reconstruct a dataframe. In other words, there should be nothing beyond sim-

ple grunt-work at this stage, and the current Reconstruction code does what it is supposed

to. If problems do arise, they need to be addressed in the previous stages.

1 > rowplist

2 + Row Super -Parent (1, 1)

3 - + Row Parent1 (2, 1)

4 - - + Row Child1 (3, 1)

5 - - - + Row Child -Child1 (3, 2)

6 - - - + Row Child -Child2 (4, 2)

7 - - + Row Child2 (5, 1)

8 - - - + Row Child -Child1 (5, 2)

9 - - - + Row Child -Child2 (6, 2)

10 - + Row Parent2 (7, 1)

11 - - + Row Child1 (8, 1)

12 - - - + Row Child -Child1 (8, 2)

13 - - - + Row Child -Child2 (9, 2)

14 - - + Row Child2 (10, 1)

15 - - - + Row Child -Child2 (10, 2)

16

17 > rowvecs

18 [,1] [,2] [,3] [,4]

19 "Row Super -Parent" "Row Parent1" "Row Child1" "Row Child -

Child1"

20 "Row Super -Parent" "Row Parent1" "Row Child1" "Row Child -

Child2"

21 "Row Super -Parent" "Row Parent1" "Row Child2" "Row Child -

Child1"

22 "Row Super -Parent" "Row Parent1" "Row Child2" "Row Child -

Child2"

23 "Row Super -Parent" "Row Parent2" "Row Child1" "Row Child -

Child1"

24 "Row Super -Parent" "Row Parent2" "Row Child1" "Row Child -

Child2"

Figure 3.15: An example of a rowplist and the reconstructed version (both truncated).
These must then be combined with the reconstructed colplist and the data for the final
dataframe. Broadly speaking, the Reconstruction algorithms simply iterate down a plist
recursively, extracting the information and pasting them together appropriately to create
the dataframe.

3.7. RECONSTRUCTION 69

TableToLongForm

Identification

Discern
Parentage

rowplistmatData (Final) colplist

Reconstruct
Row Labels

Row Labels

Reconstruct
Column Labels

Dataframe
Output

Figure 3.16: A breakdown of the Reconstruction step of the workflow. ReconsRowLabels
only makes Row Labels. ReconsColLabels takes the Row Labels, may make additional Row
Labels (for Col Parents), then combines it with the Col Labels, grabbing the associated
columns of data as it does so. Thus the output of ReconsColLabels is the final dataframe
output.

70 CHAPTER 3. TABLETOLONGFORM

3.8 Summary

TableToLongForm is a response to a problem identified while conducting the Literature

Review on Open Data in New Zealand - data is being released in Tables that are unfit for

machine consumption. It then seemed logical that an automatic tool for converting such

Tables into more machine-friendly LongForm Dataframes would be useful, and it seems

many others agree. The package has been available on CRAN since September 2013 and

has seen a steady number of downloads since then (see Figure 3.17). More recently, an article

on TableToLongForm has been published in the RJournal (Oh, 2014), and a reviewer for

the article commented:

This is a really important contribution to R. These file types are everywhere

and they waste a huge amount of time to read for virtually every analyst... I’m

unaware of any alternative approaches in R that are anywhere near this easy to

use.

Despite the positive feedback, TableToLongForm still has many limitations. Ultimately,

TableToLongForm uses relatively simple algorithms to detect a known set of recognised

patterns and any Table that deviates from these patterns will break TableToLongForm.

Better diagnostics output and error messages are needed to ensure that when TableToLong-

Form does work, it can be verified that it worked correctly, and by the same token, if it

failed, the user needs to be able to understand it failed and why, so that they may attempt

to fix the problem (either by adjusting the Table so that TableToLongForm can handle it,

or by converting manually).

Overall, reception of TableToLongForm seems to be divided into two main groups. Those

in the first group are very positive of the idea of an automatic way to handle data released

in Tables, because they have painful first-hand experience in trying to deal with Tables

manually. Those in the second group have been fortunate enough to have never needed to

work with data released in Tables, and their reaction is lukewarm, conceding only that it

may be useful for a limited set of problems - a set of problems that has little to do with them.

These two reactions are quite indicative of the value of TableToLongForm - for those seeking

to make use of data released in Tables that TableToLongForm can handle, the package will

prove to be very valuable. However not only is there data that TableToLongForm cannot

handle, but there is data that is already released in a nice machine-readable format. If more

organisations release their data well, then tools like TableToLongForm will become obsolete.

While it would be sad to see something I’ve worked on become useless, I will nonetheless

welcome the day when all data is released in a good format from the start.

3.8. SUMMARY 71

Ta
bl

eT
oL

on
gF

or
m

 d
ow

nl
oa

ds
 fr

om
 R

S
tu

di
o

C
R

A
N

 M
irr

or
20

13
−0

9−
27

 to
 2

01
5−

02
−2

2

D
at

e

Downloads

0102030405060

D
ec

 1
3

M
ar

 1
4

Ju
n

14
S

ep
 1

4
D

ec
 1

4

● ●● ●● ●● ● ●● ● ●● ●● ● ●●● ●

0102030405060

F
ig

u
re

3.
17

:
W

h
il
e

th
er

e
is

n
o

d
at

a
fo

r
th

e
to

ta
l

n
u
m

b
er

of
d
ow

n
lo

ad
s

ac
ro

ss
al

l
C

R
A

N
m

ir
ro

rs
,

th
er

e
is

d
at

a
fr

om
th

e
R

S
tu

d
io

m
ir

ro
r.

T
h
e

d
iff

er
en

t
co

lo
u
rs

in
d
ic

at
e

d
iff

er
en

t
ve

rs
io

n
s

of
T

ab
le

T
oL

on
gF

or
m

.
T

h
e

tr
en

d
h
as

h
el

d
re

m
ar

ka
b
ly

st
ea

d
y

ac
ro

ss
ti

m
e,

to
th

e
p

oi
n
t

I
su

sp
ec

t
th

e
re

li
ab

il
it

y
of

th
is

d
at

a
(t

h
e

st
ea

d
y

d
ow

n
lo

ad
s

m
ay

b
e

fr
om

ot
h
er

m
ir

ro
rs

sy
n
ci

n
g,

or
ot

h
er

su
ch

au
to

m
at

ed
d
ow

n
lo

ad
s,

an
d

n
ot

in
d
ic

at
iv

e
of

‘r
ea

l’
u
se

rs
),

b
u
t

it
is

u
n
fo

rt
u
n
at

el
y

on
e

of
th

e
on

ly
so

u
rc

es
of

d
at

a
on

p
ac

ka
ge

d
ow

n
lo

ad
s.

73

Chapter 4

Graphical Tools

A Literature Review

4.1 Introduction . 74

4.1.1 Free . 74

4.1.2 Interactive Web-based Output . 74

4.1.3 Tool Classification . 75

4.2 GUI Tools . 76

4.2.1 Many Eyes . 76

4.2.2 Tableau Public . 78

4.2.3 Other GUI Tools . 80

4.3 High-level Languages . 80

4.3.1 Google Chart Tools . 80

4.3.2 Highcharts . 82

4.4 Low-level Languages . 85

4.4.1 Processing.js . 87

4.4.2 Paper.js . 89

4.4.3 Raphaël.js . 91

4.4.4 D3.js (Data-Driven Documents) . 92

4.4.5 Other Low-level Languages . 94

4.5 Other Relevant Topics . 95

4.5.1 R . 95

4.5.2 Raster graphics . 99

4.5.3 Vector graphics . 99

4.5.4 HTML5 Canvas Element . 100

4.5.5 SVG . 100

4.6 Conclusion . 101

74 CHAPTER 4. GRAPHICAL TOOLS

4.1 Introduction

This Literature Review examines free Graphical Tools that produce interactive output

ideal for web-based viewing. Three different Classifications of tools are examined: GUI

Tools, High-level languages and Low-level1 languages.

Section 4.5 covers Other Relevant Topics, including how R might be used to aid in

preparing and exporting data for use with one of the tools, and brief explanations on the

difference between raster and vector graphics, or how the SVG image file format works, to

make the review more accessible to audiences unfamiliar with such details.

N.B. This Literature Review was conducted in 2012, and many details may now be

out-of-date.

4.1.1 Free

In keeping with the spirit of Open Data, I am interested in free tools, so that a casual user

interested in exploring some Open Data can use such a tool at no cost.

Ideally, not only is the tool free, it is also Open Source. The distinction is not very

important for the casual user, but for me as I look to develop new tools, existing tools that

are Open Source provide opportunities to learn and/or extend functionality.

Additionally, if the output is also in an Open Format (such as SVG), this opens up

opportunities to utilise multiple tools (that share this Open Format) in conjunction, for

greater effect.

4.1.2 Interactive Web-based Output

I focus on interactive output rather than more traditional static images as these are more

interesting, and are a better candidate for future work. Being web-based makes the output

substantially easier to share, and also passes off much of the rendering burden to web browser

developers, allowing me to focus more on visualisation methods. I classify interactivity into

two categories:

Simple Interactivity This includes cases where the user can mouseover a bar on a bar-

graph, or a slice of a piechart, and obtain more information about that bar or slice.

It is technically interactive and not static, but typically adds very little value.

End-user Data Exploration This is where the final output can be used by the end-user 2

to explore the data in some way. At the very basic level, this may involve merely

1By more conventional definition, these should be Very High and High, but for better distinguishing
power more extreme words are used.

2End-User: The user of the final output. Distinguished from the user of one of the graphical tools,
who produce the output.

4.1. INTRODUCTION 75

resorting the data. At a more advanced level, this can effectively turn the output

into a simple GUI tool of its own, where the end-user can change the variables being

examined, the chart type, and so on.

4.1.3 Tool Classification

I classify the tools broadly into three categories: GUI (Graphical user interface), High-Level

language and Low-Level language.

Note that the definition of High- and Low- level programming languages is largely rel-

ative. A quick google search suggests a conventional definition for a Low-level language

might be something like an assembly language. For the purposes of this review the follow-

ing definitions will be used:

GUI A typical example would be a point and click interface, requiring absolutely no writing

of code to accomplish the desired task. Without doubt, to a casual user the GUI is

the most accessible and desired tool.

High-level A language that can achieve the desired result with a few lines of very simple

code, usually involving specific High-level functions that perform several tasks. An

example might be doing a simple linear regression model in R. The task can be accom-

plished with a single call to lm to fit the model. We may then need a few additional

calls to check the assumptions are met and print the output. Excel formulae may

also fall under this definition, though in that case, the formulae can be used via a

GUI rather than direct ‘coding’. Under this rather restrictive definition of High-level

language, it is feasible that a casual user might be willing to learn and use a High-level

language tool, though they would be resistant to such a notion.

Low-level A language that requires several lines of code to achieve the desired result,

including the use of primitive or Low-level functions that only accomplish a very

narrow, simple and specific task (such as drawing a single rectangle). Under this

definition, a language like JavaScript would be considered Low-level, as it would be

difficult to learn and use for the casual user. While out of reach for the casual user,

these Low-level language tools will be valuable in the creation of new tools more

appropriate for the casual user.

I am most interested in the Low-level language tools, as these are likely to be used to develop

new tools and methods for presenting Open Data. However, a brief overview of existing

GUI tools and High-level language tools is necessary to understand what already exists,

what they do well, and what gaps exists where a new tool might be valuable.

76 CHAPTER 4. GRAPHICAL TOOLS

4.2 GUI Tools

4.2.1 Many Eyes

http://www-958.ibm.com/software/data/cognos/manyeyes/

Key Points

Learning Difficulty Very Easy.

Has a library of standard plots Yes.

Output Java or Flash object.

Interactivity Wide variety depending on plot type chosen.

Legal Free to use, but any output using Many Eyes will be published online via the website,

making the visual and underlying data public. Data has a size limit of 5 MB.

Main Features

� Tool is entirely web-based requiring no download.

� But output is Java and Flash based, meaning the end-user must download and

install the platform.

� Has good community support, such as rating of visualisations and datasets, and

commenting by users.

� An ‘experiment’ by IBM, future of the tool is unknown.

� Purely a GUI with no command-line support (Terms of Use expressly forbid au-

tomation: “You agree not to send automated queries of any sort to the Services”).

� All data uploaded, and any visualisation created, becomes publicly available on

the website. However, data and visuals can be deleted at a later date (This

method should not be considered a ‘secure’ way of ensuring limited publicity).

� Very strict about accepted data format. A lot of effort is often required to get

the data in just the right format for the desired plot.

Comments

The primary advantage of Many Eyes is that it is a Visualisation GUI Tool that is entirely

online, requiring no download or install beyond the software platforms it requires (Java

and Flash). Any data uploaded and any visualisation created is automatically published

http://www-958.ibm.com/software/data/cognos/manyeyes/

4.2. GUI TOOLS 77

Figure 4.1: The Many Eyes ‘interface’. This is a screenshot of one of the webpages used to
create a new plot. Many Eyes is entirely web-based and requires no separate client software.

publicly online, making it extremely easy to share (conversely it also means that it cannot

be made private. Less of an issue when dealing with Open Data, but has problems for

Closed Data).

The number of datasets being uploaded and visualisations being created would indicate

Many Eyes has an active user base. Many Eyes first began in 2007 and is still available,

though the last update appears to have been in March 2011. Though it is being developed

by a well-known major corporation (IBM), its current classification as an ‘experiment’ does

cast a slight shadow of doubt on its future availability.

For example output, visit the public gallery: http://www-958.ibm.com/software/

data/cognos/manyeyes/visualizations

http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations
http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations

78 CHAPTER 4. GRAPHICAL TOOLS

4.2.2 Tableau Public

http://www.tableausoftware.com/products/public

Key Points

Learning Difficulty Very Easy.

Has a library of standard plots Yes.

Output Proprietary Format.

Interactivity Extensive potential, including end-user exploration of the data via interac-

tion with the output, but still limited to what the tool provides.

Legal Free to use, but any output using Tableau Public must be published online via their

website, making the visual and underlying data public. There is also a data size

limitation of 100,000 rows. Paid versions of Tableau are available which relaxes these

constraints.

Main Features

� Requires a download and install of a client software, that requires an active

internet connection to work.

� Quite powerful relative to ease of use.

� Attempts to automatically detect data type, such as whether it is a ‘Dimension’

(Qualitative) or a ‘Measure’ (Quantitative), or identification of names, such as the

States of the USA (which greatly simplifies the creation of map-based graphics).

� Suggests appropriate chart types based on data variables selected.

� Powerful interactivity features, including a ‘dashboard’ feature that can enable

data exploration by the end-user. That is, once a graphic output is made and

published, any future user of that graphic may have the capability to rearrange

categories, change graph type, etc.

� Purely a GUI with no command-line support.

� All data uploaded, and any visualisation created, becomes publicly available on

the website.

� The free Public version has various restrictions.

http://www.tableausoftware.com/products/public

4.2. GUI TOOLS 79

Figure 4.2: The Tableau Public interface. In this example, we are looking at a ‘dashboard’,
allowing us to place multiple graphics on the same page. On the right, Tableau Public
suggests some appropriate graph types for the selected data subset (inappropriate graph
types are greyed out).

Comments

Starting out in 2003 as an output of a PhD project called Polaris, “an interface for the

exploration of multidimensional databases that extends the Pivot Table interface to di-

rectly generate a rich, expressive set of graphical displays” (Stolte et al. 2008), it became

commercialised as Tableau later that year. In 2010, the free version, Tableau Public was

released.

Tableau Public requires a client to be downloaded and installed, and also requires an

internet connection to function. Rather than accepting a specific data structure for a specific

plot type, Tableau accepts an entire database, and allows the user to explore the variables

in the data via a variety of potential plots.

For example output, visit the public gallery: http://www.tableausoftware.com/public/

gallery

http://www.tableausoftware.com/public/gallery
http://www.tableausoftware.com/public/gallery

80 CHAPTER 4. GRAPHICAL TOOLS

4.2.3 Other GUI Tools

This review is concerned with GUI Tools that produce Interactive Web-based Output,

but it is worth noting that there are many offline GUI Tools that can be used for visu-

alising and exploring data interactively. For instance Improvise (http://www.cs.ou.edu/

~weaver/improvise/) or The InfoVis Toolkit (http://ivtk.sourceforge.net/), which

may better serve the needs of the reader if they do not require easy facilities for publishing

the output online.

4.3 High-level Languages

4.3.1 Google Chart Tools

https://developers.google.com/chart/

Key Points

Learning Difficulty Easy (Very Easy using something like the Google Vis R Package,

which greatly reduces the work).

Has a library of standard plots Yes.

Output SVG, with support for VML for compatibility with older versions of Internet Ex-

plorer. Some of the older graphs (e.g. the Annotated Time Line or Hans Rosling’s

Gapminder Motion Chart) use Flash.

Interactivity Varies by plot type, most only have simple interactivity, though some graphs

offer more interesting interactivity, such as the Annotated Time Line (similar to the

one used for the Google Finance graphs) or Hans Rosling’s Gapminder Motion Chart

(which was acquired by Google in 2007).

Legal Free to use, some fine print in the Terms of Service.

Main Features

� Very easy to use, especially when using the Google Vis R Package (or other

similar packages).

� A significant variety of plot types to choose from, including community con-

tributed plots.

� In active development by Google.

http://www.cs.ou.edu/~weaver/improvise/
http://www.cs.ou.edu/~weaver/improvise/
http://ivtk.sourceforge.net/
https://developers.google.com/chart/

4.3. HIGH-LEVEL LANGUAGES 81

Figure 4.3: A screenshot from https://developers.google.com/chart/interactive/

docs/examples demonstrating interactivity between a Table and a BarChart, sorting by
Name by clicking on the appropriate column in the Table.

Figure 4.4: A continuation of Figure 4.3, where the Table has been resorted by Salary, with
the BarChart following suit.

Comments

For users already familiar with R, Google Chart Tools is the easiest to use of the two High-

level language tools covered, because of the fantastic Google Vis R Package. The package

allows everything to be done within R, removing the need to learn and fiddle with HTML

and JavaScript code, generally reducing the coding required and enabling easy access to the

many data processing and manipulation tools of R. This makes Google Chart Tools as easy

to use as a GUI Tool (for those already familiar with R) if not easier due to the ease of

scripting.

One possible problem with Google Chart Tools is that it is still in active development,

and may not be suited towards use that requires long-term reliability and stability.

A bargraph in Google Chart Tools

Examples are available on the official website for directly writing the HTML and JavaScript

code. Here is how to do it in R, which is considerably shorter than writing directly.

https://developers.google.com/chart/interactive/docs/examples
https://developers.google.com/chart/interactive/docs/examples

82 CHAPTER 4. GRAPHICAL TOOLS

1 library("googleVis")

2 ## Generate some data

3 dat = data.frame(val = runif(10, 0, 100), label = LETTERS

[1:10])

4

5 ## Make the plot

6 googBar = gvisBarChart(data = dat , xvar = "label", yvar = "

val", options = list(width = 1280, height = 720))

7

8 ## Save the plot as an html file

9 ## Package takes care of all the required html code including

exporting of the dataset into an appropriate JSON format.

10 print(googBar , file = "googBar.html")

There is an extensive list of additional arguments that can be passed to options to fine

tune the chart to your liking.

4.3.2 Highcharts

http://www.highcharts.com/

Key Points

Learning Difficulty Easy.

Has a library of standard plots Yes.

Output SVG, with support for VML for compatibility with older versions of Internet Ex-

plorer.

Interactivity Varies by plot type, most only have simple interactivity, but API allows for

more interesting interactivity.

Legal Open Source (CC By-NC). Has provisions for commercial use (can buy a commercial

licence).

Main Features

� Download comes with an impressive set of examples in the form of complete

.html files, making it very easy to tweak for actual use.

� Export capability built-in to the graphs, allowing for export of the charts to

several formats, including static PNG and JPG images for offline use.

http://www.highcharts.com/

4.3. HIGH-LEVEL LANGUAGES 83

� Commercial side likely to provide incentives for the active development and con-

tinuing support of the tool.

Figure 4.5: A screenshot from http://www.highcharts.com/demo/bar-basic demonstrat-
ing a basic bar chart.

Figure 4.6: A continuation of Figure 4.5, where clicking on Year 2008 in the legend has
filtered this data and the bar chart (including axis) has updated accordingly.

http://www.highcharts.com/demo/bar-basic

84 CHAPTER 4. GRAPHICAL TOOLS

Comments

Though harder to use than Google Chart Tools (even if you’re not familiar with R), High-

charts has a bit more flexibility and is technically Open Source (as long as you have no

commercial interest).

A potentially large barrier to use is getting the data into the right format. For instance,

the official How To Use (http://www.highcharts.com/documentation/how-to-use) goes

into some detail on loading in data, including writing your own parser for CSV files. I would

instead recommend using R to prepare and export the data to JSON (see Section 4.5.1),

which makes the process substantially less work.

A bargraph in Highcharts

Refer to the examples that come with the download.

For reference and comparison purposes, the bar-basic example JavaScript code (ex-

cluding HTML code, data and blank spaces) is 60 lines and 738 characters.

http://www.highcharts.com/documentation/how-to-use

4.4. LOW-LEVEL LANGUAGES 85

4.4 Low-level Languages

As Low-level Languages can be used to create custom visualisations from scratch, I will use

each language to create roughly the same visualisation. I will call this the Test Bargraph.

Figure 4.7: The Test Bargraph that will be used to explore each Low-level Language.
I will attempt to recreate this same bargraph as closely as possible with every Low-level
Language covered.

The Test Bargraph must have the following basic features:

Size Any reasonable arbitrary size of the Canvas or SVG image can be specified, including

aspect ratio.

Number of Bars Can handle any positive integer.

Max Value I will be generating a random number between 0 and an arbitrary maximum

value. The graph, including the y axis label, should be able to handle this.

Margins The width of the margins around the central plot can be specified. This is also

where the axis labels will go, so there is a minimum constraint. For simplicity all my

examples will simply use margin sizes that are proportionate to the total Size, but it

should be possible to specify a fixed number (say to perfectly fit the axis labels).

To test how difficult it is to add interactivity, the Test Bargraph will also enable the user

to alter the heights of the bars. This will involve the following elements:

Ghost Bar A ‘ghost bar’ tracks the position of the mouse and displays the potential height

of the updated bar.

Bar Updates Upon a mouse click, the height of the bar is updated to the new value based

on the position of the mouse.

86 CHAPTER 4. GRAPHICAL TOOLS

Figure 4.8: The Test Bargraph showing a ‘ghost bar’ which displays the potential height
of the updated bar if the user clicks. Note that this screenshot does not capture the mouse
pointer.

Figure 4.9: Upon clicking in Figure 4.8, the bar height is updated.

4.4. LOW-LEVEL LANGUAGES 87

4.4.1 Processing.js

http://processing.org/

http://processingjs.org/

Key Points

Learning Difficulty Hard (Moderate if experienced in Java, JavaScript or Java-like lan-

guages).

Has a library of standard plots No.

Output HTML5 Canvas.

Interactivity Broad potential, limited only by what the user can code. No native object

support.

Legal Processing: Open Source (GPL, version unknown).

Processing.js: Open Source via Seneca’s Centre for Development of Open Technology.

Main Features

� Despite being based on Java, can generally be considered a language on its own,

meaning almost everything needed to learn and write Processing code can be

found in one place (the Processing API Reference).

� Extending functionality to include interactivity easy.

� Have to build graphics from scratch using low-level functions.

� Can be used in two ways, either writing Processing code directly, or using Pro-

cessing.js as a JavaScript library.

Comments

Processing is a Low-level language for visualisations in general, though often of an interactive

nature. Because of this, even simple plots like a bargraph requires a fair level of coding to

build from scratch using low-level functions.

No generalised plotting library was found, but it is quite possible to write a library of

low-level plotting aid functions that would make creation of new graphs almost as easy as

R’s default graphics system.

The Processing language is based on Java, and Processing.js is a JavaScript implemen-

tation that essentially compiles Processing code into JavaScript to run. Due to the way

Processing.js works, a user has two choices when coding. One can either write Processing

http://processing.org/
http://processingjs.org/

88 CHAPTER 4. GRAPHICAL TOOLS

code, or one can choose to use Processing.js as a JavaScript library, in effect gaining access

to the Processing API while writing JavaScript.

Choosing to write in Processing code leaves open the possibility of compiling this using

the original Processing software, which may lead to performance gains. However, Process-

ing.js is generally easier to use than Processing, as the required file is small (403 KB) and

requires no installation beyond a modern web browser, which should already be installed

on any modern operating system.

The use of the HTML5 Canvas element as the output attracts with it certain properties

(see Subsection 4.5.4), perhaps the biggest being that there is no native support for objects.

This can make certain kinds of interactivity more difficult than it would be if objects were

recognised.

The redraw framerate (which also affects how quickly interactive elements respond) can

be specified using the frameRate() function, and the live framerate can be checked via

the frameRate variable (e.g. by inserting println(frameRate); somewhere in the draw()

function).

A bargraph in Processing

A working example of the Test Bargraph in Processing can be found at http://www.stat.

auckland.ac.nz/~joh024/Research/Processingjs/. The HTML document is named

test_bargraph.html (which contains the required HTML code), while the Processing code

(with comments) is named test_bargraph_fullcomments.pde.

Getting the desired interactivity to work requires matching the coordinates to the ‘ob-

jects’. We must first check if the mouse is inside the graph region (and not in the margins),

then match the x coordinate of the mouse to the appropriate bar. Once this is accomplished,

it is trivial to then draw the Ghost Bar based on the mouse position, and also to have the

matching bar update on mouse click.

For reference and comparison purposes, the Processing code (excluding data and blank

spaces) is 84 lines and 2071 characters. Due to the excessive features (low-level plotting aid

functions for generality, demonstrative interactivity), this is not directly comparable to the

High-level languages, but can be loosely compared to other Low-level languages.

As I chose to write Processing code rather than using Processing.js as a JavaScript

library, the inclusion of this code is slightly different to the usual procedure for JavaScript

libraries. As usual, I must link to the JavaScript library (in this case, processing.js), but then

I must use include a canvas element specifying the data-processing-sources attribute

to be the Processing file.

<html>

<head>

http://www.stat.auckland.ac.nz/~joh024/Research/Processingjs/
http://www.stat.auckland.ac.nz/~joh024/Research/Processingjs/

4.4. LOW-LEVEL LANGUAGES 89

<meta lang="en" charset="utf-8">

<script src="processing.js"></script>

<canvas data-processing-sources="processingjs_bar.pde"></canvas>

</head>

</html>

Alternatively, one could use Processing (rather than Processing.js) to compile the pde.

Several outputs are possible, including an HTML output or a stand-alone executable (which

requires Java). A caveat, Processing is slightly stricter in grammar than Processing.js. For

instance, in the example code there are cases where a float is implicitly coerced into an

int. This is fine in Processing.js, but will cause errors in Processing (the coercion must be

explicit using int()).

4.4.2 Paper.js

http://paperjs.org/

Key Points

Learning Difficulty Hard (Moderate if experienced in JavaScript).

Has a library of standard plots No.

Output HTML5 Canvas.

Interactivity Some potential, but not all object properties will cause the object to update

in real-time restricting possibilities. Some internal object support.

Legal Open Source (MIT License).

Main Features

� JavaScript library for visualisations in general. Thus will require at least passing

familiarity with JavaScript.

� Extending functionality to include interactivity cumbersome due to a lack of

documentation on which specific properties can be altered dynamically. Thus

potential is limited.

� Internal tracking of individual objects, allowing for object-based interactivity,

despite using Canvas.

� Have to build graphics from scratch using low-level functions.

http://paperjs.org/

90 CHAPTER 4. GRAPHICAL TOOLS

Comments

Paper.js is a JavaScript library for visualisations in general. Because of this, even simple

plots like a bargraph requires a fair level of coding to build from scratch using low-level

functions.

No generalised plotting library was found, but it is quite possible to write a library of

low-level plotting aid functions that would make creation of new graphs almost as easy as

R’s default graphics system.

It can use a so-called PaperScript, this is merely JavaScript extended slightly. Thus

using Paper.js does require some familiarity with JavaScript.

Though Paper.js outputs to a HTML5 Canvas element it internally tracks objects, al-

lowing for object based interaction. However, this object system is not quite as robust as

something like SVG.

A bargraph in Paper

A partially working example of the Test Bargraph in Paper.js can be found at http:

//www.stat.auckland.ac.nz/~joh024/Research/Paperjs/test_bargraph.html, all the

code (including the JavaScript code) is embedded inside the HTML file. Of all the Low-level

Languages covered, Paper.js performed the worst.

� I found no way to control vertical justification of text. If it does exist (and I assume

some method exists) it is very difficult to find.

� Though the internally tracked objects have several properties, such as width, height,

left, topLeft, etc. most of these do not work dynamically. That is, one cannot

adjust an object’s size or position by changing these properties, and only a certain few

properties work (no documentation was found clearly stating which ones work). This

frustrating limitation has meant the numerous attempts to make the Test Bargraph

interactivity work has failed. Based on the properties I know work dynamically, the

only possible way I can think of to make the interactivity work requires scaling of the

bars by computing the relative size of the new bar height to the previous height. This

was considered to be too cumbersome to be bothered with, thus the example is only

partially working, lacking the interactive features.

For reference and comparison purposes, the Paper.js code (excluding data and blank spaces)

is 71 lines and 2277 characters. Due to the excessive features (low-level plotting aid functions

for generality, but lacking interactivity), this is not directly comparable to the High-level

languages, and is also not very comparable to other Low-level languages due to the incom-

plete nature of the example.

http://www.stat.auckland.ac.nz/~joh024/Research/Paperjs/test_bargraph.html
http://www.stat.auckland.ac.nz/~joh024/Research/Paperjs/test_bargraph.html

4.4. LOW-LEVEL LANGUAGES 91

4.4.3 Raphaël.js

http://raphaeljs.com/

Key Points

Learning Difficulty Very Hard (Hard if experienced in JavaScript, Moderate if also fa-

miliar with the SVG specification).

Has a library of standard plots Yes but limited, see http://g.raphaeljs.com/.

Output SVG, with support for VML for compatibility with older versions of Internet Ex-

plorer.

Interactivity Broad object-based interactivity.

Legal Open Source (MIT License).

Main Features

� JavaScript library for visualisations in general. Thus will require at least passing

familiarity with JavaScript.

� Extending functionality to include interactivity easy.

� Have to build graphics from scratch using low-level functions.

� As the output is SVG, specifying stylistic features, such as an object’s colour,

line width, etc., requires knowledge of the relevant SVG object specification.

� Does not give finer control over the specification of the SVG.

Comments

Raphaël is a JavaScript library for visualisations in general. Because of this, even simple

plots like a bargraph requires a fair level of coding to build from scratch using low-level

functions. As it is a JavaScript library, some familiarity with JavaScript is required.

Raphaël essentially treats SVG as another type of drawing canvas, handling many of the

underlying SVG specifications via wrapper functions like Paper.rect. Thus, an in-depth

understanding of the SVG specifications is not required, however, if changes to specific

attributes are desired (e.g. colour, stroke width, etc.), then one must still refer to the

relevant SVG specification. As Raphaël treats SVG as another type of canvas, this does limit

the degree of control over the exact SVG specification. For instance, SVG’s grouping feature

(g) cannot be used with Raphaël , and certain optional attributes may not be available.

No generalised plotting library was found, but there is a very basic plotting library called

gRaphaël. Usage is similar to a High-level language, but functionality is limited. It does

http://raphaeljs.com/
http://g.raphaeljs.com/

92 CHAPTER 4. GRAPHICAL TOOLS

however provide a basis that can be extended in more interesting directions. Additionally,

it is quite possible to write a library of low-level plotting aid functions that would make

creation of new graphs almost as easy as R’s default graphics system.

A bargraph in Raphaël

A working example of the Test Bargraph in Raphaël can be found at http://www.stat.

auckland.ac.nz/~joh024/Research/Raphaeljs/test_bargraph.html, all the code (in-

cluding the JavaScript code) is embedded inside the HTML file.

Due to the interactivity required for the Test Bargraph, the object-based interactivity

does not help us. In fact, it poses a barrier as the various bar objects will interfere with

capturing mouse movement. One workaround is to draw a transparent rectangle over the

entire graph region and working off this surface. The rest works similarly to a raster graphic

(see Processing).

For reference and comparison purposes, the Raphaël code (excluding data and blank

spaces) is 78 lines and 2382 characters. Due to the excessive features (low-level plotting aid

functions for generality, demonstrative interactivity), this is not directly comparable to the

High-level languages, but can be loosely compared to other Low-level languages.

4.4.4 D3.js (Data-Driven Documents)

http://d3js.org/

Key Points

Learning Difficulty Extremely Hard (Very Hard if experienced in JavaScript, Hard if also

familiar with the SVG specification).

Has a library of standard plots Examples available, but not as high-level functions.

Output SVG, but the nature of D3 allows for any document-based output (e.g. a simple

HTML document containing only text).

Interactivity Broad object-based interactivity, generally limited only by what the user

can code.

Legal Open Source (BSD 3-Clause License).

Main Features

� JavaScript library for “manipulating documents based on data” to create data-

based visualisations. It requires passing familiarity with JavaScript, HTML and

http://www.stat.auckland.ac.nz/~joh024/Research/Raphaeljs/test_bargraph.html
http://www.stat.auckland.ac.nz/~joh024/Research/Raphaeljs/test_bargraph.html
http://d3js.org/

4.4. LOW-LEVEL LANGUAGES 93

anything else desired in that document, which in the case of using it for graphics

will mean SVG and CSS.

� The requirement of having to understand several almost independent standards

(HTML, JavaScript, SVG and CSS), then bring them together by using the D3

API, results in a very high barrier to entry.

� Extending functionality to include interactivity easy, assuming user familiarity

with all the required components.

� Have to build graphics from scratch using low-level functions.

� As the output is SVG, specifying stylistic features, such as an object’s colour,

line width, etc., requires knowledge of the relevant SVG object specification.

� Gives a high level of control and flexibility over the specification of the document,

and in turn the SVG image(s).

Comments

D3.js is a JavaScript library intended to be Transformative rather than Representative.

That is, unlike the other Low-level Languages where the user uses the library’s API to draw

a rectangle here, or a circle there, D3.js is instead used to create a structured document,

and in the case of the SVG that document describes an image. So the user might define a

circle element with certain attributes, or a rect element, etc. This ‘document’ can then be

rendered into an image with a modern browser.

In practice what this means is the user must have some understanding of all the com-

ponents involved, which with visualisation would include HTML, JavaScript, D3.js, SVG

and CSS. Learning all these components, even to the basic level to begin to use D3.js, poses

a significant challenge, and that is the biggest disadvantage in attempting to use D3.js.

However, once these components are learnt D3.js gives incredible control over the output,

as the user is in effect writing the HTML and SVG from scratch, but with the help of the

D3.js API to make things easier.

Convenience features D3.js add include:

Selections A shorter and easy way to select objects (including elements in a structured

document like XML or SVG), based on the W3C Selectors API (the same API used

by CSS).

Attaching Data Allows data to be attached to a group of elements, for instance attaching

10 numbers to 10 rect elements to be used as heights for a bargraph.

Scales Easily create conversion functions to convert to and back from a particular coordi-

nate space, such as in a graph region. Also provides an automatic way to generate

94 CHAPTER 4. GRAPHICAL TOOLS

ticks appropriate for the scale (including consideration of numbers appropriate for

human-reading).

Transitions Automatically makes the necessary calculations and adjustments to display

an animated transition from one set of attributes to another. This can be used, for

instance, to smoothly transition (over a specified period of time) the height of a bar

from one value to another.

No generalised plotting library was found though there are examples available that draw

some standard statistical plots, which can help in writing new code. Additionally, it is quite

possible to write a library of low-level plotting aid functions that would make creation of

new graphs almost as easy as R’s default graphics system.

A bargraph in D3

A working example of the Test Bargraph in D3.js can be found at http://www.stat.

auckland.ac.nz/~joh024/Research/D3js/test_bargraph.html, all the code (including

the JavaScript code) is embedded inside the HTML file.

Due to the interactivity required for the Test Bargraph, the object-based interactivity

does not help us. In fact, it poses a barrier as the various bar objects will interfere with

capturing mouse movement. Due to the level of control D3.js grants us, it is possible to

utilise the pointer-events property of SVG elements to effectively ignore the bars from

registering on mouse events. The rest works similarly to a raster graphic (see Processing).

For reference and comparison purposes, the D3.js code (excluding data and blank spaces)

is 94 lines and 2925 characters for the main code plus the CSS with 11 elements and 492

characters. Due to the excessive features (low-level plotting aid functions for generality,

demonstrative interactivity), this is not directly comparable to the High-level languages,

but can be loosely compared to other Low-level languages.

4.4.5 Other Low-level Languages

The tools covered Section 4.4 are by no means comprehensive. They were chosen as they

were found to be popular and comparatively easy to use and implement (as they are simply

JavaScript libraries), compared to tools which might use Java, which often requires the

Java platform to be installed by both the developer (jdk - Java Developer Kit) and the

user (jre - Java Runtime Environment), making implementation and distribution of output

considerably more cumbersome. Here I briefly cover some other tools I came across but did

not cover in depth.

Prefuse http://prefuse.org/ Uses Java to produce Java-based graphics.

http://www.stat.auckland.ac.nz/~joh024/Research/D3js/test_bargraph.html
http://www.stat.auckland.ac.nz/~joh024/Research/D3js/test_bargraph.html
http://prefuse.org/

4.5. OTHER RELEVANT TOPICS 95

Flare http://flare.prefuse.org/ By the same developers as Prefuse. Uses ActionScript

to produce SWF graphics. This has been shown to have some performance benefits

compared to a tool like D3.js (Bostock et al. 2011) which may be worth the added

hassle of using ActionScript and SWF.

Piccolo2D http://www.piccolo2d.org/ Uses Java and C# to produce Java-based or

.NET-based graphics.

Protovis http://mbostock.github.com/protovis/ JavaScript Library for producing SVG

output. Can be considered obsolete, developers moved on to D3.js.

4.5 Other Relevant Topics

4.5.1 R

http://www.r-project.org/

R is a free software environment for statistical computing and graphics. (R Core Team,

2014)

Using R to Prepare and Export the Data

All the High- and Low-level language tools covered are JavaScript libraries. This means

a data format that’s very easy to use with these tools is the JSON (JavaScript Object

Notation). Though JavaScript functions can be found to read some other data formats (such

as CSV), I have found these to be comparatively cumbersome, and if any data cleaning or

other preparation is required, working with JavaScript is not recommended.

One much better alternative is to use R. The base installation gives capabilities to easily

read many simple data formats, including CSV (and variants thereof) and fixed width.

More valuably, many packages extend functionality, such as the XLConnect (Mirai Solutions

GmbH 2012) package which enables the reading of Excel files, even from Linux or Mac

machines, or the XML (Lang 2012b) package which enables extraction of HTML Tables,

potentially straight from websites (with the RCurl (Lang 2012a) package which allows R to

be used as a text-web-browser).

Once the data has been read in, R provides extensive capabilities to manipulate the data,

and if any statistical analysis is desired, this can also be conducted in R.

When the data is ready to be exported for use in a visualisation tool, a package such as

rjson (Couture-Beil 2012) makes it very easy to convert any of R’s accepted data formats

to JSON. This result can then be saved to a .json format and read in, or alternatively it

can be copied directly into your JavaScript as a vector or array.

http://flare.prefuse.org/
http://www.piccolo2d.org/
http://mbostock.github.com/protovis/
http://www.r-project.org/

96 CHAPTER 4. GRAPHICAL TOOLS

As a practical example of using R, the following code demonstrates how to download a

HTML Table directly from the IRD website (Inland Revenue, 2012), convert to JSON, then

write to a .js file for easy access by any JavaScript code.

Figure 4.10: A screenshot of the webpage containing the HTML Table from which we will
obtain our data. Source: Inland Revenue and licensed by Inland Revenue for re-use under
the Creative Commons Attribution 3.0 New Zealand Licence.

1 ## Load required libraries

2 library(RCurl)

3 library(XML)

4 library(rjson)

5

4.5. OTHER RELEVANT TOPICS 97

6 ## Load webpage and get the data table

7 URL = getURL("http://www.ird.govt.nz/aboutir/external -stats/

revenue -refunds/tax -revenue/printable/")

8 htmlpage = htmlParse(URL , asText = TRUE)

9 datatable = readHTMLTable(htmlpage , stringsAsFactors = FALSE)

[[1]]

> datatable[1:9,1:5]

V1 V2 V3 V4 V5

1 Tax type Jun-03 Jun-04 Jun-05 Jun-06

2 Source Deductions 15,933.1 16,908.2 18,323.9 19,936.1

3 Other Persons 3,361.4 3,166.9 3,227.0 3,986.6

4 Fringe Benefit Tax 374.6 410.3 440.8 449.8

5 Residents' Interest 1,111.0 1,187.8 1,500.8 1,878.5

6 Subtotal - Individuals 20,780.1 21,673.3 23,492.5 26,251.0

7

8 Company Tax 5,526.5 6,514.8 8,114.0 9,797.5

9 Residents' Dividends 57.4 49.0 58.9 73.5

1 ## Clean data table

2 colnames(datatable) = datatable [1,]

3 datatable = datatable[-c(1, 6:7, 12:13, 15:16 , 21:23) ,]

> datatable[1:9,1:5]

Tax type Jun-03 Jun-04 Jun-05 Jun-06

2 Source Deductions 15,933.1 16,908.2 18,323.9 19,936.1

3 Other Persons 3,361.4 3,166.9 3,227.0 3,986.6

4 Fringe Benefit Tax 374.6 410.3 440.8 449.8

5 Residents' Interest 1,111.0 1,187.8 1,500.8 1,878.5

8 Company Tax 5,526.5 6,514.8 8,114.0 9,797.5

9 Residents' Dividends 57.4 49.0 58.9 73.5

10 Foreign Source Dividends 153.6 138.6 188.4 160.1

11 Non-residents' Income 731.7 799.9 926.7 1,095.6

14 IRD GST 7,393.9 8,467.9 8,838.6 9,054.4

1 ## Convert to JSON and write to a .js that can be sourced

directly for use as a JavaScript array

2 writeLines(paste("var IRDTable =", toJSON(datatable)), "

IRDTable.js")

98 CHAPTER 4. GRAPHICAL TOOLS

A few notes:

� The row name for Source Deductions has been trimmed for space.

� In general, the numbers should be processed in R to remove any commas before

exporting. This has been skipped above for clarity. For completeness the code required

for this particular example is:

cbind(datatable[1], apply(datatable[,-1], 2, function(x)

as.numeric(gsub("-$", "0", gsub(",| ", "", x)))))

This handles commas in numbers, erroneous spaces and 0 being represented as "-"

(problems not shown in the screenshot).

Visualisations with R

R has extensive visualisation capabilities mostly focused on traditional offline static graphics,

however certain packages extend functionality in ways worth mentioning.

RGL http://rgl.neoscientists.org/about.shtml Has the potential to produces 3D

output using OpenGL, which utilises the GPU for a very high level of performance.

RGGobi http://www.ggobi.org/rggobi/ Access GGobi from R, a powerful tool enabling

interactive dynamic graphics, though only offline and not so easily shared. Learning

curve for the tool is moderate to high.

iPlots http://www.rosuda.org/iplots/ Interactive Java-based graphics, though only of-

fline and not so easily shared.

playwith https://code.google.com/p/playwith/ Adds a GUI for editing and interact-

ing with R plots.

Of greater relevance however is the gridSVG (Murrell and Potter 2015) package. This enables

graphics drawn in grid (R Core Team 2014) (which include plots drawn by lattice (Sarkar

2008a) and ggplot2 (Wickham 2009)) to be exported to SVG, while still retaining much of

the structured information. This output can then be manipulated from within R through

the XML package, or even extended using a tool such as D3.js, opening the possibility of

extending existing R graphics to become interactive web-based (SVG) output. Of course,

doing this would require familiarity with all the tools involved, including R, grid, gridSVG,

the grid-based plotting library (such as lattice), SVG and D3.js.

http://rgl.neoscientists.org/about.shtml
http://www.ggobi.org/rggobi/
http://www.rosuda.org/iplots/
https://code.google.com/p/playwith/

4.5. OTHER RELEVANT TOPICS 99

4.5.2 Raster graphics

Figure 4.11: An example raster graphic of a circle. The original image is a 150 by 150 pixel
image saved as a png.

The most familiar type of graphic, files like jpeg, png, gif and bmp, are Raster graphics.

The image is defined by specifying each pixel. An easy way to tell is to zoom in on the

image: the individual pixels will be revealed and any curves will become jagged.

Raster graphics has no concept of objects. There is simply the picture, as defined by

what each pixel is. Thus in terms of computing power required to render the image, what is

most important is how many pixels there are (the resolution or dimensions of the image).

A simple demonstration of this can be found at http://www.stat.auckland.ac.nz/

~joh024/Research/Processingjs/stress_testing.html. Every second 1000 circles are

drawn on a canvas with dimensions 1280 by 720, however the computing resources required

to render the image does not increase. Zooming in or out of the image also poses little

computational burden, though zooming in too far will reveal the individual pixels.

4.5.3 Vector graphics

Figure 4.12: An example vector graphic of a circle. The circle is drawn in LaTeX using the
tikzpicture package.

Perhaps more familiar than people may realise, text on a pdf file can be considered to be

Vector graphics. The ‘image’ (in this case the letters of the text) is defined by code, and

is drawn by the rendering software (in this case your pdf viewer). As you zoom in or out,

the rendering software redraws, meaning the image always looks good. However this also

means the drawn image can look subtly different depending on the rendering software used.

As Vector graphics are defined by code, it is possible to identify each individual object.

However, this also means that each individual object must be rendered separately, which

can become a computational burden when the number of individual objects becomes very

large (e.g. a million).

http://www.stat.auckland.ac.nz/~joh024/Research/Processingjs/stress_testing.html
http://www.stat.auckland.ac.nz/~joh024/Research/Processingjs/stress_testing.html

100 CHAPTER 4. GRAPHICAL TOOLS

A simple demonstration of this can be found at http://www.stat.auckland.ac.nz/

~joh024/Research/D3js/stress_testing.html. Every second 1000 circles are drawn on

a SVG image with dimensions 1280 by 720, resulting in an increase in CPU and RAM

usage. Running the graphic for an extended period of time will cause severe performance

loss including affecting the responsiveness of the renderer (web browser) itself. Zooming in

or out of the image also results in a high computational burden as each individual circle

must be redrawn, though this means the circles always look good at any zoom level.

4.5.4 HTML5 Canvas Element

Without going into too much technical detail, the HTML5 Canvas Element can be un-

derstood to be a drawing surface for Raster graphics, where the drawing can be specified

by scripts. As the Canvas is a Raster graphic, objects cannot be separately identified or

modified once drawn; dynamic graphics are achieved by redrawing the Canvas from scratch.

However, web browsers are amazingly good at drawing and redrawing the Canvas quickly

and high framerates are easily achieved.

This also means object-based interactivity is no easier than any other interactivity, and

is accomplished via coordinate matching - that is, the coordinate of the mouse is checked to

see if it ‘hits’ any ‘object’. This hit detection is trivial for rectangular objects but becomes

more difficult for increasingly complex shapes.

Also because of the Raster property the image will scale poorly (much like zooming too

closely in a jpeg image). This can however be overcome by forcing a redraw of the image

dynamically to match the zoom level, or to dynamically resize the Canvas resolution and

redraw the image to match this resolution (allowing for a greater level of zoom before defects

can be found).

See Processing (Subsection 4.4.1) or Paper.js (Subsection 4.4.2) for tools that use Canvas.

4.5.5 SVG

http://www.w3.org/Graphics/SVG/

The Scalable Vector Graphics (SVG) is an image that is specified via a XML file (but

with extension .svg). As the name implies, it is a Vector graphic, that can be rendered by

modern web browsers (like Firefox, Internet Explorer, etc.).

The standards are extensive. The pdf version of SVG 1.1 Second Edition3 is 826 A4

pages. These standards can be considered to be a ‘low-level graphics language’ that can be

used to draw (via a renderer like a web browser) anything from a rectangle to professionally

typeset text. The following code specifies a SVG image of 150 by 150, drawing a rectangle

3http://www.w3.org/TR/SVG/

http://www.stat.auckland.ac.nz/~joh024/Research/D3js/stress_testing.html
http://www.stat.auckland.ac.nz/~joh024/Research/D3js/stress_testing.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVG/

4.6. CONCLUSION 101

with upper-left corner at x = 25 and y = 25, with width and height of 100. The units are

pixels at 100% zoom, but of course being a Vector graphic it can be scaled at will.

<svg width = "150" height = "150">

<rect x = "25" y = "25" width = "100" height = "100"></rect>

</svg>

Being a Vector graphic it also understands objects. For instance that rectangle can

be assigned a specific id, and further manipulation (via something like JavaScript) can

be conducted on an object basis. Thus object-based interactivity (like clicking a specific

object) is very easy. However, any interactivity that encompasses multiple objects may still

require coordinate matching to work.

See Google Chart Tools (Subsection 4.3.1), Highcharts (Subsection 4.3.2), Raphaël (Sub-

section 4.4.3) or D3.js (Subsection 4.4.4) for tools that use SVG.

4.6 Conclusion

One great way to make sense of data is by way of visualisations; by using web-based output

these visualisations become very easy to share and capable of some interesting and advanced

interactivity. To aid in the creation of such web-based interactive visualisations there are a

variety of Graphical Tools already available.

GUI tools and High-level languages are easy to use and enable the use of predefined

visualisations. Though these tools offer some level of customisation, these are minor and

never fundamentally add or remove features from the visual. To gain the freedom to extend

existing visualisations to include new features (such as new interactive or dynamic features)

or to create a wholly new type of visualisation, requires the use of serious graphical tools,

broad graphical tools not limited to just statistical plots but capable of any visualisation

- provided the user can code it in. Indeed, that is the major barrier to these Low-level

languages: they require the learning and use of programming languages (typically JavaScript

plus the API of the graphical tool plus any other applicable web standards, such as HTML,

SVG and CSS), a barrier that can be considered insurmountable to a significant portion of

the general public.

Thus there are opportunities to fill the gap between the very easy and the very difficult, a

tool that can enable users who may have creative and innovative ideas for new visualisation

methods, but do not have the programming expertise to actually make it.

103

Chapter 5

WeBIPP

5.1 Introduction . 105

5.1.1 Motivation . 105

5.1.2 Background . 105

5.1.3 Conceptual framework . 107

5.2 What is WeBIPP . 108

5.2.1 The Cookie Analogy . 109

5.2.2 Objectives . 109

5.2.3 Similar Tools . 111

5.3 How to Use . 113

5.4 Creating a Scatterplot . 115

5.4.1 The Model . 115

5.4.2 Read in the Data . 116

5.4.3 Set up the Axes . 117

5.4.4 Draw the Dots . 119

5.4.5 Adding Polish . 121

5.4.6 The Final Save Data . 124

5.5 Creating a Population Pyramid . 125

5.5.1 The Model . 125

5.5.2 Set up the Axes . 126

5.5.3 Resize the Frame . 129

5.5.4 Reposition the Frame . 131

5.5.5 Draw the Dotted Lines . 132

5.5.6 Draw the Bars . 135

5.5.7 Draw the Gender Label . 140

5.5.8 Re-using the Left-Side . 143

5.5.9 Functionise the Left-Side . 145

5.5.10 Use the new Function . 148

5.5.11 Draw the y-axis Labels . 152

104 CHAPTER 5. WEBIPP

5.5.12 Draw the Title . 154

5.5.13 Draw the x-axis Label . 156

5.5.14 Resizing the Finished Pyramid . 157

5.5.15 The Final Save Data . 159

5.6 How WeBIPP Works . 161

5.6.1 Frames . 162

5.6.2 IDvar . 164

5.6.3 Structure Diagrams . 164

5.7 Creating an Object Addon . 168

5.7.1 Define a Sub-Namespace . 168

5.7.2 Define the Icon . 169

5.7.3 Define the Attributes . 171

5.7.4 Define how to Set Attribute Values 173

5.7.5 Define how to Get Attribute Values 174

5.7.6 Define Interactions with the Graph Region 174

5.7.7 Any other code, as necessary . 178

5.7.8 Summary . 178

5.7.9 Stylesheets . 178

5.7.10 Creating Complex Objects . 179

5.8 Creating a Value Interface . 183

5.8.1 Assign the Value Interface . 183

5.8.2 The Logical Interface . 184

5.8.3 The Numeric Interface . 184

5.9 Core’s Set Attribute . 188

5.9.1 Handle useScale type . 188

5.9.2 Process value and discern valtype . 189

5.9.3 Handle auto useScale . 190

5.9.4 Apply Scale if needed . 190

5.9.5 Adjust low-level code . 191

5.10 Discussion and Limitations . 194

5.11 Conclusion and Future Work . 197

5.1. INTRODUCTION 105

5.1 Introduction

5.1.1 Motivation

To restate the conclusions of the prior chapter’s Literature Review, tools that are currently

available for creating web-based graphics can be classified into two broad categories:

GUI - Which have a comparatively easy-to-use user interface but has limited customisation

options.

Code - Which can have tremendous breadth and depth in terms of visualisations that can

be created, but require coding knowledge and is not accessible to everyone.

The question arises then, if it is possible to bridge this divide, if it is possible to create a

tool that has elements of being accessible and easy-to-use, while having the same level of

power provided by Code tools. To create a Web-Based Interactive Plot Prototyping tool,

also known as WeBIPP, that is entirely web-based, requiring no installation of software

(beyond a modern web browser), while being capable of easily creating a broad variety of

graphics from scratch, the way you can with a Low-level tool.

Before introducing such a tool, other background which has not been covered explicitly

in this Thesis, such as past and current developments in statistical graphics, will be touched

on briefly to better establish context for the work.

5.1.2 Background

The history of statistical graphics can go back a long time but as a starting point Elements

of Graphing Data (Cleveland, 1985) is a good resource. In a chapter titled Principles of

Graph Construction, Cleveland makes a number of recommendations, such as:

� Make the data stand out. Avoid superfluity.

� Use visually prominent graphical elements to show the data.

� Use a pair of scale lines for each variable. Make the data region the interior of the

rectangle formed by the scale lines. Put tick marks outside the data region.

� Do not clutter the data region.

In sum, he gives guidelines on how the final graphic should look for it to be effective in

communicating data. R’s (R Core Team, 2014) base graphics is based on many of these

principles, and while it has since been extended in many ways via packages, the base graphics

has proven itself to be a good graphics system for producing a variety of statistical graphics.

106 CHAPTER 5. WEBIPP

The Cleveland approach to graphing data can be described as top-down, where the start-

ing point is the ‘top’ (what the final graphic should look like), and one works their way down

to the details that are required to produce this final graphic. The specific implementation

details are not as important as long as the resulting picture looks the same as (or close to)

what was originally desired. This contrasts with another popular approach to statistical

graphics, the Grammar of Graphics (Wilkinson, 1999) approach, implemented in R via the

packages ggplot2 (Wickham, 2009) and ggvis (Chang and Wickham, 2015).

Wilkinson describes the Grammar of Graphics approach as being a three stage process:

specification, assembly and display. This then would be a bottom-up approach, where one

starts with the details of what to graph (the specification), and works their way to a graphic

that displays these details (assembly and display). With a bottom-up approach, the ap-

pearance of the final graphic is of less importance and will vary by implementation. What

is important is that the final graphic captures the particulars of the specification, and thus

fulfils its purpose of graphing data.

In addition to the two approaches for crafting new graphics, there is also a history

of tools for creating interactive statistical graphics. Interactive however can mean very

different things depending on the context. In their paper for SVGAnnotation, Nolan and

Lang (2012) note:

The interactivity and animation described here are very different from what

is available in more commonly used statistical graphics systems such as GGobi,

iPlots, or Mondrian. Each of these provide an interactive environment for the

purpose of exploratory visualization and are intended primarily for use in the

data analysis phase. While one could in theory build similar systems in SVG, this

would be quite unnatural. Instead, SVG is mostly used for creating presentation

graphics that typically come at the end of the data analysis stage. Rather than

providing general interactive features for data exploration, we use SVG to create

application-specific interactivity, including graphical interfaces for a display.

WeBIPP is also a tool for creating presentation graphics, and thus deals with a different

kind of interactivity to most existing interactive statistical graphics. Nonetheless, to provide

broader context, some of the prior work that has been done in interactive statistical graphics

will be covered.

A tool like tinkerplots (Konold, 2007) initially appears to tackle the same question as

WeBIPP (though tinkerplots was designed foremost to aid in education), providing a GUI

interface with basic operators to transform data into a graphic. However, these operators,

while seeming general, are of a narrow scope, and the resulting graphics, though impressive

in variety, consist of a limited, predefined set. This then makes it more similar to the GUI

tools of the previous literature review, being polished, but limited in scope, compared to

5.1. INTRODUCTION 107

the intent of WeBIPP, which is to create a tool capable of low-level control to enable the

construction of wholly new graphics from scratch, as you can with a low-level tool.

Though rggobi (Swayne et al., 2004) has a GUI, it is better thought of as a High-level

tool, and along with cranvas (Xie et al., 2013) and iplots (Urbanek and Theus, 2003),

provide high-level functions to create predefined, interactive plots for data analysis. They

additionally rely on other software being installed, all requiring R, iplots requiring the R

package rJava (which additionally requires a separate install of the Java Development Kit),

and cranvas requiring qt installed. As noted above however, WeBIPP is not a tool for data

analysis, aims to provide lower-level building functions (not predefined plots) and is entirely

web-based with minimal dependencies (in theory, just a modern web browser, which most

computers should already have). Plotly (2014) is another High-level tool, though differing

little from the High-level tools covered in the literature review of the previous chapter. It

was created after the Literature Review was conducted, and aside from providing many

language-specific APIs to make it more accessible, shares the same general characteristics,

being designed for creating a limited set of predefined plots.

Tools have also been created for exporting R graphics into SVG, after which it becomes

possible to use a web browser and add interactivity in this way. Already mentioned is

SVGAnnotation, which works by saving an R graphic using the svg function and post-

processing the file to identify the different components. Interactivity, animation, etc. can

then be added using JavaScript with the help of identifiers. Though it contains several

functions to make this easier, these are limited, meaning JavaScript knowledge is required

for more interesting interactivity. Likewise, animint (Hocking et al., 2015) provides a way to

export ggplot2 graphics to SVG, but has limited options in adding interactivity to the result

without writing JavaScript. Finally, gridSVG (Murrell and Potter, 2015) provide a way to

export grid graphics to SVG, but again provides little to help with adding interactivity

to the SVG. Thus these tools are export tools of limited scope, taking R graphics and

exporting them to SVG, which differs greatly from what WeBIPP is intended to be, an

entirely web-based tool for creating graphics from scratch.

5.1.3 Conceptual framework

Given this background, in addition to the background from the prior chapter’s Literature

Review, we can establish the conceptual framework for WeBIPP.

Anyone who has tried to create unconventional graphics in both systems will know that

it is by far easier to do so in a top-down system, as to do so in a bottom-up requires you

to convert your idea, almost certainly a picture of the final graphic, into a specification

understood by the bottom-up system, and often details are lost in translation, meaning the

final output may not even be precisely what you desired. On the other hand having a picture

108 CHAPTER 5. WEBIPP

and attempting to reproduce it is exactly what a top-down system is designed to do. For

this reason, WeBIPP will use the top-down approach, as this is the more natural approach

for creating new kinds of graphics, which is what WeBIPP is intended to facilitate.

To enable access to the full extent of the output format’s capabilities, WeBIPP will use

D3 to create an SVG image. Unlike other Low-level tools that provide an intermediary

language that blocks direct access to the underlying format, D3 enables the complete access

desired. As R’s base graphics has proven itself to be a good graphics system for producing

a variety of statistical graphics, and captures many of the important components of Cleve-

land’s advice, using it as the model when developing WeBIPP should prove to be a good

way to create a useful proof of concept. Thus WeBIPP will, at its core, possess elements of

R base graphics, D3 and SVG.

As WeBIPP is designed for creating presentation graphics, frameworks for interactive

graphics for data analysis, such as the MVC architecture or the reactive framework (Xie

et al., 2014) are not appropriate for WeBIPP. Such models are of value when the output

graphic is well-defined, and the challenge lies with managing the data pipeline that connects

the data to the plot as it is manipulated. For WeBIPP however, the final graphic is far

from well-defined, as it could potentially be anything. The tricky detail instead lies with

bridging the divide between GUI and Code. WeBIPP addresses this by layering GUI, High-

level and Low-level aspects. The GUI layer will provide the basic functionality to enable

users to do things quickly and easily. Actions in the GUI will be translated and recorded

as a set of High-level function calls, which can be manually adjusted for a greater degree

of control that the GUI cannot provide. The High-level calls also serve as a record of the

steps taken to create a graphic, and can be generalised and shared. The Low-level layer

translates the High-level function calls into low-level D3 and JavaScript code that achieves

the desired result, and can be adjusted for the complete level of control equalling the power

provided by D3 on its own, ensuring that a using WeBIPP will never prevent the user from

using the full extent and power of a lower-level tool. As the output is a presentation graphic,

management of a data pipeline is not a major concern, though the layered framework means

that an informal data pipeline is created in the form of discrete High-level function calls

evaluated in a linear sequence. This could be exploited to create a more formal data pipeline

for WeBIPP, if such a need arises in future development.

5.2 What is WeBIPP

What WeBIPP attempts to achieve can be hard to grasp, while at a conference a fellow

PhD candidate said as such, then demanded an analogy involving cookies.

Cookies? Wait... Cookies!

5.2. WHAT IS WEBIPP 109

5.2.1 The Cookie Analogy

Currently, there are two fundamental ways you can acquire cookies:

1. Go to a supermarket, there’s an aisle of cookies of all sorts, brands and sizes. You pick

one and buy it. You have now acquired a cookie easily but your choice was limited to

what was available. If the cookie you wanted was not available, too bad. If the cookie

you wanted is a little different, you might be able to do something, but your options

are limited.

2. Bake the cookie yourself. Gather all the ingredients you want, prepare them the way

you want, then bake it the way you want it. This obviously requires a certain level of

cooking and baking skills, in addition to a lot of effort and time, but the cookie you

get is the one you wanted.

Now, imagine you have an aisle in front of you, but instead of pre-packaged cookies, you

have an assortment of features of a cookie. It’s size, shape, dough, whether it has chocolate

chips, etc. You then pick and choose what you want, and the cookie is assembled before your

very eyes. But there’s more! At the same time, the entire baking process is also available in

front of you. The cookie is not magically appearing, what’s really happening is that as you

choose the features you want, all the necessary ingredients are created, then are prepared

in the right way, and at the end of it (magically instantly, without actually consuming the

ingredients), the cookie with the features you chose is made.

This baking process is not just there for show, you can go in and change it as you wish.

Add some milk here, take away some sugar there, add some chocolate here. As you change

it, the cookie is magically remade, incorporating any changes you have made. Now, if you

have no cooking skills, you can ignore the cooking process, and it’s similar to going to the

supermarket, except you need to choose a few more things, and you get a slightly more

customised cookie. But, if you have any cooking skill at all, you can make full use of it to

fine-tune and add polish to the baking process. You are in no way limited by the choices

initially presented, indeed you can think of it as an easy way to magically set up all the

time-consuming and tedious tasks, then use your cooking skills to its full potential. This

may be limited to simply adjusting the level of sugar to suit your needs, or it may be to

add a masterful touch that makes the cookie truly special.

Unfortunately, such a cookie preparing process is impossible in reality. But an analogous

tool may be possible for interactive graphics.

5.2.2 Objectives

WeBIPP aims to satisfy the following objectives:

110 CHAPTER 5. WEBIPP

1. Possess an interactive, graphical user interface that can produce visualisations quickly.

2. Does not require coding knowledge to use.

3. Is easy to utilise data in creating and modifying the visualisations.

4. Is easy to deploy, by being a purely web-based tool that requires nothing more than

a modern browser.

5. Is extensible and easy for developers to create new addons that extend capability.

6. Keeps a record of actions taken in creating the visualisations such that steps (not just

results) are fully reproducible, and thus reusable.

7. Can reuse the record of actions to reduce repetitive actions, in essence functionising

user interactions.

8. Is easy to further manipulate the output with other tools, such that using WeBIPP

does not limit the user.

WeBIPP can be thought of as a set of bridges that connect the GUI and the Code. To better

understand this analogy consider machine code, commonly spoken about as “the 1’s and 0’s

computers use to do things”. Machine code can be taken to be the lowest-level programming

language, but is very difficult to work with and practically, higher-level languages are used

instead, such as Fortran or C.

JavaScript, HTML, CSS and SVG are all examples of quite high-level “programming

languages”, or fairly human-friendly instructions that can be used to tell the computer what

to do. The JavaScript library D3 is even higher-level and can be used to bring these four

languages together to produce web-based interactive visualisations. To put it another way,

D3 provides an easier interface to bridge these languages together.

However there is some loss with each step towards easiness. There is generally a trade-

off between control and convenience. For instance a lower-level language like Fortran gives

control over memory allocation, while JavaScript handles it automatically making it more

convenient. Likewise D3 handles many things automatically, hence making it more conve-

nient to do common tasks, but you lose some control. Luckily as a JavaScript library, the

programmer can always fall back on the lower-level languages (JavaScript, HTML, CSS and

SVG) to retain that control where required, while using D3 for other tasks for improved

coding efficiency.

WeBIPP makes use of D3 and also provides further functions at about the same level, to

make it easier to produce web-based visualisations. It then further provides an even higher-

level set of possible instructions, which in essence are convenient shorthands for writing

5.2. WHAT IS WEBIPP 111

D3-level code. WeBIPP finally provides a GUI that makes it possible to write these higher-

level instructions, via user interaction with the interface. Through this layering, WeBIPP

makes it possible to provide multiple levels of convenience to cater to different users who

require a different control-convenience trade-off, from those who wish to only use the GUI

and not touch any code, to those who would sometimes prefer to write directly in JavaScript

or similar level code.

Additionally, as the WeBIPP interface writes high-level WeBIPP code, these instructions

act as a record of actions taken when creating the visualisation, a record that is reproducible

and thus reusable.

5.2.3 Similar Tools

While there exist tools that possess an easy-to-use GUI front-end to produce a limited set

of graphics (e.g. Tableau1), and tools that provide more flexibility and power but require

coding (e.g. D3), the combination of both ease and flexibility is rare.

In early 2013 Bret Victor proposed Drawing Dynamic Visualizations2,3, and introduced

a tool that enabled the creation of graphics from scratch via a GUI and without the use

of code. Later in early 2014, the alpha version of a tool called Lyra was released4, which

shared many similarities to the idea proposed by Bret Victor.

Conceptually these tools are similar to the idea behind WeBIPP, though there are some

fundamental differences in motives resulting in significant differences in practice. Unlike

the above tools where a key motivator appears to be to avoid coding, WeBIPP embraces

coding. Rather than the GUI being an interactive way to create graphics from scratch, the

WeBIPP GUI is an interactive way to write code; this code is written in the background

and can be ignored, but the fact that it is code gives WeBIPP many advantages over not

having code. Code can be extended, tweaked and reused. Consider:

� The user wishes to do something the interface does not allow for. With the other

tools, the user is blocked from doing this (a difficult workaround may be possible by

exporting the graphic into a different tool). With WeBIPP the user can simply adjust

the code.

� The user finds the interface more cumbersome to do something they could do easier

and faster by writing code. With the other tools, in order to enjoy the benefits of using

any part of the tool, the user must use the tool for everything. With WeBIPP the

1http://www.tableausoftware.com/products/public
2http://vimeo.com/66085662
3http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum/
4http://idl.cs.washington.edu/projects/lyra/

112 CHAPTER 5. WEBIPP

user is free to switch between using the interface and writing code manually, choosing

whichever is faster and more convenient.

� The user has created something and wishes to do something very similar. With the

other tools, the user usually must start again from scratch. With WeBIPP the user

can take the code generated previously and tweak only the parts necessary to make

the change. More, this code could then be generalised to create a template that can

be shared with other users.

� A different user has created a nice graphic and another user wishes to know how. With

the other tools, they only have the final graphic and must guess (or ask) how it was

created. With WeBIPP as each action is writing code in the background, the entire

process can be tracked closely. If the original creator exclusively used the interface,

then the code is a complete record of the steps taken. Otherwise the code still gives

a very good idea of the steps required to create the graphic.

In these ways WeBIPP is founded upon unique principles that make it a different beast from

other tools that currently exist. However, these principles are not without their drawbacks

(see Section 5.10).

5.3. HOW TO USE 113

5.3 How to Use

WeBIPP includes an integrated tutorial that covers the basics of its use. There are also

tutorials available from the official website5 that covers the steps to reproduce some example

graphics. Like the tutorials on the website, this section will cover the steps to reproduce

some example graphics. But unlike the tutorials on the website, the focus will be on ex-

ploring WeBIPP’s interface and demonstrating some of the current interface’s features. In

some cases, demonstration will take precedence over clear instructions. While WeBIPP is

intended to work in all modern browsers, it is developed onMozilla Firefox 6, and is thus

only guaranteed to be fully compatible with Firefox.

Figure 5.1 covers key elements of the Graphical User Interface, which are referenced in

the tutorials that follow. It is also worth noting that WeBIPP draws to an SVG image. The

base coordinate system for SVG images uses pixels and the origin (0, 0) of the coordinate

space is the upper-left corner of the image. This is consistent with most other graphical

systems, but may be confusing to those familiar with statistical graphics systems which

commonly have the origin in the lower-left corner, with positive y values associated with

‘up’, rather than ‘down’. WeBIPP implements arbitrary coordinate spaces via the use

of Frames (see Subsection 5.6.1), and the default coordinate system for Frames follow the

statistical graphics convention of the origin being on the lower-left corner. Objects added as

children to Frames can obey both the SVG coordinate system, and the Frame’s coordinate

system. Which it obeys is determined by the useScale attribute, with a value of true

indicating it will obey the Frame’s arbitrary coordinate space, as will be demonstrated in

the tutorials that follow.

The tutorials are presented primarily as a sequence of Figures with accompanying cap-

tions, rather than the usual format of Figures being accompaniments to the text. Longer

captions are formatted as regular text for ease of reading, but still function as captions.

5https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/
6https://mozilla.org/firefox

https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/

114 CHAPTER 5. WEBIPP

Menu Regions

Object Menu Graph Region
A Free Form

Window

Figure 5.1: The layout of WeBIPP’s Graphical User Interface. Free Form Windows, as their
name implies, are not static elements of the interface, and can be moved about and closed.
The Free Form Window shown here is the WeBIPP Code interface, an embedded and fully
functional code editor.

5.4. CREATING A SCATTERPLOT 115

5.4 Creating a Scatterplot

5.4.1 The Model

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0

20

40

60

80

100

120

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

Figure 5.2: This scatterplot was drawn using R (R Core Team, 2014). The data is one of
the datasets included with R. Using WeBIPP, we wish to recreate a graphic similar to this.
The R command used to produce this image is:

1 plot(cars , xlab = "Speed (mph)",

2 ylab = "Stopping distance (ft)", las = 1)

116 CHAPTER 5. WEBIPP

5.4.2 Read in the Data

Figure 5.3: Read in the data to plot.

Figure 5.3: Load the data to plot by going to the main menu (click on the M button on
the top-left) and clicking on Read JSON Data. Use the file navigation interface provided
by your web browser to select the data file7. Once the data is loaded, the available data
variables can be checked by opening the data viewer (click on the D button on the top-left).

WeBIPP currently only supports data in the JSON format as this is the easiest data
format to work with in JavaScript. However requiring the user to convert their data to
JSON is not ideal, hence support for other common data formats (such as csv) is one of the
priorities for coming updates.

7The data for this example can be downloaded here:
https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/Examples/datCars.json

https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/Examples/datCars.json

5.4. CREATING A SCATTERPLOT 117

5.4.3 Set up the Axes

Figure 5.4: Select the Cartesian Frame from the menu and click anywhere on the Graph
Region to place a Cartesian Frame object.

Figure 5.5: Assign speed from our data to the x-axis.

Figure 5.5: Select the Cartesian Frame from the Object Menu on the left. This will bring
up the Attribute Interface on the top where the attribute x will be selected and displaying
the current value of the attribute. The Data Viewer interface can be used to assign data
directly to an attribute by clicking on one of the data variables. The Figure shows the
data variable speed highlighted, but not yet clicked. See Figure 5.6 for how the interface is
changed after the click.

118 CHAPTER 5. WEBIPP

Figure 5.6: Click the attribute name (x currently) to open a list of attributes for the
Cartesian Frame.

Figure 5.7: Select the attribute y and repeat the process from before to assign dist to the
y-axis. We are done with the Cartesian Frame for now and we can unselect the object by
clicking it again in the Object Menu.

5.4. CREATING A SCATTERPLOT 119

5.4.4 Draw the Dots

Figure 5.8: By a similar process as before, a Circle may be placed inside the Cartesian
Frame by selecting the Circle from the menu, then clicking anywhere inside the Frame.

Figure 5.9: The Quick Menu is an alternative to selecting from the Object Menu and using
the Attribute Interface. It is accessed by right-clicking directly on the Object in the Graph
Region.

Figure 5.9: An alternative to the steps taken for Figure 5.5 is to use the Quick Menu. While
the Quick Menu is enabled8, right-clicking directly on any Object in the Graph Region will
open a Quick Menu for that object. The grey part of the central diamond can be used to
drag the Quick Menu into a more convenient position. The options on the sides may be
selected to reveal further options (see Figure 5.10 and Figure 5.11). The red triangle at the
top of the diamond will reverse the selection and ultimately close the Quick Menu if there
is no selection to reverse.

8The Q button on the top-left can be clicked to enable or disable the Quick Menu. When enabled, it
is highlighted in green. It may be disabled to make use of the browser’s context menu, e.g. to inspect the
SVG.

120 CHAPTER 5. WEBIPP

Figure 5.10: Assign speed from our data to cx of the Circle. The Figure shows the data
variable speed highlighted, but not yet clicked. Once clicked, as the data contains multiple
values, the Circle Object will replicate itself to become multiple circles, with each data value
being assigned to a different circle. See Figure 5.11 for how the interface is changed after
the click.

Figure 5.11: Assign dist from our data to cy of the Circle. The Figure shows the data
variable dist highlighted, but not yet clicked. See Figure 5.12 for how the interface is
changed after the click.

5.4. CREATING A SCATTERPLOT 121

5.4.5 Adding Polish

Figure 5.12: A basic scatterplot is complete, the remaining steps add polish to make it look
better. The first two steps of polish involve giving the axes more informative names by
changing x-name and y-name of the Cartesian Frame.

Figure 5.13: There are some overlapping points, so it would be better if the circles were not
filled to make it easier to identify the individual points. This is done by changing the fill

attribute of the Circle to "none" (quotation marks are necessary).

122 CHAPTER 5. WEBIPP

Aside: Assigning Colour

Figure 5.14: WeBIPP’s rgb interface.

Figure 5.14: One may notice that WeBIPP’s rgb interface (used, among other attributes,
for fill) provides an arrangement of colours to choose from. While we did not want any
colour in Figure 5.13, we demonstrate what clicking one of these would look like. WeBIPP
implements the hcl function for R (Ihaka, 2003) in JavaScript, enabling colour assignment
in the CIELUV colour space.

Going across from left-to-right on the interface will alter the hue in even steps, while
chroma and luminance remain fixed. Going down from top-to-bottom will alter the chroma
and luminance in even steps, while hue remains fixed. In addition to providing a nice
selection of colours to choose from, this layout is useful for assigning harmonious, perceptu-
ally uniform colours and ensuring no colour-induced bias. Additionally, the values for hue,
chroma and luminance can be assigned manually by adjusting the text region at the top
of the interface. In a future update, it will become possible to use data variables to assign
harmonious colour values based on the data.

5.4. CREATING A SCATTERPLOT 123

Figure 5.15: Making the circles smaller will reduce overlap and help distinguish each indi-
vidual point. This can be achieved by assigning a smaller value (in this case 5) to the r

attribute of the Circle. Unfortunately this won’t help with the two overlapping points at
(13, 34), as they are exactly on top of each other.

Figure 5.16: Save the final graphic.

124 CHAPTER 5. WEBIPP

5.4.6 The Final Save Data

Figure 5.16: We can save the final graphic by selecting Save from the main menu. This will
create a new text file containing the save information. The exact handling will depend on
the user’s current browser options, but most likely will result in a new window or tab being
opened containing the save data. The user may then save this data to their hard-drive, e.g.
by using the browser’s save interface. The save data for the final graphic is copied below
(with some adjustments to save space and improve clarity):

1 /*WBIP SAVE HEADER{

2 "version": "0.10.4",

3 "addonList": {

4 // List of Addons removed for space

5 },

6 "dim": [

7 920,

8 720

9],

10 "ELIndex": 3

11 }END*/

12 wbip.data["datCars"] = JSON.parse(/*Data removed for space*/)

;

13 wbip["frcart"].click("gEL1", d3.select("#gGraph"), [43 ,42]);

14 wbip["frcart"]. setattr("gEL1", "x", "wbip.data[\"datCars\"][\

"speed\"]");

15 wbip["frcart"]. setattr("gEL1", "y", "wbip.data[\"datCars\"][\

"dist\"]");

16 wbip["circle"].click("gEL2", d3.select("#gEL1"), [91 ,206]);

17 wbip["circle"]. setattr("gEL2", "cx", "wbip.data[\"datCars\"

][\"speed\"]");

18 wbip["circle"]. setattr("gEL2", "cy", "wbip.data[\"datCars\"

][\"dist\"]");

19 wbip["frcart"]. setattr("gEL1", "x-name", "Speed (mph)");

20 wbip["frcart"]. setattr("gEL1", "y-name", "Stopping distance (

ft)");

21 wbip["circle"]. setattr("gEL2", "fill", "none");

22 wbip["circle"]. setattr("gEL2", "r", "5");

The text that is the save data is a complete record of all the steps taken in creating the
graphic, and this record can be used to reproduce the exact same graphic from scratch (e.g.
by loading this save data). The save data additionally contains some extra information as
a header. The save data is not only a record of all the steps taken, it is also human-legible
code, and like any other piece of code, it can be altered manually if desired. This has many
advantages as discussed in Subsection 5.2.3.

5.5. CREATING A POPULATION PYRAMID 125

The scatterplot is one of the easiest graphs to create in WeBIPP, and the graph produced
in Section 5.4 can be recreated in minutes by a user familiar with WeBIPP. Next we will
cover a more complex graphic that will require a bit more work, a Population Pyramid.

5.5 Creating a Population Pyramid

5.5.1 The Model

150 100 50 0

Male

0 50 100 150

Female

0−4

5−9

10−14

15−19

20−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75−79

80−84

85−89

90+

New Zealand Population, 2006

Population Size in Thousands

Figure 5.17: This Population Pyramid was drawn using R. The data is of the New Zealand
Population data (Statistics New Zealand, 2011). Using WeBIPP, we wish to recreate a
graphic as close to this as possible. The steps that follow are more for demonstration
purposes, and less to be precise and clear steps to recreate the graph. See the code at the
end, or the tutorial on the website, for concise instructions.

126 CHAPTER 5. WEBIPP

5.5.2 Set up the Axes

Figure 5.18: Setting up the Cartesian Frame.

Figure 5.18: The first few steps are as before, load the data9, drop a Cartesian Frame and
assign the data variables Female to x and AgeGroup to y. Unlike before, the default handling
of the axes is not suitable for what we want and must be adjusted. Notice in the Figure that
our x-axis is mapping the domain [14.04, 166.54] (the minimum and maximum values
of the Female data) to the range [0.05, 0.95] (representing 5% and 95% of the width of
the Cartesian Frame). For our Population Pyramid, the x-axis must start exactly at 0, and
end at some value above the maximum. We also want a shared x-label (Population Size
in Thousands) and not individual labels for each side of the pyramid. To do this, we set
x-name to "" and x-domain to [0, 170]. These changes can be seen in Figure 5.19. We
will also do the left-side of the pyramid first, hence we change x-range to [1, 0.01]. This
will map the respective domain values to 100% and 1% of the width of the Cartesian Frame
(Figure 5.20).

9The data for this example can be downloaded here:
https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/Examples/datnzpop_2006.json

https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/Examples/datnzpop_2006.json

5.5. CREATING A POPULATION PYRAMID 127

Figure 5.19: Adjust the x-axis domain.

Figure 5.20: Flip the x-axis to the correct orientation for the left-side of the pyramid.

128 CHAPTER 5. WEBIPP

Figure 5.21: For similar reasons, adjust the y axis range to make full use of the height.

Figure 5.22: We only want the x axis labels, so we set axes to [1] (WeBIPP uses the same
system as R for referencing axes). We also want exactly 4 tick marks on the x axis, so we
set axes-opts to {"1":{"ticks":4}}. Unfortunately neither of these attributes have nice
interfaces for assigning these values, so for now, the user must simply know what to assign
directly using a default interface, if they wish to tweak these settings.

5.5. CREATING A POPULATION PYRAMID 129

5.5.3 Resize the Frame

Figure 5.23: The resize interface for WeBIPP.

Figure 5.23: With the Cartesian Frame axes set up to our satisfaction, we must resize
and position the frame to something appropriate for the left-side of the pyramid. WeBIPP
currently lacks a nice way to lay out juxtaposed graphics so the resizing and positioning
must be done by modifying the dim and transform attributes. Resizing the dimensions can
be accomplished by eye using the interface shown, but if we wish to be more exact we can
go to the code and compute the dimensions.

In Figure 5.24, we have set a roughly correct dimension using the interface, and the
Code-WeBIPP interface (accessed via the main menu) is open showing the code. We will
adjust this specific number to one that is computed instead:

1 [(wbip.getdim("gGraph")[0] - 100)/2,

2 wbip.getdim("gGraph")[1] - 80 * 2]

The width is computed by taking the width of the Graph Region (wbip.getdim("gGraph")[0]),
leaving 20 pixels for margins on either side, and 60 pixels for the labels in the middle, then
diving by two to get the size for half of the pyramid. The height is computed in a similar
manner, leaving 80 pixels on both sides for the margins and labels.

The graph after these adjustments is seen in Figure 5.25. It looks remarkably similar,
and in fact the width only differs by 14 pixels and the height is exactly the same. Using the
interface can quickly get a roughly right result, while computation can be used for perfection
and scaling (see Figure 5.67 and Figure 5.69).

130 CHAPTER 5. WEBIPP

Figure 5.24: The dimensions have been adjusted to roughly the correct value, using the
interface. The WeBIPP Code interface is open showing the code.

Figure 5.25: The dimensions have been computed exactly via manual adjustment of the
code.

5.5. CREATING A POPULATION PYRAMID 131

5.5.4 Reposition the Frame

Figure 5.26: Shift the Cartesian Frame into position by applying a translation of [20, 80].

Figure 5.26: Per the calculation in Figure 5.23, we want exactly 20 pixels for the margin on
the left, and 80 pixels for the margin on the top. This can be accomplished by applying an
SVG transform. Currently however, no nice transform interface exists, and despite being
named transform, the attribute only handles translate. This is sufficient for our purposes,
but eventually a proper transform interface will be added, and this attribute will properly
support all the transforms.

132 CHAPTER 5. WEBIPP

5.5.5 Draw the Dotted Lines

Figure 5.27: The line segment button.

Figure 5.28: A line segment using the default values.

Figure 5.28: To draw the dotted lines in the background, we use the Line Segment Object.
Like the segments function in R, these take four attributes: x1, x2, y1 and y2. A line
segment will be drawn from each (x1, y1) pair to each (x2, y2) pair. Thus to draw our
dotted lines we need to set x1 to [50, 100, 150] (Figure 5.29), and x2 to the same values
(resulting in vertical lines). Then we set y1 to 0 (Figure 5.30) so the lines start from the top,
and set y2 to 490 (Figure 5.31) so the lines go to the bottom. Better than setting 490 to
y2 is to compute the value. This can be achieved by setting it to expr:curDim[1], though
we will also need to specify that y2-useScale must be false. Finally for the dotted lines,
we can set stroke-dasharray to 1 4 (1 pixel drawn, 4 pixels blank) (Figure 5.32).

5.5. CREATING A POPULATION PYRAMID 133

Figure 5.29: Set the x values for the line segment.

Figure 5.30: Have the line segment start from the top.

134 CHAPTER 5. WEBIPP

Figure 5.31: Have the line segment end at the bottom.

Figure 5.32: Make the line segment dashed.

5.5. CREATING A POPULATION PYRAMID 135

5.5.6 Draw the Bars

Figure 5.33: Rectangle with x centred at 0 pixels.

Figure 5.33: To draw the histogram rectangles, the rectangles must start from 0, and go
across to the data values. The first part can be accomplished by making the following
changes:

x = 0

x-useScale = true - In the current figure, x has been set, but we can see that the scale is
not taking effect as the rectangle is centred on pixel 0, not 0 according to the scale.
So we force it to use the scale by setting this to true in Figure 5.34.

x-adj = 1 - This works like in R. A value of 0 means the x value corresponds to the left-edge
of the rectangle. A value of 0.5 (the default) means the x value represents the centre.
A value of 1 means the x defines the right-edge of the rectangle, which is what we
want as we see in Figure 5.35.

136 CHAPTER 5. WEBIPP

Figure 5.34: Rectangle with x centred at 0 according to the x axis scale.

Figure 5.35: Rectangle with its right-edge at 0 according to the x axis scale.

5.5. CREATING A POPULATION PYRAMID 137

Figure 5.36: Assign Male to the widths of the bars.

Figure 5.36: With all the rectangles starting from 0, we can now assign the data variable
Male to the width of the rectangle, resulting in something that looks like a bargraph. As
the Population Pyramid should be histograms, we do not want any gaps between the bars.
As y is categorical, we can achieve the correct height by assigning 1 (Figure 5.37) and
setting height-useScale to true (Figure 5.38).

138 CHAPTER 5. WEBIPP

Figure 5.37: Set the rectangle height to 1.

Figure 5.38: With height-useScale set to true, there are now no gaps between the bars.

5.5. CREATING A POPULATION PYRAMID 139

Figure 5.39: As this is Male data, assign an appropriate blue colour to the bars using the
interface.

Figure 5.40: We could also assign a specific colour by name, in this case "lightblue"

(quotation marks necessary). This more closely matches the graph we wish to replicate.

140 CHAPTER 5. WEBIPP

5.5.7 Draw the Gender Label

Figure 5.41: The text button.

Figure 5.42: A text object is used to draw a label.

Figure 5.42: The last touch needed to finish this side of the pyramid is a label indicating
which data this side represents. This is done by placing a Text Object anywhere on the
frame, and then adjusting its position:

x = 170 - Remembering that the x domain is [0, 170].

x-useScale = true - This will position the text on the far left-edge (Figure 5.43).

y = -20 - In pixels (not using the scale), to position the label above the graph (Figure 5.44).

Finally, by setting text-anchor to start we align the text correctly on its x-position
(Figure 5.45), and we increase the font-size to something that is appropriate for a label
(Figure 5.46).

5.5. CREATING A POPULATION PYRAMID 141

Figure 5.43: Position the text on the left-edge of the graph.

Figure 5.44: Position the text above the graph.

142 CHAPTER 5. WEBIPP

Figure 5.45: Anchor the text correctly for correct alignment.

Figure 5.46: Adjust the size to something appropriate for a label.

5.5. CREATING A POPULATION PYRAMID 143

5.5.8 Re-using the Left-Side

We have now completed one side of the pyramid. To create the other side, we can repeat
the steps with minor adjustments. In other interface-based tools, this would be the only
option, but as WeBIPP writes code in the background, we have code-based approaches
available too. Instead of repeating the steps, we can take the code generated and tweak the
arguments slightly. The simplest way to accomplish this is to copy the relevant code, paste
it, and then manually adjust as needed. The code that generates the left-side is copied
below:

1 wbip["frcart"].click("gEL1", d3.select("#gGraph"), [65 ,33]);

2 wbip["frcart"]. setattr("gEL1", "x", "wbip.data[\"datnzpop_

2006\"][\"Female\"]");

3 wbip["frcart"]. setattr("gEL1", "x-name", "");

4 wbip["frcart"]. setattr("gEL1", "x-domain", "[0 ,170]");

5 wbip["frcart"]. setattr("gEL1", "x-range", "[1 ,0.01]");

6 wbip["frcart"]. setattr("gEL1", "y", "wbip.data[\"datnzpop_

2006\"][\"AgeGroup\"]");

7 wbip["frcart"]. setattr("gEL1", "y-range", "[1,0]");

8 wbip["frcart"]. setattr("gEL1", "axes", "[1]");

9 wbip["frcart"]. setattr("gEL1", "axes -opts", "{\"1\":{\"ticks\

":4}}");

10 wbip["frcart"]. setattr("gEL1", "dim", [(wbip.getdim("gGraph")

[0] - 100)/2, wbip.getdim("gGraph")[1] - 80 * 2]);

11 wbip["frcart"]. setattr("gEL1", "transform", "[20 ,80]");

12 wbip["line -segment"].click("gEL2", d3.select("#gEL1"),

[239 ,97]);

13 wbip["line -segment"]. setattr("gEL2", "x1", "[50, 100, 150]");

14 wbip["line -segment"]. setattr("gEL2", "x2", "[50, 100, 150]");

15 wbip["line -segment"]. setattr("gEL2", "y1", "0");

16 wbip["line -segment"]. setattr("gEL2", "y2-useScale", "false");

17 wbip["line -segment"]. setattr("gEL2", "y2", "expr:curDim [1]");

18 wbip["line -segment"]. setattr("gEL2", "stroke -dasharray", "1 4

");

19 wbip["rect"].click("gEL3", d3.select("#gEL1"), [118 ,62]);

20 wbip["rect"]. setattr("gEL3", "x", "0");

21 wbip["rect"]. setattr("gEL3", "x-useScale", "true");

22 wbip["rect"]. setattr("gEL3", "x-adj", "1");

23 wbip["rect"]. setattr("gEL3", "y", "wbip.data[\"datnzpop_2006\

"][\"AgeGroup\"]");

24 wbip["rect"]. setattr("gEL3", "width", "wbip.data[\"datnzpop_

2006\"][\"Male\"]");

25 wbip["rect"]. setattr("gEL3", "height", "1");

26 wbip["rect"]. setattr("gEL3", "height -useScale", "true");

27 wbip["rect"]. setattr("gEL3", "fill", "lightblue");

28 wbip["text"].click("gEL4", d3.select("#gEL1"), [181 ,34]);

29 wbip["text"]. setattr("gEL4", "x", "170");

30 wbip["text"]. setattr("gEL4", "x-useScale", "true");

144 CHAPTER 5. WEBIPP

31 wbip["text"]. setattr("gEL4", "y", " -20");

32 wbip["text"]. setattr("gEL4", "text", "Male");

33 wbip["text"]. setattr("gEL4", "text -anchor", "start");

34 wbip["text"]. setattr("gEL4", "font -size", "20");

For reuse of the code, we need to:

� Flip the x-axis around to left-to-right

5 wbip["frcart"]. setattr("gEL1", "x-range", "[0 ,0.99]");

� Have the bars start on the left and go to the right

22 wbip["rect"]. setattr("gEL3", "x-adj", "0");

� Shift the frame to its new position

11 wbip["frcart"]. setattr("gEL1", "transform", <calculation

ommitted as it will be explained later >);

� Adjust the data

24 wbip["rect"]. setattr("gEL3", "width", "wbip.data[\"

datnzpop_2006\"][\"Female\"]");

� Adjust the colour

27 wbip["rect"]. setattr("gEL3", "fill", "pink");

� Adjust the label

32 wbip["text"]. setattr("gEL4", "text", "Female");

33 wbip["text"]. setattr("gEL4", "text -anchor", "end");

We additionally need to adjust the element names correctly (e.g. gEL1 would need to be
renamed to, say, gEL1b).

While it is certainly possible to re-use the code with this copy+paste+tweak approach,
it would be nice to have a formalised way of doing so that is both more convenient and
more robust. It is convenient then, that WeBIPP has a feature called Functionise, which
is a formalised way of re-using code. The current Functionise interface is accessed through
the main menu. Though primitive, it is in working condition, and will be demonstrated in
the next few figures.

5.5. CREATING A POPULATION PYRAMID 145

5.5.9 Functionise the Left-Side

Figure 5.47: Formalised reuse of code using the Functionise interface.

Figure 5.47: To begin, the code that is to be functionised must be identified. This can be
done by line number, or to be more robust, by marker. In the above Figure, the marker
lines // MARKER PopPyrMale Start and // MARKER PopPyrMale End were added around
the code that is used to create the left-side of the pyramid. When given the line numbers
or the markers, the interface will expand to show the identified code. By following the
instructions in the interface, we identify segments of code that need to be changed by
highlighting them in the interface. The code is identified not by their position, but by
matching the highlighted text. All highlighted text will be turned into an argument, so the
user must take care to only match the desired code. For instance to turn x-adj into an
argument, a simple highlight of "1" would also match height (Figure 5.48), which is not
desired. A more unique text pattern, "x-adj", "1" is used instead (Figure 5.49). In the
case of Male however, a double-match is desirable as it will change both the data used and
the label attached to the graph, in a single argument (Figure 5.50). When we are done
setting the arguments, we finish off and give our new ‘function’ a name (Figure 5.51).

146 CHAPTER 5. WEBIPP

Figure 5.48: Check the highlighted text carefully to ensure only what we want is turned
into arguments.

Figure 5.49: Sometimes a more cumbersome match may be required to get a unique match.

5.5. CREATING A POPULATION PYRAMID 147

Figure 5.50: In other cases multiple matches may be desirable. As the right-side will be
using Female data, all cases of Male being updated to Female is exactly what we want.

Figure 5.51: With all the arguments set, we finish creating the function.

148 CHAPTER 5. WEBIPP

5.5.10 Use the new Function

Figure 5.52: Clicking on the newly created button will open an interface to help use the
function.

Figure 5.52: When code has been Functionised, the newly created function becomes available
as a button in the menu at the top. Clicking this button will option a new interface for
using the function. Through this interface, we can see what the available arguments are
(Figure 5.53), and begin assigning new values to these arguments (Figure 5.54). In the
same vein as computing the correct dimensions as described in Figure 5.23, we can assign a
computed transform to position the right-side of the pyramid correctly. That is, 20 pixels
margin + the width of the left-side pyramid + 60 pixels for the labels in-between the two
sides (Figure 5.55).

1 [(wbip.getdim (\"gGraph\")[0] - 100)/2 + 80, 80]

When specifying the argument values, the interface displays the text that the argument is
being matched to (and hence being changed), so this should be taken into account when
supplying the new values, e.g. for the match "x-adj", "1", the new argument value supplied
should be "x-adj", "0", and not just 0 on its own (Figure 5.56). Once all the arguments
have been supplied, we finish (Figure 5.57), and WeBIPP will run the function, creating the
right-side of the pyramid (Figure 5.58).

5.5. CREATING A POPULATION PYRAMID 149

Figure 5.53: The available arguments.

Figure 5.54: Setting the arguments.

150 CHAPTER 5. WEBIPP

Figure 5.55: We can also compute argument values, as before.

Figure 5.56: Be sure to match the text that has been turned into an argument.

5.5. CREATING A POPULATION PYRAMID 151

Figure 5.57: Finish off the call.

Figure 5.58: The right-side of the pyramid complete.

152 CHAPTER 5. WEBIPP

5.5.11 Draw the y-axis Labels

Figure 5.59: Placing the shared y axis label.

Figure 5.59: With the two-sides done, we finish off by placing the shared labels. First is
the label for the y axis. To ensure it is centred correctly, we place a Text Object into the
right-side of the pyramid and set x to -30 (as we computed a space of 60 pixels for the
label). This is easier than placing it elsewhere and having to do a more complex calculation
involving dimensions. We assign the data variable AgeGroup to both y (Figure 5.60) and
text (Figure 5.61), which finishes the label.

5.5. CREATING A POPULATION PYRAMID 153

Figure 5.60: Assign AgeGroup to y for positioning.

Figure 5.61: Assign AgeGroup to text for the axis labels.

154 CHAPTER 5. WEBIPP

5.5.12 Draw the Title

Figure 5.62: Placing an overall Title for the graph.

Figure 5.62: For the title at the top, we again place a Text Object in the right-side of
the pyramid and set x to -30 for correct centring. Adjusting y to -45 positions the label
nicely above the graph. After setting the text and a suitable font-size (30), we can also
bold the Title by setting font-weight (Figure 5.63), and change the font style by changing
font-family (Figure 5.64).

5.5. CREATING A POPULATION PYRAMID 155

Figure 5.63: To make the Title more prominent, we can bold it.

Figure 5.64: We can also change the font of the title.

156 CHAPTER 5. WEBIPP

5.5.13 Draw the x-axis Label

Figure 5.65: Placing an overall x axis label.

Figure 5.65: There is unfortunately no easy way to position the label at the bottom. We
must compute its vertical position using a similar method for the dotted lines in the back-
ground. We set y-useScale to false, and set y to expr:curDim[1] + 55. Other than
that, it is a simple process to set the text and font-size.

5.5. CREATING A POPULATION PYRAMID 157

5.5.14 Resizing the Finished Pyramid

Figure 5.66: The finished Population Pyramid, which is fully scalable.

Figure 5.66: The Population Pyramid is complete. One of the major advantages of comput-
ing the various layout details, rather than doing it by eye, is that the graphic is now fully
scalable. We can resize the WeBIPP interface by using Resize from the main menu, which
will open a similar interface to dim. Upon resize, WeBIPP will redraw the graphic.

Figure 5.67: The interface resized to 1600 by 720.

158 CHAPTER 5. WEBIPP

Figure 5.68: The resize interface with the default size of 920 by 720.

Figure 5.69: The interface resized to 640 by 480. Notice that our chosen font sizes may not
be appropriate at other interface sizes.

5.5. CREATING A POPULATION PYRAMID 159

5.5.15 The Final Save Data

The save data for the Population Pyramid, less the save header and the data, is copied
below. Notice the identifying MARKER lines (lines 2 and 37) and the Functionise lines
that re-uses this code (lines 38 and 39). Even with some interfaces missing, the Population
Pyramid can be reproduced in 10 – 20 minutes using WeBIPP, though some knowledge
of SVG graphics is required. Writing the code in R to draw Figure 5.17 takes quite a bit
longer, and would also require familiarity with base R graphics.

As the Functionise interface is developed further, once a graphic like this is produced,
it should be possible to Functionise the whole thing and convert it into an Addon. This
would enable creative users who lack programming expertise, to create a new and innovative
graphic in WeBIPP, and then share this for others to use, not just as a concept picture for
others to reproduce themselves, but as an easy-to-use Addon.

1 wbip.data["datnzpop_2006"] = JSON.parse(/*Data removed for

space*/);

2 // MARKER PopPyrMale Start

3 wbip["frcart"].click("gEL1", d3.select("#gGraph"), [65 ,33]);

4 wbip["frcart"]. setattr("gEL1", "x", "wbip.data[\"datnzpop_

2006\"][\"Female\"]");

5 wbip["frcart"]. setattr("gEL1", "x-name", "");

6 wbip["frcart"]. setattr("gEL1", "x-domain", "[0 ,170]");

7 wbip["frcart"]. setattr("gEL1", "x-range", "[1 ,0.01]");

8 wbip["frcart"]. setattr("gEL1", "y", "wbip.data[\"datnzpop_

2006\"][\"AgeGroup\"]");

9 wbip["frcart"]. setattr("gEL1", "y-range", "[1,0]");

10 wbip["frcart"]. setattr("gEL1", "axes", "[1]");

11 wbip["frcart"]. setattr("gEL1", "axes -opts", "{\"1\":{\"ticks\

":4}}");

12 wbip["frcart"]. setattr("gEL1", "dim", [(wbip.getdim("gGraph")

[0] - 100)/2, wbip.getdim("gGraph")[1] - 80 * 2]);

13 wbip["frcart"]. setattr("gEL1", "transform", "[20 ,80]");

14 wbip["line -segment"].click("gEL2", d3.select("#gEL1"),

[239 ,97]);

15 wbip["line -segment"]. setattr("gEL2", "x1", "[50, 100, 150]");

16 wbip["line -segment"]. setattr("gEL2", "x2", "[50, 100, 150]");

17 wbip["line -segment"]. setattr("gEL2", "y1", "0");

18 wbip["line -segment"]. setattr("gEL2", "y2-useScale", "false");

19 wbip["line -segment"]. setattr("gEL2", "y2", "expr:curDim [1]");

20 wbip["line -segment"]. setattr("gEL2", "stroke -dasharray", "1 4

");

21 wbip["rect"].click("gEL3", d3.select("#gEL1"), [118 ,62]);

22 wbip["rect"]. setattr("gEL3", "x", "0");

23 wbip["rect"]. setattr("gEL3", "x-useScale", "true");

24 wbip["rect"]. setattr("gEL3", "x-adj", "1");

25 wbip["rect"]. setattr("gEL3", "y", "wbip.data[\"datnzpop_2006\

"][\"AgeGroup\"]");

26 wbip["rect"]. setattr("gEL3", "width", "wbip.data[\"datnzpop_

160 CHAPTER 5. WEBIPP

2006\"][\"Male\"]");

27 wbip["rect"]. setattr("gEL3", "height", "1");

28 wbip["rect"]. setattr("gEL3", "height -useScale", "true");

29 wbip["rect"]. setattr("gEL3", "fill", "lightblue");

30 wbip["text"].click("gEL4", d3.select("#gEL1"), [181 ,34]);

31 wbip["text"]. setattr("gEL4", "x", "170");

32 wbip["text"]. setattr("gEL4", "x-useScale", "true");

33 wbip["text"]. setattr("gEL4", "y", " -20");

34 wbip["text"]. setattr("gEL4", "text", "Male");

35 wbip["text"]. setattr("gEL4", "text -anchor", "start");

36 wbip["text"]. setattr("gEL4", "font -size", "20");

37 // MARKER PopPyrMale End

38 wbip.fise.new("PopPyr", {"marker":["PopPyrMale Start","

PopPyrMale End"]}, [{"match":"[1 ,0.01]","name":"x-range","

type":"none"},{"match":"[20 ,80]","name":"transform","type"

:"none"},{"match":"\"x-adj\", \"1\"","name":"x-adj","type"

:"none"},{"match":"Male","name":"data","type":"none"},{"

match":"lightblue","name":"colour","type":"none"},{"match"

:"start","name":"text -align","type":"none"}]);

39 wbip.vars.fise["PopPyr"]({"x-range":"[0, 0.99]","transform":"

[(wbip.getdim (\\\"gGraph \\\")[0] - 100)/2 + 80, 80]","x-

adj":"\"x-adj\", \"0\"","data":"Female","colour":"pink","

text -align":"end"});

40 wbip["text"].click("gEL5", d3.select("#gEL1b"), [44.5 ,143]);

41 wbip["text"]. setattr("gEL5", "x", " -30");

42 wbip["text"]. setattr("gEL5", "y", "wbip.data[\"datnzpop_2006\

"][\"AgeGroup\"]");

43 wbip["text"]. setattr("gEL5", "text", "wbip.data[\"datnzpop_

2006\"][\"AgeGroup\"]");

44 wbip["text"].click("gEL6", d3.select("#gEL1b"), [44.5 ,68]);

45 wbip["text"]. setattr("gEL6", "x", " -30");

46 wbip["text"]. setattr("gEL6", "y", " -45");

47 wbip["text"]. setattr("gEL6", "text", "New Zealand Population ,

2006");

48 wbip["text"]. setattr("gEL6", "font -size", "30");

49 wbip["text"]. setattr("gEL6", "font -weight", "bold");

50 wbip["text"]. setattr("gEL6", "font -family", "serif");

51 wbip["text"].click("gEL7", d3.select("#gEL1b"), [84.5 ,446]);

52 wbip["text"]. setattr("gEL7", "x", " -30");

53 wbip["text"]. setattr("gEL7", "y-useScale", "false");

54 wbip["text"]. setattr("gEL7", "y", "expr:curDim [1] + 55");

55 wbip["text"]. setattr("gEL7", "text", "Population Size in

Thousands");

56 wbip["text"]. setattr("gEL7", "font -size", "20");

5.6. HOW WEBIPP WORKS 161

5.6 How WeBIPP Works

As mentioned in the Introduction (see Subsection 5.2.2), WeBIPP can be thought of as a

set of bridges connecting the GUI and the Code. Broadly it consists of three parts:

GUI - The Graphical User Interface, which includes the visualisation being created. User

interaction with interface elements and the graphic in production will lead to the

generation of High-level Code.

High-level Code - Simple instructions that can map to interactions with the GUI. The

High-level Code is used to generate Low-level Code, and is also a record of all mean-

ingful user interactions with the GUI. The High-level Code alone is a complete record

of the interactions and can completely replicate the output graphic.

Low-level Code - Mainly D3 code, but with other low-level JavaScript code, including

those provided by WeBIPP. This low-level code is used to manipulate the SVG that

is both the GUI and the visualisation that is being created.

Both the High-level and Low-level Code are stored within CodeMirror instances that are

embedded (as ForeignObjects) into the same SVG that the GUI resides. Thus most of the

information is stored within the XML document that is the SVG ‘image’ (see Figure 5.70),

though some information is stored as JavaScript objects (in particular, see Subsection 5.6.2).

WeBIPP is designed to be highly modular built with the philosophy that everything is an

addon. Thus even core elements of WeBIPP are written as separate ‘addons’, meaning

that WeBIPP as a whole was developed to be very addon friendly. These addons can be

grouped into two categories, those that simply provide functions that can be called by other

addons, and those that are evaluated during the WeBIPP initialisation process, usually to

add a button to the menu for use by the user. We will define both categories to be Internal

Libraries, but the latter to be Addons that are loaded during the initialisation process.

In addition to Internal Libraries, WeBIPP also makes use of several External Libraries,

such as D3 and CodeMirror. Bringing these libraries together is the true core of WeBIPP

appropriate named WeBIPP_Core (hereafter referred to as WeBIPP Core or Core). WeBIPP

Core handles the initialisation process by making the calls to set up the GUI and to load

the Addons (see Figure 5.73).

In keeping with the philosophy that everything is an addon, Core does not need to

understand how each of the loaded Addons work, and the Addons in turn also do not

need to understand how Core works. The two parts stick to a kind of formula, and in so

doing can make use of each other without understanding the details. For instance, when

a menu object is selected and added to the Graph Region (see Figure 5.74), Core simply

generates a high level click call for that object, and Core does not need to know what this

162 CHAPTER 5. WEBIPP

Figure 5.70: The SVG containing the WeBIPP GUI. The first five groups (<g> with IDs
gGraph, gMenuTab, gMenuPri, gMenuSec and gMenuTer) form the GUI, while the next two
groups (with IDs wbip-code-high and wbip-code-low) form the Free Form Windows that
contain ForeignObjects that hold the CodeMirror instances.

click call does. Likewise when an object’s attributes need to be changed (see Figure 5.75),

Core simply generates a set attribute call for the selected object. The Object library can

run its own code to do something special, and Core has no need to understand how this

works. However in the case of changing attributes there is a powerful set attribute function

provided by Core that the Addon can use (see Section 5.9), which makes it more convenient

when creating new Object Addons.

5.6.1 Frames

Most good statistical graphics begin with well-defined axes. More generally, creating accu-

rate and useful statistical graphics often requires the use of arbitrary coordinate spaces so

that the positioning and size of graphical objects on this coordinate space can encode data

in a meaningful way. WeBIPP accomplishes this by the use of Frames. Frames are intended

to be a general framework under which arbitrary coordinate spaces can be assigned, though

5.6. HOW WEBIPP WORKS 163

Figure 5.71: An example of Frames and nesting. gELs 1, 2 and 6 are children of the Graph
Region itself. gELs 3 and 4 and children of gEL 2. gEL 6 is a child of gEL 4.

currently the only type of frame that exists is a Cartesian Frame. Hence the current frame-

work most suits Cartesian Frames. It is expected the framework will evolve considerably as

other types of frames are added. A frame has the following properties:

� Has the class wbip-frame.

� Has a well-defined dimension (dim).

� Provides Scales, which define the arbitrary coordinate spaces.

When an object is added to the Graph Region, it is attached as a child of the foremost frame

corresponding to the mouse event which triggered the process (see Figure 5.71). Objects

may use their parent frame’s Scales to make use of the frame’s coordinate space. Consistent

with this, the Graph Region itself is also a frame, allowing objects to be attached directly

to the Graph Region, though its Scales correspond directly to pixels and are generally not

useful.

164 CHAPTER 5. WEBIPP

5.6.2 IDvar

When creating more complicated objects, it is often necessary to store additional information

related to that object. It is possible, but inconvenient, to store this additional information

in the SVG itself. WeBIPP instead stores the information in JavaScript using a system

called IDvar. An IDvar is simply a JavaScript Object that is associated with the given

ID. It should be created using the accessor function wbip.setIDvar and accessed with the

accessor function wbip.getIDvar. For example:

1 // Create an example JavaScript Object

2 var ExObj = {aaa: "hello", bbb: "bye"};

3 // Save this Object to an IDvar

4 wbip.setIDvar("someID", ExObj);

5 // Retrieve the IDvar for use

6 wbip.getIDvar("someID").aaa;

7 // The value is the contents of aaa , "hello"

5.6.3 Structure Diagrams

Group

Internal Library

External Library

Process SVG Object

Figure 5.72: The icons that will be used for the Structure diagrams.

Internal Library e.g. WeBIPP_Core.js

External Library e.g. d3.js

Process e.g. Do something

SVG Object An object inside the SVG, which could be a grouping representing some area

5.6. HOW WEBIPP WORKS 165

Core

Setup Base
Layout

Layout

SVG

Graph Region

Free Form
Windows

Menu Regions

CodeMirror

CodeMirror
Setup

CodeMirror
Instances

FreeFormWindow

Icons-jui

jQuery UI (jui)

SlideMenu

MenuObj
Setup
Object
Menu

Load
Addons

Addons

Rect

Circle

Data Viewer

etc...

Special Addons

Tutorial

etc...

Add as
icons in

respective
menus

Run im-
mediately

with varied
effects

Figure 5.73: Structure of the Initialisation process. Not mentioned are the D3 External
Library and the WeBIPP’s Utils Internal Library. Almost everything in WeBIPP makes
use of the Utils library and all drawing on the SVG is done through D3. Some utility
functions in the D3 library are also used.

166 CHAPTER 5. WEBIPP

The Primary Menu Region.

Click on
Circle Icon

Icon is selected, choice is stored by Core.
Click on
Graph
Region

Core generates a high level click call for the selected icon.
The call is recorded in the CodeMirror instance for high
level calls.

Evaluate
Click Call

Circle generates a low level append call to append (add)
a circle to the SVG. The call is recorded in the CodeMir-
ror instance for low level calls.

Evaluate
Append

Code

The circle is appended to the Graph Region and is
recorded as an object in the Object Menu.

Figure 5.74: Simplified structure of how a Circle is added. Can be generalised to most other
objects, with some variances in complexity.

5.6. HOW WEBIPP WORKS 167

Interface re-
quests attribute

adjustment

The library providing the interface generates a high level
set attribute call for the object’s chosen attribute. The
call is recorded in the CodeMirror instance for high level
calls.

Dispatch Set
Attribute Call

The set attribute call is dispatched to the library providing
the object, which may then call upon its own set attribute
functions. However for many attributes, the library can
just forward the call to the set attribute function provided
by Core, specifying only a short definitions table.

Evaluate Set
Attribute
Function

Low-level code is generated or replaced to implement the
adjustment, with changes being made to the CodeMirror
instance for low level calls. Evaluate

the
Adjusted

Code

The circle in the Graph Region is adjusted to reflect the
changes to the code.

Figure 5.75: Simplified structure of how a Circle’s attribute is adjusted. Can be generalised
to most other objects, with some variances in complexity.

168 CHAPTER 5. WEBIPP

In the next sections we will discuss how to add to WeBIPP.

In keeping with the philosophy that everything is an addon the possibilities are very

broad, anywhere from changing the basic layout of the GUI to adding templates for basic

graphics. However it is expected that the main areas for possible user-contributed Addons

to be in the following areas:

� Creating an Object Addon

� Creating a Value Interface

5.7 Creating an Object Addon

The objects that can be added via the main WeBIPP interface are provided by Object

Addons. Even the most basic shapes like rectangles and circles are provided via Addons.

Such objects can also be a complex collection of objects that are tied together into a single

‘Object’ for convenience, for instance a Bargraph could be provided as a single ‘Object’,

with its attributes being the data to plot.

As described in Section 5.6, there is a kind of formula that dictates what an Object

Addon should provide. For example the Object Addon must provide a get attribute function

specifying how values of the attributes are recalled. Core does not need to understand how

the Addon does this, giving the Addon creator freedom in what the Addon can do. Likewise,

the Addon does not need to understand what Core does, as long as it provides the things

dictated by the ‘formula’. Refer to the Summary (Subsection 5.7.8) for a full list of the

things the Object Addon must provide.

The purpose of this section is to explain what is required by the ‘formula’, with example

code from the Circle and Rectangle Addons. As they follow the same ‘formula’, it becomes

easy to notice what code is standardised. When creating a new Object Addon, such code

can simply be reused from existing Addons. It is often not necessary to understand all of

the code to create a new Addon, simply understanding what needs to be changed is enough.

5.7.1 Define a Sub-Namespace

The process for all Addons begins by creating a sub-library for WeBIPP by defining a names-

pace within the wbip namespace. In JavaScript, this is achieved by adding a JavaScript

object as a property to the wbip object, e.g. for the Circle Addon, we create a ‘property’ of

wbip called circle, that is, wbip.circle.

1 wbip.circle = function (){

2 var obj = {tags: "subobj", type: "primary"};

3

5.7. CREATING AN OBJECT ADDON 169

4 <Define the Icon >

5 <Define the Attributes >

6 <Define how to Set Attribute Values >

7 <Define how to Get Attribute Values >

8 <Define Interactions with the Graph Region >

9 <Any other code , as necessary >

10

11 return obj;

12 }();

13 wbip.addon("circle");

Note that the object to be added is created via a self-evaluating function (that is, the

function is evaluated immediately). wbip.circle is not a function, but what is returned

by the self-evaluating function, obj.

When obj is created, the properties tags and type are assigned. tags is currently

unused and exists for potential future use. type classifies the Object to be added, which

mainly affects where the Icon for the Object will appear in the interface.

The interior of the self-evaluating function creates a local scope that can be used to

evaluate code or to provide utility functions that are not exported, but available to functions

of this sub-library. In general, Addon creators are encouraged to export all functions (by

assigning it as a property of the sub-library object, obj), but hiding things in the local

scope can sometimes be useful.

In the case of Object Addons, a call to wbip.addon is also made at the end, to register

the Addon.

5.7.2 Define the Icon

The first required function is obj.icon that should take two arguments:

gMenu - A d3 selection for the menu region to which the icon belongs.

transXY - The translation required for proper positioning of the icon in the menu region.

The values for these arguments are supplied by WeBIPP Core as part of the Addon regis-

tration process and depends on the type set for obj, e.g. for type: "primary", the gMenu

will be for the Primary Menu Region. The function’s purpose is to:

� Store as a variable reference (obj.gMenu) the gMenu, for later use.

� Define the appearance of the icon, used in the menu and other places where such icons

are useful (e.g. the Object Menu).

� Append the icon to the appropriate Menu Region (as specified by gMenu).

170 CHAPTER 5. WEBIPP

� Define what occurs on interaction with the menu icon.

1 obj.icon =

2 function(gMenu , transXY){

3 obj.gMenu = gMenu;

4 <Define Appearance >

5 <Append to Menu Region >

6 <Define Interaction >

7 };

Define Appearance

Defining the appearance begins with a call to wbip.icon.def, passing the gMenu and an

appropriate string for an ID, to establish a SVG symbol. The icon is then drawn on this

symbol.

1 // wbip.circle

2 var curS = wbip.icon.def(gMenu , "wbip -icon -circle");

3 curS.append("circle")

4 .attr("cx", 10)

5 .attr("cy", 10)

6 .attr("r", 10);

For comparison, the code for Rectangle:

1 // wbip.rect

2 var curS = wbip.icon.def(gMenu , "wbip -icon -rect");

3 curS.append("rect")

4 .attr("width", 20)

5 .attr("height", 20);

Append to Menu Region

The icon is then added to the Menu Region using the predefined symbol, with appropriate

translation and a class assigned.

1 // wbip.circle

2 var curG = gMenu.append("g")

3 .attr("transform", wbip.utils.translate(transXY))

4 .classed("wbip -icon -circle", true);

5 wbip.icon.use(curG , "wbip -icon -circle");

5.7. CREATING AN OBJECT ADDON 171

For comparison, the code for Rectangle:

1 // wbip.rect

2 var curG = gMenu.append("g")

3 .attr("transform", wbip.utils.translate(transXY))

4 .classed("wbip -icon -rect", true);

5 wbip.icon.use(curG , "wbip -icon -rect");

Define Interaction

Finally the interaction(s) available for the menu icon are defined, typically only click is

used.

1 // wbip.circle

2 curG.on("click", function (){

3 wbip.gGraph.iconclick("circle", gMenu , transXY);

4 });

For comparison, the code for Rectangle:

1 // wbip.rect

2 curG.on("click", function (){

3 wbip.gGraph.iconclick("rect", gMenu , transXY);

4 });

In both cases, the interaction is essentially the same and understanding what this does is

generally not necessary. It suffices to understand that this is sufficient for WeBIPP Core to

do its thing.

But for those unsatisfied with such an explanation, wbip.gGraph.iconclick results in

registration of the icon’s selection, triggering an interface change (the icon appears ‘high-

lighted’) and means any subsequent interaction with the Graph Region with the icon selected

will trigger the processes specified in Subsection 5.7.6. See also Figure 5.74.

5.7.3 Define the Attributes

After the icon is defined, the attributes for the object must be defined. The JavaScript

object obj.def acts as a named array, with each attribute definition stored as a sub-array

with the following syntax:

[Type of Attribute, Category of Attribute, (optionally) Sub-attributes]

Type of Attribute - attr or style for direct mapping to SVG object attributes, useScale

variants for WeBIPP supported scaling, or special for completely arbitrary attributes.

172 CHAPTER 5. WEBIPP

Category of Attribute - Defines what interface is used for assigning these attributes,

matching an appropriate interface will make things easier for the end-user. If no

interface exists for the category provided, WeBIPP will use a default fail-safe. Some

possible categories are logical, numeric, proportion, rgb.

Sub-Attributes - Some attributes have sub-attributes, which are defined as the optional

third item of the array. These have the same format as the top-most attribute def-

inition, that is they are JavaScript objects containing named arrays that define the

sub-attributes. There is no strict nesting cap, though most interfaces will only handle

a single nesting depth.

1 // wbip.circle

2 obj.defs = {

3 cx: ["attr", "numeric", {

4 useScale: ["useScale -x", "logical"]

5 }],

6 cy: ["attr", "numeric", {

7 useScale: ["useScale -y", "logical"]

8 }],

9 r: ["attr", "numeric"],

10 stroke: ["style", "rgb"],

11 fill: ["style", "rgb"],

12 opacity: ["style", "proportion"]

13 };

For comparison, the code for Rectangle:

1 // wbip.rect

2 obj.defs = {

3 x: ["attr", "numeric", {

4 adj: ["special", "proportion"],

5 useScale: ["useScale -x", "logical"]

6 }],

7 y: ["attr", "numeric", {

8 adj: ["special", "proportion"],

9 useScale: ["useScale -y", "logical"]

10 }],

11 width: ["attr", "numeric", {

12 useScale: ["useScale -x-dist", "logical"]

13 }],

5.7. CREATING AN OBJECT ADDON 173

14 height: ["attr", "numeric", {

15 useScale: ["useScale -y-dist", "logical"]

16 }],

17 stroke: ["style", "rgb"],

18 fill: ["style", "rgb"],

19 opacity: ["style", "proportion"]

20 };

5.7.4 Define how to Set Attribute Values

With the attributes defined, the Addon must now specify how to set values to these at-

tributes with the obj.setattr function. This function should take three arguments:

curID - The ID of the object that is having an attribute set.

name - The name of the attribute.

val - The value to set the attribute.

In general, the values for these arguments will be generated as part of the end-users’ inter-

action with the WeBIPP interface.

If there are no attributes of type special, this is very easy as the Addon can simply

forward the call to the setattr function provided by WeBIPP Core. Attributes of type

special are used to create any attribute that does not fit into one of the standard types

that WeBIPP Core recognises.

In the Circle example below, there are no special attributes and thus the function is

a simple call to wbip.setattr passing the three arguments, and additionally the attribute

definitions (processed through wbip.getrealdef), which WeBIPP Core needs to understand

what kind of attributes it is dealing with.

1 // wbip.circle

2 obj.setattr =

3 function(curID , name , val){

4 wbip.setattr(curID , wbip.getrealdef(obj.defs , name), name

, val);

5 };

For comparison, the code for Rectangle must handle a special attribute in x-adj and

y-adj. These are handled via a custom function (setxyadj), and a switch is used to divert

to either the custom function, or to forward the call to WeBIPP Core.

1 // wbip.rect

174 CHAPTER 5. WEBIPP

2 obj.setattr =

3 function(curID , name , val){

4 var setxyadj = function (){

5 <Code excised for space >

6 };

7 switch(name){

8 case "x-adj":

9 case "y-adj":

10 setxyadj ();

11 break;

12 default:

13 wbip.setattr(curID , wbip.getrealdef(obj.defs , name),

name , val);

14 }

15 };

5.7.5 Define how to Get Attribute Values

Similarly, the Addon must also specify how to get current attribute values with the obj.getattr

function. This function should take two arguments:

curID - The ID of the object to get attributes values from.

name - The name of the attribute.

In general, the values for these arguments will be generated as part of the end-users’ inter-

action with the WeBIPP interface.

Very often this call is simply forwarded to WeBIPP Core, even for attributes of type

special, but custom functions could be implemented as required.

1 obj.getattr = wbip.getattr;

Both Circle and Rectangle simply forward the call. Or more technically, obj.getattr is

made to refer to wbip.getattr, so that WeBIPP Core is called directly with no intermediary

function.

5.7.6 Define Interactions with the Graph Region

Once an icon is selected and registered via WeBIPP Core (see Subsection 5.7.2), subsequent

interactions with the Graph Region will result in WeBIPP checking to see if the selected

Addon has defined a function for that interaction, e.g. if the user clicks on the Graph Region,

5.7. CREATING AN OBJECT ADDON 175

WeBIPP Core will check if there is a obj.click available. If it exists, it is called. The

current implementation only supports click events, but support is easily extended to other

interactions, including but not limited to mouse drag events and keyboard presses.

obj.click should accept three arguments:

curID - The ID to be assigned to the newly created object.

curFrame - A d3 selection for the frame the object is being nested under (see Subsec-

tion 5.6.1).

Coords - The coordinates where the event occurred, given relative to curFrame as an array

[x, y].

While any of these functions could be called on their own, in general they are called with

arguments generated as part of the end-users’ interaction with the WeBIPP interface.

The purpose of the function is to write the necessary low-level code (outcode) to create

the object. Much like obj.icon, it is not necessary to completely understand all the code,

sufficing to know only what needs to be adjusted for any new Object Addon.

1 obj.click =

2 function(curID , curFrame , Coords){

3 <Initialise outcode >

4 <Set Starting Direct Attributes and Append >

5 <Set Additional Starting Attributes and Save IDvar >

6 <Any other code , as necessary >

7 <Write and Evaluate outcode >

8 <Add new Object to Object Menu listing >

9 };

Initialise outcode

Writing the low-level code begins with a call to wbip.outcode.init, passing curID, curFrame

and any classes, to initialise the outcode.

1 // wbip.circle

2 var outcode = wbip.outcode.init(curID , curFrame ,

3 {"wbip -obj -circle": true , "wbip -gobj": true});

For comparison, the code for Rectangle:

1 // wbip.rect

2 var outcode = wbip.outcode.init(curID , curFrame ,

3 {"wbip -obj -rect": true , "wbip -gobj": true});

176 CHAPTER 5. WEBIPP

Set Starting Direct Attributes and Append

Direct Attributes are those attributes that directly map to SVG object attributes, that is

they are attributes of type attr as defined in obj.defs. The default values for Direct

Attributes are set here, while the default values for any Styles (such as fill) are set in the

css file corresponding to the Addon (see Subsection 5.7.9).

The starting attributes and their values are stored as a JavaScript Object (curAttrs)

before being passed to wbip.outcode.append which will generate the appropriate low-level

code.

1 // wbip.circle

2 var curAttrs = {cx: Coords [0], cy: Coords [1], r: 10};

3 outcode += wbip.outcode.append(1, "circle", curAttrs);

For comparison, the code for Rectangle:

1 // wbip.rect

2 var curAttrs = {x: Coords [0], y: Coords [1], width: 20, height

: 20};

3 outcode += wbip.outcode.append(1, "rect", curAttrs);

Set Additional Starting Attributes and Save IDvar

Any other attributes (including styles) that require starting values set, but do not map

directly to SVG object attributes, are added to the JavaScript Object containing the at-

tributes (curAttrs) and then saved as an IDvar (see Subsection 5.6.2).

This code on its own does not result in any direct changes to the actual SVG object being

created, it merely stores information for use later. Such future use may be to simply be a

default value that appears when the user queries the attribute via an interface, but could

also be made to interact with other code in the Addon in complex ways, e.g. the default value

of a useScale variant attribute will alter how WeBIPP Core’s setattr function handles its

job (see Section 5.9).

1 // wbip.circle

2 curAttrs["cx -useScale"] = "auto";

3 curAttrs["cy -useScale"] = "auto";

4 var curVars = {attr: curAttrs , name: "circle"};

5 wbip.setIDvar(curID , curVars);

For comparison, the code for Rectangle:

1 // wbip.rect

2 curAttrs["x-adj"] = 0.5;

5.7. CREATING AN OBJECT ADDON 177

3 curAttrs["y-adj"] = 0.5;

4 curAttrs["x-useScale"] = "auto";

5 curAttrs["y-useScale"] = "auto";

6 curAttrs["width -useScale"] = "auto";

7 curAttrs["height -useScale"] = "auto";

8 var curVars = {attr: curAttrs , name: "rect"};

9 wbip.setIDvar(curID , curVars);

Any other code, as necessary

Any additional code necessary for the object can be appended here. If nothing else a line-

break needs to be added.

1 // wbip.circle

2 outcode += "\n";

For comparison, the code for Rectangle:

1 // wbip.rect

2 outcode += 'wbip.rect.adjXY(selData , 0.5, 0.5);\n\n';

Note that Circle requires no other code, while Rectangle has code that calls another function

defined in the Addon.

Write and Evaluate outcode

With the necessary low-level code generated, it must now be written to the CodeMirror

instance and then evaluated to actuate the changes to the SVG. This code should be exactly

the same for all Object Addons.

1 wbip.outcode.write(outcode , "low");

2 eval(outcode);

Add new Object to Object Menu listing

All newly created objects should be added to the Object Menu listing for easy reference

and selection by the end-user. The required code is simple, yet listing on the Object Menu

provides many major benefits for user interactivity.

1 // wbip.circle

2 wbip.slidemenu.append(d3.select("g.wbip -sm-" + curFrame.attr(

"id")), [{text: curID , icon: "wbip -icon -circle"}]);

For comparison, the code for Rectangle:

178 CHAPTER 5. WEBIPP

1 // wbip.rect

2 wbip.slidemenu.append(d3.select("g.wbip -sm-" + curFrame.attr(

"id")), [{text: curID , icon: "wbip -icon -rect"}]);

5.7.7 Any other code, as necessary

Additional code may be necessary for proper functioning of the object. The Circle does not

require any extra code, but the Rectangle does, defining obj.adjXY to handle adjustment

of x and y. Note that this is the function that gets called via wbip.rect.adjXY at the end

of outcode above.

Such additional code may also be to create a Value Interface (see Section 5.8).

5.7.8 Summary

To summarise, the following exported properties exist:

obj.tags - Currently unused but defined for all base addons.

obj.type - For Addons that are registered via wbip.addon, the type determines what

WeBIPP does with it. Primary, Secondary and Tertiary will add the icon to the

corresponding menu regions. Special Addons do not have an icon, and instead of

obj.icon have obj.new, which is evaluated as soon as the Addon is loaded.

obj.icon - A function that defines the icon’s appearance, as well as creating the icon in the

appropriate Menu Region.

obj.gMenu - A d3 selection for the Menu Region to which the Object’s menu icon belongs.

obj.defs - A JavaScript Object acting as a named array, containing the definitions of all

attributes of the object being created.

obj.setattr - A function specifying how values to the attributes are set.

obj.getattr - A function specifying how values of the attributes are recalled.

obj.click - A function to be run on a click interaction with the Graph Region while the

icon is selected. Generally this adds a new instance of the object to the Graph Region.

And of course, any additional functions, exported or otherwise, that are defined for the

Addon.

5.7.9 Stylesheets

In addition to the JavaScript code that defines the Object Addon, default style values for

the Object should be set via an associated stylesheet (css). Examples of these are:

5.7. CREATING AN OBJECT ADDON 179

1 #wbip -icon -circle circle{

2 stroke: black;

3 fill: #EEEEAA;

4 }

5

6 g.wbip -obj -circle circle{

7 stroke: black;

8 fill: #EEEEAA;

9 }

1 #wbip -icon -rect rect{

2 stroke: black;

3 fill: #EEEEAA;

4 }

5

6 g.wbip -obj -rect rect{

7 stroke: black;

8 fill: #EEEEAA;

9 }

In both cases, the stylesheet defines a black border (stroke) and a yellow-ish interior (fill)

for both the icon and any Objects created via the Addon.

5.7.10 Creating Complex Objects

These objects can be quite complex, as an example the Cartesian Frame object will be

explored in brief detail. The same principles could be used to create an ‘Object’ that is a

complete statistical plot. This is more an example of what can be done, but is likely to be

too complicated for most addon makers to bother with.

Cartesian Frame

The Cartesian Frame is comprised of:

� A background rectangle.

� Up to 4 axes, which can be altered.

� The necessary attributes for a frame (see Subsection 5.6.1).

All attributes of the Cartesian Frame are of type special, meaning they must be handled

by the Object Addon itself.

180 CHAPTER 5. WEBIPP

1 obj.defs = {

2 x: ["special", "scale", {

3 name: ["special", "string"],

4 domain: ["special", "domain"],

5 range: ["special", "range"]

6 }],

7 y: ["special", "scale", {

8 name: ["special", "string"],

9 domain: ["special", "domain"],

10 range: ["special", "range"]

11 }],

12 axes: ["special", "axes", {

13 opts: ["special", "axes -opts"]

14 }],

15 dim: ["special", "dim"],

16 transform: ["special", "transform"]

17 };

The attributes x and y are particularly special, as they themselves do nothing. Their

children however are very important in defining the arbitrary coordinate space the Frame

defines. These scales are implemented by use of D3’s linear and ordinal scales.

1 var updateScale =

2 function(ScaleName){

3 // If scale is x, range maps to width (dim [0])

4 // else it's y, and range maps to height (dim [1])

5 if(ScaleName === "x"){

6 var rangemap = curVars.attr.dim [0];

7 } else{

8 var rangemap = curVars.attr.dim [1];

9 }

10 var valType = typeof curVars.attr[ScaleName + "-domain

"][0];

11 switch(valType){

12 case "number ":

13 curVars.attr[ScaleName] = d3.scale.linear ()

14 .domain(curVars.attr[ScaleName + "-domain "])

15 .range(curVars.attr[ScaleName + "-range "]

16 .map(function(x) {return x * rangemap ;}));

5.7. CREATING AN OBJECT ADDON 181

17 break;

18 case "string ":

19 curVars.attr[ScaleName] = d3.scale.ordinal ()

20 .domain(curVars.attr[ScaleName + "-domain "])

21 .rangePoints(curVars.attr[ScaleName + "-range"]

22 .map(function(x) {return x * rangemap ;}), 1);

23 break;

24 }

25

26 wbip.cm.loweval ();

27 };

updateScale handles the hard bits of changing the Scales, so the setattr code for these

children attributes are simple:

1 case "x-name":

2 curVars.attr[name] = val;

3 updateScale("x");

4 break;

5 case "y-name":

6 curVars.attr[name] = val;

7 updateScale("y");

8 break;

9 case "x-domain":

10 case "x-range":

11 val = eval(val);

12 curVars.attr[name] = val;

13 updateScale("x");

14 break;

15 case "y-domain":

16 case "y-range":

17 val = eval(val);

18 curVars.attr[name] = val;

19 updateScale("y");

20 break;

To make it easier to set these children meaningful values, x and y can take Data inputs,

which are used to populate their children.

1 case "x":

2 case "y":

182 CHAPTER 5. WEBIPP

3 // Only accepts wbip.data inputs

4 if(val.substr(0, 9) === "wbip.data"){

5 <Ugly Regular Expression that sets a smart name to -name >

6

7 val = eval(val);

8 var valType = typeof val [0];

9 switch(valType){

10 case "number":

11 curVars.attr[name + "-domain"] = d3.extent(val);

12 break;

13 case "string":

14 curVars.attr[name + "-domain"] = val;

15 break;

16 }

17 updateScale(name);

18 }

19 break;

Changing the axes requires some changes to low-level code, but here again another function

is used to make life easier.

1 case "axes":

2 val = eval(val);

3 if(!wbip.utils.isArray(val)){val = [val];}

4 curVars.attr[name] = val;

5 var fromto = wbip.cm.findbyid(wbip.cm.low , curID);

6 var searchstr = 'wbip.frcart.axes(curG , ';

7 var newval = searchstr + JSON.stringify(val) + ");";

8 wbip.cm.replaceline(wbip.cm.low , fromto , searchstr , newval)

;

9 wbip.cm.loweval ();

10 break;

The effect of this is simply to change this one line:

1 wbip.frcart.axes(curG , [1, 2]);

This line defines which of the 4 axes the Frame should display. It calls the function

wbip.frcart.axes, which is too complex to go into detail here.

5.8. CREATING A VALUE INTERFACE 183

Summary on Complex Objects

By use of special attributes it is possible to tie together several different objects and make

use of all sorts of code to create objects that are complex, yet easy to use. However creating

these does require a significant understanding of the various libraries WeBIPP is built on,

much more so than when creating a simple Object Addon.

5.8 Creating a Value Interface

When the user desires to change the value of an attribute for an Object, it often helps to

have a nice interface to do so. These are provided via Value Interfaces. Which interface

is called depends on the category assigned to the attributes in its definition (see Subsec-

tion 5.7.3), for instance if an attribute is of category numeric, WeBIPP will check to see if

wbip.valintf.numeric is defined, if so it will call this interface. Otherwise it will fall back

on the default interface, wbip.valintf.none.

It is possible to overwrite the Value Interfaces provided by WeBIPP, or to add new Value

Interfaces, perhaps as part of a new Object Addon.

The process for creating a new Value Interface for WeBIPP is explained below. As the

code can vary greatly, two example Value Interfaces are provided.

For more examples, see Libs_Internal/WeBIPP_ValInterface.js.

5.8.1 Assign the Value Interface

The process begins by assigning the value interface to the correct place. To create a Value In-

terface for category numeric, we would need to assign a function to wbip.valintf.numeric.

If the code doing so is loaded as an Addon after the base Value Interfaces provided for We-

BIPP are already loaded, then the new interface will overwrite any existing interface.

All Value Interface functions can take up to five arguments, of which only returnfunc is

mandatory. The rest merely carry additional information to provide a more useful interface.

returnfunc - The function to call on the final return value. That is, once the user has

chosen a new value via the interface, that value should be passed as a string to

returnfunc.

initval - The initial value of the attribute being modified.

aiID - The ID of the Attribute Interface that is calling the Value Interface.

tarID - The ID of the Target Object being modified.

curAttr - The name of the attribute being modified.

184 CHAPTER 5. WEBIPP

For example, the numeric interface (which only makes use of the first three arguments):

1 wbip.valintf.numeric =

2 function(returnfunc , initval , aiID){

3 <Various Code >

4 };

5.8.2 The Logical Interface

The simplest of the Value Interfaces provided with WeBIPP is for logical attributes.

Despite being an ‘interface’, all it does is flip the value between true and false, the only

two valid logical values.

1 function(returnfunc , initval){

2 if(initval === true){initval = "true";}

3 returnfunc(String(initval !== "true"));

4 };

If the initval given is true as a JavaScript logical (and not a string), it is first converted

to a string. Then a logical check is made to flip between true and false, with the result

being passed to returnfunc as a string. Because of the initial coercion, this means an

initial value of either true or "true" will become "false", while any other initial value

will become "true".

5.8.3 The Numeric Interface

The Value Interface for numeric attributes opens a Free Form Window that looks a bit

like a calculator. This can then be used to input the number desired, and also to perform

arithmetic operations on the current value.

The Numeric Interface makes use of one of the interface templates provided, the Button

Interface. This provides an editable text area (using CodeMirror for syntax highlighting),

an indicator for whether the expression in the text area is valid, along with any number of

buttons as defined. The code required for the Numeric Interface is simply to specify the

right arguments to the Button Interface function.

1 function(returnfunc , initval , aiID){

2 <Define Cancel Func >

3 <Define Eval Func >

4 <Define Other Arguments >

5 <Call Button Interface >

6 };

5.8. CREATING A VALUE INTERFACE 185

Define Cancel Func

If while messing with the interface the user decides to cancel out, WeBIPP must return

everything to the way it was. The cancelfunc is what does this.

1 var cancelfunc =

2 function (){

3 wbip.outcode.freeze = true;

4 returnfunc(initval);

5 wbip.outcode.freeze = false;

6 };

wbip.outcode.freeze can be used to freeze writing to the CodeMirror instances, allowing

evaluation without permanent writing of code. We then simply send initval back to

returnfunc, which restores the original value to the object.

Without freezing, the call to returnfunc would write a new setattr line to the CodeMir-

ror instances, adding undesirable clutter.

Define Eval Func

The initval provided may not simply be a number. It could be an array of numbers (e.g.

because it corresponds to data values) or even some kind of JavaScript expression (stored

as a string prefixed with expr:, e.g. expr:Math.pow(5, 2)). The evalfunc correctly han-

dles the OV when evaluating the expression created via the interface (notice similarities to

discerning valtype in wbip.setattr, see Section 5.9)

1 var evalfunc =

2 // Correctly handle the various cases of original value

3 function(expr){

4 // Only need to do complicated stuff if OV is used

5 if(expr.match("OV") !== null){

6 // if initval is an expr

7 if(initval.substr(0, 5) === "expr:"){

8 return "expr:" + expr.replace("OV", initval.substr (5)

, "g");

9 } else{

10 // else try evaluating initval

11 var valreal = eval(initval);

12 // if valreal is just a number ,

13 // can return new number

14 if(typeof valreal === "number"){

186 CHAPTER 5. WEBIPP

15 return eval(expr.replace("OV", initval , "g")).

toString ();

16 }

17 // if valreal is an array , need to

18 // prefix "expr:"

19 // append "[d]" to valreal

20 if(wbip.utils.isArray(valreal)){

21 return "expr:" + expr.replace("OV", initval + "[d]"

, "g");

22 }

23 }

24 } else{

25 // Direct eval

26 return eval(expr).toString ();

27 }

28 };

Understanding this code requires more detail than this chapter covers, suffice to say were it

not for the ability to manipulate the initial value (original value, OV), evalfunc would simply

be eval(expr).toString(), which would for instance convert "1 + 2" to "3". However a

more complicated function can be used to parse the expression generated via the interface,

to accomplish more powerful end results.

Define Other Arguments

Now it is simply a matter of defining some arguments, most important being the layout of

the buttons, and what the buttons contain.

layout - of the form [ncols, nrows].

btndef - a JavaScript ‘matrix’, which is really a nested array. The contents can be

undefined (no button drawn), a string (the button label), or a JavaScript object

which can specify the label, a tooltip (which displays when the user hovers their

mouse over the button) and width or height of the button (which are in relative terms,

thus {width: 2} indicates a button roughly twice as wide as a normal button).

See how the arguments set below correspond to the resulting interface, Figure 5.76.

1 var curID = aiID + "-valintf";

2 var layout = [7, 3]; // 3x7 matrix

3 var btndef =

5.8. CREATING A VALUE INTERFACE 187

4 [[7, 8, 9, "+", "-", "(", ")"],

5 [4, 5, 6, "*", "/", {label: "OV", tooltip: "Represents the

original value", width: 2}, undefined],

6 [1, 2, 3, 0, ".", {label: "SET", width: 2}, undefined]];

Figure 5.76: Two examples of the Numeric Value Interface. Left: Assigning a specific
value of 150. Right: Modifying the OV (Original Value), the mouse is over the OV button,
highlighting it and displaying the tooltip (if defined).

Call Button Interface

1 wbip.btnintf.new(wbip.vars.svg , curID , returnfunc ,

2 cancelfunc , evalfunc , layout , btndef);

Additionally, wbip.btnintf.new can accept three more (optional) arguments:

btndim - The dimension of the buttons (in pixels), default [20, 20].

padding - The padding between the buttons (in pixels), default 5.

transxy - The starting position of the Button Interface, default [360, 160]. The starting

position is not that important as the interface is a Free Form Window and the user is

free to move it to a more convenient place.

188 CHAPTER 5. WEBIPP

5.9 Core’s Set Attribute

As mentioned, WeBIPP Core provides a default setattr function that Object Addons can

rely on for convenience. This function is complex, handling multiple types of attributes

and intelligently adjusting low-level code to implement the new attribute value. It is not

necessary to understand how the function accomplishes this in order to make use of it, thus

the code will not be examined in depth and only a brief overview is given.

1 wbip.setattr =

2 function(curID , attrdef , name , val){

3 // Below are the major processes in the function

4 // It does not cover every process

5 <Handle useScale type >

6 <Process value and discern valtype >

7 <Handle auto useScale >

8 <Apply Scale if needed >

9 <Adjust low -level code >

10 };

5.9.1 Handle useScale type

When an Object Addon is created, it may have one or more attributes of type useScale (e.g.

x-useScale), which determine if its parent attribute (e.g. x) makes use of a corresponding

Scale provided by its parent frame (see Subsection 5.7.3). Valid values for useScale are

true, false and auto (see Subsection 5.9.3 on how auto is handled).

When a useScale attribute is changed, this impacts how its parent attribute should

be handled. In essence, a setattr for a useScale must call a subsequent setattr on its

parent. For efficiency, a double-call to setattr is not made. Instead, it is handled by saving

the useScale value, then setattr pretends it is setting the value of the parent attribute

(by changing the values of the arguments). This results in the relevant parts of the low-level

code being updated to ensure the parent attribute is using (or not using) the Scale without

a double call to setattr.

1 if(attrdef [0]. split("-")[0] === "useScale"){

2 val = val === "true";

3 curVars.attr[name] = val;

4 // Pretend

5 name = name.split("-")[0];

6 attrdef = wbip[curVars.name].defs[name];

7 val = curVars.attr[name]. toString ();

5.9. CORE’S SET ATTRIBUTE 189

8 }

5.9.2 Process value and discern valtype

Different from the type of attribute we have, is the type of value we have. The type of value

we have is called valtype and currently there are four types:

value - A single value, e.g. 5 or "black"

vector - An array of some sort, e.g. [1, 2, 3]

expr - A WeBIPP expression, e.g. "expr:[1, 2, 3][d] * 10" - WeBIPP expressions

simply tell WeBIPP to take the value literally with no extra handling. This can give

finer control over what low-level code is written.

(default) - Representing the null or undefined value, being the value of the (unknown)10

default

The following code determines the valtype of the value provided, and may additionally

tidy up the value itself (e.g. "5" would become 5). This process allows wbip.setattr to

handle different types of values relatively painlessly.

1 var valtype = "value";

2 if(val === "(default)"){

3 valtype = "(default)"

4 } else{

5 // if val starts with the "expr:" keyphrase

6 // set type to "expr" and adjust val to remove keyphrase

7 if(val.substr(0, 5) === "expr:"){

8 valtype = "expr";

9 val = val.substr (5);

10 } else{

11 // else try evaluating val

12 try{

13 var valreal = eval(val);

14 // if valreal is just a number ,

15 // set val to that number (for cleanliness)

16 if(typeof valreal === "number"){

17 val = valreal;

18 }

10The default is unknown to WeBIPP Core but is known by the Object Addon itself.

190 CHAPTER 5. WEBIPP

19 // if valreal is an array , set type to be "vector"

20 if(wbip.utils.isArray(valreal)){

21 valtype = "vector";

22 }

23 } catch(e){

24 // assumes val is a normal string (e.g. "black")

25 val = JSON.stringify(val);

26 }

27 }

28 }

5.9.3 Handle auto useScale

1 if((valtype === "vector" || valtype === "expr") &&

2 curVars.attr[name + "-useScale"] === "auto"){

3 curVars.attr[name + "-useScale"] = true;

4 }

Attributes of type useScale can have the value auto, in addition to the simple logical values

(true and false). The value of auto, and how it is handled, is a concession to convenience.

To put it simply, auto attempts to guess what the user would want it to do. The explanation

of how it works is thus: When an Object is first placed, its attributes are generally assigned

a static number (e.g. x = 10). This static number (and any direct adjustments made to

it) has meaning in terms of pixels and the SVG coordinate system, and does not have a

meaningful correlation to any data-based Scale the frame has. Thus when useScale is set

to auto and it is dealing with these static numbers, it treats itself to be false (but remains

of value auto) and does not make use of the frame’s Scale. However, when data is assigned

to the Object, it is often in the context of some kind of data-based Scale, and not in terms

of pixels. Thus when data is assigned to an attribute (e.g. x) which has a child useScale

(e.g. x-useScale) of value auto, the value of this useScale will automatically be set to

true. To summarise: a value of auto is the same as false, except that it can silently switch

to true if data is assigned to its parent attribute. This behaviour may seem arbitrary, but

is often very convenient in actual use of WeBIPP.

5.9.4 Apply Scale if needed

We check if the attribute has a useScale child attribute, and if this value is true the Scale

must be applied. This is done by creating the function scaleval which adds the necessary

code to the value to apply the Scale appropriately. If no Scale needs to be applied, scaleval

simply returns the value unaltered.

5.9. CORE’S SET ATTRIBUTE 191

The Scale can be applied in two different ways: directly or as a distance. Directly is

a direct application of the scale, but for attributes such as width, a value of say 10 really

represents the scaled distance from 0 to 10, and not the position of 10 on a scale that may

not start from 0.

1 if(curVars.attr[name + "-useScale"] === true){

2 var scaledefs = attrdef [2]["useScale"][0]. split("-");

3 var scalename = scaledefs [1];

4 if(scaledefs [2] === "dist"){

5 var scaleval = function(val){

6 return "wbip.distScale(wbip.getScale(curFrame , " +

7 JSON.stringify(scalename) + "), " + val + ")";

8 };

9 } else{

10 var scaleval = function(val){

11 return "wbip.getScale(curFrame , " + JSON.stringify(

scalename) + ")(" + val + ")";

12 };

13 }

14 } else{

15 var scaleval = function(val){return val ;};

16 }

5.9.5 Adjust low-level code

This section is exceptionally complex and makes significant use of the CodeMirror API

which is well beyond the scope of this chapter. What it does will instead be explained by

way of example. Suppose the user has created a circle. The following low-level code would

be generated.

1 // MARKER gEL2

2 var curFrame = d3.select("#gEL1");

3 var curDim = wbip.getdim("gEL1");

4 var curG = curFrame.append("g")

5 .attr("id", "gEL2")

6 .classed ({"wbip -obj -circle":true ,"wbip -gobj":true});

7 var selData = curG.selectAll("*")

8 .data(d3.range (1));

9 selData.enter().append("circle")

192 CHAPTER 5. WEBIPP

10 .attr("cx", 91)

11 .attr("cy", 206)

12 .attr("r", 10);//attrEND

The user then assigns the data speed (from the dataset datCars) to cx. As this is not a

special attribute, Circle’s setattr forwards this call to wbip.setattr which intelligently

finds the right bits of low-level code and adjusts them thus (changes are noted below):

1 // MARKER gEL2

2 var curFrame = d3.select("#gEL1");

3 var curDim = wbip.getdim("gEL1");

4 var curG = curFrame.append("g")

5 .attr("id", "gEL2")

6 .classed ({"wbip -obj -circle":true ,"wbip -gobj":true});

7 var selData = curG.selectAll("*")

8 .data(d3.range (50));

9 selData.enter().append("circle")

10 .attr("cx", function(d){return wbip.getScale(curFrame , "x")

(wbip.data["datCars"]["speed"][d]);})

11 .attr("cy", 206)

12 .attr("r", 10);//attrEND

Figure 5.77: How the Circle looks before (left) and after (right). Note that for the right
graph, many of the cx values are the same, resulting in overlapping circles and the appear-
ance of a smaller number of circles than the 50 that actually exist.

The first change is to the .data line, which will mean there are now 50 Circles instead of 1.

1 // Before

2 .data(d3.range (1));

5.9. CORE’S SET ATTRIBUTE 193

1 // After

2 .data(d3.range (50));

The second change is to the cx line, changing the static value to a function that will apply

the 50 values of speed to the 50 different Circles.

Implicit in this code is that the default value of cx-useScale was auto. When a data

vector like speed is assigned to cx, cx-useScale will have been set to true automatically

behind the scenes (see Subsection 5.9.3). Which is why the After code uses wbip.getScale

to apply the Scale.

1 // Before

2 .attr("cx", 116)

1 // After

2 .attr("cx", function(d){return wbip.getScale(curFrame , "x")

(wbip.data["datCars"]["speed"][d]);})

With the low-level code adjusted, it is evaluated, updating the SVG image to the new values,

and completing the setting of the attribute value.

194 CHAPTER 5. WEBIPP

5.10 Discussion and Limitations

The vision for WeBIPP was to create a tool that is both easy-to-use (like the GUI tools)

and powerful (like the Code tools). To realise this vision, a number of objectives were set,

with the key ones being summarised thus:

� Possess an interactive GUI that does not require coding knowledge to use, and hence

is as easy-to-use as existing GUI tools.

� Capable of creating a diverse range of graphics, not just a limited predefined set.

� Easily extended with code, so that those with coding knowledge are not restricted by

the interface, and hence is as powerful as Code tools.

The ideal was to have a GUI that makes accessible the basic tasks that can be done with

Code, enabling non-coders to utilise the basic building blocks of graphics, while simultane-

ously not limiting coders with the interface. Other GUI tools tend to restrict the user to

a limited set of predefined graphics, and those that do give access to more basic building

blocks still restrict the user to only what the interface is capable of handling.

WeBIPP is different. Though it gives access to the basic building blocks through a GUI

(see Section 5.3), this is really a front-end to writing code (see Section 5.6), hence anyone

who desires to do more than what the GUI enables, can do so by directly writing extra code.

This is a good thing, as WeBIPP still has quite a primitive GUI. Compared to other GUI

tools, ones that specialise in making it easy to create one of the standard statistical plots,

creating one through WeBIPP (e.g. see Section 5.4) requires quite a bit more steps using

the basic building blocks currently provided, and in some cases it may be necessary to not

rely on the WeBIPP GUI at all (e.g. see Subsection 5.5.3). However, the addon capabilities

of WeBIPP (see Section 5.7) mean it should be possible to create Addons that provide the

standard statistical plots, making it as easy to create such plots with WeBIPP as it is with

other GUI tools, while still giving access to the basic building blocks and the capability

to write and re-use code. This could be achieved in a similar way to the Cartesian Frame

Addon (see Section 5.7.10) which consists of multiple sub-elements that are unified into a

‘single’ WeBIPP object, or by making use of the Functionise feature (see Subsection 5.5.9),

by exporting the Functionised code as an Addon. A better Functionise interface is necessary

to make the latter possible (and easy), and this is one of the eatures planned for the future.

Though the GUI is still fairly primitive, and though the Addons currently available are

limited, the current version of WeBIPP works as a proof-of-concept, demonstrating that the

objectives set out are feasible, and that it is possible to create a tool that is both easy-to-use

and powerful, that it is possible to create a tool that is not so limited in scope, as the other

tools are. Not only is it an enabling tool that enables non-coders to do things they could

5.10. DISCUSSION AND LIMITATIONS 195

not before. It is also an efficiency tool, leaving users who are happy with code free to switch

between using helpful interface elements (where this is easier, faster or more convenient)

and writing code directly (giving access to the full potential of code tools). However, in

setting out to realise this vision, a number of choices had to be made, choices that brought

with them limitations.

WeBIPP is web-based, making it much more accessible to a broader audience. The user

does not have to install anything, they just need a modern browser. But being web-based

carries with it limitations, as web-based scripts have necessary restrictions in place, e.g. to

limit the effects of malicious websites. Another of WeBIPP’s philosophies is that everything

is an addon, but unlike an installed program, such as R, that (once installed) can easily

install packages to extend functionality, it is difficult for a JavaScript tool, that is restricted

in what it can do, to download and install addons on-the-fly. Loading addons typically

requires rewriting the HTML code that launches WeBIPP, a task that is most cumbersome.

Other JavaScript libraries that also have many addon capabilities tend to tackle this task by

having a server that automatically compiles all the needed addons into a single JavaScript

file, and something like this may be necessary for WeBIPP in the future, to make it easier

to mix-and-match different addons.

Another choice was how to draw the graphic. The two main competitors for modern

web-based graphics are SVG and HTML5 Canvas. The SVG format has many advantages,

it is an open standard, has an object system that enables object-based interactions, uses

vector-based drawing and is generally very powerful in what it can do. For these reasons

it was chosen over Canvas, but Canvas has one major advantage over SVG: performance.

Being raster-based it is much more conducive to hardware acceleration meaning Canvas can

perform significantly better than SVG, particularly when dealing with a large number of

objects being drawn (as Canvas has no native concept of objects and does not have to keep

track of them and to re-render them). This limitation can be noticeable when trying to use

WeBIPP with a large dataset. As this is most problematic when dealing with large datasets,

one solution is to prototype first using a small subset of the data, and then redrawing a

limited number of times with the full dataset, something that is reasonably simple to do

with WeBIPP.

This performance problem is worsened due to how WeBIPP works. It essentially writes

high-level code, that writes low-level code, that writes the XML document (the SVG), which

is finally rendered by the browser. This layered process gives WeBIPP much of its power and

flexibility, but comes at a definite performance cost. Worse, in its current state WeBIPP is

poorly optimised in terms of what code it evaluates as the different levels of code are written

and changed. It often evaluates more than is necessary to do the job, which again comes at

a performance cost. Earlier versions of WeBIPP were in fact more optimised, but were less

generalised, and when it came to extending WeBIPP via addons, this optimisation was often

196 CHAPTER 5. WEBIPP

a barrier. The current version trades this performance for increased generality and addon

compatibility. However, some optimisation should be possible to improve performance.

This generalisation also means that the GUI is less tailored. Unlike some other software

that can provide very specific GUI elements and shortcuts for modifying a limited number

of well-defined elements, WeBIPP has to be very general to handle whatever may come its

way via addons. While it is possible to create very specific GUI elements (see Section 5.8),

and indeed Object Addon creators may create very specific Value Interfaces to go with their

Objects, the base interfaces provided by WeBIPP will be, necessarily, very general, and not

quite as easy to use as a more specific interface.

So the same choices that make WeBIPP what it is, and distinguishes it from other tools

that seek similar ends, also limits WeBIPP, often in ways that can never be resolved as they

are inherent to the choices made.

5.11. CONCLUSION AND FUTURE WORK 197

5.11 Conclusion and Future Work

Much of the work done on WeBIPP thus far has been to create a proof-of-concept, a working

tool that demonstrates that the objectives I laid out at the start were feasible and could

lead to a tool both powerful and easy-to-use. This work in creating a practically useful

proof-of-concept is not yet over, and some key features WeBIPP could use are:

� More Objects, in particular different types of Frames and Templates for common plots.

� An easier way to layout Frames, to make it easier to produce juxtaposed plots.

� A better Functionise Interface, to make the process more intuitive.

� An ability to turn Functionise results into an Object Addon.

� Basic data manipulation capabilities, as it is often necessary to perform some trans-

formations of the data to create interesting plots.

� A GUI way to add meaningful interactivity to the graphics.

� Batch processing capabilities, including the ability to export the resulting graphics.

� A way to collate and minify WeBIPP and its addons, to make it easier to mix-and-

match addons.

� An ability to connect to other software, such as R, to make it easier to leverage more

powerful statistical packages when using WeBIPP.

WeBIPP is still very much in early development, and has a lot of unexplored potential.

Future uses for the tool go beyond creating interactive web-based graphics from scratch

without writing code, it could also be used for teaching purposes, where the rapid construc-

tion of graphics from scratch can show students the component parts of graphics and how

they come together to form a statistical graphic. I hope however that the current imple-

mentation works well enough as a proof-of-concept that it demonstrates it is indeed possible

to create a tool both powerful yet easy-to-use.

199

Chapter 6

Conclusion

This thesis has introduced two tools that address some of the problems identified in the

Literature Reviews. TableToLongForm seeks to make more Open Data useful by taking

non-machine-readable hierarchical Tables and converting them into useful, machine-readable

LongForm dataframes. WeBIPP attempts to make powerful graphics more accessible to a

wider audience by bridging the gap between easy-to-use but limited GUI tools, and the

powerful, but hard-to-use code-based tools.

The aim of this thesis was to make Open Data more open, and TableToLongForm does

this by making more data available for manipulation with computer tools, enabling more

technical users to make better use of the data, and these users can ultimately produce the

kind of analyses, graphics, reports and summaries that will make the data consumable by a

wider audience. WeBIPP also makes data more accessible by enabling users without coding

knowledge to do now, what could previously only be done by writing code. Opening up the

creation of new kinds of graphics to a wider audience, as well as making it easier to create

new kinds of graphics, will help in making data more consumable.

Future Work

The future for TableToLongForm is limited. While it is certainly possible to increase its

features with new modules, and while better diagnostics will be developed to increase us-

ability, the fundamental structure of TableToLongForm restricts the kinds of things it can

do. There is a lot of Open Data released in poor formats, and TableToLongForm can

only handle some of it. A true expansion of the same philosophy, a tool that can handle

far more formats, will likely require something quite different, something not as restrictive

as a pure algorithmic approach. But there is another way in which TableToLongForm’s

future is limited, the problem that it tackles may cease to exist, hopefully in the near fu-

ture. Consider for example Statistics New Zealand, which now releases a lot of its data

200 CHAPTER 6. CONCLUSION

via NZ.Stat1. NZ.Stat has a feature to export the data into a CSV, and this CSV file is

already in machine-readable longform. TableToLongForm is now obsolete with regards to

converting data released by Statistics New Zealand, it is quite simply no longer necessary.

While I like to think I had some part in this development, as I have been in contact with

Statistics New Zealand regarding machine-readable data, nonetheless the problem no longer

exists, at least for this organisation. It is my hope that eventually, all data is released in

machine-readable formats, and tools like TableToLongForm become a thing of the past.

WeBIPP on the other hand has much more potential, venturing even beyond the original

intent of the tool. In addition to improving the interface to make it better at doing what it

does, the conceptual basis for WeBIPP has wider applications in teaching. WeBIPP itself

can be used by a teacher to demonstrate to their students how the component parts of

a graphic can come together to create a graph. Students could then get hands-on with

the tool and create graphics themselves, a much more powerful way to learn than simply

watching. But the same principles that make WeBIPP generalised, powerful and yet easy-

to-use could be extended to other easy-to-deploy interactive web tools for other fields. Such

tools could enable users to manipulate and see building before their eyes other systems,

like mathematical equations or physical models, leading to a much more engaging way to

teach these subjects as well. Currently these are only possibilities, but they are exciting

possibilities, and I intend to explore them fully.

Final Remarks

A lot of Open Data is being released and already vast amounts of data are available. But

simply being available does not make them valuable. This thesis has introduced concepts

and tools that will hopefully make Open Data releases more useful, but making data more

accessible and communicating its message to a wider audience is a massive task, one that

goes far beyond what this thesis hopes to achieve. It is my hope that this makes a worthy

contribution to the ongoing effort.

1http://nzdotstat.stats.govt.nz/wbos/Index.aspx

http://nzdotstat.stats.govt.nz/wbos/Index.aspx

BIBLIOGRAPHY 201

Bibliography

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3: Data-driven documents. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) .
URL http://vis.stanford.edu/papers/d3

Chang, W., Wickham, H., 2015. ggvis: Interactive Grammar of Graphics. R package version
0.4.2.
URL http://CRAN.R-project.org/package=ggvis

Cleveland, W. S., 1985. The Elements of Graphing Data. Wadsworth Publ. Co., Belmont,
CA, USA.

Cole, R., 2012. Some Observations on the Practice of Open Data As Opposed to Its Promise.
The Journal of Community Informatics 8 (2).
URL http://ci-journal.net/index.php/ciej/article/view/920

Couture-Beil, A., 2012. rjson: JSON for R. R package version 0.2.10.
URL http://CRAN.R-project.org/package=rjson

Creative Commons, 2012.
URL http://creativecommons.org/

D3.js, 2012.
URL http://d3js.org/

Davies, T., Bawa, Z., 2012a. The Journal of Community Informatics 8 (2).
URL http://ci-journal.net/index.php/ciej/issue/view/41

Davies, T., Bawa, Z., 2012b. The Promises and Perils of Open Government Data (OGD).
The Journal of Community Informatics 8 (2).
URL http://ci-journal.net/index.php/ciej/article/view/929

Department for Education (UK), 2013. NEET statistics quarterly brief: April to June.
URL https://www.gov.uk/government/publications/neet-statistics-

quarterly-brief-april-to-june-2013

Department of Internal Affairs (NZ), 2012. Top 100 Baby Names.
URL http://www.dia.govt.nz/

Google Chart Tools, 2012.
URL https://developers.google.com/chart/

http://vis.stanford.edu/papers/d3
http://CRAN.R-project.org/package=ggvis
http://ci-journal.net/index.php/ciej/article/view/920
http://CRAN.R-project.org/package=rjson
http://creativecommons.org/
http://d3js.org/
http://ci-journal.net/index.php/ciej/issue/view/41
http://ci-journal.net/index.php/ciej/article/view/929
https://www.gov.uk/government/publications/neet-statistics-quarterly-brief-april-to-june-2013
https://www.gov.uk/government/publications/neet-statistics-quarterly-brief-april-to-june-2013
http://www.dia.govt.nz/
https://developers.google.com/chart/

202 BIBLIOGRAPHY

Highcharts, 2012.
URL http://www.highcharts.com/

Hocking, T. D., Sievert, C., Tsai, T., VanderPlas, S., 2015. Two new keywords for
interactive, animated plot design: clickSelects and showSelected.
URL https://raw.githubusercontent.com/tdhock/animint-paper/master/

HOCKING-animint.pdf

Ihaka, R., Mar. 2003. Colour for Presentation Graphics. In: Proceedings of the 3rd Interna-
tional Workshop on Distributed Statistical Computing (DSC 2003). Technische Univer-
sität Wien, Vienna, Austria.
URL http://www.r-project.org/conferences/DSC-2003/Proceedings/Ihaka.pdf

Inland Revenue, 2012. Tax statistics.
URL http://www.ird.govt.nz/aboutir/external-stats/

Konold, C., 2007. Designing a data analysis tool for learners. In: Thinking with data: The
33rd annual Carnegie Symposium on cognition. pp. 267–291.

Land Information New Zealand, 2012a. Open Data Service.
URL http://www.linz.govt.nz/open-data-service

Land Information New Zealand, 2012b. Open Data Service Agency Demand Survey.

Lang, D. T., 2012a. RCurl: General network (HTTP/FTP/...) client interface for R. R
package version 1.91-1.1.
URL http://CRAN.R-project.org/package=RCurl

Lang, D. T., 2012b. XML: Tools for parsing and generating XML within R and S-Plus. R
package version 3.9-4.1.
URL http://CRAN.R-project.org/package=XML

Many Eyes, 2012.
URL http://www-958.ibm.com/software/data/cognos/manyeyes/

Mirai Solutions GmbH, 2012. XLConnect: Excel Connector for R. R package version 0.2-0.
URL http://CRAN.R-project.org/package=XLConnect

Murrell, P., Potter, S., 2015. gridSVG: Export grid Graphics as SVG. R package version
1.4-3.
URL http://CRAN.R-project.org/package=gridSVG

New Zealand Government ICT, 2010. NZGOAL (New Zealand Government Open Access
and Licensing) framework.
URL http://ict.govt.nz/guidance-and-resources/open-government/new-

zealand-government-open-access-and-licensing-nzgoal-framework/

New Zealand Government ICT, 2011. Declaration on Open and Transparent Government.
URL http://ict.govt.nz/guidance-and-resources/open-government/

declaration-open-and-transparent-government/

http://www.highcharts.com/
https://raw.githubusercontent.com/tdhock/animint-paper/master/HOCKING-animint.pdf
https://raw.githubusercontent.com/tdhock/animint-paper/master/HOCKING-animint.pdf
http://www.r-project.org/conferences/DSC-2003/Proceedings/Ihaka.pdf
http://www.ird.govt.nz/aboutir/external-stats/
http://www.linz.govt.nz/open-data-service
http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=XML
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://CRAN.R-project.org/package=XLConnect
http://CRAN.R-project.org/package=gridSVG
http://ict.govt.nz/guidance-and-resources/open-government/new-zealand-government-open-access-and-licensing-nzgoal-framework/
http://ict.govt.nz/guidance-and-resources/open-government/new-zealand-government-open-access-and-licensing-nzgoal-framework/
http://ict.govt.nz/guidance-and-resources/open-government/declaration-open-and-transparent-government/
http://ict.govt.nz/guidance-and-resources/open-government/declaration-open-and-transparent-government/

BIBLIOGRAPHY 203

New Zealand Government ICT, 2012a.
URL http://ict.govt.nz/

New Zealand Government ICT, 2012b. 2012 report on adoption of the Declaration.
URL http://ict.govt.nz/guidance-and-resources/open-government/

declaration-open-and-transparent-government/2012-report-adoption-

declaration/

New Zealand Qualifications Authority, 2012. Secondary School Statistics.
URL http://www.nzqa.govt.nz/

Nolan, D., Lang, D. T., 2012. Interactive and animated scalable vector graphics and r data
displays. Journal of Statistical Software 46 (1), 1–88.
URL http://www.jstatsoft.org/index.php/jss/article/view/v046i01

Oh, J., Dec. 2014. Automatic Conversion of Tables to LongForm Dataframes. The R Journal
6 (2), 16–26.
URL http://journal.r-project.org/archive/2014-2/oh.pdf

Open Knowledge Foundation, 2012.
URL http://okfn.org/

Open Knowledge Foundation, Jan 2013. “Carbon dioxide data is not on the worlds
dashboard” says Hans Rosling.
URL http://blog.okfn.org/2013/01/21/carbon-dioxide-data-is-not-on-the-

worlds-dashboard-says-hans-rosling/

Paper.js, 2012.
URL http://paperjs.org/

Penk, S., Tobin, R. (Eds.), March 2010. Privacy Law in New Zealand. Brookers Ltd.

Plotly, 2014.
URL https://plot.ly/

Processing, 2012.
URL http://processing.org/

Processing.js, 2012.
URL http://processingjs.org/

R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/

Raphaël.js, 2012.
URL http://raphaeljs.com/

Reas, C., Fry, B., 2006. Processing: programming for the media arts. AI & Society 20 (4),
526 – 538.

http://ict.govt.nz/
http://ict.govt.nz/guidance-and-resources/open-government/declaration-open-and-transparent-government/2012-report-adoption-declaration/
http://ict.govt.nz/guidance-and-resources/open-government/declaration-open-and-transparent-government/2012-report-adoption-declaration/
http://ict.govt.nz/guidance-and-resources/open-government/declaration-open-and-transparent-government/2012-report-adoption-declaration/
http://www.nzqa.govt.nz/
http://www.jstatsoft.org/index.php/jss/article/view/v046i01
http://journal.r-project.org/archive/2014-2/oh.pdf
http://okfn.org/
http://blog.okfn.org/2013/01/21/carbon-dioxide-data-is-not-on-the-worlds-dashboard-says-hans-rosling/
http://blog.okfn.org/2013/01/21/carbon-dioxide-data-is-not-on-the-worlds-dashboard-says-hans-rosling/
http://paperjs.org/
https://plot.ly/
http://processing.org/
http://processingjs.org/
http://www.R-project.org/
http://raphaeljs.com/

204 BIBLIOGRAPHY

Robinson, D. G., Yu, H., Zeller, W. P., Felten, E. W., 2009. Government data and the
invisible hand. Yale Journal of Law & Technology 11, 160.
URL http://ssrn.com/abstract=1138083

Sarkar, D., 2008a. Lattice: Multivariate Data Visualization with R. Springer, New York.
URL http://lmdvr.r-forge.r-project.org

Sarkar, D., 2008b. Lattice: Multivariate Data Visualization with R. Springer, New York,
iSBN 978-0-387-75968-5.
URL http://lmdvr.r-forge.r-project.org

State Services Commission, 2012. New Zealand’s State sector - the organisations.
URL http://www.ssc.govt.nz/state_sector_organisations

Statisphere, 2012a.
URL http://www.statisphere.govt.nz/

Statisphere, 2012b. Principles and protocols for producers of Tier 1 statistics.
URL http://www.statisphere.govt.nz/tier1-statistics/principles-

protocols.aspx

Statisphere, 2012c. Tier 1 statistics.
URL http://www.statisphere.govt.nz/tier1-statistics.aspx

Statistics New Zealand, 2011. Age-Sex Population Pyramids.
URL http://www.stats.govt.nz/

Statistics New Zealand, 2012. About NZ.Stat.
URL http://www.stats.govt.nz/tools_and_services/nzdotstat.aspx

Statistics New Zealand, 2013. Infoshare.
URL http://www.stats.govt.nz/infoshare/

Stolte, C., Tang, D., Hanrahan, P., Nov. 2008. Polaris: a system for query, analysis, and
visualization of multidimensional databases. Commun. ACM 51 (11), 75–84.
URL http://doi.acm.org/10.1145/1400214.1400234

Swayne, D. F., Buja, A., Temple Lang, D., 2004. Exploratory visual analysis of graphs in
GGobi. In: Antoch, J. (Ed.), CompStat: Proceedings in Computational Statistics, 16th
Symposium. Physica-Verlag.

Tableau, 2012.
URL http://www.tableausoftware.com/products/public

Urbanek, S., Theus, M., 2003. iplots: high interaction graphics for r. In: Proceedings of the
3rd International Workshop on Distributed Statistical Computing.

Wickham, H., 2009. ggplot2: elegant graphics for data analysis. Springer, New York.
URL http://had.co.nz/ggplot2/book

Wickham, H., 2014. tidyr: Easily Tidy Data with spread() and gather() Functions. R pack-
age version 0.2.0.
URL http://CRAN.R-project.org/package=tidyr

http://ssrn.com/abstract=1138083
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
http://www.ssc.govt.nz/state_sector_organisations
http://www.statisphere.govt.nz/
http://www.statisphere.govt.nz/tier1-statistics/principles-protocols.aspx
http://www.statisphere.govt.nz/tier1-statistics/principles-protocols.aspx
http://www.statisphere.govt.nz/tier1-statistics.aspx
http://www.stats.govt.nz/
http://www.stats.govt.nz/tools_and_services/nzdotstat.aspx
http://www.stats.govt.nz/infoshare/
http://doi.acm.org/10.1145/1400214.1400234
http://www.tableausoftware.com/products/public
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=tidyr

BIBLIOGRAPHY 205

Wickham, H., Francois, R., 2015. dplyr: A Grammar of Data Manipulation. R package
version 0.4.2.
URL http://CRAN.R-project.org/package=dplyr

Wilkinson, L., 1999. The Grammar of Graphics. Springer-Verlag New York, Inc.

World Wide Web Consortium, 2012.
URL http://www.w3.org/

Xie, Y., Hofmann, H., Cheng, X., et al., 2014. Reactive programming for interactive graph-
ics. Statistical Science 29 (2), 201–213.

Xie, Y., Hofmann, H., Cook, D., Cheng, X., Schloerke, B., Vendettuoli, M., Yin, T., Wick-
ham, H., Lawrence, M., 2013. Cranvas: Interactive statistical graphics based on qt. In:
useR-2012.

http://CRAN.R-project.org/package=dplyr
http://www.w3.org/

	Contents
	List of Figures
	List of Tables
	Introduction
	Open Data in New Zealand
	Introduction
	What is Open Data?
	A Definition
	Users of Open Data
	Good and Bad Open Data
	Data Formats
	Other Relevant Topics

	Overview of Open Data in New Zealand
	Overview of the Overview
	Statistics New Zealand
	data.govt.nz
	The Template
	Major Sources
	Minor Sources
	Not Sources
	Outside Scope

	Conclusion

	TableToLongForm
	Introduction
	The Problem with Tables
	Core Concepts

	How to Use
	Obtaining TableToLongForm
	Loading the Data
	Calling TableToLongForm
	Manual Conversion
	Diagnostics
	Extending TableToLongForm

	Vocabulary
	Implementation Details
	Identification
	Purpose
	Key Challenges
	Limitations and Future Work

	Discern Parentage
	Purpose
	Key Challenges
	Limitations and Future Work

	Reconstruction
	Summary

	Graphical Tools
	Introduction
	Free
	Interactive Web-based Output
	Tool Classification

	GUI Tools
	Many Eyes
	Tableau Public
	Other GUI Tools

	High-level Languages
	Google Chart Tools
	Highcharts

	Low-level Languages
	Processing.js
	Paper.js
	Raphaël.js
	D3.js (Data-Driven Documents)
	Other Low-level Languages

	Other Relevant Topics
	R
	Raster graphics
	Vector graphics
	HTML5 Canvas Element
	SVG

	Conclusion

	WeBIPP
	Introduction
	Motivation
	Background
	Conceptual framework

	What is WeBIPP
	The Cookie Analogy
	Objectives
	Similar Tools

	How to Use
	Creating a Scatterplot
	The Model
	Read in the Data
	Set up the Axes
	Draw the Dots
	Adding Polish
	The Final Save Data

	Creating a Population Pyramid
	The Model
	Set up the Axes
	Resize the Frame
	Reposition the Frame
	Draw the Dotted Lines
	Draw the Bars
	Draw the Gender Label
	Re-using the Left-Side
	Functionise the Left-Side
	Use the new Function
	Draw the y-axis Labels
	Draw the Title
	Draw the x-axis Label
	Resizing the Finished Pyramid
	The Final Save Data

	How WeBIPP Works
	Frames
	IDvar
	Structure Diagrams

	Creating an Object Addon
	Define a Sub-Namespace
	Define the Icon
	Define the Attributes
	Define how to Set Attribute Values
	Define how to Get Attribute Values
	Define Interactions with the Graph Region
	Any other code, as necessary
	Summary
	Stylesheets
	Creating Complex Objects

	Creating a Value Interface
	Assign the Value Interface
	The Logical Interface
	The Numeric Interface

	Core's Set Attribute
	Handle useScale type
	Process value and discern valtype
	Handle auto useScale
	Apply Scale if needed
	Adjust low-level code

	Discussion and Limitations
	Conclusion and Future Work

	Conclusion
	Bibliography

