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Cordoba, Argentina

2 The .enpeda.. Project, The University of Auckland
Auckland, New Zealand

Abstract. This paper proposes a technique for estimating 3D flow vec-
tors, by combining a KLT tracker with subsequent scale-space analysis
of tracked points. A tracked point defines a 2D vector, which is mapped
into 3D space based on ratios of maxima of scale-space characteristics.
The approach is tested for night-vision sequences as recorded (at Daim-
ler A.G., Germany) for driver assistance projects. Those image sequences
(at 25Hz) are characterized by being slightly blurry and of low contrast.

Key words: motion analysis, motion vector fields, 3D motion, driver assistance

1 Introduction

The estimation of dense motion fields is still a challenging task for vision-based
driver assistance systems (DAS), where motion vectors are often relatively long
even if sequences are taken at a frame rate of more than 30 Hz. This paper
suggests a way to derive 3D directions of observed 2D motion vectors, which
allows a more consistent interpretation of the motion field.

Note that a 3D direction of a motion vector is not yet defining its pose, which
would also require to identify its position (e.g., via stereo analysis). Algorithms
for identifying the 3D pose of projected motion vectors (known as range flow
or scene flow) have been studied, for example, in [10] (and subsequent papers
by the same authors). However, the applied methodology differs from the one
suggested in this paper.

The methods used crucially depend on whether a sparse or a dense repre-
sentation is desired, or whether motion is assumed to be rigid or not. In case of
sparse representations, this involves some kind of spatio-temporal feature match-
ing where, for the monocular case, this is accomplished by methods as known
from structure-from-motion (SfM), which usually assumes a rigid motion of the
whole scene [9]. When more than one view is available, as in the stereo case,
the computation of scene flow relies on integration of depth and temporal in-
formation in some cooperative way [12]. For the case of dense representations,
this involves the minimization of energies in a variational framework in order to



2 Jorge A. Sanchez, Reinhard Klette,, Eduardo Destefanis

add some smoothness constraint needed to deal with the aperture problem [11].
Our approach tries to use the information provided by observed changes in size
(scale) of local image regions over time, when a single camera moves relatively to
the scene. This is known to be a very important source of information for the vi-
sual perception of motion, and we show how to integrate this into computational
vision.

2 Estimation of 3D Directions

We consider a 3D point P , tracked between frames It and It+1, and propose a
possible way for calculating the 3D direction of the observed motion.

2.1 Update Equation

Consider a disk of radius ρ moving towards an ideal pinhole-type camera of
focal length f . Without loss of generality, let the radius move parallel to the
Y -axis of the XY Z-camera coordinate system (i.e., r = Yc − Ye, for center Pc
and an edge point Pe of the disk). A 3D point P = (X,Y, Z) in the world (in
camera coordinates) projects into a point p = (x, y, f) in the image plane, with
x = f XZ and y = f YZ . Point Pc projects into pc = (xc, yc, f), and Pe projects
into pe = (xe, ye, f). The moving disk is at time t at distance Zt, and projected
into image It as a disk of radius rt. We obtain the following for the area of this
projected disk:

At = πr2t = π (yc − ye)2 = f
π

Z2
t

(Yc − Ye)2 = πf
ρ2

Z2

Radius ρ of the disk is constant over time, thus, the product AtZ2
t ∼ ρ2 will also

not change over time.
We consider projections of the disk at times t and t+ 1. Because the ratio of

square roots of areas is proportional to the inverse of the ratio of corresponding
Z-coordinates of the disk, we are able to define a z-ratio

µz =
√
At√
At+1

=
Zt+1

Zt
(1)
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Fig. 1. Two projections of a moving disk, at times t and t + 1.
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either by area or Z-values.
Such a z-ratio can also be defined just for a pair of projected points Pt =

(Xt, Yt, Xt) and Pt+1 = (Xt+1, Yt+1, Zt+1) (just by the ratio of Z-coordinates).
Using the central projection equations for both projected points, we obtain for
their x-ratio and y-ratio the following:

µx =
Xt+1

Xt
=
Zt+1

Zt
· xt+1

xt
= µz

xt+1

xt
(2)

µy =
Yt+1

Yt
=
Zt+1

Zt
· yt+1

yt
= µz

yt+1

yt
(3)

Altogether, this may also be expressed by the following update equation:Xt+1

Yt+1

Zt+1

 =

µx 0 0
0 µy 0
0 0 µz

Xt

Yt
Zt

 (4)

with µx, µy, and µz as in Equations (2), (3), and (1) respectively. In other words,
knowing µz and ratios xt+1

xt
and yt+1

yt
allows to update the position of point Pt

into Pt+1. Assuming that Pt and Pt+1 are positions of one tracked 3D point
P , from time t to time t + 1, we only have to solve two tasks: (1) decide for
a technique to track points from t to t + 1, and (2) estimate µz. If an initial
position P0 of a tracked point P is known then we may identify its 3D position
at subsequent time slots. Without having an initial position, we only have a 3D
direction Pt to Pt+1, but not its 3D position.

2.2 3D Direction of Projected Motion

Consider a mobile platform moving on a planar surface, as illustrated in Figure 2.
The relative motion of a point in 3D space can be expressed (with respect to the
camera coordinate system) by the following increments:

∆X = Xt+1 −Xt = (µx − 1)Xt

∆Y = Yt+1 − Yt = (µy − 1)Yt
∆Z = Zt+1 − Zt = (µz − 1)Zt

The ratios

∆X

∆Z
=
(
µx − 1
µz − 1

)
Xt

Zt
=
(
µx − 1
µz − 1

)
xt
f

(5)

∆Y

∆Z
=
(
µy − 1
µz − 1

)
Yt
Zt

=
(
µy − 1
µz − 1

)
yt
f

(6)

of those increments are the tangents of the navigation angles Φzx and Φzy (see
Figure 2), respectively, that represent the 3D direction of motion (between two
subsequent frames) for a tracked 3D point.



4 Jorge A. Sanchez, Reinhard Klette,, Eduardo Destefanis

Fig. 2. A tilted camera translating along a plane (top left), motion angles on the
ZY -plane (bottom left), and on the ZX-plane (right).

3 Feature Tracking and Test Data

The determination of those navigation angles relays on the detected projected
motion of tracked points in the image plane. Tracking methods for estimating a
dense 2D motion field are known as optical flow techniques.

Actually, the used tracking method is not essential for presenting the basic
idea of our approach for estimating 3D directions; however, it is, of course,
important for obtaining reliable results of the proposed approach.

For this paper we simply used an open implementation [7] of the Lucas-
Kanade [5] feature tracker, with initial points selected as in [8].

Regarding test sequences, we decided for Set 1 (seven night vision stereo
sequences, provided by Daimler A.G.) as available on [1]. Those will be called

Fig. 3. Optical flow computed for Sequences 1 and 2.
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Fig. 4. Optical flow computed for Sequence 3 and 4.

‘Sequence 1’, ‘Sequence 2’, and so forth, as on this website and described in [13].
Additionally, also one ‘Desktop sequence’ was generated and used for perfor-
mance analysis. This desktop sequence was generated by translating a calibrated
camera along an optical bench, with constant 3D viewing angles relatively to the
surface of the desktop.

Figures 3 to 6 illustrate tracking results for Sequences 1 to 7, and the Desktop
sequence. By using relatively high thresholds, only relatively sparse motion fields
are shown. The used coloring is based on the length of the optic flow vectors.

4 Scale Ratio for a Tracked Point

The idea behind the presented approach is as follows: instead of directly tracking
image regions (such as disks, as discussed in Section 2), single feature points are
tracked, but an ‘area of influence’ is assigned to such a point, basically taking
the role of a tracked disk.

Fig. 5. Optical flow computed for Sequence 5 and 6.
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Fig. 6. Optical flow computed for Sequence 7 and the Desktop sequence.

For tracked points, a measure is computed for the ‘extension of the local im-
age structure’ in a local (or semi-local) neighborhood. Such measures, computed
independently for each pair of points (i.e., a 2D flow vector between time t and
t + 1), are then used to determine a scale ratio of associated intensity profiles
‘surrounding’ those feature points, which is finally used as an estimate of the
z-ratio µz.

The approach for detecting scale-ratios follows scale space theory as discussed
in [2, 3]. Note that this is only one option; similar to the variability when deciding
for one optical flow technique, also an alternative method may be used for scale-
ratio estimation.

We briefly recall scale space theory. Given an image function I : R2 → R,
their scale space representation L : R2×R+ → R can be obtained by convolutions

L(p, σ) = (gσ ∗ I)(p)

of image I with a Gauss kernel gσ, obtained by the Gauss function Gσ : R2 → R,

Gσ(p) =
1

2πσ2
e−

1
2σ2 p

T p

parameterized by standard deviation σ ≥ 1.
In [3], a method for automatic scale selection is proposed, based on the evolu-

tion over scales of (possibly non-linear) combinations of normalized derivatives
of L(p, σ). The scale level at which such a response takes a local maxima is
assumed to reflect the characteristic diameter of the surrounding data. The op-
erator used in our experiments for scale selection is the normalized Laplacian,
which is defined by

∇normL(p, t) = σ2
∣∣(D2

xL)(p, σ) + (D2
yL)(p, σ)

∣∣ (7)

where D2
x and D2

y are the second order derivatives of L (at scale level σ).
We use Figure 7 for visualizing the scale selection principle. In this simple

example, the image on the left contains three white disks with center points p1,
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p2, and p3. On the right, the figure shows the scale evolution of (7) for those
three center points. In this example, the ratio between the scales, identified by
maxima of the scale characteristics of those three center points, equals the ratio
of areas of the corresponding white disks.

Given two consecutive frames It and It+1 of a sequence. We calculate their
scale space representations Lt(p, σ) and Lt+1(p, σ), for selected scales σ. For each
selected pair of points (as a result of the tracking algorithm), we follow their
scale characteristics for the normalized Laplacian of Lt(p, σ) and Lt+1(p, σ), and
identify local maxima over the selected scales.

The function
c(σ) = Kσpe−σ/θ

is used in order to obtain sub-scale estimates, where the parameters of this
function are directly computed from the local maxima, extracted as an initial
estimate, and its both neighboring values σ1 and σ2. Applying this approach,
the maximum (i.e., magnitude)

K = c(σ1)σ−a1 eσmax/θ

is identified at a sub-scale value σmax = a ·θ The scale matching process between
both projections pt and pt+1 of the tracked point is then based on the magnitude
K of the interpolation function at the scale level σmax.

The determination of the scale ratio, associated to characteristic diameters
of a tracked pair of points, allows to estimate the corresponding µz (see Equa-
tion (1)) and thus also to estimate the navigation angles (see Equations (5) and
(6)).
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Fig. 7. (a) White disks of radius 25, 50 and 75 pixel. (b) Evolution on the Laplacian
for center points pi, for i = 1, 2, 3.
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After the estimation of the two navigation angles (for all pairs of tracked
points), histograms of these two values are computed. This allows to calculate
one summarizing 3D direction, for all the detected 3D directions between images
It and It+1. This summarizing 3D direction results from

φ̂zx = arg maxθ h(θzx)

φ̂zy = arg maxθ h(θzy)

where h(θzx) and h(θzy) are the histograms of the navigation angles. Figure 8
shows an example of generated histograms.
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Fig. 8. Histogram examples for Sequences 3, 5 and the Desktop sequence.
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Fig. 9. Tracked points and detected scales (defining the size of the shown disks).

5 The Algorithm

To summarize, given a pair of consecutive images, It and It+1, the proposed
algorithm consists of the following steps:

1. Compute the optical flow between images It and It+1, as described in Sec-
tion 3.

2. For the same images, obtain their scale-space representation, Lt(p, σ) and
Lt+1(p, σ), for a given set of predefined scales σ.

3. Select characteristic scales for the corresponding points resulting from Step
1.

4. Compute the scale-ratio from the detected scale maxima as (σt+1)max/(σt)max
and compute the corresponding µ–factors.

5. Obtain the motion angles as the arcus tangent of (5) and (6).

For the construction of the scale space representations (Step 2), an exponen-
tial sampling was used, where the sigma value for scale level (n) is obtained from
scale level (n− 1) as

σn = kσn−1 = knσ0 for n = 1, 2, . . . , N − 1

This allows the use of the Difference of Gaussians (DoG) operator as a fast
approximation technique of the Laplacian operator, as in [4]. Here, given σ0 and
σk, a scale space representation consisting of N levels is computed for It and
It+1, respectively. In practice, 17 levels are computed with σ0 = 1 and k = 1.2.
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Given a scale selection operator, the scale selection for points in Step 3 con-
sists of analyzing the evolution over scales of the operator’s response (i.e., if we
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Fig. 10. Optical flow computed for Sequences 1, 3, 7 and for the Desktop sequence.



Estimating 3D Flow for Driver Assistance Applications 11

consider the scale-space representation as a three-dimensional space with coor-
dinates (x, y, σ), the characteristic scale(s) for point (x0, y0) are those values of σ
at which the magnitude of the response takes a (local) maxima). In the common
case in which more than one local maxima are detected, the magnitude of the
response can be used as a measure of similarity.

Figure 9 shows an example of computed flow vectors and their corresponding
characteristic scales (detected for those points for which a maxima over the
scales of the Laplacian was correctly found); the size of disks represents the
corresponding characteristic scale.

6 Results for Desktop and Daimler Sequences

Figure 10 shows some of the results obtained for Sequences 1, 3 and 7, and the
Desktop sequence.

The accuracy of the estimated values depends in some way on the magnitude
of the relative motion. For points that remain almost static, and where the
scale ratio y is close to 1, the quotients in Equations 5 and 6 are not well
defined, due to noisy measurements. In our computations, points pairs with
|σmax/σmin − 1| < 10−6 are discarded, where σmax (σmin) denotes the largest
(smallest) detected scale of tracked points. An upper limit to the µz’s was also
imposed, allowing only values < 5.

The Desktop sequence was generated with a calibrated camera, with transla-
tional motion on a rail with fixed navigation angles of approximately Φzx = 12◦

and Φzy = −10◦.
In the case of the Desktop sequence, mean and standard deviation of Φzx are

equal to 13.531◦ and 2.93874◦, respectively. For Φzy, those values are equal to
−10.3073◦ and 2.93874◦, respectively, taken over the entire sequence. In the case
of the Daimler sequences, there was no ground truth available (estimated), and
they were only used as a qualitative (visual) reference. For example, for Sequence
7 (see example in Figure 10), estimated directions Φzx correspond ‘quite well’ to
the steering of the car over the sequence. Estimated values Φzy remain at about
4◦. In Sequence 2 (see Figure 10), we observed a low frequency oscillation in the
value of Φzy, starting about at frame 180, when the ‘squirrel’ (actually, a cat)
crossed the street and the car made a maneuver (some breaking).

In all cases, observed noise is mainly due to the scale matching subprocess. As
given, for example, projective distortions of local image patches are not taken
into account, causing possibly some serious underestimations of scale factors.
The proposed (non-run-time-optimized) algorithm runs at approximately 1 fps
on a 3.0 GHz Intel c© Core 2 Duo CPU.

7 Conclusions

A method for the instantaneous (frame to frame) estimation of the 3D direction
of motion was proposed and studied, based on the determination of scale ratios
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between tracked points. The critical issue is the accurate scale estimation step.
The MSER region extractor [6] is an alternative (to the presented choice) option
and possibly a more robust way for the determination of scales (characteristic
diameters), where local image patches can be represented with affine invariance,
serving as a first-order approximation for (more general) projective deformations
induced by the relative motion of the camera.

Besides some poor estimations for some frames, the proposed method may be
recommended as a possible approach for the use of perceptually very important
spatio-temporal cues induced on images as an observer moves relatively to the
scene. The extracted information has the advantage of being local, and allowing
robustness in the case of multiple moving objects. The same principle of scale-
ratio estimation could also be used for motion segmentation, or to add new
constraints to multiple-view approaches of 3D motion estimation, thus further
contributing to the already known coherence between optic flow vectors and
image disparities.
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