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Abstract

In this thesis we investigate the dynamic problems of interval scheduling. The em-

phasis is on interval scheduling in the following contexts: single machine, multiple

machines, and elastic mixed-criticality real-time systems. We analyze the com-

plexity of these problems and find dynamic algorithms that efficiently maintain

the interval set in the presence of real-time events.
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Chapter 1

Introduction

We live in a world of limited resources. Time, space, materials, energy, knowledge,

money, services, staff – everything we possess is finite. Having this in mind, we

always want to get as much as possible from a resource. Searching for the best

options forces people to make decisions constantly. Business sharks choose which

sectors to invest in; airport dispatchers assign the order of landings and take-offs;

computers distribute resources to maintain its processes; individuals daily plan

how to manage their own time, which is, sadly, limited to only twenty-four hours

a day. The list of problems, when one needs to allocate the possessed resources to

various tasks, is endless.

While resources may take many forms – they can be lecture halls in a university,

processors of a computer, gates in an airport, even mechanics in a repair shop –

the range of possible tasks is also enormous. These can be classes at a university,

threads of a computer program, landing aircrafts at an airport, or servicing of a car

in a mechanics shop. Indeed, scheduling, the process of allocating limited resources

to tasks, can be applied to a number of various areas. Clearly, the objective of any

scheduling problem is to maximize the outcome of the completed activities, while

not exceeding the available resources.

We investigate scheduling problems in dynamic environment. In contrast to

static environment, where the number of available resources and the number of

planned tasks are fixed, in dynamic environment these numbers are constantly

changing. The number of resources changes in the event of a processor failure,

illness of a lecturer, overloading of a server. The number of tasks changes when an

unexpected task arrives, or a planned task is canceled. Moreover, even if the num-

ber of tasks remains the same, their properties, such as priority or duration, may

1



2 CHAPTER 1. INTRODUCTION

change. All these changes result in reconsideration of the precomputed schedule.

In this thesis, we concentrate on the problems of scheduling intervals on single

and multiple machines and scheduling of idle intervals in mixed-criticality real-time

systems, subject to insertion and deletion of intervals. Our goal is to analyze the

complexity of these problems and find dynamic algorithms that efficiently maintain

the interval set in the presence of real-time events.

1.1 Background

A basic scheduling problem consists of a single machine and a set of jobs. Each job

Ji is characterized by a release time ri, a deadline di and a length `i. A schedule

is a function σ that for each job specifies the time at which the machine starts

processing the job. The machine completes processing a job Ji after `i units of

time. A schedule is called feasible if no two jobs are processed at the same time

and none of the jobs starts before its release time. A schedule is said to meet the

deadlines every job is completed before its deadline. The goal is to find a feasible

schedule such that it meets the deadlines and maximal completion time of all jobs

is minimal possible.

The basic scheduling problem was shown to be NP-complete through the reduc-

tion from 3-partition problem [73]. However, with specific constraints on release

times, lengths or deadlines of the jobs the problem becomes solvable in polynomial-

time. If all jobs are released at the same time or their deadlines are equal, the

algorithm in [67] finds the solution in O(n log n) time. If all jobs have unit-time

length, then O(n) time is sufficient to find a solution [47]. A more general algo-

rithm for the jobs whose processing times are equal takes O(n log n) time [50].

In the situation when more than one machine is available, the problem of

scheduling jobs with different processing length is NP-hard even if there are only

two machines and all the jobs have equal deadlines and release times [73]. Therefore

polynomial algorithms exist only for problems with jobs of unit-time or equal

length. The problem of scheduling n jobs of equal length on m machines was shown

to be solvable in O(n3 log log n) time [89], the result which was later improved to

O(mn2) [90]. If all jobs have unit-time length, then an algorithm in [40] solves the

problem in O(n log n) time simply by sorting jobs in non-decreasing order of their

deadlines.

To cope with NP-hardness of scheduling problems, significant effort has been



1.1. BACKGROUND 3

put into the development of approximation algorithms. An approximation algo-

rithm finds a solution that is guaranteed to be at most ρ time worse than an

optimal solution, where ρ ≥ 1. Both the time complexity and the worst-case ratio

bound ρ are considered when measuring the successfulness of an algorithm.

Many of the approximation algorithms for the single machine scheduling prob-

lem are based on the Earliest Deadline First (EDF) rule [67]: the jobs are scheduled

in order of nondecreasing deadline. First to analyze EDF rule for the case when

release times of jobs are arbitrary were Kise et al. [69]. They performed a thorough

analysis of six approximation algorithms and showed that each of these algorithms

has the worst-case ratio bound of 2. Later, Potts [84] proposed an O(n2 log n) al-

gorithm with the worst-case ratio bound of 3/2. Another algorithm, with a better

complexity of O(n log n) and the same ratio, was proposed by Nowicki and Smut-

nicki [83]. An improvement to the worst-case ratio bound at the cost of running

time was obtained by Hall and Shmoys [61]. Their algorithm has the worst-case

ratio bound of 4/3 and complexity of O(n2 log n).

In the case of multiple machines, one of the initial papers on the analysis of

approximation algorithms is due to Graham [56]. He showed that if the jobs

are scheduled in order of their availability, then the maximal completion time is

at most 2 − 1
m

worse than of the optimal schedule. This scheduling approach is

attractive because it does not require any computational power and can be applied

to a wider range of scheduling problems. In his other work [57], Graham studied

the Longest Processing Time (LPT) order. He showed that if jobs are sorted in

LPT order, then the approximation ratio improves to 4/3− 1/(3m). Moreover, in

each of these publications Graham showed that the ratio bound is tight.

A completely different approach, called multifit (MF) was studied by Coffman

et al. [29]. The MF algorithm applies binary search to find a minimal completion

time C ′ such that all jobs are completed by C ′ on m machines. With every itera-

tion, the algorithm attempts to fit the jobs on the machines. The jobs are processed

in the order of non-increasing lengths. A job is placed on the first machine that has

enough time before C ′ to complete the job. Depending on the success or failure of

the attempt, the algorithm decreases or increases the value C ′. Then the iteration

is repeated. The time complexity of the algorithm is O(n log n+k ·n logm) and the

ratio is 1.22+2−k, where k is the number of iterations performed by the algorithm.

The bound was improved by Friesen [49] from 1.22 to 1.2. Subsequently, Yue [103]

improves the bound to 13/11.

Hochbaum and Shmoys [64] further exploited the duality between scheduling
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on m machines and bin-packing problems. They considered each machine as a bin

of capacity d, and for any ε > 1 they define an approximation algorithm with the

worst-case ratio bound of ε, which runs in time O((n/ε)1/ε2). They also designed

special algorithms for ε = 1/5 + 2−k and ε = 1/6 + 2−k, which have running times

O(n(k + log n)) and O(n(km4 + log n)).

Another way of solving the problem is to allow preemption of jobs. In a preemp-

tive scheduling, execution of a job may be interrupted at any time and resumed

at the same time on another machine or at a later time on any machine. Liu

and Layland [77] studied EDF preempted scheduling of jobs on a single machine.

According to EDF, a job Ji is preempted at time t by a newly released job Jk

if Jk has a smaller deadline. They proved that there exists a feasible schedule

that meets all deadlines if and only each job is completed before its deadline in

the EDF schedule. Their proof is based on the following idea. Let S be a feasible

schedule that meets the deadlines. Let J1, J2 be two jobs such that J1 has a smaller

deadline. If J1 is scheduled after J in the schedule S, then we can exchange the

execution time of jobs and still have a feasible schedule that meets the deadlines.

The problem of preemptive scheduling on multiple machines was solved by

reduction to a network flow problem [see 19, ch. 5.1]. The complexity of the

algorithm is O(n3). More efficient algorithms exist for the case when all jobs are

released at the same time. Sahni [86] described an algorithm with O(n log nm)

time complexity. Later, Baptiste [7] provided an algorithm with better complexity

of O(n log n). If the problem is further simplified by disregarding deadlines, then

the following algorithm due to McNaughton [79] solves the problem in O(n) time.

First, compute D = max{max{pj},
∑ pj

m
}. In other words, D is either the

longest job or the average machine load. Then start placing the jobs on the

machines in arbitrary order. Once the length of a schedule on a machine becomes

greater than D, split the last job Ji into two parts of length `i− t and t and place

the first part into the schedule of the next machine. Since there are mD units of

processing time and D − t ≥ `i − t for any t, all jobs are scheduled, and no job is

simultaneously processed on two machines.

The problems described above are only a small part of the scheduling theory.

There are roughly 900 different specifications of the basic scheduling problem [20].

The machines can be identical, uniform or unrelated. The number of machines

can be fixed or arbitrary. For each job there might be a specific order of machines

the job must visit. Moreover, in some cases a job may visit the same machine
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more than once. There might be precedence constraints that impose restrictions

on the scheduling order, in the sense that some jobs must be completed before

others. Finally, there are several optimization criteria, such as minimizing number

of overdue jobs or minimizing maximal overdue time. We refer the reader to

the following books for details. The book by Brucker [19] provides an elaborate

formulation of scheduling problems and algorithms. The book by Leung [74] covers

the advances in scheduling theory in different disciplines. A recent paper by Potts

and Strusevich [85] gives a historical overview of the key developments in the

theory of scheduling in the past fifty years.

1.2 Aplications

There are numerous applications of the scheduling theory to real-life problems,

which range from the satellite photography to the organization of data on a hard

drive. We provide examples of some problems that can be formulated in terms of

jobs and machines.

Crew Scheduling. A general crew scheduling problem is formulated as follows

[12, 81]. A set of tasks and a set of crews are given. Each task is associated with

a starting time and a finishing time. All crews are identical and can perform any

of the tasks. The goal is to minimize the number of crews needed for completion

of the tasks. Clearly, looking at the crews as identical parallel machines, we have

a variant of the scheduling problem.

The crew scheduling problem appears in the area of mass transportation. Bus

[95, 102, 101], train [21, 22] and airline [36, 37] companies have timetables of their

fleet. Each vehicle in the fleet must be operated by a crew. For a bus, a crew

consists of only one member - a driver. For a plane, a crew consists of pilots and

flight attendants. The goal of a company is to use a minimal number of crews to

operate the planned timetable.

Airport Operations. There are scheduling problems at every stage of aircraft

turn-around at an airport. The first problem appears when aircrafts are on their

way to the airport. There are hundreds of arriving planes, but only dozens of gates.

The scheduler must assign aircrafts to gates, taking into account walking distance

for transfer, timetables of departing planes, compatibility between aircrafts and

gates [78, 42, 60]. Then, while aircrafts are still in the air, the traffic control tower

must assign the landing time and the runaway for each of the aircrafts [18, 44].
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For safety reasons, there must be minimum time separation between landing of

two aircrafts.

While on the ground, extremely tight flight schedules leave very little time for

services that must be performed. After disembarkation of passengers, the interior

of an aircraft must be cleaned [96]. Cleaning time depends on both the size of

the aircraft and the size of the cleaning team. Thus we have a model where jobs

are airplanes, the machines are cleaning teams, and the processing time of each

job is different on different machines. At the same time, a team of engineers

must carry out the inspection of the aircraft. An engineer must have a license

for a corresponding type of an aircraft, but an engineer can have more that two

licenses. Considering teams of engineers as machines, the scheduling problem of

aircraft inspections is studied in [41].

Unexpected flight delays may be caused by improper scheduling of refueling

tankers. A fuel tanker must fill an aircraft before its departure. The problem of

minimizing refueling trucks required for aircraft servicing is studied in [5].

Other ground services are airline catering [63] and baggage handling [8, 28]. For

catering, a delivery team, consisting of a driver and a loader, must load the food

at the production unit and unload it into the aircraft. A delivery team member

must have the skills for a specific type of aircraft. Similarly to refueling problem,

the machines are delivery teams and the jobs are catering of flights. For baggage

handling, there are piers where baggage is accumulated before being loaded into an

aircraft. Each pier is collecting baggage from only one flight to avoid mishandling

of luggage. Thus for each flight there is a job of baggage processing for the period

of check-in. The machines are piers, where baggage is collected.

Finally, aircrafts are ready to depart. The problem of take-off order at London

Heathrow airport is studied in a series of papers by Atkin et al. [2, 3, 4]. In their

model, aircraft can be regarded as jobs with a target starting time. The length of

a job depends on the size of an aircraft. For safety reasons, there is a minimum

separation between two jobs, which depends on the weight categories of the two

aircrafts. The re-ordering of jobs is restricted. The goal is to reduce delay with

as little reordering as possible while obeying separation rules and ensuring that as

many aircraft depart within their target time.

Classroom Assignment. Consider a university. It has a set of rooms and a

set of classes. The rooms are continuously available and are used by lecturers to

give classes. Each class has fixed starting time and finishing time. No two classes

can meet in the same room at the same day and time. The goal is to find an
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assignment of classes to rooms that uses minimal number of rooms [46, 25].

A similar problem is an assignment of rooms for exams [34]. The main difference

is that a room may be assigned to more than one exam, since each student works

on his/her own questions. Moreover, there is a constraint that a student cannot

take two exams in a period of several days.

Movie Screening. In a film industry, a movie generates most of its revenue

during the first days of its release. After a week or two the interest to the movie,

as well as the number of selling tickets, begin to drop. However, a movie theater

cannot stop showing the movie and replace it with another one because there is

a minimum period for which a movie must be screened continuously immediately

after its release. Thus, a movie theater has a problem of choosing a set of films

that will be on the theater’s screens with the objective to maximize revenue [35].

In terms of scheduling, there is a set of weighted jobs and a set of machines. The

goal is to schedule jobs to maximize the total weight of completed jobs.

Delivery Guarantee. A delivery guarantee is the commitment of a company

to deliver the product within a specified period, or give a discount on the price.

For example, a pizza company may guarantee 30-minutes delivery or give $3 dis-

count. The profit-maximization model of delivery guarantee strategy was studies

by Chatterjee et al. [26]. In their model, finding a schedule with a minimal number

of overdue jobs is one of the factors that influences company’s profit.

Bandwidth Trading. The backbone of the Internet is a physical infrastruc-

ture of cables and routers, which connects countries and continents. The backbone

is maintained by about a dozen of network operators, called Tier 1 providers. Tier

1 providers sell the bandwidth of their network to the Internet Service Providers

(ISPs), who in their turn sell the bandwidth to end-users. The contract between

Tier 1 provider and an ISP specifies the bandwidth size and the period for which

the bandwidth is used.

Bhatia et al. [13] studied the algorithmic aspects of bandwidth trading. In

their model, they view the bandwidth contracts as a set of machines, and the

reservation requests as jobs. There is a revenue associated with each job, and a

cost is associated with each machine. Their goal is to either schedule all the jobs

and minimize the incurred cost or maximize the revenue by using a fixed number

of machines. The bandwidth allocation problem was also studied by Chen et al.

[27].

Assignment problem. The problem comes from the area of combinatorial
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optimization. The general problem is formulated in terms of agents and tasks. A

task can be assigned to any agent for some cost. The cost of assignment varies

according to the pair agent-task. The constraints are that all tasks must be com-

pleted, and only one agent can perform a task. The goal is to minimize the total

cost of the assignments.

Shmoys and Tardos [88] studied the general assignment problem as the schedul-

ing of jobs on parallel machines with costs. It is easy to see the connection: an

agent is a machine, and a task is a job. They designed a polynomial-time algo-

rithm that given a budget C and amount of available time units Ti for which each

machine is available returns a schedule of cost at most C where each machine is

used for at most 2T time units, or proves that no such feasible schedule exists.

Interval Graphs. There exists a connection between scheduling theory and

graph theory. Namely, some problems of scheduling jobs with fixed start and

end times can be formulated in terms of an interval graph problem. A job has

fixed start and end times if its length equals its dealing minus its release time [1].

Naturally, such job can be represented as an interval. An interval graph is a graph

whose vertices can be represented as intervals such that two intervals intersect if

and only if two corresponding vertices are connected by an edge [55, ch. 8]. Several

linear time algorithms exist that verify whether a graph can be represented as a

set of intervals [32, 33, 71].

Some of the problems on interval graphs can be formulated in scheduling terms.

One problem is k-coloring of an interval graph. In this problem, we ask whether

the graph vertices can be colored by k colors such that no two vertices of the

same color are connected by an edge. The problem is equivalent to the problem

of scheduling intervals on k machines. Indeed, a machine represents a color, and

since two intersecting intervals cannot be allocated on the same machine, no two

connected vertices are assigned the same color. The k-coloring problem was studied

in [23, 16, 45]. Another problem is maximal independent set, which asks for a

maximal set of pairwise disconnected vertices. In scheduling terms, the maximal

independent set problem is to find a maximal possible set of intervals that can

be completed on a single machine. Gupta et al. [58] solves this problem with a

O(n log n) algorithm that processes intervals, representing a given graph.
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1.3 Summary of Results

In the following, we present the topics and results obtained in each chapter of the

thesis. The reader is referred to the relevant chapter for the formal definitions and

proofs.

Chapter 2. Preliminaries

In this chapter, we introduce basic definitions, facts and algorithms for the stan-

dard scheduling problems. The terminology and concepts here are used throughout

the thesis. The chapter is divided into three sections.

The first section concerns scheduling of intervals. An interval is a job such

that its length equal to the difference between its deadline and its release time.

We describe standard static algorithms that optimally schedule a set of intervals

on single and multiple machines, and prove their time complexity.

The second section concerns real-time scheduling of tasks. A task is a generator

of an infinite sequence of jobs. It generates jobs of the same length, but of different

deadlines and release times. Naturally, only one job of a task can be active in the

system. We give an overview of the main algorithms that schedule jobs, generated

by a set of tasks.

The third section concerns amortized analysis. An amortized analysis is a

powerful technique that one may use to find a tight upper bound on the time

taken by a sequence of operations. Its power comes from the observation that

only a small percentage of operations in a sequence show worst-case behavior. We

describe the application of amortized analysis for the splay tree data structure,

and show that a sequence of m splay tree operations takes O(m log n) time in the

worst case [91].

Chapter 3. Dynamic Scheduling of Monotonic Intervals on Single

Machine

In this chapter, we focus on the dynamic problem of monotonic interval schedul-

ing on a single machine. An interval set is monotonic if no interval properly con-

tains another interval. We design two data structures that minimize total running

time of an arbitrary sequence of the following operations:

- insert(i), which adds an interval i into the interval set,
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- remove(i), which deletes an interval i from the interval set,

- query(i), which returns true if and only if i belongs to the optimal set returned

by the greedy algorithm.

The greedy algorithm (Algorithm 2.1) is the standard algorithm that solves the

static variant of the problem. The algorithm starts by sorting intervals in the order

of their finishing times. Once the sorting is complete, it marks the interval with the

smallest finishing time as the member of an optimal set. Then, it visits intervals

in this order and marks an interval that does not intersect with the last marked

interval as the member of an optimal set. After all intervals have been visited, the

algorithm returns the marked vertices as the greedy optimal set (Definition 2.1.5).

The time complexity of the algorithm is O(n log n). It is known that a greedy

optimal set is unique and it has maximal size.

In Section 3.1 we describe how to recognize monotonic interval sets.

In Section 3.2 we describe and analyze complexity of the operation right compatible.

The operation returns the next interval in the greedy optimal set. The complexity

of the operation on a monotonic interval set is Θ(log n) (Theorem 3.2.1).

In Section 3.3 we describe and analyze time complexity of three possible ex-

tensions of the greedy algorithm for the dynamic environment. The first approach

is to keep intervals sorted in a binary search tree and apply the greedy algorithm

for each query operation. This approach has poor performance on sequences with

many query operations.

The second approach is to use an additional binary search tree as the container

for the greedy optimal set. With a data structure that support splitting and

merging of the trees, the greedy optimal set can be updated incrementally after

each update of the interval set. However, we show how to construct a sequence

of m insert operations with total running time of either O(mn) or O(mn log n),

depending on how we build the tree for the greedy optimal set.

Finally, the third approach is to use right compatible(i) operation, which allows

us to skip some intervals. With this operation, the construction of the greedy

optimal set takes Θ(k log n) time, where k is the size of the set. However, we

describe a sequence of insert operations where every insertion results in a new

greedy optimal set that contains half of the interval set. Thus, the total time

taken by such sequence is in Θ(mn log n).

On the contrary, our data structures have significantly lower upper bound. We

prove that in our data structures the total running time of any sequence of m
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operations is O(m log n). We apply amortized analysis to achieve this bound.

In section 3.4 we describe our first data structure. Let I be a set of interval.

Let ≺f denote the order of intervals by their finishing time. Given two intervals i

and r, we call r the right compatible interval and denote is by rc(i) if for any x ∈ I
such that i ≺f x ≺f r the intervals i and x overlap (Definition 2.1.1). We define

compatibility forest (CF) as follows:

Definition 3.4.1 A compatibility forest is a graph F(I) = (V,E) where V = I

and (i, j) ∈ E if j = rc(i)

Essentially, the forest F(I) connects nodes by in accordance with the greedy

algorithm: for any node i in the forest F(I), if the greedy algorithm starts at i,

then the algorithm selects the parent j of i in the forest. Hence, the longest paths

in the compatibility forest correspond to optimal sets of I. In particular, the path

starting from the ≺f-least interval is the greedy optimal set.

We describe a data structure that maintains compatibility forest of an interval

set. Using amortized analysis, we prove the upper bound on the time complexity

of the operations:

Theorem 3.4.4 The algorithms insertCF and removeCF take O(log2 n) amortised

time. The algorithm queryCF take O(log n) amortised time.

Furthermore, we prove that the bound of O(log2 n) is sharp:

Theorem 3.4.5 In CF data structure there exists a sequence of k update operations

with Θ(k log2 n) total running time.

In Section 3.5 we improve the upper bound of the update operations by de-

signing a new data structure, which we call linearised tree. All operations of this

data structure take amortized O(log n) time.

Call two intervals i and j equivalent, and denote it as i ∼ j, if and only

if rc(i) = rc(j). We arrange intervals that are equivalent in a path using the

≺f-order. The linearised tree consists of all such “linearised” equivalence classes

joined by edges. Hence, there are two types of edges in the linearised tree. The

first type connects intervals in the same equivalence class. The second type joins

the greatest interval in an equivalence class with its right compatible interval.

Formally, the linearised tree L(I) is a tuple (I;E = E∼ ∪ Ec), where

• (i, j) ∈ E∼ if and only if i ∼ j and i is the previous interval of j. Call i the

equivalent child of j.
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• (i, j) ∈ Ec if and only if i is the greatest interval in [i] and j = rc(i). Call i

the compatible child of j.

The advantage of a linearised tree over a compatibility forest is that the lin-

earised tree is a binary tree. Therefore, when we insert or remove an interval, we

need to redirect at most two existing edges in the linearised tree. This allows to

improve the amortized bound of operations. However, there is a disadvantage: a

path in a linearised tree may contain intersecting intervals. Indeed, if two intervals

are equivalent, then they intersect. We discuss this disadvantage in Section 3.6.

Using splay tree in the implementation of the linearised tree, we achieve the

following result:

Theorem 3.5.8 The queryLT, insertLT and removeLT operations solve the dynamic

monotonic interval scheduling problem in O(log n) amortized time, where n is the

size of the set I of intervals.

Having two data structures of similar complexity, we empirically compare them

in Section 3.7. In our experiments, we measure the total and the average running

time of a sequence of m operations on initially empty interval set. The sequence

consists of n insert operations, rn remove operations and qn query operation,

where n is a linearly increasing number and r and q are fixed parameters of the

experiment.

The experimental result verifies our theoretical analysis and shows that in a

random environment CF performs as fast as LT to within a constant factor, despite

the worst (log2 n) time upper bound. Considering that CF is relatively easy to

implement, CF can find its practical applications.

The results of this chapter have been published in [52, 54].

Chapter 4. Dynamic Interval Scheduling on Multiple Machines

In this chapter, we continue our study on dynamic interval scheduling. We

consider the case of scheduling on multiple machines. Call two intervals compatible

if they do not intersect. Given a set of intervals I, the static problem asks to find a

partition of I such that the number of subsets in the partition is minimal possible

and every subset contains pairwise compatible intervals. In the dynamic problem,

the input is an arbitrary sequence of the update operations: insert(i) operation

adds i into the interval set, and remove(i) deletes i from the set. As in the previous
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chapter, the goal is to find a data structure that minimizes the total running time

of the sequence.

We design a data structure whose complexity of operations is O(d + log n),

where d is the maximal number of pairwise intersecting intervals. Our data struc-

ture is based on the following observation: if two machines in a schedule have

intersecting periods of idleness, then there exists a schedule where these idle pe-

riods are united. In Sections 4.1 and 4.2 we study the concepts of idle intervals

and nested scheduling. In Section 4.3 we describe our data structure. Finally, in

Section 4.4 we prove that the bound is tight.

Definition 2.1.9 A function σ : I → {1, . . . , k} from a set of intervals I to a set

of k natural numbers is called a scheduling function if any two distinct intervals

a, b ∈ I do not intersect whenever σ(a) = σ(b).

The size of a scheduling function is the cardinality of its codomain. For an

interval a the σ(a) is called the schedule number. A schedule Si is a set of intervals

with the same schedule number. The set of idle intervals of a schedule Si =

{ai, . . . , az} is

Idle(Si) =
z−1⋃
i=1

{ [f(ai), s(ai+1)] } ∪ { [−∞, s(a1)] } ∪ { [f(az),∞] }

Now suppose we are inserting an interval a into a set I. We prove a theorem

that describes the conditions when the size of a scheduling function does not

change:

Theorem 4.1.4 Let σ be a scheduling function for I. There exists an scheduling

function of the same size for I∪{a} if and only if there exists a set of idle intervals

C = {c1, . . . , cz} such that

• c1 starts before a,

• cz finishes after a,

• ci starts before ci+1,

• ci ∩ cj 6= ∅ if and only if j = i+ 1.

In the proof of the theorem, we provide a method that changes scheduling

function without changing its size. The idea of the method is the following. Let
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a, b be two idle intervals that intersect. Let a1, . . . , ak and b1, . . . , b` be all the

intervals that start after a and b in the corresponding schedules. We move intervals

a1, . . . , ak to the schedule of b, and move intervals b1 . . . , b` to the schedule of a.

Since idle intervals a and b intersect, the new schedules consist of compatible

intervals. See Figure 4.3, page 77 as an example of the theorem application.

From the theorem we imply that it undesirable to have sequences of intersecting

idle interval. Therefore, in Section 4.2 we define the concept of nested scheduling.

Definition 4.2.1 A set J of intervals is nested if there exists one interval that

covers any other interval and for all b1, b2 ∈ J , it is either that b1 covers b2, or b2

covers b1, or b1, b2 are compatible.

Definition 4.2.3 We say that σ is a nested scheduling function, if its set of

corresponding idle intervals is nested.

We prove the optimality of nested scheduling. A nested scheduling function is

optimal in a sense that there does not exist a scheduling function of smaller size.

We use the known fact that the minimal possible size of a scheduling function is

equal to the maximal number of pairwise intersecting intervals in the interval set

(Lemma 2.1.11).

Theorem 4.2.4 If σ is a nested scheduling function, then σ is optimal.

Furthermore, we prove that any interval set possesses a nested scheduling.

Given a nested scheduling of an interval set I we show how to construct a nested

scheduling for a set I ∪ {a}, where a is a new interval. Note that insertion of

any interval breaks the nestedness of the function. In Section 4.2.1 we consider all

possible case and establish the following theorem:

Theorem 4.2.6 For any set of intervals I there exists a scheduling function σ

such that its set of corresponding idle intervals is nested.

In Section 4.3, taking into account the strong properties of nested scheduling,

we design our data structure. Observe that any nested set of intervals defines a tree

under set-theoretic inclusion ⊆. Our data structure maintains nested scheduling

as a tree of idle intervals, where the root is an interval of infinite length [−∞,∞].

We use interval tree data structure to represent the nested tree of idle intervals

(see Figure 4.16). Briefly, each internal node in an interval tree is associated with

a number, and stores all intervals that contain this number. Traversing the tree,



1.3. SUMMARY OF RESULTS 15

we can find the intervals that intersect some point p. Therefore, when inserting

a new interval a, we can find idle intervals that intersect the endpoints of a. We

show that a new interval a results in changes of O(d) idle intervals. In the interval

tree, these changes can be done in one traversal. Thus, we prove the following:

Theorem 4.3.2 The data structure based on interval tree maintains the optimal

scheduling and supports insertions and deletions in O(d+ log n) worst-case time.

Finally, in Section 4.4, we prove that the bound of O(d + log n) is sharp for

any data structure that maintains a nested scheduling.

Theorem 4.4.4 An update operation in a data structure representing a nested tree

takes at least Ω(log n+ d) time.

The results of this chapter have been published in [53].

Chapter 5. Dynamic Slack Reclamation from Multiple Processors

In this chapter, we define and analyze the problem of multiprocessor slack

reclamation. The problem is a generalization of the slack reclamation problem

from a single processor, which appears in the context of Elastic Mixed-Criticality

(E-MC) model of real-time systems [97, 98].

Informally, the E-MC model consists of high-criticality and low-criticality tasks.

Every task produces an infinite sequence of periodic jobs, which are executed by the

processors. Each jobs has release time, deadline and execution requirement. The

execution requirements of the jobs and their periodicity determine the utilization

of the processors. We need to schedule jobs on the processors such that the total

utilization is maximal possible, and the processors are not overloaded.

At run-time, a high-criticality task may take less time than it was provisioned

by the scheduler, generating slack in the system. The slack is undesirable idleness

of the processor. To increase processor utilization, a low-criticality task may release

an early job, but only if there is enough slack in the system. The slack reclamation

problem asks whether a processor has enough slack to complete an early job before

its deadline.

In Section 5.2 we formally describe the E-MC model.

In multi-processor systems, it might be possible that each processor has some

amount of slack, but none of the processors has enough slack for execution of an

early job. However, similarly to the idea of nested scheduling (Theorem 4.1.4), it



16 CHAPTER 1. INTRODUCTION

might be possible to reschedule the tasks such that the distributed slack is collected

on one processor.

In Section 5.3 we propose the idea of swap schedule, which allows reclamation

of slack from multiple processors. Let C1, . . . ,Cm be m processors of the system.

A scheduling function σ partitions the tasks into m disjoint sets Γ1, . . . ,Γm such

that the sum of tasks utilizations in every set does not exceed 1. Jobs generated

by the tasks are executed in the order of earliest deadline.

At run-time, if the processor Cx has slack in the period [a, b] and the processor

Cy has slack in the period [b, c], we add a swap point (b,Cx,Cy) in the swap schedule.

There is a constraint: both processors must not have an unfinished job. Later,

when we reach the time b, we change the scheduling function σ such that the

tasks executing on the processor Cx will be executing on the processor Cy, and

vise-versa (Figure 5.2, page 102). Thus, we combine slack from both processors

on the processor Cx.

In Section 5.4 we define the k-SLACK RECLAMATION problem. The input to the

problem is: a scheduling function σ; a set of periods of slack; a low-criticality task

X that can release an early job. An algorithm, solving this problem, outputs YES,

if there exists a feasible swap schedule such that the amount of slack reclaimed

from k processors is greater or equal to the length of X. Otherwise, it outputs

NO. We prove the following theorem:

Theorem 5.4.1 The problem k-SLACK RECLAMATION is NP-complete even if k = 2.



Chapter 2

Preliminaries

2.1 Interval Scheduling

Consider the following scheduling problem that arises in every university. You have

a lecture room, and many professors request to use the room for their lectures.

Every lecture has a specific starting time s and finishing time f . The goal is to

satisfy as many requests as possible with the natural constraint that no pair of

professors give a lecture in the same room at the same moment of time.

More formally, there are n request, where each request i specifies the starting

time s(i) ∈ R and the finishing time f(i) ∈ R. Every request i have its starting

time s(i) strictly less than its finishing time f(i). Without loss of generality we

assume that the starting times and the finishing times of the requests are distinct.

If it is not the case, we apply the following normalization procedure. Let i and j

be two requests, ε be a small positive real number. Assume f(i) ≤ f(j). If the

requests i and j are identical, that is their starting and finishing times are the

same, we set s(j) = s(j) + ε and f(j) = f(j) + ε. If only their finishing times are

equal, we only add ε to f(j). Finally, if f(i) = s(j), that is these requests share

only one moment of time, we add ε to s(j).

It is convenient to look at the requests as intervals of time. Each request i

corresponds to an interval [s(i), f(i)]. From the interval point of view, we refer

to s(i) as the left endpoint of i and to f(i) as the right endpoint of i. Recall that

an interval [x, y] is a set of real numbers z such that x ≤ z ≤ y. Therefore, we

can apply the usual set-theoretic operations - union, intersection, subset - to the

intervals.

We define two orderings of the intervals. The first ordering, denoted by ≺f ,

17
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a

b c

d

Figure 2.1: Example of relationships between the intervals: b and c are compatible,

a and c overlap, b is nested in a. The interval d is the right compatible interval of

a and c. The interval c is the left compatible interval of d.

sorts intervals by their finishing time from left to right. That is, an interval a is

less than interval b in order ≺f if f(a) < f(b). The seconds ordering, denoted

by ≺s, sorts intervals by their starting time, increasingly. That is, an interval a is

less than interval b in order ≺s if s(a) < s(b). The order is strict since we assume

the endpoints of all intervals are distinct. Throughout our work, by the ≺γ-least

interval, the ≺γ-greatest interval, the ≺γ-next interval, the ≺γ-previous interval,

we mean the least, greatest, next and previous interval with respect to ≺γ, where

γ ∈ {f, s}. When the order of intervals is clear from the context, we omit ≺γ
prefix.

We say that two intervals are compatible if their intersection is an empty set.

Otherwise, the intervals overlap. We say that an interval a covers an interval b if

s(a) < s(b) and f(a) > f(b), or equivalently b ⊃ a. In this case, b is nested in a.

As an example, consider Figure 2.1. The intervals a and c overlap, the intervals b

and c are compatible, and the interval a covers the interval b.

Given an interval i ∈ I we distinguish the right compatible interval and the left

compatible interval:

Definition 2.1.1. [Right Compatible Interval] An interval r ∈ I is called the right

compatible interval and denoted by rc(i) if for any x ∈ I such that

i ≺f x ≺f r the intervals i and x overlap.

Definition 2.1.2 (Left Compatible Interval). An interval ` ∈ I is called the left

compatible interval and denoted by lc(i) if for any x ∈ I such that ` ≺f x ≺f i the

intervals i and x are incompatible.

Note that if an interval r is the right compatible interval of an interval i, it is

not alway the case that i is the left compatible interval of r. Consider intervals

a, c and d on the example on Figure 2.1. The right compatible interval of a is d,

but the left compatible interval of d is c, not a.
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When we talk about sets of intervals, we say that a set of intervals I is com-

patible if all intervals in I are pairwise compatible. We say that a set of intervals I

is nested if it has no overlapping intervals and there exists an interval that covers

any other interval. Figure 2.2 gives an example of such sets.

a b c

d

Figure 2.2: The set {a, b, c} is a compatible set, while set {a, b, c, d} is a nested

set.

In the next two sections we describe two problems of interval scheduling. Given

the set of intervals I, the first problem asks for a compatible subset of I that has

maximal size. The second problem asks for a partition of I into the smallest

number of subsets, where each subset is a compatible set of intervals.

2.1.1 Scheduling on Single Machine

Definition 2.1.3 (Interval Scheduling Problem). Given a set of intervals I, find

a subset J such that J is a compatible set and it has maximal possible size.

Let us discuss an instance of the problem on Figure 2.3. The interval set on

this figure consists of 9 intervals. To find a compatible subset of maximal size, we

start with a trivial subset J1 containing only one interval a. We see that a overlap

with the intervals b and c, but it is compatible with the interval g. Therefore we

define another set J2 = {a, g}. The intervals in J2 overlap with intervals b, c, e, d, f ,

but they are compatible with intervals h and i. Since h and i overlap, we can add

only one of them into J2. We choose the interval i and define J3 = {a, g, i}. At

this step, each of the intervals not in J3 overlap with at least one interval in J3.

However, does J3 have a maximal size? It appears, that no, we can remove g and

add intervals d and f . That is, we define the set J4 = {a, d, f, i}. The set J4 is a

compatible set and has maximal size.

Definition 2.1.4. A compatible subset of maximal size is called optimal.

Note that there might be several optimal subsets. In the example on Figure 2.3

the set J5 = {c, d, f, i} is also optimal.
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Figure 2.3: (a) Instance of an interval scheduling problem. (b) The set {a, d, f, i}
is a solution to the instance.

We describe the greedy scheduling algorithm [70] that finds an optimal subset.

The main idea of the algorithm is that with each iteration we choose a compatible

interval with minimal finishing time. This idea is quite natural. Imagine a real line

starting at 0 and going into infinity. Each interval takes a portion of it. Therefore

when we choose interval with minimal finishing time, we ensure that we take as

little space of the real line as possible. Hence there is more space for the coming

intervals.

The algorithm starts by sorting intervals in ≺f order. Let a1, . . . , an denote

the intervals in this order. The first interval a1 is placed into the set R, which is

empty initially. Then algorithm iterates through the intervals a2, . . . , an. For each

interval ai, if ai is compatible with the ≺f-greatest interval in R, then ai is added

into R. Otherwise ai is dropped. When iteration finishes, the algorithm returns

the set R. The pseudo-code of the algorithm is presented as Algorithm 2.1.
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Algorithm 2.1 GreedySchedulingAlgorithm
1: Let a1, . . . , ak denote intervals in ≺f-order.

2: R← {a1}
3: last← a1

4: for i← 2, . . . , n do

5: if ai is compatible with last then

6: R← R ∪ {ai}
7: last← ai

8: end for

9: return R

Note that every interval ik added by the algorithm is the right compatible

interval of the previously added interval. Thus we give a formal definition to the

set R returned by the greedy algorithm:

Definition 2.1.5 (Greedy Optimal Set). For a collection of intervals I, the subset

of intervals J = {i1, . . . , ik} is called greedy optimal set if i1 is the ≺f-least interval

in I and ij+1 = rc(ij) for every 1 ≤ j < k.

We prove the know results that the greedy optimal set is unique and optimal.

Theorem 2.1.6. The greedy optimal set is unique.

Proof. For contradiction, assume that there exist two different greedy optimal sets

R and R′. Let ik and i′k be the first different intervals in these sets. The endpoints

of these intervals are different by our assumption of distinctness. Therefore, one of

the intervals is ≺f-smaller than the other. Let ik ≺f i
′
k. We know that ik−1 = i′k−1.

But then i′k is not the right compatible interval of i′k−1, since ik is also compatible

with i′k−1 and ik ≺f i
′
k. We reached a contradiction.

Theorem 2.1.7. The greedy optimal set consists of pairwise compatible intervals

and has the maximal possible size.

Proof. Let R = {a1, . . . , ak} be the greedy optimal set. Take two intervals ai

and aj such that ai ≺f aj. If j = i + 1 then aj = rc(ai). Therefore the intervals

are compatible. Otherwise, there exists intervals ai+1, . . . , ai+t for some t ≥ 1.

Each of this intervals is the right compatible interval of the previous interval.

Therefore ai+t is compatible with ai. Since aj = rc(ai+t), the intervals ai and aj

are compatible.
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For the second statement, assume that there exist a compatible set

O = {b1, . . . , bm} of greater size. Consider the intervals a1 and b1. Since the inter-

val a1 the smallest interval, we have that f(a1) ≤ f(b1), when equality is achieved

if a1 = b1. Now consider the intervals a2 and b2. Since a2 = rc(a1), we know

that a2 has the smallest finishing time among all the intervals that are compatible

with a1. Taking into account that f(a1) ≥ f(b1), we imply that f(a2) ≤ f(b2),

that is the interval a2 finishes at most as late as the interval b2. Continuing this

process, we eventually achieve the intervals ak and bk. The same inequality holds

for them as well, namely f(ak) ≤ f(bk).

By our assumption, the set O has at least one more interval bk+1. This in-

terval is compatible with bk. Since f(ak) ≤ f(bk), the intervals ak and bk+1 are

compatible. Therefore there exists the right compatible interval for ak. However,

it contradicts with the fact that Algorithm 2.1 stops when the last added interval

has no right compatible interval. Thus our initial assumption that there exists a

set of greater size if false.

We provide a quick analysis of the algorithm’s running time. The algorithm

starts by sorting intervals, which takes O(n log n) time. Then, at every iteration,

the algorithm calls right compatible subroutine. On the sorted set of intervals the

subroutine takes O(log n) time. Note that in the worst-case the subroutine is

called at most once for every interval. Thus the overall running time is O(n log n)

worst-case.

2.1.2 Scheduling on Multiple Machines

In the previous section we discussed an interval scheduling problem on a single

machine. The problem concerns a situation where only one machine is given, and

the goal is to complete as many jobs as possible. In this section, we discuss the

problem of interval scheduling on multiple machines. The difference is that the

number of machines is unlimited, but every machine has a utilization price. Once

we use a machine to process a job, we must pay the price. The goal is to process

all jobs and minimize the number of machines used for job processing. Formally,

the problem is stated as follows:

Definition 2.1.8 (Multimachine Interval Scheduling Problem). Given a set of in-

tervals I find a partition of I into the sets S1, . . . , Sk such that each subset contains

pairwise compatible intervals and the number of subsets is minimal possible.
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We define functions that partition an interval set into compatible subsets as

scheduling functions:

Definition 2.1.9 (Scheduling Function). A function σ : I → {1, . . . , k} from a

set of intervals I to a set of k natural numbers is called a scheduling function if

any two distinct intervals a, b ∈ I are compatible whenever σ(a) = σ(b).

The number k is called the size of the scheduling function. For an interval

a ∈ I, the number σ(a) is called the schedule number. A set of intervals with the

same schedule number i is called a schedule and denoted by Si:

Si = {a ∈ I | σ(a) = i}.

As an illustration for the problem, consider the set of intervals I in Fig-

ure 2.4(a). With a little vertical rearrangement of the intervals, we find the parti-

tion of I into three compatible subsets. The partition is shown in Figure 2.4(b),

where each row corresponds to a subset of compatible intervals. The natural

question is how do we know that we cannot partition I into a smaller number of

compatible subsets? In this example, it is easy to see that intervals d, e, c share a

common point. The following definition gives a name to the maximal number of

pairwise overlapping intervals:

Definition 2.1.10 (Depth of an Interval Set). Let I be an interval set. The depth

of I, denoted by d(I), is the maximal number of pairwise overlapping intervals.

As discussed above, the interval set on Figure 2.4 has depth 3. It is not hard

to see that we cannot find a partition with less than three subsets of compatible

intervals. Otherwise, two of these intervals would be in the same subset, violating

its compatibility. We make this observation formal in the following lemma:

Lemma 2.1.11. The number of subsets in any partition of an interval set I is at

least d(I) if each subset contains pairwise compatible intervals.

Proof. For contradiction, assume that S1, . . . , Sk is a partition of an interval set

I such that k < d(I) and each set Si contains pairwise compatible intervals.

By the definition of the depth of I, there exists pairwise overlapping intervals

a1, . . . , ak, . . . , ad(I). By pigeonhole principle, the first k intervals a1, . . . , ak must

be in different subsets S1, . . . , Sk. Without loss of generality, assume that ai ∈ Si
for 1 ≤ i ≤ k. Now consider the interval ak+1. It must belong to some subset Sj.

However, Sj contains an interval aj. The intervals ak+1 and aj share a commont

point, which contradicts with the assumption of compatibility of the set Sj.



24 CHAPTER 2. PRELIMINARIES

a

b

d

g

c

i

e k

j

(a)

a

b d g

c i

e

k

j

(b)

Figure 2.4: (a) An instance of a Multimachine Interval Scheduling Problem with

9 intervals. (b) A solution of the instance where all intervals are partitioned into

three subsets: S1 = {b, d, g}, S2 = {a, c, i, k}, S3 = {e, j}.

Lemma 2.1.11 allows us to verify an optimality of a scheduling function: a

scheduling function is optimal if its size equals to the depth of the interval set. We

use this observation to define an optimal scheduling function:

Definition 2.1.12 (Optimal Scheduling Function). A scheduling function

σ : I → {1, . . . , k} is optimal if k = d(I).

Moreover, the lemma suggests us an idea of an algorithm: we need to take care

of pairwise overlapping intervals. Having these observations in mind, we describe

a simple algorithm that returns an optimal scheduling function.

We start by sorting intervals in the ≺s-order. Let a1, . . . , an denote the intervals

in this order. Then, we take the first intervals a1 and add this interval into the

first subset S1. The subset has been empty, so there is no need to check whether

a1 intersects with intervals in S1. Next, we take the second interval a2. Our goal

is to use as few subsets as possible. Therefore we check whether a2 intersects

with a1. If it does we place a2 into the second subset S2. Otherwise we add a2

into S1. We continuing this process. At some moment of time we have placed

a1, . . . , ak−1 intervals into S1, . . . , Sm subsets. Let last(Sj) denote the last interval

added into Sj. Now we choose a subset for the interval ak. For each Sj, we

compare ak with last(Sj). If ak is compatible with some interval last(Sj), we add

ak into the subset Sj, and continue to the next interval. Otherwise, we add ak
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Algorithm 2.2 SimpleMultimachineScheduling
1: Sort the interval set I by the starting time of the intervals

2: Initialise S1, S2 as empty sets

3: k ← 1

4: for i← 1, . . . , n do

5: for j ← 1, . . . , k + 1 do

6: if Sj is empty or last(Sj) is compatible with ak then

7: Sj ← Sj ∪ {ai}
8: break for

9: end for

10: if ai ∈ Sk+1 then

11: k ← k + 1

12: Sk+1 ← ∅
13: end for

14: return S1, . . . , Sk

into new subset Sj+1. After we added last interval an into a subset, the algorithm

terminates. The returned subsets define the scheduling function for the interval

set I. The pseudo-code of this algorithm is presented as Algorithm 2.2.

In the next lemma, we state that Algorithm 2.2 is correct and optimal.

Lemma 2.1.13. Let I be an interval set, S1, . . . , Sk be the sets returned by Algo-

rithm 2.2. The following statements hold:

• d(I) = k

• I = S1 ∪ . . . ∪ Sk

• Si is compatible for every 1 ≤ i ≤ k

Proof. First we prove that the depth of the interval set I equals to the number of

sets k returned by the algorithm. We consider two cases. The first case is when

k never increased, that is, the line 11 of the algorithm is never executed. In this

case, each interval ai is compatible with the previous interval ai−1. Therefore all

intervals are pairwise compatible, and the depth of the interval set is 1. Thus k

equals to d(I).

In the second case, we suppose that k is increased at least once. Let us con-

sider each time when k is increased. From the line 10 we see that ai has been
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added into Sk+1. It can only happen when ai is incompatible with last(Sj) for

every 1 ≤ j ≤ k. Therefore, the starting point s(ai) belongs to every interval

ai, last(S1), . . . , last(Sk). Together these intervals form a set of k + 1 pairwise

overlapping intervals. Thus, when we increase k by 1, we know that the depth of

the interval set is k + 1.

The second statement of the lemma follows easily from the observation that af-

ter each iteration of the first for-loop interval ai belongs to one of the sets S1, . . . , Sk.

For the third statement of the lemma let us consider the moment right before

we add the interval ai into the set Sj. If Sj is empty, then Sj∪{ai} is a compatible

set. If Sj has size 1, then the only interval in Sj is last(Sj). Since we add ai into

Sj only when ai is compatible with last(Sj), the set Sj ∪ {ai} is a compatible set.

Finally, if Sj has size greater than 1, take any interval b ∈ Sj that is not last(Sj).

By construction of Sj, b is compatible with last(Sj). Since ai is compatible with

last(Sj) we have f(b) < s(last(Sj)) < s(ai). Therefore b and ai are compatible

intervals. Thus Sj ∪ {ai} is a compatible set.

While Algorithm 2.2 compares only minimal number of intervals, this number

can be as high as O(n2). As an example, consider a set of intervals {a1, . . . , an}
such that s(a1) < . . . < s(an) < f(a1) < . . . < f(an), which is shown on Figure 2.5.

In this set every interval intersects with every other interval. Therefore at the ith

iteration the algorithm compares interval ai with ai−1, . . . , a1. Thus the worst-case

complexity of the algorithm is O(n2).

a1

a2

. . .
an

Figure 2.5: A set of pairwise intersecting intervals

The weakest point of the previous algorithm is that it does not take into account

finishing times of the last intervals in the sets S1, . . . , Sk. Indeed, at the ith

iteration, instead of looking for a set Sj such that ai and last(Sj) are compatible,

with a little bit of extra information we can report that at the moment s(ai) none

of the last intervals has finished. This idea was introduced by Gupta et al. [59].

We describe his algorithm that finds an optimal scheduling function in O(n log n)

worst-case time.
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Algorithm 2.3 OptimalMultimachineScheduling
1: p1, . . . , p2n ← sort I in order of intervals’ starting times

2: k ← 1

3: Free← {S1}
4: for i← 1, . . . , 2n do

5: if pi is the starting time of an interval then

6: if Free is empty then

7: k ← k + 1

8: Free← {Sk}
9: S ← a set from Free

10: S ← S ∪ {I(pi)}
11: Free← Free \ {S}
12: else

13: S ← a set containing I(pi)

14: Free← Free ∪ {S}
15: end for

16: return S1, . . . , Sk

Let p1, p2, . . . , p2n be the endpoints of all intervals in I sorted in increasing

order. Note that pi can be the starting time or the finishing time of an interval.

We denote by I(pi) an interval that starts or finishes at pi. Let t be a moment

of time. We call a set Sj free at the moment t if the last interval in Sj finishes

before t.

Initially, there is only one free set S1. We take the first endpoint p1. Since p1 is

the starting time of some interval, we put the interval I(p1) in the set S1. Suppose,

the endpoint p2 is also a starting time of some interval. The set S1 is not free at

the moment p2. Therefore we create a new set S2 and put I(p2) into this set.

Now suppose that p3 is the finishing time of some interval. Since only two interval

has started, the endpoint p3 is either a finishing time of either I(p1) or I(p2).

Therefore we mark the set that contains I(p3) as free. The process continues. For

every endpoint pi we consider two cases. If pi is a starting time, we put I(pi) into

a free set, creating a new one if there are no free sets. Otherwise, we mark the set

that contains I(pi) as free. The process stops after we have considered all of the

endpoints. The pseudo-code of the algorithm is presented as Algorithm 2.3.

We briefly analyze the complexity of the algorithm. There are O(n) iterations
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of the for-loop, where each iteration takes constant time, and there is a sorting

operation on the endpoints of the intervals, which takes O(n log n) time. There-

fore, the overall complexity of the algorithm is O(n log n) worst-case. To show

correctness and optimality of the algorithm, we prove the following lemma:

Lemma 2.1.14. Algorithm OptimalMultimachineScheduling returns an optimal par-

tition of an interval set.

Proof. First, we prove that each of the k returned sets contains pairwise compatible

intervals. For contradiction, assume that the set Sj contains two overlapping

intervals a and b. Without loss of generality, assume that s(a) < s(b) < f(a).

Consider the iteration of the algorithm when pi is the starting time of b. By our

assumption, the algorithm has added b into Sj, meaning that Sj belongs to the

set Free. However, Sj was deleted from Free when the algorithm processed s(a).

Moreover, since the algorithm has not processes f(a), Sj has not been added to

the set Free. Thus, the assumption that Sj is not a compatible set is false. For

the optimality of the algorithm, we prove that the algorithm increases k by one

only if there are k+ 1 pairwise overlapping intervals. Let p be an endpoint during

an iteration of the algorithm when k is increased. It means that the line 7 of the

algorithm is executed. Therefore p is the starting time of an interval, and none

of the k sets is free. We observe two things. The first thing is that p does not

belong to any of the already scheduled intervals. Therefore last(S1), . . . , last(Sk)

and I(p) are all distinct intervals. The second thing is that for every 1 ≤ j ≤ k the

interval last(Sj) has not finished. Therefore all interval last(S1), . . . , last(Sk), I(p)

share a common point p. Thus the the algorithm increases k only if the depth of

the interval set is k + 1.

The Algorithm 2.3 is simple and efficient. Moreover, Gupta et al. [59] showed

that the O(n log n) bound is minimal possible for any algorithm that solve interval

scheduling problem for multiple machines.

2.2 Real-Time Scheduling

Imagine a modern vehicle. It has many hidden sensors that monitor engine, brakes,

wheels, and other parts of the vehicle. There is a central processor, which is

responsible for controlling engine, brakes, steering and other units based on the

information it receives from the sensors. For the engine, the processor adjusts the
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amount of injected fuel to ensure the minimal possible fuel consumption. For the

brakes, it calculates the brake pressure on each wheel to ensure stability of the

vehicle. For the steering, the processor monitors whether the car starts sliding at

a turn on an icy road. Each of these tasks requires computational power of the

processor. However, the safety of a driver depends not only on the correctness of a

computation, but also on the time at which the results are produced. Even a small

delay in computation of the wheel angle may result in serious injuries. Therefore

accurate management of the processor’s computational power is integral to real-

time system design.

A real-time system Γ, also called a task set or a task system, is a finite collection

of tasks T1, . . . , Tn, where each task generates an infinite sequence of jobs. Each

task Ti is characterized by a four-tuple (ai, ei, di, pi), where

• the offset ai is the moment of time at which the first job of task is ready to

be executed by the processor;

• the execution requirement ei is the upper limit on the amount of time units

needed to complete execution of the task’s job;

• the relative deadline di is the length of a window in which the job must receive

ei units of processor’s time, that is if a job arrives at time t the processor

must finish its execution at time t+ di;

• the period pi is the number of time units between the arrival times of suc-

cessive jobs generated by the task.

We denote the ith job of a task Tj by T ij . A job has three parameters: a(T ij ) is

the arrival time of the job which specifies when the job is available for execution;

e(T ij ) is the execution requirement of the job which is equal to the execution

requirement of the task ej; d(T ij ) is the deadline of the job with the interpretation

that the job must receive ej units of processor time in the interval [a(T ij ), d(T ij )].

Given a collection of jobs J we define a m-processor schedule S as the function

from the Cartesian product of real numbers and the collection of jobs to the set

of numbers from 0 to m: S : R × J → {0, . . . ,m}. If at time t a job J is being

processed at the processor k, then S(J, t) = k, otherwise S(J, t) equals zero. We

call a schedule feasible if every job J in the collection receive e(J) units of processor

time between its arrival time and its deadline. A job is called active at time t if it

has been released before t, its deadline is greater than t, and the amount of time
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given to the job by the processors is less than its execution requirement. Note that

the number of active jobs may be more than the number of available processors.

A schedule is called preemptive if there exists a job whose execution on a pro-

cessor is interrupted and continued at a later time. A common reason for an

interruption of a job is the arrival of a new more urgent job. Note that preemp-

tive scheduling is strictly more powerful than nonpreemptive scheduling. For an

example consider a collection of two preemptive jobs J = (0, 4, 8) and I = (2, 3, 6).

Since job J is active at time 0, we start executing it on the processor. The second

job arrives at time 2. We have two choices: either continue execution of J , or

preempt J and start execution of I. In the first case, J finishes at time 4, and I

misses its deadline at time 6. In the second case, both jobs finish without missing

their deadlines. The example is shown on Figure 2.6.

0 2 4 6

J I

J I

(a)

0 2 5 7

J I J

J I

(b)

Figure 2.6: Scheduling of two jobs J = (0, 4, 10) and I = (2, 3, 6). (a) J is not

preempted when I arrives, and I misses its deadline. (b) feasible schedule if J is

preempted.

The utilization U(Ti) of a task is defined as a ratio of its execution require-

ment ei to the period pi: U(Ti)
def
= ei

pi
. In other words, utilization of a task is the

portion of time the processor must devote to execute all jobs of the task. The

utilization of a real-time system Γ is the sum of the utilizations of all tasks in this

system:

U(Γ)
def
=

n∑
i=1

U(Ti)

A task T = (a, e, d, p) can be either periodic [77] or sporadic [82]. If the task is

periodic then the arrival time of two successive jobs T j and T j+1 are separated by

exactly p units of time. Thus we can calculate the arrival time of each job of the

task: the first job arrives at time a, the second job arrives at time a + p, . . . , the

jth job arrives at time a+(j−1)p. If the task is sporadic, the next job T j+i arrives

at an unknown time t that is at least p units of time greater then the arrival time

of the previous job T j. A real-time system consisting of periodic (sporadic) tasks
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is called periodic (sporadic).

In this thesis, we restrict out attention to the preemptive scheduling of periodic

task systems.

Whenever one investigates properties of a task system, the feasibility problem

is considered. For a periodic task system, the feasibility problem asks whether

there exists a feasible schedule for the collection of jobs generated by the task

systems. For a sporadic task system, the problem becomes more complex because

a sporadic task system is legally permitted to generate infinitely many distinct

collections of jobs. Thus, the feasibility problem for a sporadic task system asks

whether there exists a feasible schedule for every collection of jobs generated by

the task system.

Leung and Merrill showed that the feasibility problem for an arbitrary periodic

task system is NP-hard:

Theorem 2.2.1 (Leung and Merrill [76]). The problem of deciding whether an

arbitrary periodic task system is feasible on one processor is NP-hard.

As a corollary to the theorem, the feasibility problem on m processor is NP-

hard. Moreover, it follows from their proof that for a task system Γ with U(Γ) < c,

where c is an arbitrary small positive constant, the problem remains NP-hard.

Therefore different restrictions on the task models are considered.

A periodic task system is called synchronous if the first jobs of all tasks ar-

rive simultaneously at some moment of time. Otherwise, a task system is called

asynchronous. If a system is synchronous, then the offset of all task is assumed to

be zero, and it is disregarded from the parameters of the tasks. The synchronous

property is important for consideration since it provides us with a finite represen-

tation of the infinite job sequence generated by the tasks. Indeed, let L be the

least common multiple of tasks’ periods: L
def
= LCM(p1, . . . , pn). Let Jk be the

set of jobs such that their arrival times lie in the period from kL to (k + 1)L:

Jk = {J | kL ≤ a(J) < (k + 1)L}. Then the infinite sequence of jobs equals to

the union J0 ∪ J1 ∪ . . . of these sets. It is not hard to see that the there exists a

bijective function from a set Ji to the set J0. Thus we only need to search for a

feasible schedule for the set J0, which exists if and only if there exists a feasible

schedule for the infinite set J .

Note that only periodic task systems are synchronous since the periodicity

constraint forces the jobs arrive synchronously. In a sporadic task system, even if
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all the first jobs are released at the same time, a task may postpone releasing a

job thus breaking synchronization.

Other restrictions on a task model that are studied in the literature concern

relationship between deadlines and periods of the tasks. The task system (periodic

or sporadic) is said to be:

• implicit-deadline if every task of the system has its deadline equal to its

period: di = pi for every 1 ≤ i ≤ n;

• constrained-deadline if every task of the system has its deadline no larger

then its period: di ≤ pi for every 1 ≤ i ≤ n;

Until recently the complexity of feasibility problem for synchronous task sys-

tem remained open. In 2010, Eisenbrand and Rothvoß proved that the problem

of testing whether an EDF algorithm (see section 2.2.1 below) produces a feasible

uniprocessor schedule for a synchronous periodic task system is coNP-hard, even if

deadlines of the tasks are constrained. Since feasibility of a synchronous task sys-

tem implies existence of an EDF schedule [77, 39], their result implies coNP-hardness

of the feasibility problem for such task systems. For synchronous constrained-

deadline systems on multiple processors, Bonifaci et al. obtained the same result

in the same year.

However, the feasibility problem is tractable if the task system is periodic

implicit-deadline. The result for one processor was obtained by Liu and Layland

[77] and for m processors by Horn [65]:

Theorem 2.2.2 (Liu and Layland [77]). A periodic implicit-deadline task system

Γ is feasible on one processor if and only if total task utilization is at most 1:

U(Γ) ≤ 1.

Theorem 2.2.3 (Horn [65]). There exists a feasible m processor schedule for the

jobs generated by a periodic implicit-deadline task system Γ if

and only if U(Γ) ≤ m.

Thus the complexity of feasibility problem for periodic task systems on one and

m processors is well understood. Figure 2.7 shows the hierarchy of periodic task

systems with different combinations of restrictions. The most general class consists

of asynchronous task systems without any restrictions on the offsets and deadlines

of the tasks. The most narrow class consists of implicit-deadline synchronous task

systems.
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Figure 2.7: Complexity of feasibility problem for different types of task systems.

Abbreviations C-D and I-D represent constrained- and implicit-deadline systems.

The feasibility problem for sporadic task systems is solved in the uniprocessor

case. Baruah et al. [10] showed that the problem is reducible to the feasibility

problem for synchronous task system:

Theorem 2.2.4 (Baruah et al. [10]). Let Γ be a sporadic task system of consist-

ing of n tasks T1 = (e1, d1, p1), . . . , Tn = (en, dn, pn). Let Γ′ be a corresponding

synchronous task system consisting of tasks T1 = (e1, d1, p1), . . . , Tn = (en, dn, pn).

The task system Γ is feasible on one processor if and only if Γ′ is feasible on one

processor.

Combining Theorem 2.2.4 with the result for periodic task systems, we have

the following:

Theorem 2.2.5. An implicit-deadline sporadic task system is feasible on one pro-

cessor if and only if its utilization is at most 1.

Theorem 2.2.6. The uniprocessor feasibility problem of a sporadic task system

with constrained or arbitrary deadlines is coNP-hard.

In the multiprocessor case, neither the exact polynomial-time algorithms are

known nor the complexity of the problem. To the best of our knowledge, the first

algorithm for testing multiprocessor feasibility of an arbitrary and constrained-

deadline sporadic task system is obtained by Bonifaci and Marchetti-Spaccamela

[15]. The algorithm has 22O(s)
time complexity and 2O(s) space complexity, where

s is the input size of the task system.
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2.2.1 Scheduling Algorithms for Real-Time Systems

It is easy to schedule jobs if at any time there are more available processors than

active jobs. All we need to do is to choose a free processor and start execution

of an active job on this processor. However, it is usually quite the reverse: the

number of available processors is less than the number of active jobs. Therefore a

scheduling algorithm must make two decisions: on which processor a job should

be executed, and in what order execute the jobs. We will refer to the first problem

as allocation problem and to the second problem as priority problem. Based on

the decisions a scheduling algorithm makes at run-time it belongs to one class in

each of the following two categories [24]:

• In allocation category, algorithms are classified with respect to the degree of

interprocessor migration:

– No migration or partitioned. All jobs of a task are executed on the same

processor.

– Restricted migration or global. Different jobs of a task can be executed

on different processors. However, if a job is preempted, its execution

must be resumed on the same processor.

– Unrestricted migration. No restriction on job migration: different pro-

cessor can execute the same job at different period of times. However,

parallel execution is not allowed.

• In priority category, algorithms are classified with respect to the changes of

the relative priorities of jobs:

– Static priorities. All tasks are assigned different priorities, all jobs of

the same task have the same priority. A job of a higher priority task

always preempts a job of a lower priority task.

– Job-level dynamic priorities. Priorities of tasks are not important, jobs

receive priorities individually. However, if a job Ji is being executed

when a job Jj is active, then Ji will be started only when Ji is finished.

– Unrestricted dynamic priorities. No restrictions on the priorities of

the jobs: relative priorities of two jobs may change at any time.

We provide a description of the three standard scheduling algorithms, one

from each priority category: rate-monotonic (RM) that falls into static priority
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class, earliest deadline first (EDF) from the job-level dynamic priority class, and

least-laxity first (LLF) that belongs to the class of unrestricted priorities. To focus

on the details of the algorithms we describe them in the case of single processor.

Then we describe important results in the case of multiple processors.

Rate-monotonic. The RM algorithm [77] is a static priority algorithm that assigns

fixed priorities to the tasks based on their period: the longer the period, the smaller

the priority. That is if two tasks A and B have periods 30 and 40, respectively,

then every job of the task A has a higher priority then any job of the task B.

Therefore for any natural numbers i, j a job Ai always preempts a job Bj. When

two task have the same periods, the higher priority is assigned arbitrarily. Let us

provide an example of a schedule computed by RM algorithm.

Let Γ be a synchronous implicit-deadlines system of three task A,B and C

with preemption allowed. The task A,B,C has the execution requirements of 2,

2 and 4 and the period of 6, 8 and 12, respectively. Recall that in synchronous

systems the first jobs of all tasks are released at time 0, and in implicit-deadline

systems relative deadline of a task equals to its period. Note that 24 is the least

common multiply of tasks’ periods. Therefore it is sufficient to run the scheduler

in the first major cycle from 0 to 24. The example is shown on Figure 2.8.

The scheduler compares priorities of active jobs whenever there is more than

one active job. At time 0 there are three active jobs, one of each task. Task A

has the smallest period. Therefore the job A1 is executed first. The next job to

be executed is B1 at time 2, and C1 at time 4. At time 6, while job C1 is still

active, the second job of task A arrives. Since A has higher priority than C, the

job A2 preempts C1. For the same reason, the job B2 occupies the processor at

time 8 instead of C1. Nevertheless, C1 finishes before C2 is released. The job

A3 is released at the same time as C2. Therefore C2 waits until A3 is completed.

Later, at times 16 and 18, C2 is preempted by B3 and A4. Finally, the job C2

is completed at time 22. Since none of the jobs misses its deadline in the period

from 0 to 24, we conclude that the task system Γ is schedulable by RM algorithm.

Note that there are n! different priority assignments of n tasks, and priority

assignment based on the periods is only one the many others. In our example above

we can assign priorities to tasks A,B,C such that C has higher priority than B,

which has a higher priority that A. However, with this assignment, the job A1

does not complete by its deadline. Therefore a natural question arises: what is
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Figure 2.8: Rate-monotonic scheduling of three tasks A(2, 6), B(2, 8) and C(4, 12),

where (x, y) denote the execution requirement and the period, respectively.

the optimal priority assignment? [77] proved that the rate monotonic assignment

is optimal in the sense that if a task set is not schedulable by RM algorithm then

it is not schedulable by any other static priority scheduling algorithm.

Theorem 2.2.7 (Liu and Layland [77]). If a feasible priority assignment exists

for some task set, then the rate monotonic priority assignment is feasible for that

task set.

In the same paper, Liu and Layland also identified and proved a sufficient test

for the RM algorithm that is based on the overall utilization of the system

Theorem 2.2.8. The task system Γ of n tasks is schedulable if U(Γ) ≤ n(21/n−1).

When the number of tasks is increasing, the value of the equation approaches

0.693. However, the test is sufficient, but not necessary, as there exist task sets with

utilization greater than 0.7 that can be successfully scheduled by the RM algorithm.

Lehoczky et al. [72] showed that in the average case large task sets with utilization

as high as 0.9 do not miss deadlines if scheduled by RM algorithm.

Earliest-deadline first. The EDF algorithm is a job-level dynamic priority algo-

rithm. It assigns priorities to the jobs at runtime based on the jobs’ deadlines:

if jobs Ai and Bj are active at time t, the EDF algorithm schedules the job with

the earlier deadline first. In contrast to the rate monotonic priority assignment,

jobs may have different relative priorities at different time moments. Consider the

following example.

A synchronous implicit-deadline task system Γ consists of two tasks A,B with

the execution requirement 2 and 4 and the periods 5 and 7, respectively. At time

0 the job A1 has an earlier deadline than the job B1, and therefore it is scheduled

first. At time 5 the job A2 is released. Since B1 has an earlier deadline than A2,
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A2 does not preempt B1. For the same reason, B2 does not preempt A2 and A3

does not preempt B2. However, a preemption does happen at time 15 when the

job A4 is released: A4 has the deadline at 20, while currently processing job B3

has the deadline at 28. See the Figure 2.9.

0 5 7 10 14 15 17 20

A1 A2 A3 A4 A5B1 B2 B3 B3 B4

A1

B1 B2 B3 B4

A2 A3 A4 A5

Figure 2.9: Rate-monotonic scheduling of three tasks A = (2, 5) and B = (4, 7) .

Note that the task system above is not schedulable by the RM algorithm: the

job B1 misses its deadline, because in the period from 0 to 7 the task A takes 4

units of time of the processor. Thus, by the theorem 2.2.7, there is no feasible

static priority assignment for this task system.

The EDF scheduling possesses the following strong property:

Theorem 2.2.9 (Liu and Layland [77]). The set of tasks, when scheduled by

EDF algorithm, meets all deadlines if and only if the total utilization of the task set

does not exceed 1.

Consequently, this property of EDF algorithm gives us the necessary and suffi-

cient feasibility test of a task set. If the total utilization of the task set exceeds

1, then the task set is not feasible. Otherwise, we know that the task set can be

scheduled by EDF algorithm and meet all deadlines.

Least Laxity First. The laxity of an active job at time t is the amount of time

a job can wait for the execution and still meet the deadline. Formally, for a job J

the laxity L(J, t) at time t is the difference between job’s relative deadline d(J)− t
and remaining computation time c(J): L(J, t) = d(J) − t − c(J). For example,

a job J with the deadline at 6 and execution requirement of 4 at time 0 is 2. If

the job is executed from 0 to 1, then its laxity remains the same. Otherwise, it

decreases by 1.

The LLF algorithm assigns priorities to the jobs based on their laxities: the

smaller the laxity, the higher the priority. The algorithm belongs to the class

of unrestricted priorities algorithm. Indeed, while a job J is being executed, its

laxity remains the same, but the laxity of other active jobs decreases. Therefore
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Figure 2.10: Least-laxity first scheduling of two tasks A = (4, 7) and B = (3, 8)

and the graph showing changes in laxity value with time.

the priority of waiting jobs is increasing and may become higher than the priority

of the job J . Let us give an example of this process.

Let Γ be a task system of two tasks A and B with execution requirements of

4 and 3 and the periods of 7 and 8, respectively. At time 0 the laxities of the

jobs A1 and B1 are 3 and 5. Therefore A1 is scheduled first. With time, the

relative deadline of both jobs is decreasing. However, since A1 is being executed,

its remaining computation time is decreasing as well. Therefore, the laxity of A1

does not change, while the laxity of B1 is decreasing. after 3 units of time the

laxity of B1 becomes smaller then the laxity of A1. Therefore B1 preempts A1.

For the next two units of time, we have the opposite situation: the laxity of B1

does not change while the laxity of A1 is decreasing. At time 5, A1 has higher

priority and it preempts B1. Thus the same jobs preempt each other at different

moments of time. The example is shown on Figure 2.10.

As EDF algorithm, LLF algorithm produces a feasible schedule for a task set if

and only if the total utilization of the task set does not exceed 1 [82]. However,

LLF algorithm does more job preemptions than EDF algorithm. In a system where

preemption results in additional memory management of the processor’s cache,

this property of LLF algorithm becomes a disadvantage.

Multiprocessor scheduling. Recall that in the case when several processors are

available, an algorithm belongs to one the three classes: partitioned, restricted

migration, full migration. The partitioned approach allows to reduce a multipro-

cessor scheduling problem to a set of single processor problems. Once we have

chosen a set of tasks for a processor, we may apply, for example, RM or EDF al-

gorithm. However, finding an optimal allocation of tasks to the processor is a

bin-packing problem, which is NP-hard. Thus, one must apply a non-optimal

heuristic to partition the tasks.
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In the class of restricted migration algorithms, it also has been shown that the

problem of deciding whether an arbitrary task set can be feasibly scheduled by a

fixed- or dynamic-priority algorithm on M processors is NP-hard [75]. However,

if the total utilization of a task set is less or equal to M+1
2

, a restricted migration

algorithm will produce a feasible schedule for the task set.

EDF algorithm, being optimal in the single processor case, was compared exper-

imentally under partitioned and restricted migration schemes. Empirical results

have show that EDF-based partitioning algorithms are superior to EDF-based global

partitioning algorithms [6, 11].

The only algorithms that can achieve maximal possible utilization of M are

based on the notion of proportionate fairness (Pfair) [9]. Such algorithms fall into

the class of full migration and the class of unrestricted dynamic. The idea is that

over an interval [0, t) every task T receives the amount of time proportionate to

its utilization. For an overview of Pfair scheduling and many of its extensions we

refer the reader to Leung [74, ch. 31]. The disadvantage of proportionate schedule

is that the number of preemptions and interprocessor migrations may be high.

2.3 Amortized Complexity

In this section we describe an amortized analysis [99, 66, 92], which is a powerful

technique for finding tight upper bounds on total computation time taken by a

sequence of operations. Note that we talk about a sequence of operations rather

than a single operation. The core idea is that if an ith operation in a sequence is

affected by the preceding operations then it might be the case that the time taken

by the operation is less than the time the operation takes in the worst-case. Let

us give an example that illustrates the concept of amortized analysis.

Let inc be an operation that increments a binary counter by one. Suppose

that the cost of this operation is the number of bits in the counter that has been

changed. It is easy to see that the time taken by inc in the worst-case is in O(n),

where n is the length of the counter. However, if an operation has changed n bits,

the subsequent 2n−1 − 1 operations will not change the nth bit in the counter.

In other words, the first bit in the counter is changed by every operation. The

second bit is changed by every second operation. The third bit is changed by every

fourth operation. And so on. Therefore we calculate the cost of a sequence of m

operations as the sum of times every bit in the counter is changed:
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⌋
+
⌊m

4

⌋
+ . . . ≤ 2m

Thus the time taken by any sequence of m inc operations is at most 2m, and

not O(m · logm) as one might obtain by applying the worst-case analysis.

One of the approaches that formally defines the amortized running time of

operations is based on the potential [99]. Let σ1, . . . , σm be a sequence of operations

that are applied to some data structure D. Let Φ(D) be a potential function that

maps all possible states of the data structure to real numbers. Let the cost of ith

operation be ci. We define the amortized cost of i operation as the actual cost

operation plus the difference in the potential of the data structure:

ĉi = ci + Φ(Di)− Φ(Di−1)

The amortized cost of a sequence of m operations is:

m∑
i=1

ĉi =
m∑
i=1

(ci + Φ(Di)− Φ(Di−1)) = Φ(Dm)− Φ(D0) +
m∑
i=1

ci

Note that if the final potential is as large as the initial potential then the total

amortized cost is greater or equal to the total actual cost.

m∑
i=1

ĉi ≥
m∑
i=1

ci

In this case the amortized cost of a sequence of operations is the upper bound

on the actual cost, even if the amortized cost of some operations in the sequence

is smaller that the actual cost of these operations.

Intuitively, when we overcharge ith operation, we save the difference ĉi − ci in

the data structure. Later, when other operations take their worst-case time, we

will use the saved time to average the total time of the sequence.

Let us apply this technique to the problem of computing the cost of m oper-

ations that increment a binary counter. We define the potential of the counter

as the number of bits that are set to 1. Without loss of generality assume that

the counter is set to 0 before the first operation the sequence. Then the initial

potential Φ(D0) is 0.

Now suppose that as the result of ith operation the kth bit in the counter is

set to 1. Then the actual cost of the operation is k, because all the bits on the

positions less than k has been set to 0. On the other hand, the potential of the
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Di−1 . . . 1 1 0 0 1 1 1 . . .

Di . . . 1 1 0 1 0 0 0 . . .

Figure 2.11: If a bit at the position k is changed then all bits at the positions less

than k are changed too.

counter has decreased by k − 2, because k − 1 bits has been set to 0 and the bit

at the position k has been set to 1. Figure 2.11 illustrates this difference. The

amortized cost is therefore

ĉi = ci + Φ(Di)− Φ(Di−1) = k − (k − 2) = 2

Thus the total amortized cost of m operations is 2m. Moreover, since the

potential of the counter in its final state is a positive number, the total amortized

cost is the upper bound on the total actual cost. Furthermore, if the counter is

not 0 initially, then the total actual cost is still in O(m).

The amortized analysis has been used to construct efficient data structures

such as dynamic array [30], disjoint sets [30], skew heap [94], Fibonacci heaps [48],

self-adjusting top trees [100], and others. In the next section we describe splay

tree data structure, which we use in Chapter 3 in our solution of dynamic interval

scheduling problem.

2.3.1 Splay Tree Data Structure

A splay tree [93] is a self-adjusting binary search tree with the additional property

that any element we access becomes the root of the tree. It supports standard

operations such as insertions, deletions and searching of a node. In addition, a

splay tree allows splitting a tree into two trees and joining two trees into a single

tree, given that all elements in one tree are smaller than all elements in the other

tree.

All operations are based on the specific operation splay. The splay operation,

applied to a node x, moves the node to the top of the tree by several steps, where

each step is one of the following types:

• Zig: if the parent of x is the root, rotate the edge that joins x and its parent.

• Zig-zag: if x is left child and its parent p(x) is right child, or vice-versa, then
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Figure 2.12: Splaying steps: zig-zag (a) and zig-zig (b)

rotate the edge between x and p(x), and then rotate the edge between x and

its new parent. See Figure 2.12 (a)

• Zig-zig: if x and its parent p(x) are both left children or both right children,

then rotate the edge that joins p(x) and p(p(x)). Then rotate the edge that

joins x and p(x). See Figure 2.12 (b)

Splaying at node x takes time proportional to the depth of x. In the worst

case, when x is the deepest node in a ”lined” tree, where every node has only one

child, the splaying takes time linear in the number of nodes. However, with every

splaying step the subtrees of x are moved by up at least one level. Therefore, after

accessing the deepest node in a ”lined” splay tree, the height of the tree decreases,

and future splaying of the deepest nodes take less time. Consider the example on

Figure 2.13. in this example, the height of the tree is 9 initially. After performing

splay operation on the node 1, which is at the bottom of the tree, the height of

the tree reduces to 7. Furthermore, after performing splay operation on the node

2, the height of the tree reduces to 4.

Sleator and Tarjan [93] used amortized analysis to prove the following theorem

Theorem 2.3.1 (Sleator and Tarjan [93]). The total amortized cost of m splay

operations on a tree with n nodes is O((m+ n) log n+m)

In other words, the amortized cost of splay operation is O(log n). We briefly

describe how to use amortized analysis to obtain this result.

Let the size s(x) of a node x be the number of nodes in the subtree rooted at

x divided by n, the total number of nodes in the tree. Let the rank r(x) of a node

x be log s(x). Then the potential function Φ(T ) of the tree is the sum of the ranks

of all its nodes.

Consider a splaying step: zig, zig-zag or zig-zig. Recall that the amortized

cost of an operation is the sum of actual cost plus the difference in the potential
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Figure 2.13: Splay tree changes its shape and reduces its height after splay oper-

ations.

of the data structure. Let ri−1 and ri denote the rank function just before and

after an ith splaying step. It is not hard to see that the ranks of only three nodes

are affected: the splaying node x, its parent y, and the parent of its parent z.

Therefore the change in potential ∆Φ is

∆Φ = ri(x) + ri(y) + ri(z)− ri−1(x)− ri−1(y)− ri−1(z)

The actual cost of the zig splaying step is 1 rotation, and for the other two

splaying steps is 2 rotations. Sleator and Tarjan [93] showed in the first case the

amortized cost is at most 1 + 3(ri(x) − ri−1(x)), and in the other two case is at

most 3(ri(x)− ri−1(x)).

Now we are ready to compute the total amortized cost of a splay operation as

the sum of amortized costs of splaying steps:
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ĉ(splay) = ĉ(step1) + ĉ(step2) + . . .+ ĉ(stepk)

≤ 3(r1(x)− r0(x)) + 3(r2(x)− r1(x)) + . . .+ 1 + 3(rk(x)− rk−1(x))

≤ 1 + 3(rk(x)− r0(x))

Recall that the rank is a logarithmic function. Since the size of a root is

1 and minimal possible size of x is 1
n
, we have that the amortized cost of the

splay operation is at most 3 log n+ 1. Also, note that maximal difference between

Φ(Tm) and Φ(T0), where Tm and T0 is the states of the splay tree after and before a

sequence of splay operations, is at most
∑n

i=1(log 1−log( 1
n
)) = n log n, because the

maximal size of a node is 1 and minimal size of a node is 1
n
. Thus we have that the

total amortized cost of a sequence of m splay operations is O((m+ n) log n+m).

The splay operation is the subroutine of every other operation on a splay tree.

To access an element, we splay the tree on the node containing this element or

splay the last visited node if the element is not in the tree. To split a tree at the

element x, we splay at the node containing x, and then delete the edge between x

and its right child. To join two trees, we splay at the maximal element in the tree

with smaller elements, and the create an edge between this element and the root

of the other tree. The insertion and deletion of a node are done with operation

join and split as subroutines. Since each operation does a constant number of edge

additions and removals, all of this operations has the amortized cost equal to the

amortized cost of the splay operation. Thus any sequence of search, insert, delete,

join, and split operations have total amortized cost of O((m+ n) log n+m).



Chapter 3

Dynamic Scheduling of

Monotonic Intervals on Single

Machine

In this chapter we study the dynamic problem of monotonic interval scheduling on

a single machine. Recall that the static scheduling problem for a set of intervals I

is to find a compatible subset of intervals of maximal size. In the dynamic problem,

the input is an arbitrary sequence o1, . . . , om of the following operations:

- insert(i) adds an interval i into the set I if i 6∈ I,

- remove(i) deletes an interval i from the set I if i ∈ I,

- query(i) returns true if and only if i belongs to the greedy optimal set (see

Definition 2.1.5)

Our goal is to design an algorithm that minimizes the total running time of

any sequence of these operations. We focus on the class of monotonic interval sets,

which we define in Section 3.1.

Chapter 3 is organized as follows. In Section 3.1, we formally define monotonic

interval sets. In Section 3.2, we describe algorithms for searching left and right

compatible intervals of a given interval. In Section 3.3, we analyse two naive

approaches to the dynamic problem of interval scheduling. In Sections 3.4 and

3.5, we provide two our data structures that solve the problem. In Section 3.6 we

discuss an alternative operation report that prints out all intervals in the greedy

optimal set. Finally, in Section 3.7, we empirically compare our data structures.

45
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3.1 Monotonic Interval Set

Definition 3.1.1. The set I of intervals is called monotonic if for any two intervals

x, y ∈ I neither x ⊂ y nor y ⊂ x.

In other words, in a monotonic interval set no interval covers another interval.

An example of monotonic interval sets is a set of intervals of equal length with

different starting and finishing times. Monotonic interval sets are connected with

proper interval graphs. Recall that an interval graph is a graph whose nodes are

intervals and two nodes are adjacent if the two corresponding intervals overlap.

A proper interval graph is an interval graph for a monotonic set of intervals. A

proper interval graph can be converted to a monotonic interval set by a linear time

algorithm [31, 38, 62].

Note that in a monotonic interval set the orders ≺s and ≺f are equal. Therefore

if an interval i starts before an interval j then i finishes before j. The following

lemma gives us a method to check monotonicity of an interval set.

Lemma 3.1.2. Let I = {i1, . . . , in} be a set of intervals such that i1 ≺f . . . ≺f in.

The set I is monotonic if and only if for all s ∈ {1, . . . , n − 1} neither is+1 ⊂ is

nor is ⊂ is+1 .

Proof. One direction follows directly from the definition of monotonic set. For

the other direction, let I be a set of intervals {i1, . . . , in} ordered by the finishing

times. Take the interval i1 with the smaller finishing time. By assumption, i1 does

not contain i2 and i2 does not contain i1. It implies that s(i1) < s(i2). Now take

the interval i3. Since i3 does not contain i2 and i2 does not contain i3, we have

that s(i2) < s(i3). Therefore s(i1) < s(i3), and, since f(i1) < f(i3), we have i1

does not contain i3 and i3 does not contain i1. Continuing these reasoning we have

that for any interval is neither i1 contains is nor is contains i1. Thus the set I is

monotonic.

Lemma 3.1.3. Let I = {i1, . . . , in} be a set of intervals ordered by the finishing

times. There exists an algorithm that decides if I is monotonic in O(n) time.

Proof. By Lemma 3.1.2, to check whether I is monotonic, one goes through the

intervals i1, . . . , in and checks whether ik+1 contains ik where 1 ≤ k < n. This

takes time O(n).
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We assume that monotonicity of the interval set is not violated after insertion

of a new interval. Indeed, if we keep the intervals sorted by their finishing time,

all we need to do after an insertion of i is to look at the next and the previous

intervals of i. By Lemma 3.1.2 if i is not contained and does not contain these

intervals the set remains monotonic.

3.2 Operations right compatible and left compatible

We keep intervals in a binary search tree in order of their starting times. Let us

denote this tree by T (I).

Monotonicity of the interval set I implies an important property of T (I): if an

interval i ∈ T (I) is not compatible with an interval j, then the left subtree of i does

not contain rc(j) and the right subtree of i does not contain lc(j). This allows us to

define two efficient operations: right compatible(j) and left compatible(j). We do

not need left compatible(j) for the representation of the compatibility forest, but

we will need this operation for our second data structure described in Section 3.5.

The algorithms for theses operations are essentially a standard search in a

binary search tree. For the right compatible operation, we begin by examining the

root j of the tree. If j ≺f i or j is not compatible with i, we search for rc(i) in the

right subtree of j. If j �f i and compatible with i, we remember j as a potential

rc(i) and search for a smaller compatible interval in the left subtree. We terminate

the search if j is a leaf and return the remembered interval or nil if no interval is

remembered. The pseudo-code for this operation is presented in Algorithm 3.2.

Algorithm 3.1 right compatible(i)

1: r ← nil

2: j ← the root in the interval tree T (I).

3: while j 6= nil do

4: if j ≺f i or j overlaps i then

5: j ← the right child of j

6: else

7: r ← j

8: j ← the left child of j

9: end while

10: return r



48 CHAPTER 3. SCHEDULING ON SINGLE MACHINE

The algorithm for the left compatible operation is similar, except that we replace

“≺f” with “�f” and go the left child of the current node instead of the right child.

The pseudo-code for this operation is presented in Algorithm 3.2.

Algorithm 3.2 left compatible(i)

1: `← nil

2: j ← the root in the interval tree T (I).

3: while j 6= nil do

4: if j �f i or j overlaps i then

5: j ← the left child of j

6: else

7: `← j

8: j ← the right child of j

9: end while

10: return `

The correctness of the operations is proved by the following lemma.

Theorem 3.2.1. On monotonic set I of intervals the operations right compatible(i)

and left compatible(i) run in time Θ(log n) and return rc(i) and lc(i) respectively.

To prove the lemma we observe that for a monotonic set I of intervals and

i, j ∈ I, if i overlaps j, then each of the intervals between i and j overlaps both i

and j. Indeed, suppose i ≺f j. As I is a monotonic set, s(i) < s(j) < f(i) < f(j).

Take any interval ` that finishes after i, but before j. By monotonicity of I,

s(i) < s(`) < s(j). Therefore s(i) < s(`) < s(j) < f(i) < f(`) < f(j). Thus `

overlaps both i and j.

Proof. Both operations takes time Θ(log n) as the algorithms visit nodes on only

one path and the length of a path from a leaf to the root in a balanced binary

search tree is Θ(log n).

To prove the correctness of right compatible, we use the following loop invariant:

If rc(i) ∈ I, then the subtree rooted at j contains rc(i) or the remembered

interval r is rc(i).

Initially, j is the root of T (I) and r is nil, so the invariant holds. Each iteration

of the while loop executes either line 5 or lines 7-8 of Alg. 3.2. Suppose line 5 is
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executed. Then we have j ≺f i or j overlaps i. If j ≺f i then all intervals in the

left subtree of j are less than i. If j �f i but j overlaps i, then by the observation

above, all intervals between i and j overlap i. In both cases, none of the intervals in

the left subtree of j is rc(i). Therefore setting j to be the right child of j preserves

the invariant.

If lines 7-8 are executed, then we have j �f i and j is compatible with i. If there

exists an interval that is less than j and compatible with i, then such an interval is

in the left subtree of j. If such an interval does not exist, j is the smallest interval

which is compatible with i. Therefore setting r to be j and j to be the right child

of j preserves the invariant.

Thus, the algorithm outputs rc(i) if it is in I and outputs nil otherwise. Indeed,

the loop terminates when j = nil. Hence if the set of intervals I contains rc(i) then

r = rc(i). If I does not contain rc(i) then line 5 is executed at every iteration, so

r = nil.

To prove the correctness of left compatible, we use the following loop invariant:

If lc(i) ∈ I, then the subtree rooted at j contains lc(i) or the remembered

interval ` is lc(i).

Similarly to the proof above, we go to the left subtree of j only when lc(i) is

not in the right subtree of j. Moreover, when we go to the right subtree of j, we

remember j as a candidate for the left compatible interval. In any case we preserve

the loop invariant. Thus the algorithm is correct.

3.3 Naive Dynamic Algorithms

The first naive dynamic algorithm is to store all intervals in a self-balancing search

tree ordered by their finishing time and apply GreedySchedulingAlgorithm 2.1 at

each query operation. Clearly, in a sequence of operations, where every odd oper-

ation inserts an interval and every even operation asks whether the last interval

belongs to the greedy set, average running time per operation is O(n+ log n).

A modified yet still naive dynamic algorithm is this. Store the greedy optimal

set sorted in ≺f-order in a self-balancing binary search tree T that allows splitting

a tree into two trees and joining two trees into a single tree. After each insert(i)

or remove(i) operation split the tree T into two parts T` and Tr, which contains

intervals that finishes before and after s(i). All the intervals in T` remain in the
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greedy optimal set, but we remove some or all intervals from Tr. Let j0 be the

greatest interval in T`. Now start adding intervals j1, . . . , jk into T` as in the

standard greedy algorithm. If at some moment of time ji is an interval in Tr, then

stop the greedy scheduling algorithm: we know that the algorithm will choose the

intervals in Tr that are greater than ji. Therefore we split Tr at ji and merge

the greater part with the modified T`. Otherwise the greedy scheduling algorithm

stops when there are no intervals to consider.

The weak part of this algorithm is that an insertion or a deletion of an interval

may change the greedy optimal set completely. Indeed, consider a compatible set

of intervals A = {a1, . . . , ak}. We construct a compatible set of intervals B such

that every interval in B intersect with exactly two intervals of A;

B = {bi | s(bi) ∈ ai and f(bi) ∈ ai+1 and f(bi) < s(bi+1) for all 1 ≤ i < k}

Let I = A ∩ B. It is easy to see that A is the greedy optimal set of I. We

insert an interval x that overlap with a1, but does not overlap with b1. The greedy

optimal subset of I ∪ {x} is B ∪ {x}, which has no common intervals with A. See

an example in Figure 3.1. Therefore the modified naive dynamic algorithm will

iterate through all intervals in I ∪{x}. Moreover, we keep adding similar intervals

at the beginning of the interval set, forcing updates of the greedy optimal set.

Thus the average running time per operation is linear.

a1 a2 . . .
ak−1 ak

b1 b2 . . .
bk−1x

Figure 3.1: Addition of x creates completely new greedy optimal set

One may consider to use operation right compatible to search for the interval in

the greedy optimal set. In this case, updating greedy optimal set takes O(k log n)

worst-case time, where k is the number of intervals inserted into the set. However,

with greedy optimal set containing half of the intervals, the complexity of the

operation becomes O(n log n).

3.4 Compatibility Forest Data Structure (CF)

Let I be a set of intervals. We define the compatibility forest as follows
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Definition 3.4.1. A compatibility forest is a graph F(I) = (V,E) where V = I

and (i, j) ∈ E if j = rc(i)

By a forest we mean a directed graph where the edge set contains links from

nodes to their parents. We use p(v) to denote the parent of node v. The root of

a tree is a node without a parent. A leaf is a node with no children. Figure 3.2

shows an example of a monotonic set of intervals with its compatibility forest. We

note that for every forest one can construct in a linear time a monotonic set of

intervals whose compatibility forest coincides (up to isomorphism) with the forest.

a

b

c

d

e

f

g

h g

c

h

d e

a b

f

Figure 3.2: Example of a monotonic set of intervals and its compatibility forest.

The compatibility forest contains two trees rooted at g and h, respectively.

A path in the compatibility forest F(I) is a sequence of nodes i1, i2, . . . , ik where

(it, it+1) ∈ E for any t = 1, . . . , k − 1. It is clear that any path in the forest F(I)

consists of compatible intervals. Essentially, the forest F(I) connects nodes by the

greedy rule: for any node i in the forest F(I), if the greedy rule is applied to i,

then the rule selects the parent j of i in the forest. Hence, the longest paths in

the compatibility forest correspond to optimal sets of I. In particular, the path

starting from the ≺f-least interval is the greedy optimal set. Our first dynamic

algorithm amounts to maintaining this path in the forest F(I).

The representation of the forest is developed from the dynamic tree data struc-

ture as in [91]. The idea is to partition the compatibility forest into a set of

node-disjoint paths. Paths are defined by two types of edges, solid edges and

dashed edges. Each node in the compatibility forest has at most one incoming

solid edge. A sequence of nodes u0, . . . , uk where each (ui, ui+1) is a solid edge

is called a solid path. A solid path is maximal if it is not properly contained in

any other solid path. Therefore, the solid edges in F(I) form several maximal

solid paths in the forest. Furthermore, the data structure ensures that each node

belongs to some maximal solid path. An important subroutine that makes a path

from a node v to the root solid is called expose. The operation expose starts from
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a node v and traverses the path from v to the root: while traversing, if the edge

(x, p(x)) is dashed, we declare (x, p(x)) solid and declare the incoming solid edge

(if it exists) incident to p(x) dashed. Hence, after exposing node v, all the edges

on the path from v to the root become solid.

The solid paths of the compatibility forest are represented by a set of splay

trees. The order of nodes in every splay tree is determined by ≺f . Since the solid

paths are disjoint, a node u belongs to only one splay tree. We denote a splay

tree of a node u by STu. The dashed edges of the compatibility forest are not

represented explicitly, but computed when needed. To compute dashed edged we

store all intervals in a self-balancing binary search tree in the ≺f order from left

to right. This tree, denoted by T (I), supports the operations right compatible and

left compatible that respectively return rc(i) and lc(i) of a given interval i.

a b c

d e f g

h i

j

a

bd

j

h

f

c i

e g

Figure 3.3: On the left, {a, d, h, j} is a solid path in a compatibility forest. On the

right, the same path {a, d, h, j} is represented as a splay tree.

We denote this representation of the compatibility forest by CF. In the next

sections we describe the algorithms of CF that solve the dynamic interval schedul-

ing problem.

3.4.1 Update and query operations on the compatibility

forest

We call the algorithms queryCF, insertCF and removeCF for the query, insertion,

and removal operations, respectively. The expose operation is a subroutine of the

update operations. The acronym CF indicates that these algorithms are based on

the representation of the compatibility forest described above.

The operation queryCF: first, we find the minimum element m in the interval tree

T (I). Then we check if i belongs to the splay tree STm. We return true if i ∈ STm;

otherwise we return false.



3.4. COMPATIBILITY FOREST DATA STRUCTURE (CF) 53

Algorithm 3.3 queryCF(i)

1: m← minimum(T (I))

2: if find(STm, i) = i then

3: return true

4: else

5: return false

The operation expose: first, we find the maximum element j in the splay tree STi.

Since i and j are in the same splay tree, they belongs to the same solid path. Then

we search for the right compatible interval i′ = rc(j). If i′ does not exist, then j

is the root in the compatibility forest. Therefore we stop the process. Otherwise

(j, i′) is a dashed edge in the compatibility forest. We split the splay tree at i′ into

trees L(i′) and R(i′) such that i′ ∈ R(i′). This operation makes the solid edge that

enters i′ dashed. Finally we join STi with R(i′). Thus we make the edge (j, i′)

solid. We repeat the process taking i′ as i.

Algorithm 3.4 expose(i)

1: j ← maximum(STi)

2: i′ ← right compatible(j)

3: while i′ is not nil do

4: splitR(STi′ , i
′)

5: join(STi, R(i′))

6: j ← maximum(STi′)

7: i′ ← right compatible(j)

8: end while

The operation insertCF: first, we add the interval i into the tree T (I). Then we

locate the next interval r of i. Since f(i) < f(r), the interval i may be a substitute

of r in the greedy optimal set of r. Indeed, let j be an interval such that the greedy

algorithm choses r if started at j. Then i, if compatible with j, will be choose

instead of r.

Therefore, if such r exists, we find the interval j before r in the splay tree STr.

The edge (j, r) is solid. If the interval j is compatible with i, we split the tree STr

at j such that j ∈ L(j). The the edge (j, r) is now dashed. Then we add the new

interval i into L(j). This operation makes the edge (j, i) solid. We restore the

longest path of the compatibility forest by exposing the least interval in T (I). An

example of the operation is in Figure 3.4.
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Algorithm 3.5 insertCF(i)

1: insert(T (I), i)

2: r ← successor(T (I), i) . Find the next interval of i

3: if r 6= nil then

4: j ← predecessor(STr, r) . Find a solid edge (j, r)

5: if j 6= nil and j is compatible with i then

6: splitL(STj, j) . Destroy the solid edge (j, r)

7: insert(L(j), i)

8: expose(mininum(T (I)))

a
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Figure 3.4: Adding i′ in a set of intervals result in the changes of the compatibility

forest. The edge (e, i′) is new and solid. The operation does not make dashed

edges that are not on the path from the least interval solid. For example, the edge

(g, i) remains dashed.

The operation removeCF: To delete an interval i, we delete the incoming and

outgoing solid edges of i if such edges exist. We then delete i from the tree

T (I). We restore the longest path of the compatibility forest by exposing the least

interval in T (I).

Algorithm 3.6 removeCF(i)

1: split(STi, i) . Delete all solid edges incident to i

2: remove(STi, i) . Destroy the splay tree of i

3: remove(T (I), i) . Delete i from the interval tree T (I)

4: expose(minimum(T (I)))
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3.4.2 Correctness and complexity of the operations

For correctness, we use the following invariants.

(A1) Every splay tree represents a maximal path formed from solid edges.

(A2) Let m be the least interval in I. The splay tree STm contains all intervals

on the path from m to the root.

Note that (A2) guarantees that the query operation correctly determines if a given

interval i is in the greedy optimal set. Also note that if i and j are subsequent

intervals in a splay tree then (i, j) is a solid edge. The next lemma shows that

(A1) and (A2) are invariants indeed and that the operations correctly solve the

dynamic monotonic interval scheduling problem.

Lemma 3.4.2. (A1) and (A2) are invariants of insertCF, removeCF, and queryCF.

Proof. For (A1), first consider the operation of joining two splay trees A and B via

the operation expose(i). Let j be the maximal element in A and j′ be the minimum

element in B. In this case, j′ is obtained by the operation right compatible(j). It

is clear that (j, j′) is an edge in the forest F(I). Next, consider the case when

we apply insertCF(i) into the splay tree A. In this case, A is L(r) where r is the

next interval of i in I. Let j be the previous interval of r in the tree STr. By

(A1), before inserting i, (j, r) is an edge in F(I) and thus r = rc(j). Note we

only insert i to L(r) when j is compatible with i. Since i < r, after inserting i, i

becomes the new right compatible interval of j. So, joining L(r) with i preserves

(A1). Operations removeCF(i) and queryCF(i) do not create new edges in splay

trees. Thus, (A1) is preserved under all operations.

For (A2), the expose(i) operation terminates when it reaches a root of the

compatibility forest. As a result, STi contains all nodes on the path from i to the

root. Since expose(minimum(T (I))) is called at the end of both insertCF(i) and

removeCF(i) operations, (A2) is preserved under every operation.

Complexity. Let n be the number of intervals in I. All operations for the interval

tree have O(log n) worst case complexity, and all operations for splay trees have

O(log n) amortised complexity. The query operation, involves finding the mini-

mum interval in T (I) and searching i in a splay tree. Hence, the query operation

runs in amortised time O(log n). For each insert and remove operation, we per-

form a constant number of operations on T (I) and the splay trees plus one expose

operation.
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To analyse expose operation, define the size size(i) of an interval i to be the

number of nodes in the subtree rooted at i in F(I). Call an edge (i, j) in F(I)

heavy if 2 · size(i) > size(j), and light otherwise. It is not hard to see that this

partition of edges has the following properties:

(?) Every node has at most one incoming heavy edge.

(??) Every path in the compatibility forest consists of at most log n light edges.

Lemma 3.4.3. In a sequence of k update operations, the total number of dashed

edges, traversed by expose operation, is O(k log n).

Proof. The number of iterations in expose operation is the number of dashed edges

in a path from the least interval to the root. A dashed edge is either heavy or

light. From (??), there are at most log n light dashed edges in the path. To count

the number of heavy edges, we consider the previous update operations.

A heavy dashed edge must have been converted from either a heavy solid edge

or a light dashed edge. We first count the number of edges converted from heavy

solid to heavy dashed. Such conversion can only occur during expose operation.

By (??) each expose converts at most log n light dashed edges to light solid edges.

Therefore by (?) it may convert at most log n heavy solid edges to heavy dashed

edges.

We then count the number of stages that convert an edge from light dashed to

heavy dashed. Such conversion can only occur during an update to F(I) by the

insert or remove operations.

For insertCF(i), let j be the next interval of i in I. Note that by inserting i,

some number of children of j in F(I) may be redirected to i. Let Pj be the path in

F(I) from j to the root and Pi be the path from i to the root. This operation will

cause the sizes of nodes on Pj to decrease and the sizes of nodes on Pi to increase.

For removeCF(i), let j be the next interval of i in I and let ` = rc(i). After

removing i, j becomes the right compatible interval of all children of i. Therefore

all children of i are redirected to j. Let Pj be the path in F(I) from j to the root

and P` be the path from ` to the root. This operation will cause the sizes of Pj

to increase and the sizes of nodes on P` to decrease. Figure 3.5 illustrates these

structural changes.

As discussed above, both update operations may cause the sizes of nodes in

one path in F(I) to increase and the sizes of nodes in another path to decrease.
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Note that a heavy dashed edge must have been converted from either a heavy
solid edge or a light dashed edge. We first count the number of stages that convert
an edge from heavy solid to heavy dashed. Such conversion can only occur during
expose operation. By (��) each expose converts at most logn light dashed edges
to light solid edges. Therefore by (�) it may convert at most logn heavy solid
edges to heavy dashed edges.

We then count the number of stages that convert an edge from light dashed
to heavy dashed. Such conversion can only occur during an update to F(I). We
analyse the update operations in more details below.

For insertCF(i), let j be the next interval of i in I. Note that by inserting i,
some number of children of j in F(I) may be redirected to i. Let Pj be the path
in F(I) from j to the root and Pi be the path from i to the root. This operation
will cause the sizes of nodes on Pj to decrease and the sizes of nodes on Pi to
increase.

For removeCF(i), let j be the next interval of i in I and let � = rc(i). After
removing i, j becomes the right compatible interval of all children of i. Therefore
all children of i are redirected to j. Let Pj be the path in F(I) from j to the
root and P� be the path from � to the root. This operation will cause the sizes
of Pj to increase and the sizes of nodes on P� to decrease.

Fig. 3. Edge redirections during an update operation on an interval i, where j is the
next interval of i

a b c
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Inserting i. Removing i.
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rc(i)
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Pj

As discussed above, both update operations may cause the sizes of nodes in
one path in F(I) to increase and the sizes of nodes in another path to decrease.
This may introduce new heavy dashed edges to F(I). Suppose the size of a path
P in F(I) increases. Then some number of light dashed edges may become heavy.
By (��) there can only be at most log n such edges. Suppose the size of another
path Q in F(I) decreases. Then every heavy edge (u, v) on Q may become light,
which may result in some light edge (u′, v) becoming heavy. By (��) again, there
can be at most logn such edges (u, v). Hence summarising the above, there can
be O(logn) light dashed edges changing to heavy dashed edges during an update
operation.

Figure 3.5: Redirections of edges in CF, where j is the next interval of i.

This may introduce new heavy dashed edges to F(I). Suppose the size of a path

P in F(I) increases. Then some number of light dashed edges may become heavy.

By (??) there can only be at most log n such edges. Suppose the size of another

path Q in F(I) decreases. Then every heavy edge (u, v) on Q may become light,

which may result in some light edge (u′, v) becoming heavy. By (??) again, there

can be at most log n such edges (u, v). Hence summarising the above, there can

be O(log n) light dashed edges changing to heavy dashed edges during an update

operation.

Hence, the total number of heavy dashed edges created after k update opera-

tions is O(k log n).

Lemma 3.4.2 and Lemma 3.4.3 give us the following theorem:

Theorem 3.4.4. The algorithms queryCF, insertCF and removeCF solve the dy-

namic monotonic interval scheduling problem. The algorithms perform insert in-

terval and remove interval operations in O(log2 n) amortised time and query op-

eration in O(log n) amortised time, where n is the size of the set I of intervals.

Remark. Tarjan and Sleator’s dynamic tree data structure has amortised time

O(log n) for update and query operations. To achieve this, the algorithm main-

tains dashed edges explicitly. Their technique cannot be adapted directly to the

compatibility forest because insertion or removal of intervals may result in redirec-

tions of a linear number of edges. Indeed, let b, a0, a1, . . . , ak be the intervals such

that rc(ai) = b for all 0 ≤ i ≤ k. Take c such that f(ak) < s(c) < s(b) and insert

it into the compatibility forest. Since b is the right compatible interval for all ai,

now c becomes the right compatible interval for all ai. Every edge (ai, b) must be
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deleted and every edge (ai, c) must be created. Therefore, more care should be

taken; for instance, one needs to maintain dashed edges implicitly in T (I) and

compute them calling right compatible operation.

Theorem 3.4.5 (Sharpness of the log2 n bound). In CF data structure there exists

a sequence of k update operations with Θ(k log2 n) total running time.

Proof. Consider a sequence o1, . . . , ok of k update operations. The first n opera-

tions in the sequence are the insert operations. We set n to be 2m− 1, where m is

a positive natural number. The goal of these insertions is to create a full perfect

binary tree1 of height log n in the compatibility forest. The remaining k − n op-

erations are pairs of insertCF and removeCF operations. These update operations

are chosen in such a way that every operations visits log n dashed edges.

We recursively describe a set of insert operations that construct a full perfect

binary tree level by level. We denote by i`,s the sth interval on the level `.

Basis: At the beginning, we insert an interval i0,1 with arbitrary left and right

endpoints. The interval becomes the root of the tree and fills the level 0 of the

tree.

First step: We insert two intervals i1,1 and i1,2 such that:

- i1,1 and i1,2 overlap,

- i1,1 finishes before i1,2,

- i1,2 finishes before i0,1 starts.

The intervals i1,1 and i1,2 fill the level 1 of the tree.

Recursive step: Let ` be the level filled up on the previous step. We denote by

js the sth interval we insert on the level ` + 1, i.e. js is i`+1,s. The first interval

j1 has an arbitrary starting time, but its finishing time is less that s(i`,1). The

second interval j2 has starting time between s(j1) and f(j1) and has finishing time

between f(j1) and s(i`,1). In other words, the right compatible interval of j1 and

j2 overlap is i`,1. Hence j1 and j2 are the children of i`,1 in the compatibility forest.

For the third interval j3 we want it to be a child of i`,2 in the compatibility

forest. But at the same time, it must overlap the intervals j1 and j2. Therefore we

choose the starting time of j3 between s(j2) and f(j1) and the finishing time of j3

1A binary tree is called full perfect if all the leaves are on the last level of the tree and every

internal node has exactly two children.
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between s(i`,1) and s(i`,2). For the forth interval j4, we choose s(j4) to be between

s(j3) and f(j1) and we choose f(j4) to be between f(j3) and s(i`,2).

Suppose we have inserted t intervals. The starting time of the next interval

jt+1 is between s(jt) and f(j1). The finishing time f(jt+1) depends on the parity

of t. If t is an even number then f(jt+1) is between s(i`,t/2) and s(i`,1+t/2). If t is

an odd number, then f(jt+1) is between f(jt) and s(i`,dt/2e). Once we inserted 2`

intervals we move to the new level. Figure 3.6 shows an example of filling up the

2nd level of the binary tree.

i0,1
j3

j4

j1

j2

i1,2

i1,1

. . .

Figure 3.6: Compatibility forest for this set of intervals contains only one full

perfect binary tree

After n operations the compatibility forest consists of exactly one full perfect

binary tree. Recall that in our representation every node has at most one incoming

solid edge. Therefore there is always a path from the root to a leaf that traverses

only dashed edges. This observation leads to the description of the remaining k−n
operations in the sequence.

Let os be one of the k − n remaining operations, that is n < s ≤ k. Let Ts−1

be the state of the tree before the operation os. Let h be the height of Ts−1. Let

js−1 be an interval in Ts−1 such that a path from this interval to the root consists

of dashed edges only.

If s is even then the os is an insertCF operation. The interval i inserted by

this operation is such that rc(i) = js−1. Note that i overlaps with all interval that

finishes before js−1. In particular, if ih,1 ≺f js−1, the inserted interval i overlaps

with ih,1. Therefore i becomes the ≺f-least interval in the compatibility forest and

the expose operation traverses log n dashed edges, creating the a greedy optimal

set.

If s is odd then the os is a removeCF operation. The interval deleted by this

operation is the interval inserted by the previous operation os−1. The expose

operation traverses only one dashed edge, because we return to the greedy optimal

set that was two operations before.

Thus, before every insert operation there always exists a path consisting of log n
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dashed edges. With a sufficiently large k, the total time taken by the operations

in the sequence is Θ(k log2 n).

3.5 Linearised Tree Data Structure (LT)

The dynamic algorithm based on compatibility forest described above has differ-

ent time complexity of update operations and query operation. In particular the

update operations may take longer than the query operation. In this section we

describe a new dynamic algorithm for solving the monotonic interval scheduling

problem. Our goal is to improve the running time for the update operation. To

achieve this we introduce a new data structure called the linearised tree. The dy-

namic algorithm based on this data structure performs all operations in amortised

O(log n) time.

We say that intervals i and j are equivalent, written as i ∼ j, if and only if

rc(i) = rc(j). The equivalence class of i is denoted by [i]. In other words, two

intervals are in the same equivalence class if they are siblings in the compatibility

forest. Note that if i ∼ j then i and j overlap.

We arrange all intervals of an equivalence class in a path using the ≺f-order.

The linearised tree consists of all such “linearised” equivalence classes joined by

edges. Hence, there are two types of edges in the linearised tree. The first type

connects intervals in the same equivalence class. The second type joins the greatest

interval in an equivalence class with its right compatible interval. Figure 3.7 shows

an example of a linearised tree.
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Figure 3.7: Example of a compatibility forest (left), where {a, e, h} is the greedy

optimal set, and the corresponding linearised tree (right).

Formally, the linearised tree L(I) is a tuple (I;E = E∼ ∪ Ec), where E∼ and

Ec are disjoint set of edges such that:

• (i, j) ∈ E∼ if and only if i ∼ j and i is the previous interval of j. Call i the

equivalent child of j.
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• (i, j) ∈ Ec if and only if i is the greatest interval in [i] and j = rc(i). Call i

the compatible child of j.

The following lemmas follow easily from the definitions above.

Lemma 3.5.1. Every node in a linearised tree L(I) has at most one equivalent

child and at most one compatible child.

Lemma 3.5.2. The root of the linearised tree L(I) is the greatest interval in I.

We represent the linearised tree of an interval set I as a set of dynamic trees.

Each dynamic tree stores the intervals of some path in L(I). As in CF the dynamic

trees are connected by dashed edges, which we compute when needed. An interval

i belongs to only one dynamic tree, denoted by STi. Linking and cutting dynamic

tree we update the edges in the L(I). In addition to the dynamic trees, we also

store the intervals ordered from left to right by ≺f in a self-balancing binary search

tree T (I). The tree T (I) is used to compute previous and next intervals as well as

left compatible and right compatible intervals of a given interval. We denote this

representation of the linearised tree by LT.

We stress three crucial differences between the CF and LT data structures. The

first is that a path in a linearised tree may not be a compatible set of intervals.

The second is that linearised trees are binary. The third is when we insert or

remove an interval we need to redirect at most two existing edges in the linearised

tree. We provide more details below in the description of the query and update

algorithms of LT.

3.5.1 The operation queryLT

Suppose we want to detect if an interval i is in the greedy optimal set. First, we

check if i is the least interval. If yes, we are done. Otherwise we need to consider

the path P from the least node m to the root in the linearised tree L(I). Since

the nodes of the the path P may be stored in the different dynamic trees of LT,

we call expose(m) to make sure that all the nodes of P are in one dynamic tree.

Recall that in LT a interval in P not necessary belongs to the greedy optimal set.

For example, in Figure 3.7, b belongs to P , but is not in the greedy optimal set.

Therefore we look at the direct predecessor j of i in the path P . If j and i are

compatible, we return true. Otherwise, we return false.
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Algorithm 3.7 queryLT(i)

1: m← minimum(T (I))

2: if i = m then . i is the least interval

3: return true

4: expose(m) . Make the path from m to the root solid

5: if i 6= find(STm, i) then . i is not on the path from m to the root

6: return false

7: j ← predecessor(STm, i) . (j, i) is an edge in LT

8: if i is compatible with j then

9: return true

10: else

11: return false

Lemma 3.5.3. The operation queryLT(i) returns true if and only if a given interval

i belongs to the greedy optimal set of I.

Proof. Let J be the greedy optimal set of I and m be the least element of I.

Suppose the algorithm queryLT(i) outputs true. This can happen when (1) i = m.

In this case i is the least element of I, hence i belongs to J ; or (2) i is compatible

with predecessor(STm, i). Note that for every interval x from STm there exists

an interval y from the greedy set J such that y ∈ [x]. Consider such an interval

y ∈ J ∩ [predecessor(STm, i)]. Since y ∈ J and i is the next compatible interval of

y, i belongs to the greedy optimal set J .

It is not hard to see by induction on the number of elements in J that J ⊆ STm.

Suppose the algorithm queryLT(i) outputs false. It happens in two cases. First, i is

not in STm. Then i /∈ J . Second, predecessor(STm, i) exists and is not compatible

with i. Then i is not the least interval in [i]∩STm, but every element x ∈ J is the

least element in [x] ∩ STm. Hence i /∈ J .

3.5.2 The update operations insertLT and removeLT

To add an interval i into the linearised tree, we first insert i into T (I). Then, if i

is the greatest interval in [i], then we add the edge (i, rc(i)) into Ec. Otherwise, we

add the edge (i, j) to E∼, where j is the next interval equivalent to i. If i has an

equivalent child k then we add the edge (k, i) to E∼ and delete the old outgoing

edge from k in case such edge exists. If i has a compatible child ` then we add the

edge (`, i) to Ec and delete the old outgoing edge in case such edge exists.



3.5. LINEARISED TREE DATA STRUCTURE (LT) 63

Algorithm 3.8 insertLT(i)

1: insert(T (I), i)

2: if i is not the greatest interval in I ∪ {i} then . i has a parent

3: if lc(rc(i)) = i then . (i, rc(i)) ∈ Ec
4: link(i, rc(i))

5: else . (i, next(i)) ∈ E∼
6: link(i, next(i))

7: j ← previous(i)

8: if rc(j) = rc(i) then . (j, i) ∈ E∼
9: cut(j) and link(j, i)

10: j ← lc(i)

11: if rc(j) = i then . (j, i) ∈ Ec
12: cut(j) and link(j, i)

To remove an interval i from the linearised tree, we first we delete i from T (I).

Then we delete an edge from i to the parent of i and redirect the edge from the

equivalent child j of i to the parent of i. Then we redirect an edge from the

compatible child ` of i. Removing i may add new intervals to the equivalence class

of `. Therefore if ` is still the greatest interval in the updated equivalence class,

we add an edge (`, rc(`) to Ec. Otherwise, we add the edge (i, j) to E∼, where j is

the next interval of `.
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Algorithm 3.9 removeLT(i)

1: if i is not the root then

2: cut(i)

3: j ← previous(i)

4: if rc(j) = rc(i) then . (j, i) ∈ E∼
5: cut(j)

6: if i = lc(rc(i)) then . rc(i) is a new parent of j

7: link(j, rc(i))

8: else if i is not the the root then . next(i) is a new parent of j

9: link(j, next(i))

10: j ← lc(i)

11: if i = rc(j) then . (j, i) ∈ Ec
12: cut(j)

13: remove(T (I), i)

14: k ← next(j)

15: if j is not the root then

16: if rc(k) = rc(j) then . rc(j) 6= i as we removed i from T (I).

17: link(j, k)

18: else

19: link(j, rc(j))

20: else

21: remove(T (I), i)

3.5.3 Correctness of the update operations

To prove correctness of the algorithms above, we state two claims about linearised

trees. The first claim allows us to check if the given interval the greatest in its

equivalent class. The second claim says that changes of the linearised tree after

insertion or deletion of an interval i are local with respect to i. We abuse notation

and write (I;E) instead of (I;Ec, E∼) and (I ′;E ′) instead of (I ′;E ′c, E
′
∼). Which

edges are used will be clear from the context.

Claim 3.5.4. An interval i is the greatest in [i] if and only if lc(rc(i)) = i.

Proof. Let i be the greatest interval in [i]. Then for any j ∈ [i] we have that j ≺f i.

Assume that k = lc(rc(i)) 6= i. Then i ≺f k which is a contradiction.
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For the other direction, assume that i is not the greatest interval in its equiv-

alent class, that is there exists j ∈ [i] such that i ≺f j. Clearly, j is compatible

with rc(i). Therefore lc(rc(i)) = j, witch is a contradiction.

Claim 3.5.5. Let L(I) = (I, E) and L(I ′) = (I ′, E ′) be two linearised trees such

that I ′ = I ∪ {i}. Let j and k be intervals from the set I ′. Then the following

properties are satisfied:

(1) if (j, k) 6∈ E and (j, k) ∈ E ′, then either j = i or k = i.

(2) if (j, k) ∈ E and (j, k) 6∈ E ′, then (j, i) ∈ E ′.

Proof. For the first property, we note that if two intervals from I are not connected

by an edge in L(I) then they are not connected by an edge in a bigger linearised

tree L(I ′). Hence either j = i or k = i. For the second property, let ` 6= k be a

parent of j in L(I ′). Because (j, `) 6∈ E and (j, `) ∈ E ′, the property (1) implies

that either j = i or ` = i. Thus ` = i.

Lemma 3.5.6. The operation insertLT(i) preserves linearised tree data structure.

Proof. Consider intervals j, k ∈ I ′, where j ≺f k and I ′ = I ∪ {i}. Let (I ′, E ′)

be the resulting tree after the algorithm insertLT(i) is performed. We show that

(j, k) ∈ E ′ if and only if (j, k) is an edge in L(I ′).

(→) Suppose that (j, k) ∈ E ′. We prove that (j, k) is an edge in L(I ′).

• Let (j, k) 6∈ E. Then the algorithm insertLT must have added (j, k) into E ′.

Any edge the algorithm adds is adjacent to i. First, we consider outgoing

edges, that is, we consider the case when j = i. If the algorithm adds an

edge from i to rc(i), then i = lc(rc(i)) (see lines 3-4 of the Algorithm 3.8). By

Claim 3.5.4, i is the greatest interval in its equivalence class. If the algorithm

adds an edge from i to the next interval k of i, then i is not the greatest

interval in [i] and k ∼ i (see lines 3-6). Second, we consider incoming edges,

that is, we consider the case when k = i. If the algorithm adds an edge

from lc(i) to i, then j = lc(rc(j)) (see lines 10-12). By Claim 3.5.4, j is the

greatest interval in its equivalence class. If the algorithm adds an edge from

the previous interval j of i to i, then j ∼ i (see lines 7-9). Note that any of

the edges added by the algorithm is an edge in L(I ′). Hence (j, k) is an edge

in L(I ′).
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• Let (j, k) ∈ E. Assume that (j, k) is not an edge in L(I ′). By Claim 3.5.5

(j, i) is an edge in L(I ′). If j is the equivalent child of i, then j is the

previous interval of i and rc(j) = rc(i). If j is the compatible child of i, then

j = lc(rc(j)). In both of these cases the algorithm deletes the edge from

j (see lines 7-9 and 10-12 correspondently). Thus (j, k) 6∈ E ′, which is a

contradiction.

(←) Suppose that (j, k) is an edge in L(I ′). We prove that (j, k) ∈ E ′.

• Let (j, k) ∈ E. Assume that (j, k) 6∈ E ′. Then the algorithm insertLT must

have deleted (j, k). There are two cases: j is the previous interval of i and

j ∼ i (see lines 7-9), or i = rc(j) and j is the greatest interval in [j] (see

lines 10-12). In either case, j is a child of i in L(I ′), that is k = i, which is

a contradiction to the assumption that (j, k) ∈ E.

• Let (j, k) 6∈ E. By Claim 3.5.5, either j = i or k = i. Suppose j = i. If

i is the compatible child of k in L(I ′), then k = rc(i) and, by Claim 3.5.4,

i = lc(rc(i)). If i is the equivalent child of k, then k is the next interval i

and k ∼ i. The algorithm insertLT adds the edge (i, k) to E ′ in lines 3-6.

Suppose, k = i. If j is the equivalent child of i, j is the previous interval

of i and j ∼ i. If j is the compatible child of i, then j = lc(rc(j)). The

algorithm insertLT adds the edges (j, i) to E ′ in lines 7-12. In any case, the

edge (j, k) ∈ E ′.

Lemma 3.5.7. The operation removeLT(i) preserves linearised tree data structure.

Proof. Suppose L(I) = (I, E) is the linearised tree of a set I of intervals and

(I \ {i}, E ′) is the resulting tree after the algorithm removeLT(i) is performed.

Consider intervals j and k in I, where j ≺f k. We want to show that (j, k) ∈ E ′ if

and only if (j, k) is an edge in L(I \ {i}).
(→) Suppose (j, k) ∈ E ′. We prove that (j, k) is an edge in L(I \ {i}).

• Let (j, k) ∈ E. Assume that (j, k) is not an edge in L(I \ {i}). By

Lemma 3.5.5, either j = i or k = i. If j = i, that is, i is a child of k

in L(I), then the algorithm removes the edge (i, k) in line 2. Consider the

case when k = i, that is, j is a child of i. If j is the equivalent child of i, the

algorithm removes the edge (j, i) in lines 3-5. If j is the compatible child of
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i, the algorithm removes (j, i) in lines 10-12. In either case (j, k) 6∈ E ′, which

is a contradiction.

• Let (j, k) 6∈ E. The algorithm removeLT must have added the edge (j, k).

There are four possible cases. First, the algorithm adds an edge in line 7,

that is, k = rc(i). Then j is the equivalent child of i and i is the greatest

interval in [i]. After removing i, j is the greatest interval in [j], so that j is

the compatible child of k. Second, the algorithm adds an edge in line 9, that

is, k is the next interval of i. Then i ∼ k. Since j is the equivalent child of

i, j ∼ k. Third, the algorithm adds an edge in line 17. Then k is the next

interval of j with respect to I \ {i} and j ∼ k. Finally, the algorithm adds

an edge in line 19. Then j is the greatest interval in [j] and k = rc(j) with

respect to I \ {i}. In all these case the edge (j, k) is an edge in L(I \ {i}).

(←) Suppose (j, k) is an edge in L(I \ {i}). We prove that (j, k) ∈ E ′.

• Let (j, k) ∈ E. Assume that (j, k) 6∈ E ′. Then the algorithm removeLT must

have deleted the edge (j, k). First, the algorithm removes an edge from i (see

line 2). Second, it removes an edge from the equivalent child of i (see lines

3-58). Finally, it removes an edge from the compatible child of i (see lines

10-12). Thus the algorithms removes only edges, incident to i, but these

edges are not in L(I \ {i}), which is a contradiction.

• Let (j, k) 6∈ E. By Lemma 3.5.5 (j, i) is an edge in L(I). Suppose j is the

equivalent child of i. The algorithm finds j in lines 3-5. If j is the compatible

child of k in L(I \{i}), then i is the compatible child of k in L(I). If j is the

equivalent child of k, then k is the next interval of i. The algorithm takes

care of both cases in lines 6-9 and adds the edge (j, k) in line 9. Suppose j

is the compatible child of i. The algorithm finds j in lines 10-11. If j is the

equivalent child of k, then k is the next interval of j and rc(j) = rc(k) with

respect to I \ {i}. The algorithm adds the edge (j, k) in lines 15-17. If j is

the compatible child of k, then the algorithm adds the edge in line 19. Thus,

(j, k) ∈ E ′.

Theorem 3.5.8. The queryLT, insertLT and removeLT operations solve the dy-

namic monotonic interval scheduling problem in O(log n) amortised time, where n

is the size of the set I of intervals.
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Proof. Lemmas 3.5.3-3.5.7 prove the correctness of the operations. The complexity

follows from the fact that every operation performs the constant number of the

dynamic tree operations that have O(log n) amortised complexity.

Note. The complexity type of the operation, amortised or worst-case, depends on

the type of dynamic trees, representing paths of LT. We can achieve the worst-

case bound instead of amortized if we use globally biased trees instead of splay

trees [91]. However, after each operation we must ensure that for every pair of

edges (v, u) and (w, u) of the linearised tree, nodes v and u are in the same dynamic

tree if and only if the numbers of nodes in the subtree rooter at v is greater or

equal to the number of nodes in the subtree rooted at u.

3.6 Alternative query operation: report

The operations queryCF and queryLT detect if a given interval i belongs to the

current greedy optimal set. Alternatively, another intuitive meaning of the query

operation is to report the full greedy optimal set. The report operation, given

a set I of monotonic intervals, outputs all the intervals (with their starting and

finishing times) in the greedy optimal set. It turns out, our data structures allow

an efficient implementation of reportCF and reportLT operations.

In the CF data structure, the greedy schedule is the set of intervals on the path

from the least node m to the root. This path is represented by the splay tree STm

and is maintained after every update operation. Therefore the reportCF amounts

to in-order traversal of STm. The only thing we need to remember is the root of

STm after every update operation, at which we start the in-order traversal. Since

STm equals to the greedy optimal set, the report operation performs optimally in

CF.

Theorem 3.6.1. The complexity of the reportCF operation is Θ(|J |), where J is

the greedy optimal set.

In the LT data structure, however, that path from the least interval to the

root contains intervals that do not belong to the optimal set. Therefore, in-order

traversal of STm may visit extra nodes. Namely, we need to filter out those nodes

v in STm for which there exists a u ∈ I such that (u, v) ∈ E∼. In the worst case

STm contains all the intervals of I. Figure 3.8 shows an example of a linearised

tree where all intervals belongs to the same path.
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Figure 3.8: Example of a linearised tree where all interval belongs to the same

path.

Theorem 3.6.2. The complexity of the reportLT operation is O(n), where n is the

size of I.

3.7 Experimental results

In this section we present an experimental comparison between three algorithms

for solving monotonic case of the dynamic interval scheduling problem: the naive

dynamic algorithm N described in Section 3.3, the algorithm CF based on the

compatibility forest and the algorithm LT based on the linearised tree. We imple-

mented these algorithms in Java. The algorithm N is based on the standard Java

implementation of Red-Black tree, which we extended with left compatible and

right compatible operations. We use the implementation of N in the algorithms CF

and LT to store intervals and perform tree operations. In CF and LT we imple-

mented bottom-up splay operation as described in [91]. We run the experiments

on a laptop with 4GB of RAM memory and Intel Core 2 Duo 2130 Mhz, 3MB of

L2 cache memory processor.

In our experiments, we measure the total and the average running time of a

sequence of m operations on initially empty interval set. The sequence consists of

n insert operations, rn remove operations and qn query operation, where n is a

linearly increasing number and r and q are fixed parameters of the experiment. We

create a sequence of operations randomly while satisfying two conditions. First,

whenever we invoke an insert operation of an interval i, we make sure that there

is no interval i in the set. Second, whenever we invoke a remove operation of i, we

make sure that i exists in the set. Thus every update operation calls for an actual

change of the interval set.

To better understand the algorithms’ performance, we defined the sparsity of

an interval set I to be the upper bound on the ratio between the size of the greedy
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n N CF LT

66000 0.01829 0.00599 0.00931

71000 0.02155 0.00598 0.00998

76000 0.02032 0.00606 0.00956

81000 0.02371 0.00625 0.00981

86000 0.02803 0.00651 0.01027

Figure 3.9: Sparsity is 0.1, 0.5n remove operations, 0.01n query operations, n

insert operations.

optimal set J and the size of I. The smaller the sparsity, the more intervals

pairwise overlap. For example, if the sparsity is 1/2, we make sure by creating

intervals of the length 2/n that at most every second interval can belong to J .

The sparsity of I has an important influence on the algorithms N and CF.

In the compatibility forest we conclude every update operation with the expose

operation on the least interval in the set, which restores the missing edges between

intervals from J . Therefore the smaller sparsity, the smaller chance of an update

operation to affects the splay tree, representing set J . In the naive algorithm, the

query operation may visit every interval from J . Therefore the smaller sparsity,

the less maximal number of intervals the query operation may visit.

Experiment 1. The analysis of the algorithms shows that N updates the interval set

faster than CF and LT, but queries the set slower. Therefore in the first experiment

we measured the efficiency of the algorithms undergoing n insert, 0.5n remove and

0.01n query operations. The operations are shuffled as described above. We set

the sparsity parameter to be 0.1. The result of the experiment is shown on the

Figure 3.9.

The experiment shows that the difference of total running time between algo-
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Figure 3.10: Sparsity is 0.8, no remove operations, n query and insert operations.

rithms undergoing a sequence of operations with number of insertion less then 6000

is small, especially between CF and N. However, when we increase the number of

insert operations, N performs much slower than two other algorithms. The average

running time per operation of N is increasing similarly to a linear function, whereas

the average running time per operation of CF and LT increases much slower. The

experiment also shows that CF updates the interval set with low sparsity faster

than LT.

Experiments 2 and 3. In the next two experiments we measure the performance

of CF and LT undergoing a sequence of operations with the equal number of insert

and query operations. We excluded N from the experiments because N performs

too slowly when the number of query operations increases. The difference be-

tween the second and the third experiment is in the number of remove operations.

Sequences in Experiment 2 do not contain remove operations. Sequences in Ex-

periment 3 contain 0.5n remove operations. We set the sparsity parameter to be

0.8. Figure 3.10 shows the results of Experiment 2, Figure 3.11 shows the results

of Experiment 3.
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Figure 3.11: sparsity is 0.8, 0.5n remove operations, n query and insert operations.

The second experiment shows that if we do not allow remove operations, CF

performs faster than LT. If we allow remove operations, CF performs slightly slower

than LT. However, the results of Experiment 2 show that if the interval set is not

sparse, CF inserts and removes intervals faster than LT.

Conclusion. The experimental result verifies our theoretical analysis and shows

that both CF and LT runs significantly faster than the naive algorithm. Moreover,

the results show that in a random environment CF performs as fast as LT to within

a constant factor, despite the worst (log2 n) time upper bound. Considering that

CF is relatively easy to implement, CF can find its practical applications.



Chapter 4

Dynamic Interval Scheduling on

Multiple Machines

In this chapter we continue our study on dynamic interval scheduling. We consider

the case of multi-machine scheduling. Recall that the static problem for a set of

intervals I is to find a partitioning function σ such that the number of subsets in

the partition is minimal possible and subset is a compatible set of intervals. Such

function is called an optimal scheduling function. In the dynamic problem, the

input is an arbitrary sequence o1, . . . , om of the following update operations:

- insert(i) adds an interval i into the set I if i 6∈ I,

- remove(i) deletes an interval i from the set I if i ∈ I,

Our goal is to design an algorithm that maintains an optimal scheduling func-

tion and minimizes total running time of any sequence of these operations.

Chapter 4 is organized as follows. In Section 4.1 we give definition of idle

intervals and discuss why idle intervals are important. In Section 4.2 we define

nested scheduling functions, prove that it is an optimal scheduling function and

prove that there exists a nested scheduling function for any interval set. In Sec-

tion 4.3 we describe two data structures that maintain nested scheduling function.

The complexity of update operations in these data structures are O(d log n) and

O(d+ log n). Finally, in Section 4.4, we show that the bound O(d+ log n) is tight

for any data structure maintaining a nested tree.

73



74 CHAPTER 4. MULTIMACHINE INTERVAL SCHEDULING

4.1 Idle Intervals

Imagine a schedule Si of the machine mi. The schedule consists of compatible

intervals a1, a2, . . . , az, which are sorted by their starting time. According to the

schedule, the machine processes the interval a1 first, then it processes the interval

a2, then - interval a3, and so on. The machine stops when it finishes processing

the interval az. At first glance it seems that the machine is busy in the period

from the start of a1 to the end of az. However, the starting and finishing time

of the intervals are fixed. Therefore there might be idle periods of time between

subsequent intervals in the schedule. For an example, see Figure 4.1. We call idle

periods of time in a schedule as idle intervals:

a1 a2 a3
Si :

Figure 4.1: Schedule Si consists of three intervals. The machine mi is idle be-

fore s(a1), after f(a3) and in the periods of time from f(a1) to s(a2) and from f(a2)

to s(a3).

Definition 4.1.1 (Idle Intervals). Let J = {a1, a2, . . . , am} be a compatible set

of closed intervals sorted in ≺s-order. Define the set of idle intervals of J as the

following set

Idle(J) =
m−1⋃
i=1

{ [f(ai), s(ai+1)] } ∪ { [−∞, s(a1)] } ∪ { [f(am),∞] }.

The idea behind considering the set of idle intervals is this: when we insert a

new interval a into I, we would like to find a gap in some schedule Si that fully

covers a. Similarly, a deletion of an interval a from I creates a gap in the schedule

Sσ(a). Thus, intuitively the insertion and deletion operations are intimately related

to the set of idle intervals of the current schedules S1, . . ., Sk. Therefore, we need

to have a mechanism that efficiently maintains the idle intervals of S1, . . ., Sk.

Note that an idle interval can start at −∞ or end at ∞. Naturally, such

intervals represent a period of time when a machine is continuously available before

it starts processing the first interval in its schedule or after it finishes processing

the last interval.

Let σ : I → {1, . . . , k} be a scheduling function. Recall the definition of the

schedules S1, . . . , Sk with respect to σ: Si = {a ∈ I | σ(a) = i}. We define the set

of idle intervals of a scheduling function as follows:
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Definition 4.1.2. The set of idle intervals of σ is

Idle(σ) = {(−∞,∞)} ∪ Idle(S1) ∪ Idle(S2) ∪ . . . ∪ Idle(Sk).

Through the scheduling function σ we can also enumerate the set of idle in-

tervals. Namely, the schedule number σ(b) of an idle interval b ∈ Idle(σ) is i if

b ∈ Idle(Si). Note that the set Idle(σ) includes an interval (−∞,∞). This inter-

val represents an extra machine that is always available to us, but not used for

processing. For this infinite interval, we set k + 1 to be its schedule number.

The idle interval set depends on the scheduling of intervals in I. Indeed, con-

sider the set I = {a = (1, 4), b = (2, 5), c = (6, 8)}. One possible scheduling

function σ places interval a into the schedule S1 and intervals b and c into the

schedule S2. Another function σ′ places c and a into the schedule S1 and b into the

schedule S2. In the set Idle(σ), the interval that starts at 5 finishes at 6, while in

the set Idle(σ′) the interval that starts at 5 finishes at ∞. The example is shown

on Figure 4.2.

a

b c
S1

S2

1 2 4 5 6 8
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b

c
S1

S2

1 2 4 5 6 8

Figure 4.2: Different scheduling functions have different idle interval sets.

It is not hard to see that a depth of an idle interval set can be as big as the

|I| + 1. However, in the next lemma we prove that the depth of an idle interval

set is at least d(I) + 1

Lemma 4.1.3. Let σ be a scheduling of I. We have d(Idle(σ)) ≥ d(I) + 1.

Proof. First, observe that for any sets of intervals I and J , the following inequality

holds true:

d(I) ≤ d(I ∪ J) ≤ d(I) + d(J).

Now consider a scheduling function σ with schedules S1, . . . , Sk. Since the depth

of each schedule Si is 1, we have

d(I) ≤ d(S1 ∪ · · · ∪ Sk) ≤
∑

1≤i≤k

d(Si) = k

Next, we calculate the depth of Idle(σ). There are k schedules, and for each

schedule Si there is an idle interval (−∞, s(a1
i )), where a1

i is the ≺s-least intervals
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in Si. Also, there is an idle interval (−∞,∞) in Idle(σ). Take a real number x ∈ R
that is smaller than all the starting times of the intervals in I. In particular, x is

smaller that the starting time of any a1
i . Therefore x intersects with k+1 intervals

in Idle(σ). Taking into account our previous inequality, we have

d(I) + 1 ≤ k + 1 = d(Idle(σ))

Having defined idle intervals and established connections between interval sets,

scheduling functions and idle interval sets, we are ready to discuss insertions of

new intervals. Let a be an interval we are inserting into the interval set I scheduled

by the function σ. Since our goal is to maintain an optimal scheduling, we suppose

that σ is optimal. It is easy to see that if there exists an idle interval b such that a

is covered by b then we simply place a into the schedule of b. However, what if such

idle interval does not exists? Does it imply that we must create a new schedule

for a? Or can we change the scheduling function such that there exists an idle

interval covering a? In the following theorem we prove that optimal scheduling

functions for I and I ∪{a} have the same size if and only if there exists a sequence

of intersecting idle intervals whose total idle period covers a.

Theorem 4.1.4. Let σ be a scheduling function for I. There exists an scheduling

function of the same size for I∪{a} if and only if there exists a set of idle intervals

C = {c1, . . . , cz} ⊂ Idle(σ) such that

• ci ≺s ci+1,

• ci ∩ cj 6= ∅ if and only if j = i+ 1,

• s(c1) < s(a) and f(a) < f(cz).

Before we prove the theorem, let us discuss an example in Figure 4.3. The figure

shows two different scheduling σ1 (left) and σ2 (right) of a set of six intervals I =

{b1, b2, b3, b
′
1, b
′
2, b
′
3}. Suppose that we are inserting an interval a. First, consider the

set of idle intervals of the function σ1. None of the idle intervals in Idle(σ1) covers

the new interval a. However, there are three idle intervals ij = (f(bj), s(b
′
j)), j ∈

{1, 2, 3} such that a is covered by (s(i1), f(i3)). Moreover, i1 intersects with i2 and

i2 intersects with i3. The intersection of idle intervals implies that b′1 is compatible

with b2 and b′2 is compatible with b3. Therefore we move the interval b′1 to the
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schedule S2, the interval b′2 to the schedule S3, and the interval b′3 to the schedule

S1. As a result we obtain the scheduling function σ2. The function defines the idle

interval (f(b1), s(b′3)) which covers the new interval a.

b1

b2

b3

b′1

b′2

b′3

a

(a) Scheduling σ1

S1

S2

S3

b1

b2

b3

b′1

b′2

b′3

a

(b) Scheduling σ2

Figure 4.3: Inserting a new interval into an interval set, scheduled by two optimal

functions. There is no idle interval in Idle(σ1) that covers a, while there is one in

Idle(σ2).

Proof. For one direction, we use a contrapositive argument.

Assume that d(I ∪ {a}) = d(I) + 1. This means that there exists a point

q ∈ a such that q intersects with d(I) intervals in I. Therefore for any scheduling

function, q does not belong to any of the idle intervals. Furthermore, for any set

of intervals C the point q does not belong to s(c1), f(cz). Thus there does not

exists a set C such that subsequent idle intervals intersect, that is the condition

ci ∩ ci+1 6= ∅ for every 1 ≤ i < z is false.

For the other direction, we use a proof by induction on the size of C.
In the base case the set C consist of only one interval c1. By definition of C,

s(c1) < s(a) and f(a) < f(c1). In other words, a is covered by c. Thus a scheduling

function σ′ for I ∪{a} maps all intervals in I to the same numbers as σ and maps

the new interval a to the number σ(c1).

Now suppose that the theorem holds for sets of sizes up to z, and let C =

{c1, c2, . . . , cz+1} be a set of idle intervals satisfying conditions of the theorem.

We function σ′ of the same size such that there exists a set of idle intervals C ′ =

{c′1, c3, c4, . . . , cz+1} where c′1 = c1 ∪ c2.

Our construction is by exchanging intervals in the schedules Sσ(c1) and Sσ(c2).

Consider the point p = f(c1). In the schedule Sσ(c1) none of the intervals contain

the point p. Moreover, since intersection of c1 and c2 is not empty, none of the

intervals in Sσ(c2) contain p either. Therefore all intervals in the schedule Sσ(c1)

that start after p are compatible with all intervals in the schedule Sσ(c2) that finish
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before p. Furthermore, the other intervals of the schedules - the intervals before p

in Sσ(c1) and the intervals after p in Sσ(c2) - are pairwise compatible as well. Thus

the following function σ′ is a scheduling function:

σ′(b) =


σ(c2) if σ(b) = σ(c1) and a �s c1,

σ(c1) if σ(b) = σ(c2) and a �s c2,

σ(b) otherwise.

c1 x

c2 y

c3

(a) Scheduling σ

Sσ(c1)

Sσ(c2)

Sσ(c3)

c′1

xc′2

y

c3

(a) Scheduling σ′

Figure 4.4: Two idle intervals c1 and c2 intersect in the set Idle(σ). After reschedul-

ing, c′1 = c1 ∪ c2 and c′2 = c1 ∩ c2.

The size of σ′ equals to the size of σ.

Now consider the new set of idle intervals Idle(σ′). It is not hard to see that

the only two idle intervals has changed: c1 is now c′1 and c2 is now c′2. The idle

interval c′1 starts at s(c1) and finishes at f(c2), and the idle interval c′2 starts at

s(c2) and finishes at f(c1). Since other idle intervals has not changed, we have the

set C ′ = {c′1, c3, . . . , cz+1} of the size z satisfying conditions of the theorem. Thus,

by induction hypothesis, there exists a scheduling function of the same size for the

set I ∪ {a}.

From the proof of the Theorem 4.1.4 we obtain two important things. First,

the depth of an interval set increases after insertion only if there is no set of

idle intervals whose union is a superset of the inserted interval. Second, we can

decrease the size of a set of subsequently intersecting idle intervals by changing the

schedule. Moreover, the intersecting intervals becomes nested after rescheduling.

For example, in the Figure 4.4 the idle interval c′2 is a subset of c′1. In the next

sections we employ these ideas into the construction of an efficient data structure

that maintains an optimal scheduling of an interval set.
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4.2 Nested Scheduling

In this section we give definitions of nested interval sets, nested tree and nested

scheduling. Then we prove that there exists a nested scheduling function for any

interval set. We describe how to restore nestedness of a scheduling after insertion

and deletion of an interval.

Definition 4.2.1. A set J of intervals is nested if there exists one interval that

covers any other interval and for all b1, b2 ∈ J , it is either that b1 covers b2 or b2

covers b1 or b1, b2 are compatible.

Any nested set of intervals J defines a tree under set-theoretic inclusion ⊆.

Indeed, here the nodes in the tree are the intervals in J , and an interval b2 is a

descendent of another interval b1 if b2 ⊂ b1. We call this tree the nested tree of J

and denote it by Nest(J). We order siblings in Nest(J) by the left endpoints of the

corresponding intervals. Recall that the height of a tree is the maximum number

of edges in a path that goes from the root to a leaf.

Lemma 4.2.2. For any nested set J of intervals, d(J) = 1 + h, where h is the

height of the nested tree Nest(J).

Proof. Let J be a nested set of intervals and h be the height of the nested tree

Nest(J). To show that d(J) ≤ h+ 1, we take a maximal path b0, b1, . . . , bh in the

nested tree. In this path b0 = (−∞,∞), and bi+1 ⊂ bi for all i ∈ {0, . . . , h−1}. The

interval bh is fully covered by all other intervals. Therefore the starting point s(bh)

intersects with h+ 1 intervals. Hence d(J) ≤ h+ 1

To show the reverse inequality, take any real number x ∈ R and let C be the set

of intervals in J that contain x. Since J is a nested set, C is a nested set as well.

Therefore C contains a sequence b1, b2, . . . , b` where bi ⊂ bi+1 for all i ∈ {1, . . . , `}.
This sequence defines a single path of length `− 1 in the tree Nest(J). Since the

number of nodes is the paths is at most d(J), we have h ≤ d(J)− 1.

In the next definition we connect nested interval sets with scheduling functions.

Definition 4.2.3. Let σ be a scheduling function of the set of intervals I. We say

that σ is nested schedule if the set Idle(σ) of idle intervals is nested.

An example of a nested scheduling is presented in Figure 4.5.

The next theorem shows the usefulness of the notion of nested schedules. In

particular, nested schedules are optimal.
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Figure 4.5: Example of a nested scheduling and corresponding nested tree

Theorem 4.2.4. If σ : I → {1, . . . , k} is a nested scheduling function, then the

depth Idle(I) equals the depth I plus one: d(Idle(σ)) = d(I) + 1. In particular,

every nested schedule is optimal.

Proof. Let σ : I → {1, . . . , k} be a nested scheduling function for I. We will show

that

d(I) ≤ d(Idle(σ))− 1 ≤ d(I)

The inequality on the left hand side follows from Lemma 4.1.3. For the right

hand side, recall that by Lemma 4.2.2, we have d(Idle(σ)) − 1 = h, where h is

the height of the nested tree Nest(Idle(σ)). Therefore, it is sufficient to prove

that h ≤ d(I).

Take a maximal path b0, b1, . . . , bh in Nest(Idle(σ)) such that f(b1) 6=∞. Such

path does exists since in every schedule there is an idle interval that starts at −∞
and finishes at the ≺s-least interval of that schedule. For each i ∈ {1, . . . , h} let

Si be a schedule such that bi ∈ Idle(Si). We show that in every schedule Si there

exists an interval ai ∈ Si such that f(b1) intersects with ai.

For contradiction, assume that h > d(I). Then there exists a schedule Sj such

that f(b1) does not intersect with any interval in Sj. Then there exists an idle

interval c ∈ Idle(Sj) such that f(b1) ∈ c. Therefore s(c) < f(b1). On the other

hand, since bj ∈ Idle(Sj), we have s(b1) < f(bj) < s(c). These imply that the idle

intervals b1 and c overlap, which contradicts with the fact that Idle(σ) is a nested

schedule. Thus h is at most d(I).

A natural question is whether the schedule constructed by either Algorithm 2.2

or Algorithm 2.3 (described in Section 2.1.2) is nested. The next simple example

gives a negative answer to this question. Indeed, consider the set I of intervals

presented in Figure 4.6. Both algorithms yield the same scheduling, which is not

nested:
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S2

S1

Figure 4.6: Neither Algorithm 2.2 nor Algorithm 2.3 produces a nested schedule.

In the next section, however, we prove that every interval set I possesses a

nested scheduling.

4.2.1 Extending Nestedness after Insertion

One of the goals of this section is to prove that every interval set I possesses a

nested scheduling. The proof will also provide a method, explained in the next sec-

tion, that maintains the interval set I by keeping the nestedness property invariant

under the update operations.

Suppose that σ : I → {1, . . . , k} is a nested scheduling function for the interval

set I. Recall that we use S1, . . . , Sk to denote the k schedules with respect to σ.

Let a be a new interval not in I. We introduce the following notations and make

several observations to give some intuition to the reader.

• Let L ⊂ Idle(σ) be the set of all the idle intervals that contain s(a), but

do not cover a. The set L, as Idle(σ) is nested, is a sequence of embedded

intervals x1 ⊃ · · · ⊃ x`, where ` ≥ 1. Note that L can be the empty set.

• Let R ⊂ Idle(σ) be the set of all the idle intervals that contain f(a), but

do not cover a. The set R, as above, is a sequence of embedded intervals

y1 ⊃ · · · ⊃ yr, where r ≥ 1. Again, R can be empty as well.

• Let z be the shortest interval in Idle(σ) that covers a. Such an interval exists

since (−∞,∞) ∈ Idle(σ). To simplify the presentation, we set x0 = y0 = z.

Note that x0 ⊃ x1 and y0 ⊃ y1.

Now our goal is to construct a new nested schedule based on σ and the content

of the sets L and R. For that we consider several cases.

Case 1: L and R are empty sets

In this case we can easily extend σ to the domain I ∪ {a} and preserve the

nestedness property. Indeed, as a ⊂ z, we simply extend σ by setting σ(a) = σ(z).

We show that the resulted schedule is nested.
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a

z a zrz`

Figure 4.7: Rescheduling when a does not overlap with idle intervals

After insertion of a, the idle interval z is split into two intervals z` = [s(z), s(a)]

and zr = [f(a), f(z)]. Consider an arbitrary idle interval u in Idle(σ). If u and

z are compatible then u is compatible with both zr and z`. If z ⊂ u then the

intervals z` and zr are now covered by u. If z ⊃ u then u is either covered by z`

or zr, or u does not intersect with the new idle intervals. Thus the resulting set of

idle intervals is nested. See an example in Figure 4.7.

Case 2: L is not empty, but R = ∅
If we simply set σ(a) = σ(z) as in the previous case, some of the intervals in

the new idle set will be overlapping. For example, the new idle interval [s(z), s(a)]

will intersect with x1. Therefore we reorganize the schedule σ as follows.

We schedule interval a for the machine σ(x`). We move all the jobs d of the

machine σ(x`) such that d � x` to machine σ(x`−1). In the schedule Sσ(x`−1) there

are other jobs that start after x`−1. To avoid collisions, we move these jobs to the

machine σ(x`−2). We continue this on until we reach the jobs scheduled for the

machine σ(z). Finally, we move the jobs d from the machine σ(z) such that d � z

to the machine σ(x`). Note that if f(z) = +∞ there is simply no jobs on the

machine σ(z) to reschedule. Example of this process is on Figure 4.8. Formally,

we define the new scheduling function σ1 as follows and claim that σ1 is nested:

σ1(d) =



σ(x`) if d = a, or

σ(d) = σ(z) and d � z,

σ(xi−1) if σ(d) = σ(xi) and d � xi,

where 0 < i ≤ `,

σ(d) otherwise.

Claim A. The scheduling σ1 defined is nested.

Proof. The set of idle intervals Idle(σ1) consists of the new interval [f(a), f(z)]

together with all the idle intervals of σ where the idle intervals x`, x`−1, . . ., x1,
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a

x2

x1

x0 = z

ax′2

x′1

z′

Figure 4.8: Rescheduling when idle intervals overlapping a contains only s(a)

and z are changed to the following new idle intervals [s(x`), s(a)], [s(x`−1), f(x`)],

. . ., [s(x1), f(x2)], and [s(z), f(x1)], respectively. We denote the set of changed

intervals by L′.

Let u and v be two idle intervals of σ1. We want to show that either u∩ v = ∅
or one of these two intervals is contained in the other. If both u and v are old or

both u and v are new then we are done. So, say u is new, and v is old. First,

assume that u is [f(a), f(z)]. Because by assumption R = ∅, the interval v either

covers a or does not intersect with a. In the first case, u ⊂ v, because we have

chosen z such that z ⊂ v. In the second case, if f(v) < s(a) then v and u does

not intersect. If s(v) > f(a) then, because Idle(σ) was a nested set of intervals,

we have that either v ⊂ u or u ∩ v = ∅.
Second, assume u is one of the changed intervals in L′ and v is an old idle

interval. If v contains s(a) then v must contain z since v is old. Hence u ⊂ v.

Otherwise, suppose that v contains a point r ∈ [s(xi), f(xi+1)] or r ∈ [s(x`), s(a)].

Then either r ∈ xi or r ∈ xi+1. Hence, v ⊂ xi or v ⊂ xi+1. If the first case we

have v ⊂ [s(xi), s(a)], and in the second case v ⊂ [s(a), f(xi+1)]. In either case,

v ⊂ [s(xi), f(xi+1)]. This proves the claim.

Case 3: The set R is not empty, but L = ∅
This case is symmetric to the previous case: we need to reorganize the intervals,

but we reorganize the intervals with respect to the finishing time of the new interval

a. First, we set σ(a) equal to σ(z). The new idle interval (f(a), f(z)) now intersects

a

y2

y1

y0 = z a

y′2

y′1

z′

Figure 4.9: Rescheduling when idle intervals overlapping a contains only f(a)



84 CHAPTER 4. MULTIMACHINE INTERVAL SCHEDULING

with idle intervals y1, . . . , yr. Therefore for every 1 ≤ i < r we move intervals from

the machine σ(yi) that start after yi to the next machine σ(yi+1). To avoid collision

on the last machine σ(yr) we move intervals from this machine that start after yr to

the machine σ(z). An example with two intervals y1 and y2 is shown on Figure 4.9.

Formally, we define a new scheduling function σ2 as follows:

σ2(d) =



σ(y`) if d = a, or

σ(d) = σ(z) and d � z,

σ(yi+1) if σ(d) = σ(yi) and d � yi,

where 0 ≤ i < r,

σ(d) otherwise.

To see that σ2 is nested, consider two arbitrary idle intervals u and v in the idle

set Idle(σ). If these intervals has not been changed by the schedule reorganization,

then, by the nestedness of Idle(σ), these two intervals are either compatible or

nested. If both of the intervals has been changed, then by construction of σ2 these

intervals are nested. If one of the intervals has been changed, say u, then either

u ⊂ v or v ⊂ u or they are compatible. We leave the details of this reasoning to

the reader.

Case 4: Both sets L and R are non-empty.

We reorganize the schedule σ in two steps. In the first step, we proceed exactly

as in Case 2. Namely, we move all the intervals d of the machine σ(x`) that start

after x` to the machine σ(x`−1); we continue this on by moving all the intervals of

the machine σ(xi) that start after xi to the machine σ(xi−1). When we reach the

machine σ(x0), we move all the jobs d of the machine σ(x0) such that d � x0 to

the machine k + 1, that is, to the idle interval (−∞,+∞). Denote the resulting

schedule by σ1. Note there are no collisions between the jobs in the resulted

schedule, but it is not a nested schedule yet. A formal definition of σ1 is as follows:

In the second step, starting from σ1(yi), where i = 1, . . . , r − 1, we move all

intervals of the machine σ1(yi) that start after yi to the machine σ(yi+1):

Lemma 4.2.5. The scheduling function σ2 is nested.

Proof. Let K be the set of intervals in Idle(σ2) that begins at or after s(x0) and

ends at or before f(x0). In other words

K = {d ∈ Idle(σ2) | d ⊂ x0}.
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σ1(d) =



σ(x`) if d = a,

σ(xi−1) if σ(d) = σ(xi) and d � xi,

where 0 < i ≤ `,

k + 1, if σ(d) = σ(x0) and d � x0,

σ(d) otherwise.

a

x2

x1

x0 = z = y0

y1

Figure 4.10: The first step of rescheduling: defining σ1.

σ2(d) =



σ1(a) if σ1(d) = σ1(yr) and d � yr,

σ1(yi+1) if σ1(d) = σ1(yi) and d � yi,

where 0 < i < r,

σ1(y1) if σ1(d) = k + 1,

σ1(d) otherwise.

a

y1

Figure 4.11: The second step of rescheduling: defining σ2.

By construction Idle(σ2)\K = Idle(σ)\ K, and by nestedness of Idle(σ), Idle(σ2)\
K is also an nested set. Furthermore, it is clear that for any interval p ∈ K and

q ∈ Idle(σ) \ K, it is either that p, q are compatible or p ⊂ q. Therefore it only

remains to show that the set K is also a nested set. We show that any two intervals

p, q ∈ K are either compatible or one is covered by the other.

Suppose p contains s(a). Then the start of p is s(xi) for some 0 ≤ i ≤ `.

Moreover, the end of p is s(a), if i = `, and f(xi+1), otherwise. Note that p ⊂ xi.

Consider two cases with respect to q:

• Case 1: q contains s(a). Then, similarly to p, the start of q is s(xj) for some

0 ≤ j ≤ `. If xj ≺ xi then q covers p. Otherwise, p covers q.

• Case 2: q does not contain s(a). Let r be a real number such that r ∈
q ∩ p. If such r does not exists, then p and q are compatible. Otherwise

r ∈ [s(xi), s(a)) or r ∈ (s(a), f(xi+1)]. Since Idle(σ) is a nested set, we have

that either q ⊂ xi or q ⊂ xi+1. Hence q ⊂ p.
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qxi+1

xi

xi−1
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qyi+1

yi

yi−1
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Figure 4.12: Nestedness is preserved

Now suppose p contains f(a). Then the end of p is f(yi) for some 0 ≤ i ≤ r.

Moreover, the start of p is f(a), if i = r, and f(yi+1), otherwise. Similarly to

the previous case, if q contains f(a) then, depending on the end of q, one of the

intervals covers the other. If q does not contain f(a), there are two cases:

• Case 1: q is covered by yr. If a ≺ q or yi ≺ yr then p covers q. Otherwise p

and q are compatible.

• Case 2: p is covered by yj for some 0 ≤ j < r but not covered by yj+1. If

yi+1 ≺ q or yi ≺ yj, then p coveres q. Otherwise, p and q are compatible.

Finally, suppose that neither p nor q contain s(a) or f(a). Then, by construc-

tion of σ2, p and q are in Idle(σ). Therefore they are either compatible or one

covers the other. Thus the set K is nested and hence σ2 is a nested scheduling

function.

Theorem 4.2.6. For any set of closed intervals I there exists a scheduling function

σ such that Idle(σ) is a nested set.

Proof. We prove by induction on the size |I| of I. When |I| = 1 it is clear that

Idle(I) is nested. The inductive step follows directly from the construction of σ2

and Lemma 4.2.5.

4.2.2 Restoring Nestedness after Deletion

In this section we show how to effectively restore nestedness of the schedule after

deletion of an interval. We will need the technique described here to develop the

delete operation of a dynamic algorithm.

We use the same notations as in the previous section: a denotes the deleted

interval, L and R are the sets of idle intervals that intersect with s(a) and f(a)

respectively, z is the shortest idle interval that covers a. Note that the sets L and

R always contain the idle intervals x` and yr, respectively, which are adjacent to

the deleted interval a.
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ax3

x2

x′3
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Figure 4.13: Rotation of the schedules preserves the nestedness

Case 1: L and R are empty sets

In this case we can easily delete a from the domain of σ and preserve the

nestedness property. Indeed, after the deletion we have the new idle interval

b = [s(x`), f(yr)]. Let v be an old idle interval. Suppose, v and a are compatible

intervals. By the nestedness of σ, v is either covered by x` or yr or is compatible

with them. Therefore v is either covered by b or is compatible with it. Now

suppose that v and a are not compatible. If v ⊂ a then v ⊂ b. If a ⊂ v then

x` ⊂ v and yr ⊂ q, which implies that b ⊂ v. Thus, in either case the nestedness

is preserved.

Case 2: |L| ≥ 1, but |R| = 1

In this case, after deletion of the interval a, the idle interval [s(x`), f(yr)] inter-

sects with x`−1. Therefore we move all the jobs d of the machine σ(x`) such that

d � x` to the machine σ(x1). Then we move all the jobs d of the machine σ(x`−1)

such that d � x`−1 to the machine σ(x`). We repeat this process on every machine

σ(xi). We stop after we moved the jobs of the machine σ(x1) to the machine

σ(x2). Denote the new scheduling function by σ3. An example of the rescheduling

is shown in Figure 4.13.

Claim B. The scheduling σ3 defined is nested.

Proof. Let u and v be two idle intervals in Idle(σ1). Similarly to the case in the

previous subsection, if u and v are both old or both new idle intervals, then they

are either compatible or one is contained in the other. So suppose u is a new idle

interval, and v is old. Let t be a real number such that t ∈ u ∩ v.

Suppose t ∈ yr. Then u = [s(x`), f(yr)]. Moreover, by the nestedness of

Idle(σ), it is either v ⊂ yr or yr ⊂ v. In the first case, we have that v ⊂ u. In the

second case, because v 6∈ R, v covers x`. Therefore v covers u.

Now suppose t 6∈ yr. Then u is one of the intervals x′i = [s(xi), f(xi−1)] or

x′1 = [s(x1), f(yr)]. We look at v and its relation to the interval xi ∈ Idle(σ):



88 CHAPTER 4. MULTIMACHINE INTERVAL SCHEDULING

• v ⊂ xi. Then v ⊂ u.

• v ⊃ xi. Since v is old, v ⊃ a. Since Idle(σ) is nested, v ⊃ yr. Therefore

v ⊃ u.

• f(v) < s(xi). Then v and u are compatible.

• s(v) > f(xi). If s(v) < f(xi−1), by nestedness of Idle(σ), v is covered by

xi−1. Therefore v ⊂ u. If s(v) > f(xi−1) then v and u are compatible.

Case 3: |L| = 1, but |R| ≥ 1

This case is symmetric to the previous case. So, we leave the details to the

reader.

Case 4: |L| ≥ 1 and |R| ≥ 1

We reschedule the intervals in two passes. We start as in the Case 2. Namely,

for every machine σ(xi) we move the intervals d � σ(xi) to the machine σ(xi+1)

if 1 ≤ i < `, and to the machine σ(x1), if i = `. Denote the resulted schedule

by σ1. Note that all the idle intervals in R except yr are preserved. The interval

yr is changed to y′r = [s(x`), f(yr)]. This interval now intersects with all other

intervals in R. To restore the nestedness, we move all the intervals d � yi of the

machine σ1(yi) to the machine σ1(yi−1) if 1 < i ≤ r, and to the machine σ(y′r) if

i = 1. Denote the final schedule by σ4. We give an example of the rescheduling in

Figure 4.14, leaving the formal description of σ4 to the reader.

a
y3

y2

y1

y′3

y2

y1

Figure 4.14: Rescheduling after deletion of an interval a.

Lemma 4.2.7. The scheduling σ4 is nested
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Proof. Let K be a set of idle intervals that are start afters(x1) and finish be-

fore f(y1). Then the set of idle intervals Idle(σ4)\K is exactly the set Idle(σ)\K.

Therefore Idle(σ4) \K is nested. We show that K is also a nested set.

Let u and v be two idle intervals in K. If u, v are both old then, by the

nestedness of Idle(σ), they are compatible or one covers the other. If u, v are both

new then, by construction of σ4, they are compatible or one covers the other. So

suppose u is new and v is old.

• u = [s(x1), f(y1)]. In this case, u is the longest interval in K. Therefore u

covers v.

• u is one of the changed intervals in L. That is, u = [s(xi), f(xi1)] for some

1 < i ≤ `. For contradiction, assume that u and v intersect. Then v contains

either s(xi) or f(xi−1). Moreover, since v 6∈ L, s(a) 6∈ v. In other words, v

starts and finishes before or after the point s(a). Therefore, v intersects with

either xi or xi−1, which contradicts with the fact that Idle(σ) is nested.

• u is one of the changed intervals in R. That is, u = [s(yi−1), f(yi)] for

some 1 < i ≤ r. Similarly, assume for contradiction that u and v intersect.

Then v contains s(fi) and the endpoint f(v) is between f(a) and s(yi), or

v contains f(yi−1) and the start point is between f(a) and f(yi−1). Either

case contradicts with the nestedness of Idle(σ).

This proves that K is a nested set. By construction of K, an interval from K

is either compatible with or covered by an interval in Idle(σ4) \K. Hence Idle(σ4)

is a nested set of idle intervals.

4.3 Data Structures for Nested Scheduling

While various data structures [68, 91] can be used for maintaining a set of nested

intervals, they are not optimal in maintaining the nested schedule. Recall that

a nested schedule depends on the set of interval I. Therefore when we insert or

delete an interval from I, we need to update O(d) intervals in a nested schedule.

In this section, we describe two data structures for nested scheduling. In both

data structure we maintain the nested tree of σ. We assume that every endpoint is

linked to two corresponding intervals, real and idle. For an example, if a schedule
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contains intervals [3, 6] and [8, 9] subsequently, we have a direct access from the

potion 6 to the real interval [3, 6] and to the idle interval [6, 8].

In the first data structure, we maintain nested scheduling as a set of a self-

balancing tree. We show that update operations in this data structure require

O(d · log n) time. In the second data structure, we maintain nested scheduling in

an interval tree. We show that the complexity of update operations improves to

O(d+ log n).

4.3.1 Straightforward Implementation

The straightforward implementation of a nested tree is denoted by T . The nodes

of T are idle intervals. The root of T is the interval (−∞,∞). The children of a

node v is a set Sub(v) of intervals u that are directly covered by v, i.e. there is

no interval w such that v ⊃ w ⊃ u. The children are ordered from left to right by

the starting times. The set Sub(v) is represented as a self-balancing binary search

tree, that supports join and split operations. The root of Sub(vi+1) keeps a pointer

to its parent vi in T .

First we describe three auxiliary operations: intersect, shortenLeft and

shortenRight. The intersect operation returns a path in the tree T consisting

of idle intervals intersecting a given point q. The operation shortenLeft set the

starting time of a given idle interval i to the new value. We assume that a new

value is between s(i) and f(i). Thus the interval i becomes shorter at the left end.

The operation shortenRight is similar to shortenLeft operation, but it changes

the finishing time of an idle interval.

For the intersect operation, we start at the root and at every node vi we

perform a search in Sub(vi) for a child vi+1 that contains q. Since the children are

stored in a binary search tree, the search takes O(log n) time. Note that by the

nestedness property, there is at most one such child. If we found one, we add it

to the path and continue in the subtree of vi+1. Otherwise, we stop and return

the constructed path of intervals. Note that q defines a unique path in T . As the

height of T is at most d, the time complexity of the search is O(d log n).

For the shortenLeft and shortenRight operations, after shortening an idle

interval, we need to update the children of the updated interval. Let v be an idle

interval and p be new value. We split the children of v into two sets A and B. The

set A contains idle intervals in Sub(v) whose finishing time is less that p, and the

set B contains idle intervals whose starting time is greater that p. We assume that
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p does not intersect any of the children of v. Therefore A ∪ B = Sub(v). If the

interval has been shortened at the left, we add intervals in A to the parent of v and

set B as the children of the update intervals. If the interval has been shortened

to the right, A becomes the children of v and B is merged with the children of

v’s parent. Shortening operation takes O(log n) time. An example in Figure 4.15

shows the result of applying shortenRight to the interval xi.

xi−1

xi

u0 u1 u2 u3

p

xi−1

x′i

u0 u1

u1 u2

Figure 4.15: Changes in the nested tree after applying shortenRight(xi, p).

Now we are ready to describe insertion and deletion of intervals. Let a be the

inserted interval. Let PL = {v0, . . . , vk = z, x1, . . . , x`} and PR = {v0, . . . , vk =

z, y1, . . . , yr} be the paths returned by intersect(s(a)) and intersect(f(a)),

respectively. Following the construction of σ2 in the previous section, we shorten

the interval x` at the right to the point s(a). Then, we shorten each idle interval

xi at the right to the point f(xi+1). Similarly, we shorten intervals yr, yr−1, . . . , y1

at the left to the points f(a), s(yr), . . . , s(y2).

Finally, we split the interval z into two intervals z1 = [s(z), f(x1)] and z2 =

[s(y1), f(z)]. If x1 or y1 do not exist, we set z1 = [s(z), s(a)] and z2 = [f(z), f(a)].

These two intervals will be new nodes in T . We split the children of z as well.

We set the children of z1 and z2 to be those intervals in Sub(z) that finish before

f(x1) and start after s(y1), respectively. We delete node z from Sub(vk−1) and in

its place we insert, preserving order, intervals z1, z2 and the intervals in Sub(z)

not covered by z1 or z2.

Now we describe the deletion operation. Let a be a deleted interval, PL and

PR be the paths returned by

tt intersect(s(a)) and intersect(f(a)), respectively. Note that the x` ∈ PL and

yr ∈ PR are idle intervals adjacent to a.

First, we delete idle intervals x` and yr from T . We move the children of these

intervals to the children of their parents. Then for every 1 ≤ i < ` we shorten xi

at the left to s(xi+1). Similarly, we shorten intervals yr−1, . . . , y1 at the right to

f(yr), . . . , f(y2), respectively. We also add children of yr to the children of yr−1.
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Finally, we add the new idle interval b = [s(x1), f(y1)]. We add b as a child of

vk, the interval that covers both x1 and y1. We search for the intervals in Sub(vk)

that are covered by b. We remove these intervals from Sub(vk) and set them to be

children of b.

Theorem 4.3.1. The data structure described above maintains the optimal schedul-

ing and supports insertions and deletions in O(d · log n) worst-case time.

Proof. When we update or delete an interval, we change idle intervals that intersect

with at most two points. It takes O(d log n) time to find these idle intervals. Once

found, we change endpoints of every idle interval. To change endpoint of an idle

interval in T takes O(log n) time, since we need to split and join children of the

interval and its parent. We change endpoints of at most 2d intervals. Thus in

total an update operation take O(d log n) time. The correctness of the operations

follows from Lemma 4.2.5 and Lemma 4.2.7

4.3.2 Optimal Data Structure

In this section we describe how maintain a nested schedule and perform update

operations in O(d+ log n) worst-case time.

We store idle intervals in an interval tree [80]. An interval tree is a leaf-oriented

binary search tree where leaves store endpoints of the intervals in increasing order.

Intervals themselves are stored in the internal nodes as follows. For each internal

node v the set I(v) consists of intervals that contain the split point of v and are

covered by the range of v. The split point of v, denoted by split(v), is a number

such that the leaves of the left subtree of v store endpoints smaller than split(v),

and the leaves of the right subtree of v store endpoints greater than split(v). The

range of v, denoted by range(v), is defined recursively as follows. The range of

the root is (−∞,∞). For a node v, where range(v) = (l, r], the range of the left

child of v is (l, split(v)], and the range of the right child of v is (split(v), r]. An

example of an interval tree is shown in Figure 4.16.

We represent each set I(v) as a linked list. The intervals in I(v) are stored in

order of their left endpoints. Since the set is nested, every interval in a list covers

all the subsequent intervals in the list. To search for all intervals intersecting a

given point p do the following. Start at the root and visit the nodes v0, . . . , vk,

where vi+1 is the right child of vi if p > split(vi), and the left child otherwise.

At every node vi, scan I(vi) and report all intervals containing p. Note that p
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(−∞,∞)

[5,∞]

[5, 11]
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Figure 4.16: Nested set of intervals represented by interval tree data structure.

intersects with at most d intervals and the length of the path is O(log n). Thus

the search takes O(d+ log n) time.

To allow updates of the interval tree, we represent it as a red-black tree. In a

red-black tree, insertion or deletion of a node takes O(log n) time plus the time for

at most 3 rotations to restore the balance. When performing a rotation around

an edge (v, p(v)) the sets I(v) and I(p(v)) change. Let the range of p(v) be (`, r].

If v is the left child, the range of p(v) after rotation becomes [split(v), r]. If v is

the right child, the range of p shortens at the other end and becomes [`, split(v)].

Therefore all intervals in I(p(v)) that intersects with split(v) must be moved to

I(v). Note that ranges of other nodes are not affected. Since there are at most d

intervals in each of the internal interval sets, rotation takes O(d) time. Thus in

total we need O(d+ log n) time to insert or delete a node.

Now we describe the update operations. Let a be the inserted interval. Recall

that when we insert an interval a, we need to update idle intervals that intersect

with the endpoints of a. Let L be the set of idle intervals that contain s(a), but

not f(a). Let R be the set of idle intervals that contain f(a), but not s(a). Let z

be the shortest idle interval that contains both endpoints of a. We show how to

update intervals in L. The update of intervals in R is similar.

Let v0 be a node such that z ∈ I(v0). This node is our starting position. To

find intervals in L, we walk down a path v0, . . . , vk defined by s(a). When visiting

a node vi, we iterate through I(vi) and put intervals that contains s(a) into L. We

delete intervals from I(vi) that we put in L. We stop when we reach a leaf node.

Let x1 ⊃ · · · ⊃ x` be intervals we have put in L. We iterate through L and

walk up the path we have traversed. We start iteration from the last interval x`.

For an interval xj, we set s(xj) = s(xj−1). Then we check if xj belongs to I(vi),
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i.e. if split(vi) ∈ xj ⊂ range(vi). If xj satisfies these conditions, we put xj at the

beginning of I(vi) and remove it from L . Otherwise, we walk up the path until we

find a node with a satisfactory split point and range. Note that no interval in I(vi)

contains s(a), since on the way down we removed all such intervals. Therefore, by

the nestedness of idle intervals, xj covers all intervals in I(vi).

Finally, we insert s(a) into the tree. Once inserted, we search for the lowest

common ancestor v of the leaves containing s(x`) and s(a). We add interval

[s(x`), s(a)] into I(v).

The deletion of an interval a is similar to insertion. First we delete the inter-

vals x` and yr and the endpoints s(a) and f(a) from the interval tree. Then we

traverse the path defined by s(a). Recall that x`−1, . . . , x1 are the idle intervals

that intersect with s(a). We change the starting time of all of them. Suppose v

is a node such that xi ∈ I(v). Clearly, xi+1 is in the range(v). For every interval

xi we encountered we set s(xi) to be s(xi+1). We move the changed intervals x′i
to the node v such that split(v) ∈ x′i ⊂ range(v). Note that v is on the path we

are traversing. Similarly, we traverse the path defined by f(a), update and move

intervals yi. Finally, we add a new idle interval [s(x1), f(y1)] into the interval tree.

Theorem 4.3.2. The data structure described above maintains the optimal schedul-

ing and supports insertions and deletions in O(d+ log n) worst-case time.

Proof. When we insert or delete an interval, we update only two sets L and R of

idle intervals. These two sets corresponds to two paths of length at most O(log n).

Furthermore, all intervals in each set share a common point. Therefore the size

of each set is at most d. Since the intervals in internal nodes are ordered, it takes

O(d) time to add intervals into L and R. When we put updated intervals back,

we add them at the beginning of the lists. Therefore it takes O(d) time to add

intervals from L and R into the internal nodes. Finally, we insert or delete at most

two leaves. Thus, an update takes O(d+ log n) time.

The optimality of scheduling follows from Lemma 4.2.5 and Lemma 4.2.7.

4.4 Tight Complexity Bound for Nested Trees

In this section we show that complexity of any data structure that maintains a

nested tree is at least Ω(log n+ d), where d is the height of the nested tree. First

we recall a lower bound for the static interval scheduling problem:
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Theorem 4.4.1 (Shamos and Hoey 87). Ω(n log n) is a lower bound on the time

required to determine if n intervals on a line are pairwise disjoint.

Theorem 4.4.1implies that we cannot construct a nested tree of n intervals in

less than Ω(n log n) time:

Lemma 4.4.2. Ω(log n) is a tight bound on the time required to update a data

structure that maintains a nested tree.

Proof. For contradiction, assume that there is a data structure with a complexity

f(n) ∈ o(log n). We create a nested tree of n intervals using this data structure. If

the height of the tree is 1, then the intervals do not intersect. However, the time

taken is n · f(n) ∈ o(n log n), which contradicts Theorem 4.4.1.

Next, we prove that nested scheduling function is unique.

Lemma 4.4.3. If σ and τ are nested scheduling functions then Idle(σ) = Idle(τ).

Proof. For contradiction, assume that there exist two nested scheduling functions σ

and τ such that Idle(σ) 6= Idle(τ). Then there exist two idle intervals a0 ∈ Idle(σ)

and b0 ∈ Idle(τ) such that they have the same non-infinite starting time, but

different finishing times, i.e. s(a0) = s(b0) 6= −∞ and f(a0) 6= f(b0). Without

loss of generality, suppose that f(a0) < f(b0). Now we take an interval b1 from

Idle(τ) that finishes at f(a0). If its starting time is less than s(b0) then intervals b0

and b1 overlap, which contradicts the nestedness of τ . Otherwise, we continue to

Idle(σ) and take an interval a1 that starts at s(b1). If f(a1) > f(a0) then a1 and

a0 overlap and it is a contradiction. Otherwise, we continue in the same manner

to Idle(τ). Since I is finite, this process eventually stops and one of the scheduling

functions appears to be not nested.

Theorem 4.4.4. An update operation in a data structure representing a nested

tree takes at least Ω(log n+ d) time.

Proof. Let I be an interval set and Nest(I) be the nested tree of I. By Lemma 4.4.3,

Nest(I) is unique. Let v0v1 . . . vd be longest path in Nest(I). Now consider an inter-

val a, which starts in the middle of vd and finishes after the end of v1. Clearly, s(a)

intersects with exactly d idle intervals. Therefore the trees Nest(I) and Nest(I∪a)

differ in Ω(d) nodes. Taking into account Lemma 4.4.2, an update operation of a

nested tree requires Ω(log n+ d) time.
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Chapter 5

Dynamic Slack Reclamation from

Multiple Processors

In this chapter, we study the problem of dynamic slack reclamation in the Elastic

Mixed-Criticality (E-MC) task model for multiple processors. Slack is an idle

period of time on a processor. The E-MC model defines two types of tasks: high-

criticality and low-criticality. The high-criticality tasks may generate slack on

the processors at run-time. The low-criticality tasks may reclaim the generated

slack. Reclamation of dynamic slack aims to decrease the total amount slack in

the system by efficient scheduling of tasks.

We consider a generalization of the slack reclamation problem introduced in

[97, 98]. The basic version of the problem asks whether a processor has slack

of length ` before time d. A generalized version of the problem asks whether k

processors has total slack of length ` before time d. We call the generalized version

the k-SLACK RECLAMATION problem. The problem is motivated by the observation

that if none of the processors has enough slack there might exist another scheduling

with the enough amount of slack on one processor.

We prove that the k-SLACK RECLAMATION problem is NP-complete.

5.1 Introduction

Many embedded real-time systems consist of tasks with different levels of im-

portance. The levels of importance are usually called criticality levels: the more

critical a task is, the more severe consequences of the task failure are. For example,

there are five criticality levels in the avionic software: catastrophic, hazardous, ma-

97
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jor, minor and no effect. Execution of all high-criticality tasks in a timely manner

is vital for the system and must not be terminated. On the other hand, a low-

criticality task may be terminated at runtime without jeopardizing the integrity

of the system.

For safety reasons, most critical tasks are scheduled on the basis of very strict

and pessimistic assumptions. However, such assumptions rarely occur in real life,

and it is not uncommon that a high-criticality task take less processor time than

it was provisioned. The discrepancies between estimated and actual use of com-

putational resources lead to inefficient use of the processors. One of the area in

the field of mixed-criticality (MC) systems studies models that aim at the efficient

use of computational power.

Su and Zhu [97] studied the Elastic Mixed-criticality model, where they sug-

gested the idea of early releases. In this model, the low-critical tasks are given

periods such that high-criticality tasks can be scheduled in the worst-case sce-

nario. These periods may be undesirably long. However, the low-criticality tasks

are also given early release points. These points specify the moments of time when

a task can release an early job. If at run-time the high-criticality tasks have gen-

erated enough slack for an early job, the job is released. As the result, the slack is

consumed by early jobs, while the high-criticality are guaranteed to be executed

on time.

Later, Hang Su et al continued their work in [98] by considering multicore

systems. Indeed, sometimes the amount of slack on a processor may not be large

enough to host an early released instance of its low-criticality task. However,

another low-criticality task from a different processor could be executed. Task

migrations between cores, or global early-release of low-criticality tasks, allow more

efficient slack reclamation.

The chapter is structured as follows. In Section 5.2 we formally describe the

E-MC model. In Section 5.3 we describe how to update the schedule when we

reclaim slack from multiple processors. Finally, in Section 5.4 we formally describe

the k-SLACK RECLAMATION problem and prove its NP-completeness.

5.2 Elastic Mixed-Criticality Model

The Elastic Mixed-Criticality (E-MC) model was proposed by Su and Zhu [97].

In this model the set of n tasks Γ = {T1, T2, . . . , Tn} is given. Each task T is

characterized by the following parameters:
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• criticality level ζ(T ),

• the period p(T ),

• the worst-case execution time (WCET) c(T, `) for each criticality level ` ≥
ζ(T ) at which the task can be executed.

All tasks are synchronous and implicit-deadline.

We consider the systems with two different criticality levels: high and low,

denoted by ζhigh and ζ low, respectively. We say that T is a high-criticality task

if its criticality level is ζhigh, and a low-criticality task if its criticality level is

ζ low. Hence a low-criticality task has only one WCET, denoted by c(T ), and a

high-criticality task has two WCET, denoted by chigh(T ) and clow(T ).

In addition to standard parameters, a low-criticality task in the E-MC model

is associated with a set of possible early-release points, which are denoted by

p1(T ), . . . , pk(T ). While the period p(T ) of a task specifies the required frequency

of its execution, its early-release points reflect the desirable frequency. For exam-

ple, consider a task of sending data from a camera sensor of a remote-controlled

vehicle to the control panel. Each execution of the task results in a picture frame

on the control panel. The task must be executed with non-zero frequency in order

to provide an operator with a picture that is clear enough to control the vehi-

cle. However, increasing frequency will result in more detailed picture and a more

accurate control of the vehicle.

The utilization of a task is defined with respect to its criticality level. For

a high-criticality task, the low-level and high-level utilizations are, respectively,

ulow(T ) = clow(T )
p(T )

and uhigh(T ) = chigh(T )
p(T )

. For a low-criticality task the desired and

minimum utilizations are defined as ui(T ) = c(T )
pi(T )

and umin(T ) = c(T )
p(T )

. Similarly,

the high-level and low-level total utilizations of all high-criticality tasks are defined

as

U(H,H) =
∑

ζ(T )=ζhigh

uhigh(T ) and

U(H,L) =
∑

ζ(T )=ζhigh

ulow(T )

For low-criticality tasks, which require minimum execution rate, the minimal

total utilization is defined as

U(L,min) =
∑

ζ(T )=ζlow

umin(T )
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A set of E-MC tasks is said to be E-MC schedulable if the high-level execution

requirements of high-criticality tasks and minimum service requirements of low-

criticality tasks can be guaranteed in the worst case scenario. Thus, a set of E-MC

tasks is schedulable on one processor by EDF if the sum of high-level utilization

of high-criticality tasks and the minimum utilization of low-criticality tasks is at

most 1:

Lemma 5.2.1 (Su and Zhu [97]). A set of E-MC tasks is E-MC schedulable under

EDF if U(H,H) + U(L,min) ≤ 1.

In the case of multiple processors, there is a question on the degree of task

migration allowed: no migration, task-level and job-level (see Section 2.2.1). Su

et al. [98] proposed and evaluated P-EDF scheduling where no migration of tasks is

allowed. That is, they partition the set of tasks into m set Γ1, . . . ,Γm. The tasks

from the set Γi are executed on the processor i. Similarly to the task utilizations

on one processor, the high-level and low-level utilization of tasks on ith processor

is defined as follows:

Ui(H,H) =
∑

ζ(T )=ζhigh∧T∈Γi

uhigh(T )

Ui(H,L) =
∑

ζ(T )=ζhigh∧T∈Γi

ulow(T )

Ui(L,min) =
∑

ζ(T )=ζlow∧T∈Γi

umin(T )

Theorem 5.2.2 ([98]). A set of E-MC tasks with given partition Γ1, . . . ,Γm is

E-MC schedulable by P-EDF on m-processor system if Ui(H,H) + Ui(L,min) ≤ 1

for every 1 ≤ i ≤ m.

The problem of finding a partition of tasks such that the equation in the The-

orem 5.2.2 is satisfied is equivalent to the bin-packing problem [51] and therefore

is NP-complete. Hence the E-MC schedulability of tasks on multiple processors

was evaluated by various partitioning heuristics Su et al. [98].

5.2.1 Slack Generation and Reclamation

In the E-MC model, the schedulability of a task set is tested with the assumption

that high-criticality tasks are executed for their high-level WCET. However, at
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ti ti + pj(B) ti + p(B) ti+1 + pj(B)

Bi Bi Bi Bi Bi Bx Bx Bx Bx Bx

Bi Bx

Figure 5.1: In the period from ti+pj(B) to ti+p(B) the processor has no dedicated

time for the task B since the job Bi has been completed by the beginning of

the period. Therefore execution of the extra job Bx increases utilization of the

processor in this period.

run-time a high-criticality task may take less time than it has been provisioned,

thus generating idle time or slack on a processor. Moreover, if the total utilization

of a processor is less than 1, then there are periods of time with no active tasks,

and thus the processor is idle at these moments of time.

To reduce the amount of slack on a processor, an extra job of a low-criticality

task may be released at one of the early release points, specified for the task. An

extra job requires computational power of a processor but increases its utilization.

Let us describe this observation in greater details.

Let B be a low-criticality task with k early released points. Assume that no

extra job of B has been released until some moment of time ti = i · p(B). Then

in the period [ti, ti+1] the task utilizes umin of processor’s time. In other words,

a fraction c(B)
p(B)

of every 1 unit of time is dedicated for the execution of B. Now

suppose that the job Bi has been completed by the early-release point ti + pj(B)

and we release an extra job Bx. The deadline of Bx is ti + pj(B) + p(B). The

extra job requires p(B) · umin(B) units of time in the period from ti + pj(B) to

ti+1 +pj(B). However, since the job Bi has already been completed, no processor’s

time is dedicated for the task B in the period [ti+pj(B), ti+p(B)]. Thus an extra

job Bx increases utilization of the processor by (p(B) − pj(B)) · umin(B) in this

period. Moreover, this is the exact amount of slack we need to release an extra job

without overloading the processor [17]. See Figure 5.1 for graphical interpretation.

Su et al. [98] proposed the method for slack reclamation on one processor. In

the next section we describe and analyze the problem of slack reclamation from

several processors.
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5.3 Slack Reclamation from Multiple Processors

In this section we study the idea of slack reclamation from several processors. The

intuition behind the idea is that while none of the processors has enough slack for

execution of an extra job, the combined slack on several processors may meet the

extra job’s demand.

Consider the following example. At some moment of time we have four jobs

scheduled on two processors such that the first processor is idle in the period [t1, t2]

and the second processor is idle in the period [t2, t3], where t1 < t2 < t3. Denote

the job that starts at t2 by Ai and the job that starts at t3 by Bj. Suppose that

there is an extra job Ex of a low-criticality task E with WCET c(E) = t3 − t1

that can be released at time t2. Since c(E) > t2 − t1 and c(E) > t3 − t2, none

of the processors has enough slack for Ex given the current schedule. However, if

we swap schedules of the processors at time t2, there will be enough slack for Ex.

Figure 5.2 pictures this example.

t1 t2 t3

Ai

Bj

Ex

t1 t2 t3

Ai

BjEx

Figure 5.2: After swapping the schedules at time t2 there is enough slack on one

processor to allocate an extra job Ex.

We introduce the necessary notations. Let C = {C1, . . . ,Cm} be a set of m

unit-speed identical processors. We define a mapping π : Γ → C that partitions

the task set into m disjoint sets Γ1, . . . ,Γm which satisfy the conditions of the

Theorem 5.2.2.

Initially, the tasks in the set Γi are executed on the processor Ci. However,

at run-time we change task-to-core mapping. These changes are reflected by the

bijective function σ : Γ → Γ, which is called the proxy function. The allocation

of a task T is determined by the composition of the partitioning function and the

proxy function. We write σπ(T ) for (σ ◦ π)(T ).

The proxy function is changed by the swap operation, which takes two pro-

cessors Ci and Cj as an input. After the swap operation the tasks that has been

executing on the processor Ci is executed on the processor Cj, and vice-versa. That
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is, we set σ(Ci) = Cy and σ(Cj) = Cx, where Cx = σ(Ci) and Cy = σ(Cj). The

operation is denoted by swap(Ci,Cj).

The swap operations are scheduled in advance. Otherwise the combined slack

would not have an advantaged over the slack on any of the processors. Indeed,

the combined slack after a swap operations is equal to the amount of slack in the

period (t, ts) on one processor plus the amount of slack in the period (ts,∞) on

the other processor, where t is the current moment of time and ts is the moment

of swap operation. Therefore if we call swap immediately, that is if ts = t, there is

no increase in the available slack on any of the processors.

We define a swap schedule as a sequence of swap points (t,Ci,Cj), where t is a

natural number and Ci,Cj are two different processors. Each swap point (t,Ci,Cj)

schedules an invocation of the swap operation with parameters Ci and Cj at the

time t. A swap schedule is denoted by S.

We place a restriction on the swap operations: tasks on a processor Ci cannot

be swapped if an active job of one of these tasks has been preempted. In other

words, we do not allow job-level migration. We call a swap operation feasible if

it does not violate this restriction. We call a swap scheduled feasible if all swap

operations in the schedule are feasible.

Static and Dynamic Slack. We distinguish two types of slack: static and

dynamic. The static slack is the period of time when there are no active jobs.

The dynamic slack is the period of time dedicated for the execution of job that

has already been completed. The main difference is that static slack depends on

the schedule and can be precomputed offline, while dynamic slack is generated at

runtime and cannot be predicted.

A period of slack δ is characterized by three parameters: the starting time δ.a,

the length δ.` and the deadline δ.d. The starting time and the deadline specify

the window in which the slack can be used. The length specifies the amount of

time units available for execution of a job. We denote a period of slack as a triple

(δ.a, δ.`, δ.d).

As an example, consider the following set of two tasks: a high-criticality task A

and a low-criticality task B. Worst-case execution times of the tasks are chigh(A) =

3, clow(A) = 2 and c(B) = 4. The periods of tasks are p(A) = 8 and p(B) = 10.

The task B has early release point p1(B) = 6. We schedule the task set by EDF

algorithm on one processor. In the worst case, the first jobs of the tasks are

completed at time 7. Therefore there is a period of static slack δ = (7, 1, 8). Now



104 CHAPTER 5. MULTIPROCESSOR SLACK RELAMATION

suppose that the job A1 used 2 units of time instead of 3. Thus, at runtime we

have a period γ = (2, 1, 8) of dynamic slack. Note that the deadline of γ equals to

the deadline of A1. See Figure 5.3 (a).

0 2 3 7 8

A1, B1 A2

A1 B1 A2

(a) (b)
0 2 3 7 8

A1, B1 A2

A1 A2B1

Figure 5.3: (a) In the worst case, A1 and B1 are completed by 7. At runtime,

A1 is completed at 2. Thus (2, 1, 8) is a period of dynamic slack and (7, 1, 8) is a

period of static slack. (b) a period (2, 1, 8) of dynamic slack is pushed forward.

The important property of dynamic slack is that it can be claimed not only by

extra jobs, but also by already active jobs. A period γ of dynamic slack is pushed

forward by an active job Bi if the deadline of Bi is greater than the deadline of

γ [104]. While we say that γ is pushed forward, the slack is in fact consumed by

the job Bi. However, because Bj is now being executed earlier, this job produces

a new slack. As a result the dynamic slack γ is transformed into another period

of dynamic slack and is preserved for later jobs. The amount of preserved slack is

equal to the length of γ of Bi, whichever is minimal. Let us describe an example.

In the Figure 5.3, we have a period of dynamic slack γ = (2, 1, 8) generated at

the moment 2. We also have an active job B1. Since γ.d ≤ B1.d, the job claims

the slack. As the results, we have a new period of dynamic slack γ′ = (3, 1, 10).

Note that the deadline has changed. That is because γ′ correspond to the job B1.

5.4 Problem k-SLACK RECLAMATION

In this section we formally define the problem k-SLACK RECLAMATION as follows:

INPUT: a set of multicritical tasks allocated on m processors and scheduled by

EDF algorithm; a collection of periods of dynamic and static slack; a low-criticality

task X that is ready to be early released.

OUTPUT: YES, if there exists a feasible swap schedule such that the amount of

slack reclaimed from k processors is greater or equal to the length of X. Otherwise,

output NO.
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While the k-SLACK RECLAMATION problem is somewhat similar to the problem

of finding nested scheduling of an interval set, which we described and studied in

Chapter 4, we show that the problem of reclaiming slack from several processors

is NP-complete.

Theorem 5.4.1. The problem k-SLACK RECLAMATION is NP-complete even if k =

2.

Proof. We prove the theorem by reduction of the PARTITION problem to the

k-SLACK RECLAMATION problem. Recall that the PARTITION problem asks whether

it is possible to divide a given multiset of positive integers into two subsets such

that the sum of the numbers in one set equals to the sum of the numbers in the

other set.

Let A = {a1, . . . , an} be a multiset of positive integers. Let B = Σn
i=1ai. We

construct a multi critical task system Γ from the set A as follows.

First, for each number ai we create low-criticality tasks Ci with the execution

time equal to ai, with no early release points and with the period of 3B. Second,

we create two high-criticality tasks A1 and A2 with maximal execution time of 2B,

minimal execution time of 3
2
B, and with the period of 3B. Then we create a s

high-criticality task B with minimal and maximal execution time of B, and with

the period of 3B. Finally, we create two low-criticality tasks X and Y with the

execution time of 1B, with the early release point 3
2
B, and with that period of 2B.

Next, we partition the tasks for the execution on three processors C1,C2 and C3.

We define the partitioning function π : Γ→ C as follows:

π(T ) =


C1 if T is A1 or B for some i

C2 if T is A2 or Ci for some i

C3 if T is X or Y

In other words, the tasks X and Y are executed by the processor C3, the tasks

A and B are executed by the processor C1, and the tasks A2 and Ci are executed

by the processor C2 for every i. It is easy to see that utilization of each processor

is 1.

Each of the tasks has a purpose. The tasks A1 and A2 are generators. They

generate the dynamic slack of length 1
2
B on the processors. The task B is the

loader. It increases the utilization of the processor to maximal possible value. The

tasks X and Y are consumers. They consume the slack available for reclamation.
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C1

0 3
2
B 2B 3B

A1
1 B1

C2

0 3
2
B 2B 3B

A1
1

C1
1 ... C1

n

C3

0 1B 2B 3B
X1 Y 1

Figure 5.4: The total available slack generated by high-criticality tasks A1 and A2

is equal to B at time 3
2
B.

The tasks C1, . . . , Cn are verifiers. They verify the solution to the corresponding

instance of PARTITION problem.

Now consider the following situation. The first job of each task is released at

time 0. The EDF algorithm schedules the jobs as shown in Figure 5.4. At run-time,

the high-criticality jobs A1
1 and A1

2 take their minimal execution time to complete

and, therefore, generate two periods of dynamic slack of length 1
2
B. Moreover, at

the time 3
2
B when the A1 jobs has finished, the extra job of the task X is ready to

be released. The extra job requires slack of length 1B. Therefore we ask whether

it is possible to reclaim slack of length 1B from the processors C1 and C2.

Assume that there exists an algorithm that outputs YES for the instance of

the problem we described above. In other words, there exists a swap schedule with

the processors C1 and C2 such that total slack on one of the processors is at least

1B. We argue that the sum of jobs executed on the processor C1 is equal to B
2
.

There are two cases to consider.

Case 1. The extra job Xe is being executed on the processor C1. Since C1 has only
1
2
B of slack, at some moment of time t1 we swap the schedules of the processors C1

and C2. If t1 < 2B, the job Xe has not used all slack on the processor C1, and the

unused slack is now on the processor C2. Therefore we swap the schedules again

at some moment of time t2 > t1. As the result, some of the jobs of the processor

C2 are executed on the processor C1 in the period [t1, t2]. See Figure 5.5.

We claim that the sum of the lengths of the jobs that has been moved from

C2 to C1 is 1
2
B. First, recall that we do not allow swapping when there is an

unfinished job on a processor. Second, t2 − t1 is equal to B. Otherwise, the

amount of collected slack would not have been enough. Finally, the amount of
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C1

0 3
2
B

A1 B1

swap swap

Xe Xe

C2

0 3
2
B 2B 5

2
B 3B

A1
2

C3

0 1B 2B 3B
X1 Y 1

Figure 5.5: A swap schedule to reclaim two periods of dynamic slack on the pro-

cessors C1 and C2 for the execution of the extra job Xe

slack in the period [t1, t2] is equal to 1
2
B. Since a job starts in the period if and

only if it finishes in the period, the sum of the length of the jobs is equal to 1
2
B.

Case 2. The extra job Xe is being executed on the processor C2.

Construct the same task system with the only difference: task B is mapped to

the processor C2, and tasks C1, . . . ,Cn are mapped to the processor C1. The rest

of the proof is similar to the Case 1.

In both cases, if there exists a feasible swap schedule, the elements of the set

A can be partitioned in two sets of equal total sum.

For the other direction, assume that there does not exist a partition of A into

the sets of equal total sum. Take any moment of time t1 such that 3
2
B < t1 ≤ 2B.

Since the partition does not exist, there is no set of jobs such that the sum of their

length plus the slack of 1
2
B equals to t1 +B. Therefore a possible swap can happen

only after t1 + B. However, in this case we reclaim less that 1B os slack. Hence

there does not exist a feasible swap schedule with total reclaimed slack of 1B.

Thus the PARTITION problem is reducible to the 2-SLACK RECLAMATION prob-

lem.
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Chapter 6

Conclusion

Scheduling as a general model of tasks and resources distribution is an active

area of research. There are many unsolved problems, which are of interest in the

industry. In this thesis, we have studied dynamic algorithms for three related

scheduling problems.

First, we considered the scheduling problem on a single machine. We designed

two data structures, Compatibility Forest and Linearised Tree, both of which allow

efficient insertion, removal and query operations. Our approach to solving the

problem is significantly better than a naive approach in terms of complexity as it

is based on amortised data structures. Moreover, we experimentally compared the

performance of the algorithms. The experiments showed that our data structures

perform similarly to each other, and outperform the modified naive algorithm.

Second, we looked into the scheduling problem on multiple machines. We ap-

plied a novel approach – rather than representing periods of time when machines

are working, we considered periods of time when machines are idle. This approach

allowed us to define and study nested scheduling. We proved that a nested schedul-

ing exists for any set of tasks. We designed a data structure that maintains nested

scheduling. Moreover, we showed that the data structure is efficient by proving

the tight complexity bounds on the insert and remove operations.

Finally, we studied the scheduling problem in Elastic Mixed-Criticality model

of real time systems. We extended the reclamation problem of processor idle time

to the case of multiple processors. We proved that the problem in NP-complete.

Several directions for further research remain open. The first direction is to

relax monotonic restriction on an interval set. With an additional information in a

binary search tree it is possible to implement right- and left-compatible operations.

109
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However, the question is how to efficiently update paths in the Compatibility

Forest: in the worst-case scenario, the algorithm may require too much time.

Then, it would be interesting to look into experimental evaluation of different

approaches.

The second direction is to develop an additional operation - substitution. This

operation changes starting and/or finishing time of an existing task. A possible

approach is to consider equivalence classes of intervals based on their compatibility.

For example, if substitution does not change the equivalence class of an interval,

it might be possible that such substitution takes constant time.

The third direction is to implement data structure for nested scheduling. This

will give valuable insights on how nested scheduling performs in practice.

Finally, the other direction is to study approximation of the k-SLACK RECLAMATION

problem. The NP-completness of the problem follows from the PARTITION prob-

lem. This suggests that a simple heuristic, such as ordering of tasks by their length,

or decreasing, might output good results. Also, it is interesting to experimentally

compare multiprocessor slack reclamation with other models of real-time systems.

Overall, there are still many open doors and questions to answer related to

scheduling. Hopefully, this thesis will take its niche in the area, and would be

useful for future researches.
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[88] Shmoys, D. B. and Tardos, É. (1993). An approximation algorithm for the

generalized assignment problem. Mathematical Programming, 62(1-3):461–474.

[89] Simons, B. (1983). Multiprocessor scheduling of unit-time jobs with arbitrary

release times and deadlines. SIAM J. Comput., 12(2):294–299.

[90] Simons, B. B. and Warmuth, M. K. (1989). A fast algorithm for multiproces-

sor scheduling of unit-length jobs. SIAM J. Comput., 18(4):690–710.

[91] Sleator, D. and Tarjan, R. (1983). A data structure for dynamic trees. Journal

of computer and system sciences, 26(3):362–391.

[92] Sleator, D. D. and Tarjan, R. E. (1985a). Amortized efficiency of list update

and paging rules. Communications of the ACM, 28(2):202–208.



119

[93] Sleator, D. D. and Tarjan, R. E. (1985b). Self-adjusting binary search trees.

Journal of the ACM (JACM), 32(3):652–686.

[94] Sleator, D. D. and Tarjan, R. E. (1986). Self-adjusting heaps. SIAM Journal

on Computing, 15(1):52–69.

[95] Smith, B. M. and Wren, A. (1988). A bus crew scheduling system using a set

covering formulation. Transportation Research Part A: General, 22(2):97–108.

[96] Stern, H. I. and Hersh, M. (1980). Scheduling aircraft cleaning crews. Trans-

portation Science, 14(3):277–291.

[97] Su, H. and Zhu, D. (2013). An elastic mixed-criticality task model and its

scheduling algorithm. In Proceedings of the Conference on Design, Automation

and Test in Europe, pages 147–152. EDA Consortium.
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