

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material from
their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy
of their work to be used subject to the conditions specified on the Library Thesis
Consent Form and Deposit Licence.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm

Optimal Task Scheduling on Parallel
Systems

Sarad Venugopalan

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Faculty of

Electrical and Computer Engineering,
The University of Auckland, 2015.

Supervisor

Dr. Oliver Sinnen

Co-supervisor

Prof. Matthias Ehrgott

“Everything is simple, we are stupid” - Paul Irofti

Abstract

To fully benefit from a multiprocessor system, the tasks of a program are to be
carefully assigned and scheduled on the processors of the system such that the
overall execution time is minimal.

Due to the reached physical limits of processor technology the improvements are
fading out and manufacturers have moved to multi(core)processors. With multiple
processors, however, the performance growth is not automatic anymore and can
only be achieved when the processors are efficiently employed in parallel. For the
performance and efficiency of a parallel program the scheduling of its (sub)tasks is
crucial. Unfortunately, scheduling is a fundamental unsolved problem (an NP-hard
optimisation problem), as the time needed to solve it optimally grows exponen-
tially with the number of tasks. I.e. the associated task scheduling problem with
communication delays, P |prec, cij|Cmax, is a well known NP-hard problem.

The tasks that are to be scheduled may or may not be dependent on each other
and are represented as an acyclic directed graph. The nodes in the graph represent
the tasks and the edges between the nodes, the communications. The node cost is
the time required for the task to complete and the edge cost is the communication
time between two tasks on different processors. We assume a connected network
of processors with identical communication links. Further, there is no multitasking
or parallelism within a task. Each processor may execute several tasks but no
concurrent execution of tasks is permitted. The tasks are to be assigned in such a
way as to minimise the overall schedule length.

Existing scheduling algorithms are mostly heuristics (for e.g. the list scheduling al-
gorithm) as they try to produce good rather than optimal schedules. Having optimal
schedules can make a fundamental difference, e.g. for time critical systems such as
flight control, industrial automation, automotive applications, telecommunication
systems, consumer electronics, robotics and multimedia systems. Multiprocessor

v

systems are also popular in small portable devices such as cellphones or navigators
to large systems such as industrial robots or aircraft. An optimal schedule may
also be used as a benchmark to enable the precise evaluation of scheduling heuris-
tics. Moreover, once an optimal schedule is found, it may be reused when a parallel
program is rerun.

This work has two main contributions 1) investigate and propose novel Mixed Integer
Linear Programming (MILP) solutions to this scheduling problem, despite the fact
that scheduling problems are often difficult to handle by MILP solvers. 2) Propose
memory limited versions of the A* scheduling algorithm since A* for larger problem
instances may run out of memory before finding an optimal schedule. The applica-
bility of existing pruning techniques used on A* are re-investigated and new pruning
techniques to further speedup the memory limited A*algorithms are proposed.

The first part of the work proposes MILP solutions that use problem specific knowl-
edge to eliminate the need to linearise the bi-linear equations arising out of com-
munication delays. The classic ILP formulation for the scheduling problem and its
improved formulations PACKING-USUAL and PACKING-COMPACT are studied.
Two new ILP formulations, namely ILP-RBL and ILP-TC are proposed to fur-
ther speedup the solution. This is attained by re-formulating the constraints and
variables needed to linearise the bi-linear forms arising from communication delays
between tasks running on different processors. Next, the work in the thesis proposes
the formulation ILP-DELTA by introducing new overlap constraints to ensure that
no two tasks running on the same processor overlap in time and space. The purpose
is to test if re-formulating these constraints would help speedup the formulation.

Further, the work in the thesis proposes the MILP formulations SHD-BASIC, SHD-
RELAXED and SHD-REDUCED wherein the size of the proposed formulations in
terms of variables are independent of the number of processors. We analyse and
discuss the influence of the different MILP components in respect to characteristics
of the task graph such as structure and communication to computation ratio. The
proposed MILP formulations are experimentally compared with previous MILP for-
mulations used to solve this scheduling problem. The proposed formulations displays
a drastic improvement in performance, which allows to solve larger problems opti-
mally. The work also observe strengths and weaknesses of the formulations related
to the input characteristics.

The second part of the work proposes two memory limited optimal scheduling al-

vi

gorithms: Iterative Deepening A* (IDA*) and Depth-First Branch and Bound A*
(BBA*). When finding a guaranteed near optimal schedule length is sufficient, the
proposed algorithms can be combined, reporting the gap while they run. A novel
method to find a good initial lower bound close to the optimal schedule length in
order to speed-up the execution of IDA* is proposed. Problem specific pruning
techniques, which are crucial for good performance, are studied and new pruning
techniques proposed for the two memory limited algorithms. Duplicate avoidance
without memory and processor normalisation without memory are the pruning tech-
niques proposed. Extensive experiments are conducted to evaluate and compare the
proposed algorithms with previous optimal algorithms.

vii

Acknowledgments

I thank my aunt Suma Verma, uncle Jairam, Mikhil and and Mythili for their love
and hospitality, the very first of my extended family in Auckland. I thank Biju Bal-
akrishnan and Priyanka Biju for being there for me. I thank my good friends Ruchi
Chowdhary, Pankti Kansara, Hyewon Oh, Leandro Rasmussen, Sizhu (Carol) Zong,
Gerry Geneva, Matt Ozball, Urie Bezuidenhout, Aisha Abubakar, Chandan Datta,
Jeyavel Jawahar, Arulmozhivarman Parthiban, Anisha, Tomomi Fujikawa, Osberta
Li, Dhruv Gaur, Rumi Yokoyama, Misaki Iwamoto, Zong Chen, Shey Mahendran,
Helen He, Shradha Khiani, Shin Yee Teh, Dinoy Jose, Yosra, Emma Kang, Dominic
Dagbanja, Latha Murugesan, Enoch D, Tony Zhao and Winyee Phong.

I am grateful to my extended family in Auckland, Anna Zhang for her clear, crisp
soul and beautiful singing voice, Le Luo for more reasons than I can think of, Asha
Rana for her amazing kindness and in teaching me how to cook, Lucy Law for being
vibrant and energetic, Alvin Chan for being a sincere friend, Zainab Zeezi for her
very beautiful spirit, Rivindu Weerasekera for saying probably-maybe but gets all
the work done, Rusiru Karunaratne for being the funny guy, Supriya Siddiqui for
her loving personality, Sarah Lim for being a strongly spirited lady and a wonderful
violinist, Mika Tokida for her dry humor and evil laughs we share, Sonny P Ku-
mar for being cool as a cucumber, Janu Rangel for having a welcoming heart, Ben
Chayanun for bringing out the best of me, Shen Song for being precise and showing
me the wisdom of the sunset, Keezrawati Mujan for being kind, Chiara Mannoni
Papakonstantinou for having an open heart and an open mind, Cindy Cheung for
having deep meaningful conversations, Sohaib Ijaz Majeed for his kindness, Caroline
Ding for her empathy, Mark Kong for being caring, Samuel Mandal for his critical
thinking, Melinda Thomas for celebrating life, Mike Rosing for inspiring me to solve
problems and to continue with my studies, Balamurali B for his humility and vast
understanding of humanity, Lu Yu for being my all weather friend, no matter the
circumstances. Sahil Chaplot, Parth Doriwala for being kind and caring for the time

ix

I lived with them. Prem Kumar, Arijit Chakraborty for letting me stay with them
until I completed writing this thesis.

I extend my gratitude to my other friends whom I an constantly in touch with:
Aparna Anil, Vipin Thekkedam, Dr. Gopi Krishna Kolluru, Indumathi Ram, Sreedevi
Chandrakumar, Kip Kwiatkowski, Dr. Sobha Devi, Dr. Srikanth S, Sujith Raman,
Divya Bhaskar, Navin Parakkal, Dr. Sanjeev Saini, Abhinesh Narayanan, Jayasurya
Nambiar, Vidya Menon, Dr. Manikandadas Menon, Sankar K, Gesly George, Prof.
Bharat B Amberker.

I thank Dilmah for making such fine Ceylon tea and the flat white coffee in New
Zealand. They are both fuel for research and responsible for some of the eureka
moments.

I thank the Electrical and Computer engineering department staff: Aruna S, Hanlie
Van Zyl and Christine Salter; the most student friendly and compassionate staff.

I gratefully acknowledge that this work is supported by the Marsden Fund Council
from Government funding, Grant 9073-3624767, administered by the Royal Soci-
ety of New Zealand and additional postgraduate support from the University of
Auckland.

I thank my supervisor Dr. Oliver Sinnen for teaching me how to research, provide
valuable and critical feedback, to clearly present work in written form as conference
and journal publications and giving me space to wander around the applied mathe-
matics realm and solve some important questions related to the research problem. I
thank Prof. Matthias Ehrgott for his feedback and deep insight into linear program-
ming solutions that are used to solve the research problem. I also thank my PHD
advisors Dr. Michael Dinneen and Dr. Partha Roop for their valuable feedback.

I thank my dad for the love and the will to see that I get the very best they could
give. I thank my brother for having simple solutions to most problems, to take it
easy and learn from him. Getting here would not have been possible without my
mother, this one is for you mom.

x

xi

Abbreviations and Acronyms

BBA* - Branch and Bound A*

BIP - Binary Integer Programming

CBL - Computational Bottom Level

CCR - Communication to Computation Ratio

CTL - Computational Top Level

DAG - Directed Acylic Graph

DEC-DEV - Decision Destructive

DLB - Destructive Lower Bound

DRT - Data Ready Time

EST - Earliest Start Time

FSL - Feasible Schedule Length

FTO - Fixed Task Order

GB - Green Banana

GXL - Graph eXchange Language

IDA* - Iterative Deepening A*

ILP - Integer Linear Programming

ILP-RBL - ILP-Revised Boolean Logic

ILP-TC - ILP-Transitivity Clause

LB - Lower Bound
xii

MILP - Mixed Integer Linear Program

MINLP - Mixed Integer Non Linear Program

MSPCD - Multi-processor Scheduling Problem with Communication Delays

OSL - Optimal Schedule Length

SL - Schedule Length

xiii

Contents

Abstract v

Acknowledgments ix

Abbreviations and Acronyms xii

1 Introduction 1
1.1 Objective . 2
1.2 Problem Statement . 2
1.3 Task scheduling model . 3
1.4 Methodology . 4
1.5 Introduction to MILP . 4
1.6 Related Work using Mixed Integer Linear Programming 5

1.6.1 Linearisation of the classic formula 7
1.7 Introduction to A* . 11
1.8 Related Work using A* . 12

1.8.1 A* Scheduling Algorithm . 14
1.9 Thesis Framework . 16
1.10 Contributions . 17

2 ILP formulations for Task Scheduling Solutions for MSPCD 19
2.1 Abstract . 20
2.2 Introduction . 21
2.3 Task scheduling model . 22
2.4 Related work . 23
2.5 Proposed formulations . 23

2.5.1 ILP-RevisedBooleanLogic 24
2.5.2 ILP-TransitivityClause 26
2.5.3 Packing formulation . 27

i

2.6 Computational results . 28
2.6.1 Experimental setup . 29
2.6.2 Result table . 29

2.7 Conclusions . 32

3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming 33
3.1 Abstract . 34
3.2 Introduction . 34
3.3 Task Scheduling Model . 35
3.4 Related Work . 35
3.5 Bi-Linear Reductions . 36
3.6 Proposed Formulation . 37

3.6.1 ILP-DELTA . 38
3.6.2 ILP-TC . 40

3.7 Computational Results . 41
3.7.1 Experimental Setup and Result Table 42

3.8 Conclusions . 43

4 ILP formulations for Task Scheduling with Communication Delays 45
4.1 Abstract . 46
4.2 Introduction . 47
4.3 Mixed Integer Linear Programming 49
4.4 Task scheduling model . 49
4.5 Bi-linear reductions . 50
4.6 Proposed formulation . 53

4.6.1 BASIC formulation (SHD-BASIC) 53
4.6.2 RELAXED formulation (SHD-RELAXED) 56
4.6.3 REDUCED formulation (SHD-REDUCED) 56
4.6.4 Comparison of SHD-RELAXED and SHD-REDUCED with

PACKING formulation, ILP-RBL and ILP-TC 57
4.7 Experimental results . 58

4.7.1 MILP comparisons with 1 minute timeout 59
4.7.2 MILP comparisons set for a 12 hour timeout 63

4.8 Conclusions . 66

ii

5 Memory Limited Algorithms for Task Scheduling on Parallel Systems 71
5.1 Abstract . 72
5.2 Introduction . 72
5.3 Related work . 74
5.4 Task scheduling model . 75
5.5 Memory limited optimal scheduling algorithms 77

5.5.1 IDA* Scheduling Algorithm 79
5.5.2 f function calculation . 80
5.5.3 Branch and Bound A* Scheduling Algorithm 81
5.5.4 Gap Calculation . 82

5.6 Lower Bound for IDA* Scheduling . 83
5.6.1 Generic Lower Bound . 83
5.6.2 Destructive Lower Bounds . 83

5.7 State Space Pruning . 88
5.7.1 Fixed Task Order Pruning . 88
5.7.2 Equivalent Schedules . 89
5.7.3 Partial Duplicate Avoidance 90
5.7.4 Memory Limited Processor Normalisation 91

5.8 Experimental evaluation . 94
5.8.1 Comparisons with 1 minute time-out 94
5.8.2 Comparisons with 12 hour time-out 96

5.9 Conclusions . 97

6 Conclusions and Future Work 103

References 105

iii

List of Figures

1.1 Tasks scheduled onto two processors 3
1.2 A fork graph scheduled onto two processors 7
1.3 A random graph scheduled onto two processors 14

4.1 Completed schedules of different formulations over number of pro-
cessors . 60

4.2 Completion percentage of formulations over graph structures 2 pro-
cessors . 63

4.3 Completion percentage of formulations over graph structures on 4
processors . 64

4.4 Completion percentage of different formulations over graph structures
on 8 processors . 65

4.5 Completion percentage of formulations over graph structures on 16
processors . 66

4.6 CCR Comparisons on 4 and 8 Processors Set for a 1 minute Timeout
. 67

5.1 Graphs with corresponding schedules 90
5.2 Completed schedules (out of 207) in 1 minute over algorithms for

different number of processors 95

xv

List of Tables

2.1 Solution Time Comparison of Packing with ILP-RBL . . . 30
2.2 Solution Time Comparison of Packing with ILP-TC 30
2.3 Solution Time Comparison of ILP-RBL with ILP-TC . . . 31

3.1 Solution Time Comparison of ILP-DELTA with Packing and ILP-TC
. 42

4.1 Comparison between formulations tested 57
4.2 Detailed Structure of the 207 Graph Database 59
4.3 Performance Statistics on Individual Graph Structures over SHD-

RELAXED and SHD-REDUCED 62
4.4 12 hour Timeout Comparisons on ILP Formulations - Set 1 69
4.5 12 hour Timeout Comparisons on ILP Formulations - Set 2 70

5.1 Detailed Structure of the 207 Graph Database 95
5.2 12 hour Time-out Comparisons on Algorithms Tested . . . 102

xvii

1 Introduction

In the past, engineering and science have strongly benefited from an exponential
growth in processor performance. Yet, due to the reached physical limits of processor
technology the improvements are fading out [36] and manufacturers have moved to
multi(core)processors. With multiple processors, however, the performance growth
is not automatic anymore and can only be achieved when the processors are effi-
ciently employed in parallel [21]. For the performance and efficiency of a parallel
program the scheduling of its (sub)tasks is crucial. Unfortunately, scheduling is a
fundamental unsolved problem (an NP-hard optimisation problem [44]), as the time
needed to solve it optimally grows exponentially with the number of tasks. Existing
scheduling algorithms are therefore heuristics that try to produce good rather than
optimal schedules, e.g. [31], [37], [21], [41], [48], [55], [58], [7], [23]. However, having
optimal schedules can make a fundamental difference, e.g. for time critical systems
or to enable the precise evaluation of scheduling heuristics. The focus of this work
is to find fundamental theoretical results that reduce the solution space, making it
possible to efficiently search for an optimal solution.

The tasks that are to be scheduled are represented as a weighted directed acyclic
graph. The nodes in the graph represent tasks while directed edges represent data
precedence relationships. Precedence relationships (if any) have to be respected at
all times. The node cost is the time required for the task to complete its execution
on a processor and the edge cost is the communication time between two tasks
on different processors. If two tasks with data dependence are mapped onto the
same processor, the communication between them is implemented by data sharing
in local memory and no communication delay is incurred. The model assumes a fully
connected network of homogeneous multiprocessors P = {1, . . . , |P |} with identical
communication links. Each processor may execute several tasks, but each task has
to be assigned to exactly one processor, in which it is entirely executed without
pre-emption. Further, no multi-tasking or parallelism is permitted within a task.

1

Chapter 1 Introduction

The execution time for each task on each processor and the data transfer times (or
communication delays) between tasks with data dependence are given in advance as
part of the task graph.

1.1 Objective

The objective of this work is to present fast solutions for the classic problem of
scheduling task graphs on parallel systems with communication delay, which is
P |prec, cij|Cmax. I.e. to allocate and schedule the tasks onto the processors such
that the overall completion time W (makespan) is minimised [11], [40]. Here P
specifies the identical processor environment used, prec, cij are the precedence char-
acteristics and with communication costs cij; Cmax is the maximum completion time
of all tasks, which is the objective function to be minimised. Many heuristics have
been proposed for task scheduling on parallel systems [27]. While they often provide
good results and tend towards the optimal schedule there is no guarantee that the
solutions are optimal, especially for task graphs with high communication costs [47],
[46]. A number of approximation algorithms have been proposed for the scheduling
problem [9], [17]. For the here addressed scheduling problem, P |prec, cij|Cmax, no
α-approximation is known [15]. The only known guaranteed approximation algo-
rithm in [24] has an approximation factor depending on communication costs of the
longest path in the schedule.

Given the NP-hardness, finding an optimal solution requires an exhaustive search
of the entire solution space. For scheduling, this solution space is spawned by all
possible processor assignments combined with all possible task orderings. Clearly
this search space grows exponentially with the number of tasks, thus it becomes
impractical already for very small task graphs. Hence, few attempts have been
made to solve P |prec, cij|Cmax optimally. With the increase in processor power in
computers, it is now feasible to find optimal solutions to larger instances of the
scheduling problem. An example of a task graph wherein tasks are scheduled onto
two processors is shown in Figure 1.1.

1.2 Problem Statement

To develop novel methods to optimally solve the task scheduling problem onto a

2

1.3 Task scheduling model

Figure 1.1: Tasks scheduled onto two processors

homogeneous multi-processor system for small to medium sized task graphs. I.e. the
classic problem of scheduling task graphs on parallel systems with communication
delay, which is P |prec, cij|Cmax in the α|β|γ notation [18], [51]. This will make
the efficient parallelisation of more applications viable, hence allowing performance
growth that can satisfy the future needs of engineering and science.

1.3 Task scheduling model

Formally, the tasks to be scheduled are represented by a directed acyclic graph
(DAG) defined by a 4-tuple G=(V,E,C, L) where V denotes the set of tasks and
E represents the set of edges. Each edge (i, j) ∈ E defines a precedence relation
between the tasks i, j ∈ V . A task cannot be executed unless all of its predecessors
(parents) have completed their execution and all relevant data is available. The set
C = {cij : (i, j) ∈ E} denotes the set of edge communication times. If tasks i and
j are executed on different processors h, k ∈ P, h 6= k, they incur a communication
time penalty cij. If both tasks are scheduled to the same processor the commu-
nication time is zero. For a graph with |V | = n tasks, the set L = {L1 . . . , Ln}
represents the task computation times (execution time length). Let δ−(j) be the set
of precedents of task j, that is δ−(j) = {i ∈ V |(i, j) ∈ E, j ∈ V }. The variables ti
and pi are the main variables that describe a schedule for the problem to be solved.
The start time of task i is ti and the processor on which task i executes is pi. The
objective of this task scheduling problem is to allocate and schedule the tasks onto
the processors such that the overall completion time W (makespan) is minimised
[11], [40].

When the communication links between homogeneous processors are non-identical,

3

Chapter 1 Introduction

the communication delay is modeled differently. If tasks i and j are executed on
different processors h, k ∈ P, h 6= k, they incur a communication cost penalty γhkij
dependent on the distance dhk between the processors and on the amount of ex-
changed data cij between tasks (γhkij = Γcijdhk, where Γ is a known constant). For
a fully connected processor network, γhkij is equivalent to γij since the distance dhk
is unity. i.e. γij = Γcij.

1.4 Methodology

The proposal is to investigate novel search methods for optimal task scheduling that
incorporate new problem specific knowledge. This is significant because generalised
solution methodologies (as seen later in the thesis) may not be the best approach to
solve the problem. Recent success in other NP-hard optimisation problems shows,
e.g. Knapsack [38] or Traveling Salesman Problem [4], that an efficient algorithm
for small to medium sized problems might be obtained by pruning the search space
with problem specific knowledge.

The two approaches employed are 1) formulating the scheduling problem as a Mixed
Integer Linear Program (MILP) 2) Use memory limited derivatives of the popular
artificial intelligence A* algorithm.

1.5 Introduction to MILP

Integer Linear Programming are those linear programming problems which have the
additional constraint that some or all the variables have to be integers. In contrast
to linear programming, which can be solved efficiently in the worst case, integer
programming problems are in many practical situations NP-hard. 0-1 integer pro-
gramming or Binary Integer Programming (BIP) is the special case of integer pro-
gramming where variables are required to be 0 or 1 (rather than arbitrary integers).
This problem is also classified as NP-hard, and in fact the decision version was one
of Karp’s 21 NP-complete problems [25]. If only some of the unknown variables are
required to be integers, then the problem is called a Mixed Integer Linear Program
problem. These are generally also NP-hard. Many practical problems in operations
research can be expressed as linear programming problems. Certain special cases
of linear programming, such as network flow problems and multicommodity flow
problems are considered important enough to have generated much research on spe-

4

1.6 Related Work using Mixed Integer Linear Programming

cialised algorithms for their solution. Some of the popular problems solved using
linear programming are the diet problem, portfolio optimisation, crew scheduling,
machine and job scheduling, manufacturing and transportation, vehicle routing, call
routing, capacity design in networks, traveling salesman problem and VLSI chip
board manufacturing [34].

For the task scheduling problem, the MILP formulations can be broadly classified as
discrete time and continuous time approaches [10], [16]. The discrete time approach
introduces a new variable for each instant of time on each processor [1]. The num-
ber of time variables introduced in this approach explode when diverse execution
times are present in the formulation. The continuous time approach, on the other
hand, can handle diverse execution times, but its efficiency depends on how well the
constraints and variables are formulated. The continuous time approach is further
subdivided into three lines - sequencing, slots and overlaps. In sequencing, the for-
mulation involves invoking new variables to determine if one task is executed after
another task on the same processor [8], [5]. The number of constraints required to
enforce the schedule requirements on each processor are known to grow quickly. In
slots, each task is assigned to a space-time vacancy on a processor. The slot defines
an order of tasks running on a processor [13], [32]. The start time and end time of
tasks entering the slot are not fixed a priori. Since the exact number of slots required
on each processor is not known a priori, a conservative number of slots (the number
of tasks) has to be reserved and it suffers from a variable blow-up if the number of
tasks to be scheduled is large. In overlap, variables are defined to prevent overlap
of tasks scheduled on the same processor. Unlike other approaches, the number of
variables and constraints in the formulation scales well as the number of tasks to be
scheduled increases [10], [11].

1.6 Related Work using Mixed Integer Linear
Programming

The classic formulation (as it is called in [11]) for a homogeneous multiprocessor
system (with non-identical communication links) employs a set of binary variables
which control both assignment of tasks to processors and positions in the order of
tasks executed by the given processor and a set of continuous variables indicating
the start time for each task. Let

5

Chapter 1 Introduction

∀i ∈ V, k ∈ P, s ∈ tasknumk; ysik =

1 task i is the sth task on processor k

0 otherwise

and ti ∈ R be the starting time of task i for all i∈V . Note that s ∈ tasknumk gives
the index of the task run on the kth processor.

The Mixed Integer Non-Linear Program (MINLP) for the scheduling problem is as
shown

min Z (A01)

∀i ∈ V ti + Li − Z ≤ 0 (A02)

∀i ∈ V
p∑

k=1

n∑
s=1
ysik = 1 (A03)

∀k ∈ P
n∑
i=1

y1
ik ≤ 1 (A04)

∀k ∈ P, s ∈ V \{1}
n∑
i=1

ysik ≤
n∑
i=1

ys−1
ik (A05)

∀j ∈ V, i ∈ δ−(j) tj ≥ ti + Li +
p∑

h=1

n∑
s=1

p∑
k=1

n∑
r=1

g
hk
ij y

s
ihy

r
jk (A06)

∀k ∈ P, s ∈ V \{n}, i, j ∈ V tj ≥ ti + Li −M(2− (ysik +
n∑

r=s+1
yrjk)) (A07)

∀i, s ∈ V, k ∈ P ysik ∈ 0, 1 (A08)

∀i ∈ V ti ≥ 0 (A09)

A03 ensures that each task is assigned exactly to one processor. A04 - A05 state that
each processor cannot be simultaneously used by more than one task. A04 means
that at most one task will be on the first one at k , while A05 ensures that if some
task is the sth one (s ≥2) scheduled to the processor k then there must be another
task assigned as (s−1)th to the same processor. A06 express precedence constraints
together with communication time required for tasks assigned to different processors.
A07 define the sequence of the starting times for the set of tasks assigned to the
same processor. They express the fact that task j must start at least Li time units
after the beginning of task i whenever j is executed after i on the same processor k;
the M parameter (set to a large positive integer constant) must be large enough so

6

1.6 Related Work using Mixed Integer Linear Programming

that A07 is active only if i and j are executed on the same processor k and r > s.

The mathematical formulation of the Multi-processor Scheduling Problem with
Communication Delays (MSPCD) given by A02 - A09 contains linear terms in the
continuous t variables and linear and bi-linear terms in the binary y variables. It
therefore belongs to the class of mixed integer bi-linear programs. It is possible to
linearise this model by introducing a new set of variables ζsrijhk ∈ [0,1] which replaces
the bi-linear terms ysih yrjk in A06.

Figure 1.2: A fork graph scheduled onto two processors

An example fork graph with 4 tasks (task 0, task 1, task 2 and task 3) and its
optimal schedule on 2 processors is shown in Figure 1.2. The optimal schedule
length is Z = 168. The Boolean variables σ01, σ02 and σ03 are set to 1 to indicate
the precedence constraints. From the optimal schedule, the start times are seen to
be t0 = 0, t1 = 62, t3 = 115 and t2 = 62 + 6 = 68 because g01

02 = 6. Also, L0 = 62,
L1 = 53, L2 = 53 and L3 = 53. From the optimal schedule, it is also seen that y1

00,
y2

10, y3
30 and y1

21 are set to 1.

1.6.1 Linearisation of the classic formula

The above classic formulation has all but linear constraints in A06. The work in
[11] linearises A06 by the introduction of a new set of continuous variables ζsrijhk∈
[0,1] to replace the bi-linear term ysih yrjk in A06.

7

Chapter 1 Introduction

The linearisation variable ζsrijhk satisfies the constraints

ysih ≥ ζsrijhk (A10)

yrjk ≥ ζsrijhk (A11)

ysih + yrjk − 1 ≤ ζsrijhk (A12)

∀i,j,s,r ∈ V , ∀h, k ∈ P , which guarantees that ζsrijhk= ysih y
r
jk. This approach is

called the usual linearisation.

The number of variables and constraints in the linearised model is O(|V |4|P |2).
Since the constraint size is due to A10 - A12, a compact linearisation approach is
used.

Compact Linearisation of the Classic Formula: The idea is to reduce the
number of constraints by elimination A10 to A12. This is done by multiplying each
assignment constraint in A03 by yrjk; the resulting bi-linear terms are successively
linearised by substituting with the appropriate ζ variable: giving us a relationship
between ζ and y variables. The compact linearisation also assumes ζsrijhk = ζrsjikh by
commutativity of the product. Thus, the compact linearisation for the scheduling
problem with communication delays is as follows:

∀i, j, r ∈ V, k ∈ P
p∑

h=1

n∑
s=1
ζsrijhk = yrjk (A13)

∀i, j, s, r ∈ V, ∀h, k ∈ P ζsrijhk = ζrsjikh (A14)

Although, there are still O(|V 4||P 2|) constraints in A14, these can be used to elim-
inate half of the linearisation variables and deleted from the formula. Hence, there
are only O(|V 3||P |) in the compact linearisation (see A13).

1.6.1.1 Packing Formulation

The idea on which the model is based is to liken task i to a rectangle of length Li and
height 1, and to pack all the rectangles representing the tasks into a larger rectangle
of height |P | and length W , where W is the total makespan to be minimised [11],
[19].

For each task i ∈ V let ti ∈ R be the start execution time and pi ∈ N be the ID
of the processor where task i is to be executed. Let W be the total makespan. Let

8

1.6 Related Work using Mixed Integer Linear Programming

xik be 1 if task i is assigned to processor k, and zero otherwise. In order to enforce
non-overlapping constraints, define two sets of binary variables:

∀i, j∈ V σij =

1 task i finishes before task j starts

0 otherwise

∀i, j∈ V εij =

1 the processor index of task i is strictly less than that of task j

0 otherwise

min W (A15)

∀i ∈ V ti + Li ≤ W (A16)

∀i 6= j ∈ V tj − ti − Li − (σij − 1)Wmax ≥ 0 (A17)

∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P | ≥ 0 (A18)

∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 (A19)

∀i 6= j ∈ V σij + σji ≤ 1 (A20)

∀i 6= j ∈ V εij + εji ≤ 1 (A21)

∀j ∈ V : iεδ−(j) σij = 1 (A22)

∀j ∈ V : iεδ−(j) ti + Li +
∑
h,k∈P

γhkij xihxjk ≤ tj (A23)

∀i ∈ V
∑
k∈P

kxik = pi (A24)

∀i ∈ V
∑
k∈P

xik = 1 (A25)

W ≥ 0 (A26)

∀i ∈ V ti ≥ 0 (A27)

∀i ∈ V pi ∈ {1, . . . , |P |} (A28)

∀i ∈ V, k ∈ P xik ∈ {0, 1} (A29)

∀i, j ∈ V σij, εij ∈ {0, 1} (A30)

where Wmax is an upper bound on the makespan W , e.g.

Wmax =
∑
i∈V

Li +
∑
i,j∈V

cij (A31)

9

Chapter 1 Introduction

The makespan is minimised in A15 and A16, the time order on the tasks in terms
of the σ variables in A17, similarly the CPU ID order on the tasks in terms of
the ε variables in A18. By A19, the rectangles must have at least one relative
positioning on the plane. By A20 a task cannot both be before and after another
task; similarly, by A21 a task cannot be placed both on a higher and lower CPU ID
than another task. A22 enforce the task precedents; A23 model the communication
delays. A24 link the assignment variable x with the CPU ID variables p and A25
are the assignment constraints.

A15 - A30 is also a bi-linear MINLP, where the bi-linearities arise because of the
communication delay constraints. This formulation has variables only in i, j, h and
k where as the classic formulation and its linearisation had variables in i, j, h, k, s

and r. It appears clear that the packing formulation is smaller than the classic one.

Linearisation of the packing formula: A15 - A30 are linearised by introducing
variables 0≤z ≤1 as follows:

∀j ∈ V : i ∈ δ−(j), h, k ∈ P (zhkij = xih.xjk)

Integrality on the linearisation variable z follows from the usual linearisation
constraints

∀j ∈ V, i ∈ δ−(j), h, k ∈ P (xih ≥ zhkij ∧ xjk ≥ zhkij ∧ xih + xjk − 1 ≤ zhkij)
(A32)

The above linearisation constraints are equivalent to the following compact lin-
earisation:

∀i 6= j ∈ V, k ∈ P
∑
hεP

zhkij = xjk (A33)

∀i 6= j ∈ V, h, k ∈ P zhkij = zkhji (A34)

Although the set of compact linearisation constraints A33 - A34 are smaller than
the set of usual linearisation constraints in A32, the difference is not as dramatic as
the classic formulation O(|V |2|P |) against O(|V |2||P |2).

The work in Chapters 2 to 4 use the PACKING formulation as a basis for proposing

10

1.7 Introduction to A*

and deploying faster ILP formulations to speedup the solution time for the optimal
task scheduling problem.

1.7 Introduction to A*

For many difficult problems, algorithms require an exponential amount of time or
memory or both. Brute force searches are prohibitively slow and the runtime of
the algorithm is only fast enough for very small instances of the problem that may
not be of sufficient for practical use. The result is a search that is too slow or
never completes. The solution, for many problems, is to use pruning techniques
to eliminate choices that are impossible to reach the goal state (called pruning the
search tree). Pruning techniques may also supply the program with a best guess for
the path on which the solution lies. For many problems, it is possible to begin the
search with some form of a guess (heuristic) and then refine the guess incrementally
until no more refinements can be made and leads to the goal (optimal) state much
faster than without the guesses. It is important to note that the nature of the
guesses are referred to as heuristics. The algorithm itself is not a heuristic since it
finds an optimal solution (subject to its memory constraints).

The basic search strategy will be based on A*, a best-first search technique [33], [14],
[42]. A* is guided by a problem specific cost function f(s) for each solution state
s, which underestimates the final cost of any solution based on s. In each step the
state with the best f(s) is expanded (hence best-first), with the aim that a goal state
(i.e. a complete optimal schedule) is found without considering all other states with
worse cost values. In general, the better the cost function, the less states have to be
considered. Crucial for a successful search method is the investigation of scheduling
theory that gives precise cost functions and allows to reduce the search space, as
the limited success of the approach in [28] demonstrated. For example, proving that
certain task to processor assignments can never lead to optimal solutions significantly
reduces the space that has to be searched. This has not been fully investigated before
due to the focus on heuristic algorithms that gives a solution close to the optimal
solution (but whose quality of solution cannot be guaranteed). However, our results
demonstrate that this is very feasible.

Depth first - Iterative Deepening A* (IDA*) [26] is a memory limited version of
A* which tries to reduce the number of iterations in iterative deepening by setting

11

Chapter 1 Introduction

an initial threshold that is below the cost of the goal node and then successively
increases this threshold. It sets the initial threshold to a cost that is below the cost of
the goal node and it is then successively increased. When the goal node is found, the
IDA* algorithm terminates. The IDA* algorithm for any given iteration regenerates
all the states for the previous iteration along with the new states generated for the
present iteration. The main motivation in using IDA* is its very limited memory
requirement. This gives IDA* an extremely small memory footprint when compared
to A*. On the downside, IDA* generates more states than A* due to iterative
deepening. Depth first - Branch and Bound A* (BBA*) is another memory bounded
algorithm that searches the state space in depth first order. The initial state (feasible
solution) is an overestimate on the goal state (optimal solution) [39], [57]. As such it
approaches the optimal solution from above, successively improving the best found
solution. Both IDA* and BBA* are employed for the proposed memory limited task
scheduling algorithms in Chapter 5.

1.8 Related Work using A*

A* is a best-first search algorithm that searches through a graph, visiting one node
at a time. It does so by looking in each step at the most promising node, according
to a cost function f , hence the best-first search. The nodes adjacent to the currently
best one are added to the candidate nodes for the next step.

Scheduling the task graph G on processors P is the assignment of a processor
allocation pi and a start time ts(i) = ti to each i ∈ V . The task’s finish time is
given by tf (i) = ts(i) +Li, i.e. the task’s start time plus its computation costs. Let
tf(p) = maxi∈V:pi=p{tf (i)} be the processor finish time of p ∈ P and let sl(S) =
maxi∈V {tf (i)} be the schedule length (or makespan) of schedule S, assuming
mini∈V {ts(i)} = 0. A fully connected network of homogeneous multi-processor is
considered [49].

For such a schedule to be feasible, the following two conditions must be fulfilled for
all tasks in G. The Processor Constraint in A35 enforces that only one task is
executed by a processor at any point in time, which means for any two tasks i,j ∈ V

i = j ⇒

 tf (i) ≤ ts(j)
or tf (j) ≤ ts(i)

(A35)

12

1.8 Related Work using A*

A task cannot be executed unless all of its predecessors (parents) have completed
their execution and all relevant data is available. The Precedence Constraint
given in A36 enforces that for every edge (i, j) ∈ E, i, j ∈ V , the destination task j
can only start after the communication associated with (i, j) has arrived at pj.

ts(j) ≥ tf (i) +

 0 if pi = pj

γij otherwise
(A36)

For task j ∈ V , its start time on processor p is constrained by the Data Ready
Time (DRT) and is represented as tdr(j, p). The DRT for task j is the time when
all communications from task j’s predecessors have arrived at p as shown in A37.

tdr(j, p) = max
i∈parents(j)

tf (i) +

0 if pi = p

γij otherwise

 (A37)

If j ∈ V is a source task, then tdr(j, p) = 0. The task may however not be able to
immediately start its execution since the processor assigned may be occupied with
the execution of another task. The Earliest Start Time (EST) of task i ∈ V on
processor p is given by (A38).

tEST (i, p) = max {tf(p), tdr(i, p)} (A38)

The computation bottom level of a task i ∈ V is the length of the longest path
starting in i, denoted by cbli. Recursively it is defined in (A39) as

cbli = Li + max
j∈children(i)

{cblj} (A39)

Given the start time of any task i, the schedule length sl is bounded by ts(i) + cbli.
In other words, after the task i has started execution, it still takes (at least) the
time to sequentially execute all the tasks on the longest path starting in i.

Let the computation top level of a task j ∈ V be defined as the length of the
longest path (sum of computational task weights) starting in j, denoted by ctlj to
the longest length of its parent, excluding its own weight. Recursively it is defined
as

13

Chapter 1 Introduction

ctlj = max
i∈parent(j)

{ctli + Li} (A40)

Figure 1.3: A random graph scheduled onto two processors

In Figure 1.2 we note that task 2 runs on P1. Since there are no other tasks running
on P1, tf (P1) = 0. The data ready time of task 2 on P1, tdr(2, P1) is the sum of
processing time of task 1 on P0 and the communication cost between task 0 and
task 2. Hence, tdr(2, P1) = 62 + 6 =68. Then by (A38) , Earliest Start Time of
task 2 on P1, denoted as EST (2, P1) = max(0, 68) = 68. From Figure 1.3, it is seen
that tasks 1 and 3 have precedence constraints. Then, by the computational bottom
length definition in (A39), cbl0 = 13 + 20 + 7 = 40. Since, task 2 has no successors,
cbl2 = 20. I.e. its own computation time on P1.

1.8.1 A* Scheduling Algorithm

When A* is used for combinatorial optimisation, as in our case, the search space
has the form of a tree. Each node (usually called state) of the tree corresponds to

14

1.8 Related Work using A*

a partial solution of the problem to be optimised, which becomes more complete
the deeper we get in the tree. The root of the tree is the initial, empty state sinit.
While a depth-first search or a breadth-first search only looks at a limited number
of possible next states in each step, A* considers all currently unexplored states and
chooses the state s with the best cost value f(s). To achieve that it uses a priority
queue, called OPEN, into which all discovered but unexplored states are inserted,
ordered according to their cost f . Taking the best state s from OPEN in each step,
s is expanded creating new states. This is done by extending the partial solution
represented by state s, making it more complete. For each of these newly created
states the cost is computed and they are inserted into the OPEN queue. When a state
has been fully expanded, it is removed from OPEN and placed into the CLOSED list.
The purpose of CLOSED is to be able to detect duplicates, i.e. identical states, before
states are inserted into OPEN. The algorithm continues with this process until the
state with the lowest cost value is also a goal state, i.e. a complete solution. This
state is the optimal solution, if certain requirements on the cost function f hold for
all states (see Section 1.8.1.1). Algorithm 1.1 gives the pseudo-code for the basic A*
algorithm [49].

Algorithm 1.1 Pseudo-code for A* algorithm
Input: OPEN, a priority queue, ordered by ascending f -value of elements
Output: Optimal solution s
Method: Algorithm_Astar()
01: OPEN← sinit
02: While OPEN 6= φ do
03: s← headOf(OPEN)
04: If s complete state then
05: return optimal solution s
06: Expand s to new states NEW
07: For all si ∈ NEW do
08: Calculate f(si)
09: Insert si into OPEN, unless duplicate in CLOSED or OPEN
10: CLOSED←CLOSED + s; OPEN ← OPEN - s

To apply this A* algorithm to solve our scheduling problem, we formulate the fol-
lowing components:

15

Chapter 1 Introduction

• State s: A partial schedule where some tasks have been allocated and sched-
uled on the processors.

• Initial state sinit: The initial state represents an empty schedule, where no
task has been scheduled yet.

• Expansion operator: Based on state s, a new state is created by scheduling
one more task, hence growing the partial solution represented by s. A task
that can be scheduled must be free, which means it must be either independent
or all its predecessors have already been scheduled in the partial schedule of
s. The set of all those tasks are denoted as free(s). The number of new
states expanded from s is then the product of all free tasks times the number
of processors, |NEW| = |free(s)| · |P |. Each task of free(s) is scheduled on
every processor in P as early as possible after all other tasks on the same
processor according to A38.

• Cost function f : The cost function f(s) is an underestimate of the length of
a complete schedule based on the partial schedule represented by s.

1.8.1.1 f function

According to the A* principle [50], the f(s) function is an underestimate of the exact
minimum cost f ∗(s) of any goal state that is based on the state s. Applied to our
scheduling problem, f ∗(s) is the minimum schedule length of all possible schedules
that can be constructed using the partial schedule represented by s. If the function
f(s) fulfils f(s) ≤ f ∗(s) for every state s, it is called admissible. With an admissible
f(s), A* is guaranteed to find an optimal solution. The number of examined states
depends on how accurate f(s) is, i.e. how close it is to f ∗(s). In general, the more
accurate, the fewer states have to be examined and the faster is the algorithm.

1.9 Thesis Framework

The rest of the thesis is organised as follows. Chapter 2 proposes two Integer Linear
Programming formulations for the Multiprocessor Scheduling Problem with Com-
munication Delays: ILP - Revised Boolean Logic and ILP - Transitivity Clause to
speedup the time to find an optimal schedule. ILP - Revised Boolean Logic is de-
signed for a fast solution when the number of processors the tasks are scheduled

16

1.10 Contributions

on is small and ILP - Transitivity Clause is designed to be efficient when tasks are
scheduled on a larger number of processors. Each formulation uses a different lin-
earisation of the Integer Bilinear Programming formulation and is tested on CPLEX
using known benchmark graphs for task scheduling.

Chapter 3 proposes an optimal Integer Linear Programming formulation for the
Multiprocessor Scheduling Problem with Communication Delays (MSPCD) using a
variation to the definition of the task overlap variable and tests if this may help
to speedup the formulation. The formulation uses an effective method to linearise
the bi-linear forms arising out of communication delays and introduces new overlap
constraints to ensure that no two tasks running on the same processor overlap in
time and space. The proposed formulation is compared with the previously discussed
formulation ILP - Transitivity Clause.

Chapter 4 proposes new MILP formulations for the task scheduling problem with
communication delay. The main goal is to learn from and improve upon the formu-
lations proposed in Chapter 2. The three proposed ILP formulations in this chapter
are : SHD-BASIC, SHD-RELAXED and SHD-REDUCED. Each part of the for-
mulation is motivated and discussed in detail, explaining its role and importance.
A major feature of this formulation is the reduction of the number of variables
and constraints by the effective linearisation of the bi-linear equation arising out of
communication delays. Further, all variable indices in the MILP formulation are
independent of the number of processors. As a result, the constraint complexity of
the proposed MILP formulation was reduced to O(|V |2), which is significantly less
than previous formulations as analysed in detail.

Chapter 5 proposes two memory limited algorithms, the depth first Iterative Deepen-
ing A* (IDA*) and the Branch and Bound A* (BBA*) algorithm. The applicability
of known pruning techniques for the A* scheduling algorithm is investigated and new
pruning techniques for the memory limited algorithms are proposed. The IDA* and
BBA* algorithms are combined to give solutions with a guaranteed quality when
finding an optimal solution is not essential.

1.10 Contributions

The main contributions of this thesis are:

17

Chapter 1 Introduction

• Chapter 2: Proposed two new formulations: ILP - RBL and ILP - TC. The
number of constraints formed by ILP-RBL is O(|E||P |2), where E is the num-
ber of edges in the task graph, V the number of vertices and P the number of
processors. When scheduled over a fewer number of processors, the effect of
|P 2| towards the constraint complexity diminishes. The number of constraints
formed by ILP - TC is O(|V |3). The constraint complexity is independent of
the number of processors and is thus suitable where there is a larger avail-
ability of processors for scheduling. Experimental results validate that their
performance is consistent with their constraint complexity and runs faster than
known ILP formulations that solve the task scheduling problem.

• Chapter 3: Proposed the formulation ILP - DELTA. The definition of the task
overlap variable is modified to test its impact on its runtime. By reformulat-
ing the ILP to accommodate the new overlap variable, experimental results
indicates that ILP-DELTA has a performance similar to ILP-TC but is faster
than other previously known ILP formulations.

• Chapter 4: Proposed the ILP formulations SHD-BASIC, SHD-RELAXED
and SHD-REDUCED. For all the three proposed formulations, all variable
indices in the MILP formulation are independent of the number of processors.
As a result, the constraint complexity of the proposed MILP formulation is
reduced to O(|V |2). The experimental results indicate a significant speedup
over previously known ILP formulations.

• Chapter 5: Proposed memory limited task scheduling algorithms to overcome
the memory shortcomings of the A* scheduling algorithm. Additional pruning
techniques are proposed to further speedup the algorithm(s). Experimental
results indicates that the memory limited algorithms are able to return an
optimal solutions for problem instances where A* runs out of memory.

18

2 ILP formulations for Task
Scheduling Solutions for MSPCD

This chapter is a precursor to the work in Chapter 4. It is common to use heuris-
tics to find solutions for task scheduling problem instances. However, there is no
guarantee that the heuristic solution is close to the optimal solution.

The contributions of the work in this chapter is to provide

• Optimal solutions for small and medium sized instances of the task scheduling
problem.

• Propose two optimal scheduling formulations using Integer Linear Program-
ming (ILP) for the Multiprocessor Scheduling Problem with Communication
Delays: ILP-RevisedBoolean Logic (ILP-RBL) and ILP-Transitivity Clause
(ILP-TC).

• The number of constraints formed by ILP-RBL is O(|E||P |2), where E is
the number of edges in the task graph, V the number of vertices and P the
number of processors. When scheduled over a fewer number of processors, the
effect of |P 2| towards the constraint complexity diminishes. The number of
constraints formed by ILP - TC is O(|V |3). The constraint complexity is made
independent of the number of processors and is thus suitable where there is a
larger availability of processors for scheduling. Experimental results validate
that their performance is consistent with their constraint complexity and runs
faster than known ILP formulations that solve the task scheduling problem.

• Simplified linearisation of the bi-linear forms in comparison to previously
known methods.

Functionality

19

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

• ILP-RBL is designed to work efficiently when the number of processors avail-
able to be scheduled on are few.

• ILP-TC is efficient when the number of processors are available to be scheduled
on are many.

Methodology

• Each formulation uses a different linearisation of the Integer Bilinear Program-
ming formulation and is tested on CPLEX using known benchmark graphs for
task scheduling.

Outcome

• Faster than previous ILP formulations used to solve this scheduling problem.

• Inline with the functionality expected.

Publication

Sarad Venugopalan and Oliver Sinnen. Optimal linear programming solutions for
multiprocessor scheduling with communication delays. 12th International Confer-
ence, ICA3PP 2012. In Yang Xiang, Ivan Stojmenovic, BernadyO. Apduhan, Guo-
jun Wang, Koji Nakano, and Albert Zomaya, editors, Algorithms and Architectures
for Parallel Processing, volume 7439 of Lecture Notes in Computer Science, pages
129–138. Springer Berlin Heidelberg, 2012.

2.1 Abstract

Task parallelism does not automatically scale with the use of parallel processors.
Optimised scheduling of tasks is necessary to maximise the utilisation of each avail-
able processor. It is common to use heuristics to find solutions for task schedul-
ing problem instances. However, there is no guarantee that the heuristic solu-
tion is close to the optimal solution. The outcome of this work is to provide
optimal solutions for small and medium sized instances of the task scheduling
problem. Two optimal scheduling formulations using Integer Linear Programming
(ILP) are proposed for the Multiprocessor Scheduling Problem with Communication
Delays: ILP-RevisedBoolean Logic and ILP-TransitivityClause. ILP-
RevisedBooleanLogic is designed to work efficiently when the number of pro-
cessors available to be scheduled on is small. ILP-TransitivityClause is efficient

20

2.2 Introduction

when a larger number of processors are available to be scheduled on. Each formula-
tion uses a different linearisation of the Integer Bilinear Programming formulation
and is tested on CPLEX using known benchmark graphs for task scheduling.

2.2 Introduction

For the performance and efficiency of a parallel program, the scheduling of its
(sub)tasks is crucial. Unfortunately, scheduling is a fundamental hard problem (an
NP-hard optimisation problem[44]), as the time needed to solve it optimally grows
exponentially with the number of tasks. Existing scheduling algorithms are there-
fore heuristics that try to produce good rather than optimal schedules, e.g.[31], [37],
[21], [41], [48], [55], [58], [7], [23]. However, having optimal schedules can make a
fundamental difference, e.g. for time critical systems or to enable the precise evalu-
ation of scheduling heuristics. Optimal scheduling is central in minimising the task
schedule length. An efficient parallelisation permits scheduling of a large number of
tasks onto a large number of dedicated parallel processors to find solutions to generic
and specialised problems. It is hence of enormous practical significance to be able
to schedule small and medium sized task graphs optimally on parallel processors.

Many heuristics have been proposed for scheduling. While heuristics often provide
good results, there is no guarantee that the solutions are close to optimal, especially
for task graphs with high communication costs [47], [46]. Given the NP-hardness,
finding an optimal solution requires an exhaustive search of the entire solution space.
For scheduling, this solution space is spawned by all possible processor assignments
combined with all possible task orderings. Clearly this search space grows exponen-
tially with the number of tasks, thus it becomes impractical already for very small
task graphs.

The objective is to develop a method that solves the scheduling problem optimally
for small to medium sized problem instances using Integer Linear Programming.
This will make the efficient parallelisation of more applications viable. To achieve
this, two formulations for the Multiprocessor Scheduling Problem with Communi-
cation Delays are proposed: ILP-RevisedBooleanLogic (ILP-RBL) and ILP-
TransitivityClause (ILP-TC).

The rest of the chapter is organised as follows. Section 2.3 describes the task schedul-
ing model. Section 2.4 discusses the related work in solving the task scheduling

21

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

problem optimally. Section 2.5 details the proposed formulations and compares their
complexities in terms of number of constraints generated, with previous approaches.
Section 2.6 compares the computational results of the proposed formulation with the
packing formulation. Section 2.7 concludes the chapter.

2.3 Task scheduling model

The tasks that are to be scheduled may or may not be dependent on each other
and are represented as an acyclic directed graph. The nodes in the graph represent
the tasks and the edges between the nodes, the communications. The node cost is
the time required for the task to complete and the edge cost is the communication
time between two tasks on different processors. We assume a connected network
of processors with identical communication links. Further, there is no multitasking
or parallelism within a task. Each processor may execute several tasks but no
concurrent execution of tasks is permitted. The tasks are to be assigned in such a
way as to minimise the makespan [11], [40]. This model fits the definition of the
Multiprocessor Scheduling Problem with Communication Delays (MSPCD) defined
as follows: tasks (or jobs) have to be executed on several processors; we have to
find where and when each task will be executed, such that the total completion
time is minimal. The duration of each task is known as well as precedence relations
among tasks, i.e., which tasks should be completed before some others can begin.
In addition, if dependent tasks are executed on different processors, data transfer
times (or communication delays) that are given in advance are also considered.

More formally, the tasks to be scheduled are represented by a directed acyclic graph
(DAG) defined by a 4-tuple G = (V , E, C, L) where i ∈ V denotes the set of
tasks; (i, j) ∈ E represents the set of communications; C = {cij : i, j ∈ V } denotes
the set of edge communication costs; and L = {L1, . . . , Ln} represents the
set of task computation times (execution times length). The communication cost
cij ∈ C denotes the amount of data transferred between tasks i and j if they are
executed on different processors. If both tasks are scheduled to the same processor
the communication cost equals zero. The set E defines precedence relation between
tasks. A task cannot be executed unless all of its predecessors have completed their
execution and all relevant data is available. If tasks i and j are executed on different
processors h, k ∈ P, h 6= k, they incur a communication cost penalty γhkij dependent

22

2.4 Related work

on the distance dhk between the processors and on the amount of exchanged data
cij between tasks (γhkij = Γcijdhk, where Γ is a known constant). Let δ−(j) be
the set of precedents of task j, that is δ−(j) = {i ∈ V |(i, j) ∈ E}. For a fully
connected processor network γhkij is equivalent to γij since the distance dhk is unity.
i.e. γij = Γcij.

2.4 Related work

Very few attempts have been made to solve the MSPCD optimally. There are two
different approaches, one is based on an exhaustive search of the solution space
and the other on an Integer Linear Programming formulation. For many problems,
heuristics provide a best effort solution of the scheduling problem. It is possible to
begin the search with a best guess and then refine it incrementally until it reaches
the solution state. The A* algorithm is one such search algorithm used to solve the
MSPCD [28], [45]. A* is a best-first search technique [14], [42] and also a popular
Artificial Intelligence algorithm guided by a problem specific cost function f(s) for
each solution state s, which underestimates the final cost of any solution based on
s. The main drawback of A* is that it keeps all the nodes in memory and it usually
runs out of memory long before it runs out of time making it unusable for a medium
and large sized problem instances.

We propose an optimal scheduling alternative for the solution of the MSPCD that
makes use of Linear Programming [11]. It involves linearisation of the bilinear
forms resulting from communication delays. The work in [11] discusses a classic
formulation and a packing formulation of the MSPCD. Their results indicate that the
packing formulation is about 5000 times faster than the classic formulation. In this
chapter we propose two significantly improved Linear Programming formulations of
the MSPCD and compare them with the packing formulation in [11].

2.5 Proposed formulations

The performance of the ILP formulations in [11] suffer from the need to linearise
bilinear equations. Two formulations to solve the MSPCD are proposed here: ILP-
RBL and ILP-TC. ILP-RBL uses a new technique to linearise the bilinear forms of

23

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

the packing formulation in [11] resulting from communication delays by readjusting
the Boolean logic. ILP-TC reworks the linearisation of the bilinear forms in the
packing formulation using a transitivity clause in a manner that aids the elimination
of over defined linear equations in ILP-RBL. The runtime complexity of each ILP
formulation depends on the number of constraints generated and the number of
variables per constraint. The packing formulation and its linearisations in [11] is
briefly discussed and the proposed ILP formulations are compared with the packing
formulation in terms of constraints generated and number of variables per constraint.

2.5.1 ILP-RevisedBooleanLogic

For each task i ∈ V let ti ∈ R be the start execution time and pi ∈ N be the ID of
the processor on which task i is to be executed. Let W be the total makespan and
|P | the number of processors available. Let xik be 1 if task i is assigned to processor
k, and zero otherwise. In order to enforce non-overlapping constraints, define two
sets of binary variables as in [11]:

∀i, j ∈ V σij =

1 task i finishes before task j starts

0 otherwise

∀i, j ∈ V εij =

1 the processor index of task i is strictly less than task j

0 otherwise

24

2.5 Proposed formulations

min W (A01)

∀i ∈ V ti + Li ≤ W (A02)

∀i 6= j ∈ V tj − ti − Li − (σij − 1)Wmax ≥ 0 (A03)

∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P | ≥ 0 (A04)

∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 (A05)

∀i 6= j ∈ V σij + σji ≤ 1 (A06)

∀i 6= j ∈ V εij + εji ≤ 1 (A07)

∀j ∈ V : iεδ−(j) σij = 1 (A08)

∀j ∈ V : i ∈ δ−(j),∀h, k ∈ P ti + Li + γhkij (xih + xjk − 1) ≤ tj (A09)

∀j ∈ V : i ∈ δ−(j) ti + Li ≤ tj (A10)

∀i ∈ V
∑
k∈P

kxik = pi (A11)

∀i ∈ V
∑
k∈P

xik = 1 (A12)

W ≥ 0 (A13)

∀i ∈ V ti ≥ 0 (A14)

∀i ∈ V pi ∈ {1, . . . , |P |} (A15)

∀i ∈ V, k ∈ P xik ∈ {0, 1} (A16)

∀i, j ∈ V σij, εij ∈ {0, 1} (A17)

where Wmax is an upper bound on the makespan W .

Wmax =
∑
i∈V

Li +
∑
i,j∈V

cij (A18)

The formulation is a min-max problem which involves minimising the maximum
start execution times. This is achieved by minimising the makespan W and intro-
ducing A02. A03 defines the time order on the tasks in terms of the σ variables, i.e.

25

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

ensure ti + Li ≤ tj if σij defines an order. The CPU ID order on the tasks in terms
of the ε variables in defined in A04. If the εij variable is set, it implies pj > pi . By
A05, at least one or both of the following conditions must be true: task i must finish
before task j starts and the processor index of task i must be strictly less than that
of task j. By A06, a task cannot both be before and after another task; similarly,
by A07 a task cannot be placed both on a higher and lower CPU ID than another
task. A08 enforce the task precedences defined by the edges of the graph; A09 and
A10 model the communication delays between task i on processor h and task j on
processor k. Since xih and xjk are both binary variables and to simulate a Boolean
multiplication xih ·xjk, we use xih+xjk−1 in constraint A09. To compensate for the
subtraction by 1 in A09 for the case that xih and xjk both are 0, A10 is introduced,
which must always be true (for local as well as remote communication). It is also
clear from constraint A09 that the processor network need not be fully connected
and can take up any connection configuration. A11 link the assignment variable x
with the CPU ID variables p and A12 ensures that any given task runs only on one
processor.

The complexity of this ILP formulation, in terms of constraints and variables, is
dominated by A09. For the entire graph, A09 generates |P |(|P | − 1) inequalities
in terms of processor combinations for each edge of E and the number of variables
per constraint is O(1). Therefore the number of constraints formed by ILP-RBL is
O(|E||P |2). In the worst case there are |E| = |V |(|V | − 1)/2 edges, hence in terms
on number of nodes ILP-RBL’s complexity is O(|V |2|P |2). However, for task graphs
representing real applications, we usually have O(|E|) = O(|V |).

2.5.2 ILP-TransitivityClause

The focus of this ILP formulation is to eliminate the x variables from the formulation,
as the ILP is over defined in terms of variables. If we can reformulate A09 without x,
we can drop A11, A12 and A16. We replace the x variables in A09 with ε variables
that enforce partial ordering of the processor indices with the help of an additional
transitivity clause. A09 and A10 are replaced with A19 and A20. All other equations
are retained.

26

2.5 Proposed formulations

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji) ≤ tj (A19)

∀i 6= j 6= k ∈ V εij + εjk ≥ εik (A20)

For the entire graph, A19 produces |E| constraints and A20 produces |V |3 additional
constraints but are independent of the number of processors unlike in A09. The
number of variables in A19 is O(1). So the complexity of this linearisation is O(|V |3),
which can be better than O(|E||P |2) of the ILP-RBL formulation for graphs with
many edges, i.e. E is large, and relatively higher number of processors in comparison
with V .

2.5.3 Packing formulation

The packing formulation in [11] introduces a binary variable z to aid the linearisation
of the bilinear equation. A09 and A10 of ILP-RBL are replaced by A21. Depending
on the linearisation used either A22 or (A23-A24) is also used in the packing formu-
lation. All others from A01 to A18 are retained. A21 uses a linearisation variable
zhkij

∀j ∈ V : i ∈ δ−(j) ti + Li +
∑
h,k∈P

γhkij z
hk
ij ≤ tj (A21)

where ∀j ∈ V : i ∈ δ−(j), h, k ∈ P (zhkij = xihxjk).

The packing formulation uses two linearisation approaches. The first linearisation
uses A22

∀j ∈ V, i ∈ δ−(j), h, k ∈ P (xih ≥ zhkij ∧ xjk ≥ zhkij ∧ xih + xjk − 1 ≤ zhkij)
(A22)

27

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

The second linearisation uses A23 and A24

∀i 6= j ∈ V, k ∈ P
∑
h∈P

zhkij = xjk (A23)

∀i 6= j ∈ V, h, k ∈ P zhkij = zkhji (A24)

Both linearisation approaches require A21 to model communication between tasks
running on different processors. A21 produces |E| constraints and O(|P |2) variables
in terms of the processor combinations over zhkij . A22 produces |E||P |2 constraints
and O(1) variables per constraint. Hence, the complexity of the first linearisation
by A21 and A22 in terms of number of constraints is O(|E||P |2). A23 produces
O(|V |2|P |) constraints and O(|P |) variables per constraint. So, the complexity
of the second linearisation by A21 and A23 in terms of number of constraints is
O(|E| + |V |2|P |) = O(|V |2|P |). However, through the linearisation of A21, there
are always |V |2|P |2 z variables for both linearisations. Experimental results from
[11] indicate that the first linearisation is beneficial for sparse graphs and the second
linearisation is better for dense graphs. When the first linearisation is run over
sparse graphs, the |E| to |P |2 ratio decreases as the sparsity of the graph increases
making it faster.

Comparing the number of constraints complexity, ILP-RBL (O(|E||P |2)) has the
same complexity as the first linearisation. The constraint complexity comparison
between ILP-RBL and the second linearisation (O(|V |2|P |)) will depend on the
number of edges and processors. ILP-TC (O(|V |3)) will have a competitive number
of constraints if |P | is high. The major advantage of the two proposed formulations
is that we have only O(|V ||P | + |V |2) variables (xik and σij, εij) for ILP-RBL and
only O(|V |2) variables (σij, εij) for ILP-TC to assign a value to.

2.6 Computational results

In this section we compare the performance of the two new proposed ILP formula-
tions with both linearisations of the packing formulation in [11]. The result table

28

2.6 Computational results

for the packing formulation displays the best solution time amongst its two lineari-
sations and is compared with ILP-RBL or ILP-TC. The computations are carried
out using CPLEX 11.0.0 [2] on an Intel Core i3 processor 330M, 2.13 GHZ CPU and
2 GB RAM running with no parallel mode and on a single thread on Windows 7. 2
GB RAM was found to be a reasonable amount of physical memory for executing
the ILP’s used in this experiment. Extra RAM does not improve the speed of the
program execution, but delays CPLEX running out of memory with large problems.

2.6.1 Experimental setup

For comparability, all experiments are run for a fully connected processor network
with identical bandwidth capacity. The input graphs for this comparison are taken
from those proposed and used in [11, 12]. The graph files with a name starting
with ogra_ are suffixed with the number of tasks in that file followed by its edge
density in terms of a percentage of the maximum possible number of edges (i.e.
|V |(|V | − 1)). According to [11], they have a special graph structure that makes it
hard to find the task ordering which yields the optimal solution when the number
of mutually independent tasks are large. The graph file with a name starting with
t_ were generated randomly and are suffixed with the number of tasks in that file
followed by its edge density and the index used to distinguish graphs of the same
characteristics. The experiments are run on small to medium sized instances of the
graphs on 4 and 8 processors.

2.6.2 Result table

The computational results for the graphs are given in Table 2.1, Table 2.2 and
Table 2.3 over 4 processors and 8 processors. Not all problem instances were solved
with all ILP formulations due to the excessive runtimes of the experiments, but the
shown results are representative. The h:m:s notation is the standard Hours:Minutes:
Seconds taken by the ILP formulation to find the solution. If the formulation is un-
able to find the optimal solution within 24 hours, the program is terminated and
the gap (the difference between the lower bound and the best solution at that time
(SL*)) is recorded. If the optimal schedule length is found, its value is displayed in
the column corresponding to SL. Columns p and n record the number of processors
and the number of tasks in the graph, respectively.

29

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

Table 2.1: Solution Time Comparison of Packing with ILP-RBL

Graph p n SL Packing Gap ILP-RBL Gap
t30_60_1 4 30 467 7m:32s 0% 16s 0%

t40_10_1 4 40 233 10h:31m:37s 0% 24m:45s 0%

t40_25_1 4 40 270 4h:54m 0% 1m:37s 0%

Ogra50_60 4 50 24h 26.33% 24h 3.02%
SL*=826 SL*=612

Table 2.2: Solution Time Comparison of Packing with ILP-TC

Graph p n SL Packing Gap ILP-TC Gap
Ogra20_75 8 20 100 51m:28s 0% 2m:37s 0%

t20_90 8 20 242 2m:24s 0% 7s 0%

t30_30_2 8 30 262 24h 0.69% 4h:36m:18s 0%
SL*=287

t30_60_1 8 30 467 7h:22m:19s 0% 2h:6m:54s 0%

Table 2.1 compares the solution time for ILP-RevisedBooleanLogic (ILP-RBL)
with the best solution time for the Packing linearisations in [11] for a 4 processor
configuration over 30 to 50 nodes with varying densities. For these instances the
solution time was 20 times or upward faster than the best version of the packing
linearisations over a fully connected processor network. As can be observed, the
speedup was achieved across different densities (ranging from 10% to 60%). Hence,
the influence of the number of edges on ILP-RBL’s relative performance was not as
pronounced as could have been expected from the number of constraints complexity
O(|E||P |2). For the second linearisation of the packing formulation the constraint
complexity is O(|V |2|P |), so the ILP-RBL also benefited from the low number of
processors. Despite this it seems that the strong improvement by ILP-RBL is ex-
plained with the lower number of variables, namely O(|V ||P | + |V |2) variables for
ILP-RBL compared with O(|V |2|P |2) for the packing formulation.

30

2.6 Computational results

Table 2.2 compares the solution time of ILP-TransitivityClause (ILP-TC) with
the best solution time for the packing linearisations in [11]. The results in Table 2.2
are for ILP-TC on an 8 processor configuration over 20 to 30 nodes of varying
density. We see that the solution time was 3 to 20 times faster than the best
version of the packing formulation. The complexity of ILP-TC in terms of number
of constraints is O(|V |3). This is independent of the number of processors unlike the
packing formulation. Hence, ILP-TC benefits from the larger number of processors.
But again, a large performance advantage is likely to come from the even further
reduced number of variables, which is O(|V |2), thus does not depend on the number
of processors.

Table 2.3: Solution Time Comparison of ILP-RBL with ILP-TC

Graph p n SL ILP-RBL Gap ILP-TC Gap
t30_60_1 4 30 467 16s 0% 2h:39m:31s 0%

t40_25_1 4 40 270 1m:37s 0% 24h 34.72%

t30_90_1 8 30 562 4m:34s 0% 1m:19s 0%

t20_90 8 20 242 2m:23s 0% 7s 0%

Table 2.3 directly compares the two proposed ILP formulations. ILP-RBL, as ex-
pected, has a better solution time than ILP-TC when the number of processors is
low. This is clear from the task graphs with 30 and 40 nodes on 4 processors, which
have a better solution using ILP-RBL. ILP-TC was found to run faster on 20 and 30
nodes over 8 processors and high graph densities. This is in line with the expectation
based on the complexities. We have seen that the complexity of ILP-RBL in terms
of number of constraints is O(|E||P |2) and that of ILP-TC in terms of number of
constraints is O(|V |3). Clearly, a higher density graph increases the solution time of
ILP-RBL. A combination of the edge density and the number of processors serves
as an indicator to decide between ILP-RBL and ILP-TC.

31

Chapter 2 ILP formulations for Task Scheduling Solutions for MSPCD

2.7 Conclusions

This chapter proposed two Linear Programming formulations for the Multiprocessor
Scheduling Problem with Communication Delays. The improvement was in reducing
the number of variables and constraints by the effective linearisation of the bilinear
equation arising out of communication delays in the MSPCD model. The first of
the proposed formulation ILP-RBL reworked the logic for Boolean multiplication
and eliminated variables used to achieve the same result as in the packing formu-
lation. The second proposed formulation ILP-TC also eliminates variables used in
the packing formulation by enforcing the partial ordering of the processor indices
with the help of an additional transitivity clause. We performed an experimental
evaluation comparing the two proposed ILP formulations with the best previously
published results. The linearisation used in ILP-RBL resulted in the formulation
running faster over a small number of processors and the linearisation in ILP-TC
resulted in it running faster over a larger number of processors.

32

3 Bi-Linear Reductions for MSPCD
Using Integer Linear Programming

This chapter is a successor to the work in Chapter 2.

The contributions of the work in this chapter is to provide

• Optimal solutions for small and medium sized instances of the task scheduling
problem.

• Propose a modification of the formulation ILP-TC in Chapter 2, based on
a modified definition for the task overlap variables (that ensures tasks are
separated in time when they run on the same processor).

Functionality

• To test if the modified overlap variable will result in an improvement in the
runtime of the MILP.

Methodology

• The formulation is suitably modified to incorporate the new overlap variable
and to maintain the soundness of the ILP.

Outcome

• No significant performance improvements with respect to ILP-TC but faster
than the PACKING formulation.

Publication

Sarad Venugopalan and Oliver Sinnen. Bi-Linear Reductions for the Multiprocessor
Scheduling Problem With Communication Delays Using Integer Linear Program-
ming., 46th Annual Conference of the Operational Research Society of New Zealand,
December 2012, p 378, ISSN 0114-6602.

33

Chapter 3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming

3.1 Abstract

With computer processors running at speeds closer to their theoretical limit, the re-
cent focus has turned to the use of parallelism in hardware by the use of multi-core
processors for speedup. However, duplicating processors do not automatically trans-
late to faster task execution. The tasks are to be carefully assigned and scheduled so
that their total execution time on the multiple processors is minimal. We propose an
optimal Integer Linear Programming formulation for the Multiprocessor Scheduling
Problem with Communication Delays (MSPCD). The formulations use an effective
method to linearise the bi-linear forms arising out of communication delays and in-
troduce new overlap constraints to ensure that no two tasks running on the same
processor overlap in time and space. The proposed formulation is compared with
the previously discussed formulation ILP-TC.

3.2 Introduction

In the past, engineering and science have strongly benefited from an exponential
growth in processor performance. Yet, due to the reached physical limits of processor
technology the improvements are fading out [35] and manufacturers have moved to
multi(core)processors. With multiple processors, however, the performance growth
is not automatic [3] and can only be achieved when the processors are efficiently em-
ployed in parallel. Existing scheduling algorithms are therefore heuristics that try to
produce good rather than optimal schedules, e.g.[31], [37], [21], [41], [48], [55], [58],
[7], [23]. However, having optimal schedules can make a fundamental difference, e.g.
for time critical systems or to enable the precise evaluation of scheduling heuristics.
Given the NP-hardness of the processor scheduling problem [44], finding an optimal
solution requires an exhaustive search of the entire solution space. For scheduling,
this solution space is spawned by all possible processor assignments combined with
all possible task ordering. Clearly this search space grows exponentially with the
number of tasks, thus it becomes difficult already for very small task graphs. How-
ever, recent improvements in the Integer Linear Programming (ILP) formulation
for the Multiprocessor Scheduling Problem with Communication Delays (MSPCD)
[11], [52] allows larger instances of task graphs to be solved in a shorter time. The
contribution of this work is to model the ILP based on the task overlap variable
defined in [10] and compare it with the results in [11] and [52].

34

3.3 Task Scheduling Model

3.3 Task Scheduling Model

A fully connected network of homogeneous multiprocessors P = {1, . . . ,|P |} with
identical communication links is assumed. Each processor may execute several tasks
but each task has to be assigned to exactly one processor, in which it is entirely
executed without pre-emption. Further, no multitasking or parallelism is permitted
within a task. The tasks to be scheduled are represented by a directed acyclic
graph (DAG) defined by a 4-tuple G = (V , E, C, L) where i ∈ V denotes the set
of tasks and (i, j) ∈ E represents the set of edges. The set E defines precedence
relation between tasks. A task cannot be executed unless all of its predecessors
have completed their execution and all relevant data is available. The set C =
{γij : i, j ∈ V } denotes the set of edge communication time. If tasks i and j are
executed on different processors h, k ∈ P, h 6= k, they incur a communication time
penalty γij. If both tasks are scheduled to the same processor the communication
time is zero. For a graph with n tasks, the set L = {L1, . . . , Ln} represents the
task computation times (execution time length). Let δ−(j) be the set of precedents
of task j, that is δ−(j) = {i ∈ V |(i, j) ∈ E}.

3.4 Related Work

Different approaches have been proposed to solve the MSPCD. One popular ap-
proach to the MSPCD makes use of Linear Programming [11]. This involves lin-
earisation of the bilinear forms resulting from communication delays. The work in
[11] discusses a classic formulation and a packing formulation of the MSPCD. Their
results indicate that the packing formulation is about 5000 times faster than the
classic formulation. The work in [52] further improves the ILP formulations in [11]
and introduces two ILP formulations, one which runs faster when scheduled over a
smaller number of processors and the other when scheduled over a larger number of
processors. Another popular approach to solve the MSPCD is to use the A* search
algorithm [28], [45]. A* is a best-first search technique [14], [42] and also a popular
Artificial Intelligence algorithm guided by a problem specific cost function f(s) for
each solution state s. The main drawback of A* is that it keeps all the nodes in
memory and it usually runs out of memory long before it runs out of time making
it unusable for medium and large sized problem instances.

35

Chapter 3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming

3.5 Bi-Linear Reductions

Let ti be the start time of task i and tj the start time of task j. Let Li be the
execution time of task i and γij be the communication time between tasks i and j.
Further, let |P | be the total number of processors available for scheduling. Define

xih =

1 task i runs on processsor h

0 otherwise.

If any two tasks i and j incur a communication cost, then

∀j ∈ V : i ∈ δ−(j) ti + Li +
∑
h,k∈P

γij(xih.xjk) ≤ tj (A01)

By definition, xih and xjk are Boolean variables and their multiplication needs to be
linearised. The previous best linearisation in [11] uses two linearisation approaches.
All though, the communication model in [11] has no restriction on the number of
communication links, the model presented here assumes a fully connected network.
Their linearisation variable zhkij wherein task i runs on processor h and task j runs
on processor k, is defined as

∀j ∈ V : i ∈ δ−(j), h, k ∈ P (zhkij = xih.xjk)

Using this definition, the multiplication of the Boolean variables xih.xjk is replaced
by the linearisation variable zhkij in A02.

∀j ∈ V : i ∈ δ−(j) ti + Li +
∑
h,k∈P

γij.z
hk
ij ≤ tj (A02)

By A02, the number of constraints produced is |E| and the number of variables per

36

3.6 Proposed Formulation

constraint in terms of the processor combinations over zhkij is O(|P |2) . The first
linearisation uses A02 and A03 - A05.

∀j ∈ V, i ∈ δ−(j), h, k ∈ P xih ≥ zhkij (A03)

∀j ∈ V, i ∈ δ−(j), h, k ∈ P xjk ≥ zhkij (A04)

∀j ∈ V, i ∈ δ−(j), h, k ∈ P xih + xjk − 1 ≤ zhkij (A05)

By A03 - A05, the number of constraints produced is |E||P |2 and the number of
variables per constraint is O(1). Hence, the complexity of the first linearisation by
A02, A03 - A05 in terms of number of constraints is O(|E||P |2).

The second linearisation uses A02 and A06 - A07.

∀i 6= j ∈ V, k ∈ P
∑
h∈P

zhkij = xjk (A06)

∀i 6= j ∈ V, h, k ∈ P zhkij = zkhji (A07)

By A06, the number of constraints generated is O(|V |2|P |) and the number of vari-
ables per constraint is O(|P |). So, the complexity of the second linearisation by A02
and A06 in terms of number of constraints is O(|E|+ |V |2|P |) = O(|V |2|P |).

3.6 Proposed Formulation

In this section a new ILP formulation (ILP-DELTA) is proposed and compared with
the Packing formulation in [11] and ILP-TC in [52]. The ILP formulations, ILP-
DELTA AND ILP-TC differ in the definition of the task overlap variable. They
eliminate the use of the variable z for the linearisation of the bi-linear forms. This
frees up to |V |2|P |2, z variables in the ILP formulation and speeds up the solution
time.

37

Chapter 3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming

3.6.1 ILP-DELTA

For each task i ∈ V let ti ∈ R be the start execution time and pi ∈ N be the ID of
the processor on which task i is to be executed. Let W be the total makespan and
|P | the number of processors available. The task overlap variable 4ij is modeled
similar to the definition of the task overlap variable oij in [10]. If any two tasks i
and j have a serial ordering in time, one of 4ij or 4ji is set to 1. Both 4ij and 4ji

are set to 1 if the two tasks overlap in time. The variables 4ij and εij are defined
as follows:

∀i, j ∈ V 4ij =

1 task j finishes after task i starts

0 otherwise

∀i, j ∈ V εij =

1 PI of task i is less than of task j

0 otherwise

where PI is the Processor Index.

38

3.6 Proposed Formulation

min W (A11)

∀i ∈ V ti + Li ≤ W (A12)

∀i 6= j ∈ V 4ij +4ji ≥ 1 (A13)

∀i 6= j ∈ V εij + εji ≤ 1 (A14)

∀i 6= j 6= k ∈ V εij + εjk ≥ εik (A15)

∀i 6= j ∈ V 4ij +4ji + εij + εji ≥ 1 (A16)

∀i 6= j ∈ V 4ij +4ji − 1 ≤ εij + εji (A17)

∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P | ≥ 0 (A18)

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji) ≤ tj (A19)

∀i 6= j ∈ V tj − ti − Li − (4ij −4ji − 1)Wmax ≥ 0 (A20)

∀j ∈ V : i ∈ δ−(j) 4ij = 1 (A21)

W ≥ 0 (A22)

∀i ∈ V ti ≥ 0 (A23)

∀i, j ∈ V 4ij, εij ∈ {0, 1} (A24)

∀i ∈ V pi ∈ {1, . . . , |P |} (A25)

The upper bound on the makespan W is given by Wmax

Wmax =
∑
i∈V

Li +
∑
i,j∈V

γij (A26)

A11 and A12 are min-max constraints and minimises the maximum start task exe-
cution times. A12 specifies that the sum of task start time and its execution time
is to be less than or equal to the makespan W . A13 - A17 are overlap constraints.
Together, they ensure that no two tasks overlap in time and space. I.e. if two tasks
have overlapping execution times, then they must run on different processors. The
variable 4 defines a serial ordering of tasks in time if 4ij or 4ji is set to 1. If the
execution of two tasks i and j overlap in time, both 4ij and 4ji are simultaneously
set to 1. By A13, at least one of 4ij or 4ji is set to 1. A14 mandates that the sum
of εij and εji be less than or equal to 1. If two tasks i and j run on the same proces-

39

Chapter 3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming

sor, then both εij and εji are set to 0. If the two tasks run on different processors,
then one of εij or εji is set to 1, depending on which of the two task is assigned to a
higher processor index. Both εij and εij cannot be simultaneously set to 1, as it is
not possible to assign a task to a higher and lower processor index at the same time.
In A15, the ε variables enforces a partial ordering of the processor indices with the
help of an additional transitivity clause. A16 prevents task executions from over-
lapping in time on the same processor by setting either one of the 4 or ε variables
to 1. By A17, if any two tasks i and j overlap in time (i.e. both 4ij and 4ji are
set to 1), then either εij or εji is set to 1. A18 sets the processor constraint. It is
used to enforces the condition, pj > pi + 1, if εij = 1. This ensures that if εij = 1,
then the processor index of task j is higher than task i. A19 and A20 are timing
constraints. A19 models the communication between tasks with edges. If any two
tasks i and j run on different processors, then εij or εji is set to 1. This implies
that a communication cost is incurred. If tasks i and j run on the same processor,
then εij and εji are both set to 0. In this case, A19 reduces to ti + Li ≤ tj. For all
tasks, A20 enforces the condition tj ≥ ti + Li if and only if 4ij = 1 and 4ji = 0.
I.e. only when the tasks have a serial ordering in time. A21 is an edge constraint.
All variables 4ij for which there is an edge from task i to task j in the graph is
set to 1. A22 to A26 are the bounds on the ILP formulation. In A26, the upper
bound on the makespan is computed as the sum of all task execution costs and edge
communication costs in the graph.

3.6.2 ILP-TC

In this formulation [52] the variable σ defines a serial task execution order in time if
one of σij or σji is set to 1. If the tasks overlap in time, both σij and σji are set to
0. The variables σij and εij are defined as follows:

∀i, j ∈ V σij =

1 task i finishes before task j starts

0 otherwise

∀i, j ∈ V εij =

1 PI of task i is less than of task j

0 otherwise

40

3.7 Computational Results

In ILP-TC, A17 is removed since it is no longer required by the definition of σij.
Constraints A13, A16 and A20 are replaced by A31, A32 and A33 respectively. All
other constraints remain unchanged.

∀i 6= j ∈ V σij + σji ≤ 1 (A31)

∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 (A32)

∀i 6= j ∈ V tj ≥ ti + Li + (σij − 1)Wmax (A33)

By A31, the sum of σij and σji is utmost one. If there is a serial ordering of the tasks
executed, either σij or σji is set to 1 depending on which task finishes its execution
before the other starts. If the two tasks overlap in time, both σij and σji are set
to 0. By A32, at least one of the 4 variables εij, εji, σij or σji must be set to 1.
A32 ensures that no two tasks i and j run on the same processor if their execution
overlaps in time. By A33, if σij = 1 then tj ≥ ti + Li.

Both ILP-DELTA and ILP-TC differ by 3 constraints, namely A31, A32 and A33. A
simpler definition of the task overlap variable in ILP-TC allows A17 to be dropped.
ILP-DELTA and ILP-TC have a constraint complexity of O(|V |3) due to A15. How-
ever, both these formulations have only O(|V |2) variables (σij, εij) to assign a value
to. Computational results indicate that though these formulations are faster than
the Packing formulation, there is no clear winner between ILP-DELTA and ILP-TC
as they exhibit a similar run time.

3.7 Computational Results

In this section, we compare the run times of the proposed formulation (ILP-DELTA)
with the Packing formulation [11] and ILP-TC [52]. The computations are carried
out using CPLEX 11.0.0 [2] on an Intel Core i3 processor 330M, 2.13 GHZ CPU
and 2 GB RAM running with no parallel mode and on a single thread on Windows
7.

41

Chapter 3 Bi-Linear Reductions for MSPCD Using Integer Linear Programming

3.7.1 Experimental Setup and Result Table

All experiments are run for a fully connected processor network with identical band-
width capacity. The input graphs for this comparison are taken from those proposed
and used in [11, 12]. The graph files with a name starting with ogra_ are suffixed
with the number of tasks in that file followed by its edge density in terms of a per-
centage of the maximum possible number of edges (I.e. |V |(|V | − 1)/2). According
to [11], they have a special graph structure that makes it hard to find the task
ordering which yields the optimal solution when the number of mutually indepen-
dent tasks is large. The graph file with a name starting with t_ were generated
randomly and are suffixed with the number of tasks in that file followed by its edge
density and the index used to distinguish graphs of the same characteristics. The
Stencil graph is suffixed by the number of tasks followed by the Computational cost
to Communication Ratio (CCR) value.

The experiments are run on small to medium sized instances of the graphs on 8
processors. ILP-TC [11] is designed to work well for tasks scheduled on to a larger
number of processors. Since ILP-DELTA is modeled similar to ILP-TC, the proposed
ILP also works well for tasks assigned to a larger number of processors. For tasks
assigned to a smaller number of processors (e.g. 2 or 4), ILP-RBL [11] is well tailored
and suitable for the purpose. A 24 hour time out is set for all the task graphs solved.
If the execution exceeds 24 hours, the execution is terminated and the gap recorded.
The gap gives a guaranteed lower bound on the optimal schedule length. For e.g. if
the gap is 0.69% at 24 hours, it implies the optimal schedule length is within 0.69%
of the schedule length returned by the ILP solver at 24 hours. The usual timing
convention h:m:s is used to denote hours:minutes:seconds.

Table 3.1: Solution Time Comparison of ILP-DELTA with Packing and ILP-TC

Graph p n Packing ILP-DELTA ILP-TC
Ogra20_75 8 20 51m:28s 3m:30s 2m:37s
t20_90 8 20 2m:24s 2s 7s

t30_30_2 8 30 24h, 0.69% gap 5h:15m:11s 4h:36m:18s
t30_60_1 8 30 7h:22m:19s 1h:39m:10s 2h:6m:54s

Stencil15_CCR_1 8 15 14m 35s 16s

42

3.8 Conclusions

Table 3.1 compares the solution time of ILP-DELTA with the Packing Formulation
and ILP-TC. For these instances the solution time of ILP-DELTA or ILP-TC is
found to be 5 to 20 times or upward faster than the best version of the Packing
formulation. The result table indicates that changing the definition of the task
overlap variable does not result in a significant difference in the run time between
ILP-DELTA and ILP-TC.

3.8 Conclusions

An ILP formulation for the MSPCD was proposed and modeled based on the task
overlap variable defined in [10] and compared with known ILP formulations in [11]
and [52]. The ILP formulations in ILP-DELTA and ILP-TC eliminated the use of
the variable z for the linearisation of the bi-linear forms, hence speeding up the
solution time. It was found that the proposed formulation easily outperforms the
packing formulation in [11] but had a similar run time as compared to ILP-TC, when
scheduled on a larger number of processors. Although ILP-DELTA and ILP-TC use
different task overlap variables, their run time were similar when formulated in a
concise form.

43

4 ILP formulations for Task
Scheduling with Communication
Delays

This chapter is a successor to the work in Chapter 2.

The contributions of the work in this chapter are to provide

• Optimal solutions for small and medium sized instances of the task scheduling
problem.

• Propose a novel mixed integer linear programming (MILP) solution to this
scheduling problem, to further speedup the solution time.

• For the proposed formulations, all variable indices in the MILP formulation
are independent of the number of processors. As a result, the constraint com-
plexity of the proposed MILP formulation is reduced to O(|V |2).

• Analyse and discuss the influence of the different MILP components with re-
spect to characteristics of the task graph such as structure and communication
to computation ratio.

• Compare experimentally the proposed MILP formulation with previous MILP
formulations used to solve this scheduling problem.

• Observe strengths and weaknesses of the formulation related to the input char-
acteristics.

Functionality

• Use problem specific knowledge to fully eliminate the need to linearise the
bi-linear equations arising out of communication delays.

45

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

• The size of the proposed formulation in terms of variables is made independent
of the number of processors.

Methodology

• Modify the formulations ILP-RBL and ILP-TC to add the above required
functionality.

Outcome

• Proposed formulation displays a drastic improvement in performance, which
allows to solve larger problems.

Publication

Sarad Venugopalan and Oliver Sinnen. ILP formulations for Optimal Task Schedul-
ing with Communication Delays on Parallel Systems, IEEE Transactions on Parallel
and Distributed Systems, 26(1): 142-151 (2015). DOI: 10.1109/TPDS.2014.2308175.

4.1 Abstract

To fully benefit from a multiprocessor system, the tasks of a program are to be care-
fully assigned and scheduled on the processors of the system such that the overall
execution time is minimal. The associated task scheduling problem with commu-
nication delays, P |prec, cij|Cmax, is a well known NP-hard problem. We propose a
novel Mixed Integer Linear Programming (MILP) solution to this scheduling prob-
lem, despite the fact that scheduling problems are often difficult to handle by MILP
solvers. The proposed MILP solution uses problem specific knowledge to eliminate
the need to linearise the bi-linear equations arising out of communication delays.
Further, the size of the proposed formulation in terms of variables is independent
of the number of processors. We analyse and discuss the influence of the different
MILP components in respect to characteristics of the task graph such as structure
and communication to computation ratio. The proposed MILP formulation is exper-
imentally compared with previous MILP formulations used to solve this scheduling
problem. The proposed formulation displays a drastic improvement in performance,
which allows to solve larger problems optimally. We also observe strengths and
weaknesses of the formulation related to the input characteristics.

46

4.2 Introduction

4.2 Introduction

For the performance and efficiency of a parallel program, the scheduling of its
(sub)tasks is crucial. Unfortunately, scheduling is a fundamentally hard problem
(an NP-hard optimisation problem [44]), as the time needed to solve it optimally
grows exponentially with the number of tasks (unless P = NP). Existing scheduling
algorithms are mostly heuristics as they try to produce good rather than optimal
schedules, e.g. [31], [37], [21], [41], [48], [55], [58], [7], [23]. Having optimal schedules
can make a fundamental difference, e.g. for time critical systems such as flight con-
trol, industrial automation, automotive applications, telecommunication systems,
consumer electronics, robotics and multimedia systems. Multiprocessor systems are
also popular in small portable devices such as cellphones or navigators to large sys-
tems such a industrial robots or aircraft. An optimal schedule may also be used as
a benchmark to enable the precise evaluation of scheduling heuristics. Moreover,
once an optimal schedule is found, it may be reused when a parallel program is re-
run. Due to today’s widespread use of parallel systems, an efficient parallelisation is
fundamental to take advantage of the computational power available. It is hence of
enormous practical significance to be able to schedule small and medium sized task
graphs optimally on parallel processors. The objective of this work is to present a
fast Mixed Integer Linear Programming (MILP) formulation for the classic problem
of scheduling task graphs on parallel systems with communication delay, which is
P |prec, cij|Cmax in the α|β|γ notation [18], [51]. Many heuristics have been pro-
posed for task scheduling on parallel systems [27]. While they often provide good
results and tend towards the optimal schedule there is no guarantee that the so-
lutions are optimal, especially for task graphs with high communication costs [47],
[46]. A number of approximation algorithms have been proposed for the scheduling
problem [9], [17]. For the here addressed scheduling problem, P |prec, cij|Cmax, no
α-approximation is known [15]. The only known guaranteed approximation algo-
rithm in [24] has an approximation factor depending on communication costs of the
longest path in the schedule.

Given the NP-hardness, finding an optimal solution requires an exhaustive search
of the entire solution space. For scheduling, this solution space is spawned by all
possible processor assignments combined with all possible task orderings. Clearly
this search space grows exponentially with the number of tasks, thus it becomes
impractical already for very small task graphs. Hence, few attempts have been

47

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

made to solve P |prec, cij|Cmax optimally. With the increase in processor power
in computers, it is now feasible to find optimal solutions to larger instances of the
scheduling problem. The A* algorithm is one such popular optimal search algorithm
used to solve this scheduling problem [28], [45]. It begins the search with an empty
solution space and is then incrementally grown. A* employs a best-first search
technique [14], [42] and is guided by a problem specific cost function. The main
drawback of A* is that it keeps all the nodes in memory and it usually runs out of
memory long before it runs out of time making it unusable for medium and large
sized problem instances.

In this chapter, a MILP formulation is proposed for the task scheduling problem on
parallel systems with communication delays. It uses an overlap approach [10] to set
variables and constraints to ensure that no two tasks executing on the same processor
overlap in time. The proposed formulation eliminates the need for the linearisation
of bi-linear equations arising out of communication delays. Further, the number of
variables is not a function of the number of processors, which is beneficial for the
complexity of the formulation. The different components of the MILP formulation
are analysed and their significance discussed. This helps to gain insights into the
relevance of task graph characteristics for the efficient formulations of MILPs. An
extensive experimental evaluation consisting of over 7400 schedules is carried out
and compared with other existing MILP formulations that solve this scheduling
problem. The proposed formulation displays a drastic improvement in performance.
The proposed formulation is found to outperform other MILPs especially when the
Communication to Computation Ratio (CCR) of the task graph is high. It is also
seen from the experiments that a larger number of processors do not necessarily
mean a slow down in the runtime of the MILP.

The rest of the chapter is organised as follows: Section 4.3 discusses the general
use of MILP formulations for scheduling problems. Section 4.4 then describes the
task scheduling model. Section 4.5 discusses bi-linear forms arising out of commu-
nication delays and its linearisation for the studied scheduling problem. Section 4.6
discusses the proposed mathematical formulation, its relaxation and reduction us-
ing MILP. The constraint complexity of the proposed formulation is compared with
other known formulations. Section 4.7 details the experimental results wherein the
runtime of the proposed formulation is compared with other known formulations in
literature.

48

4.3 Mixed Integer Linear Programming

4.3 Mixed Integer Linear Programming

MILP may be used to solve optimisation problems, including scheduling problems.
The MILP formulations can be broadly classified as discrete time and continuous
time approaches [10], [16]. The discrete time approach introduces a new variable
for each instant of time on each processor [1]. The number of time variables in-
troduced in this approach explode when diverse execution times are present in the
formulation. The continuous time approach, on the other hand, can handle diverse
execution times, but its efficiency depends on how well the constraints and variables
are formulated. The continuous time approach is further subdivided into three lines
- sequencing, slots and overlaps. In sequencing, the formulation involves invoking
new variables to determine if one task is executed after another task on the same
processor [8], [5]. The number of constraints required to enforce the schedule re-
quirements on each processor are known to grow quickly. In slots, each task is
assigned to a space-time vacancy on a processor. The slot defines an order of tasks
running on a processor [13], [32]. The start time and end time of tasks entering the
slot are not fixed a priori. Since the exact number of slots required on each pro-
cessor is not known a priori, a conservative number of slots (the number of tasks)
has to be reserved and it suffers from a variable blow-up if the number of tasks to
be scheduled is large. In overlap, variables are defined to prevent overlap of tasks
scheduled on the same processor. Unlike other approaches, the number of variables
and constraints in the formulation scales well as the number of tasks to be scheduled
increases [10], [11], [52].

4.4 Task scheduling model

The tasks that are to be scheduled are represented as a weighted directed acyclic
graph. The nodes in the graph represent tasks while directed edges represent data
precedence relationships. Precedence relationships (if any) have to be respected at
all times. The node cost is the time required for the task to complete its execution
on a processor and the edge cost is the communication time between two tasks
on different processors. If two tasks with data dependence are mapped onto the
same processor, the communication between them is implemented by data sharing
in local memory and no communication delay is incurred. The model assumes a fully
connected network of homogeneous multiprocessors P = {1, . . . , |P |} with identical

49

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

communication links. Each processor may execute several tasks, but each task has
to be assigned to exactly one processor, in which it is entirely executed without
pre-emption. Further, no multitasking or parallelism is permitted within a task.
The execution time for each task on each processor and the data transfer times (or
communication delays) between tasks with data dependence are given in advance as
part of the task graph.

Formally, the tasks to be scheduled are represented by a directed acyclic graph
(DAG) defined by a 4-tuple G=(V,E,C, L) where V denotes the set of tasks and
E represents the set of edges. Each edge (i, j) ∈ E defines a precedence relation
between the tasks i, j ∈ V . A task cannot be executed unless all of its predecessors
(parents) have completed their execution and all relevant data is available. The set
C = {γij : (i, j) ∈ E} denotes the set of edge communication times. If tasks i and
j are executed on different processors h, k ∈ P, h 6= k, they incur a communication
time penalty γij. If both tasks are scheduled to the same processor the commu-
nication time is zero. For a graph with |V | = n tasks, the set L = {L1 . . . , Ln}
represents the task computation times (execution time length). Let δ−(j) be the set
of precedents of task j, that is δ−(j) = {i ∈ V |(i, j) ∈ E, j ∈ V }. The variables ti
and pi are the main variables that describe a schedule for the problem to be solved.
The start time of task i is ti and the processor on which task i executes is pi. The
objective of this task scheduling problem is to allocate and schedule the tasks onto
the processors such that the overall completion time W (makespan) is minimised
[11], [40].

4.5 Bi-linear reductions

Communication between tasks executing on different processors results in bi-linear
constraints and needs to be linearised. A fast linearisation is crucial in developing
an efficient MILP formulation for the task scheduling problem. A commonly used
linearisation of the bi-linear forms arising out of communication delays for the task
scheduling problem called the usual linearisation and compact linearisation are dis-
cussed in [30], [29]. The MILP formulations in [11] use the linearisation in [30] to
solve the task scheduling problem and is categorised under the overlap approach
discussed in Section 4.3.

We are now looking at that linearisation. Let ti be the start time of task i and tj

50

4.5 Bi-linear reductions

the start time of task j. Define the following variable for the MILP of the
scheduling problem

xih =

1 task i runs on processor h ∈ P

0 otherwise

When using this variable in the formulation, the precedence constraint created by
an edge between two tasks i and j incurring a communication cost, is then

∀j ∈ V : i ∈ δ−(j) tj ≥ ti + Li +
∑

h,k∈P,h6=k
γij(xih.xjk) (A01)

So task j can only start after task i has finished (ti+Li) plus the communication time.
Remember, the communication cost is only incurred if the tasks are on different
processors, otherwise it is zero. The task scheduling model presented in Section 4.4
assumes a fully connected network with identical communication links. Hence, the
communication time between any two tasks i and j running on different processors is
given by γij. By definition, xih and xjk are Boolean variables and their multiplication
needs to be linearised.

The linearisation in [11] uses two different approaches. The linearisation variable
zhkij , where task i runs on processor h and task j runs on processor k, is defined as

∀j ∈ V : i ∈ δ−(j), h, k ∈ P zhkij = xih.xjk (A02)

Using this definition, the multiplication of the Boolean variables xih.xjk of A01 is
replaced by the linearisation variable zhkij resulting in

∀j ∈ V : i ∈ δ−(j) tj ≥ ti + Li +
∑

h,k∈P,h6=k
γij.z

hk
ij (A03)

By A03, the number of constraints produced is |E| and the number of variables per
constraint in terms of the processor combinations over zhkij is O(|P |2).

51

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

The first linearisation method called PACKING-USUAL makes use of A03 and
needs the additional A04 - A06 for the complete linearisation.

∀j ∈ V, i ∈ δ−(j), h, k ∈ P xih ≥ zhkij (A04)

∀j ∈ V, i ∈ δ−(j), h, k ∈ P xjk ≥ zhkij (A05)

∀j ∈ V, i ∈ δ−(j), h, k ∈ P zhkij ≥ xih + xjk − 1 (A06)

A04 - A06 are used to simulate the logic of a Boolean multiplication using linear
inequalities. By A04 - A06, the number of constraints produced is |E||P |2 and
the number of variables per constraint is O(1). Hence, the total complexity of the
PACKING-USUAL linearisation in terms of number of constraints is O(|E||P |2).

The second linearisation method called PACKING-COMPACT uses A03 plus
A07 - A08, instead of A04 - A06.

∀i 6= j ∈ V, k ∈ P
∑
h∈P

zhkij = xjk (A07)

∀i 6= j ∈ V, h, k ∈ P zhkij = zkhji (A08)

A07 is obtained by multiplying both sides of the equality A09 with xjk; ∀i 6= j ∈ V ,
k ∈ P . A09 implies that any given task can run on exactly one processor.

∀i ∈ V
∑
h∈P

xih = 1 (A09)

A08 indicates that the multiplication zhkij = xih.xjk is commutative. By A07, the
number of constraints generated is O(|V |2|P |) and the number of variables per con-
straint is O(|P |). So, the total complexity of PACKING-COMPACT in terms of
number of constraints is O(|E|+ |V |2|P |) = O(|V |2|P |).

52

4.6 Proposed formulation

4.6 Proposed formulation

The literature surveyed indicates that amongst all MILP formulations, an over-
lap approach is best suited to tackle the task scheduling problem. All the MILP
formulations discussed in this section are based on the overlap approach. A new
MILP formulation for scheduling (SHD-BASIC), its relaxation (SHD-RELAXED)
and reduction (SHD-REDUCED) are proposed and compared with the PACKING
formulation in [11] as well as ILP-RBL and ILP-TC in [52]. The formulation in [11]
utilise overlap variables adopted from [20] along with a technique for the linearisa-
tion discussed in the previous section. The formulation in [11] is improved in [52]
by reworking the Boolean logic for dependent tasks and by defining a partial order
using a transitivity clause.

The first contribution of this work is to use problem specific knowledge to eliminate
the bi-linear forms [11] arising out of communication delays. The proposed formu-
lation eliminates the use of the z variable (in Section 4.5) for the linearisation of the
bi-linear forms. This frees up to |V |2|P |2 z variables and its associated constraint
complexity in the MILP formulation and speeds up the runtime of the solver. The
second contribution is to run all variable indices in the proposed MILP formulation
independent of the number of processors. As a result, the constraint complexity of
the proposed MILP reduces to O(|V |2).

Next, we propose the basic formulation SHD-BASIC in Section 4.6.1, its relaxation
SHD-RELAXED in Section 4.6.2 and its reduction SHD-REDUCED in Section 4.6.3.
SHD-RELAXED and SHD-REDUCED formulations are compared with PACKING
formulation, ILP-RBL and ILP-TC in Section 4.6.4 to bring out the advantages in
using the proposed formulation.

4.6.1 BASIC formulation (SHD-BASIC)

The MILP is formulated as a min-max problem that involves minimising the max-
imum task finish time. The variables t and p gives the allocation and schedule
of tasks on processors. The σ and ε variables model the relative position of tasks
respectively along time and on the processors. They together ensures that tasks
running on the same processor do not overlap in time. The constraints relate these
variables to allow a fast ILP without the need for linearisation. Let W be the total
makespan and |P | the number of processors available. For each task i ∈ V let ti ∈ R

53

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

be the start execution time and pi ∈ N be the ID of the processor on which task i
is to be executed. In order to enforce non-overlapping constraints, define two sets
of binary variables

∀i, j ∈ V σij =

1 task i finishes before task j starts

0 otherwise

∀i, j ∈ V εij =

1 PI of task i is less than of task j

0 otherwise

where PI is the Processor Index.

Based on these two types of binary variables the SHD-BASIC formulation is pro-
posed next, followed by a detailed explanation of the role of each constraint. A10 is
the objective, A11 - A19 are the main constraints and A20 - A24 are the bounds.

min W (A10)

∀i ∈ V ti + Li ≤ W (A11)

∀i 6= j ∈ V σij + σji ≤ 1 (A12)

∀i 6= j ∈ V εij + εji ≤ 1 (A13)

∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 (A14)

∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P | ≥ 0 (A15)

∀i 6= j ∈ V pj − pi − εij|P | ≤ 0 (A16)

∀i 6= j ∈ V ti + Li + (σij − 1)Wmax ≤ tj (A17)

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji) ≤ tj (A18)

∀j ∈ V : i ∈ δ−(j) σij = 1 (A19)

∀i, j ∈ V σij, εij ∈ {0, 1} (A20)

∀i ∈ V pi ∈ {1, . . ., |P |} (A21)

∀i ∈ V ti ≥ 0 (A22)

W ≥ 0 (A23)∑
i∈V

Li +
∑
i,j∈V

γij −Wmax = 0 (A24)

54

4.6 Proposed formulation

The constraints can be roughly categorised in the min-max objective (A10 - A11),
overlap constraints (A12 - A14), processor constraints (A15 - A16) and precedence
constraints (A17 - A19). To discuss the completeness and correctness of the formu-
lation let us start by considering the case where there are no precedence constraints
and hence no communication delays between tasks. Then, the minimisation ob-
jective A10 along with A11 - A15, A17, A20 - A24 are sufficient to give a valid
formulation. For each task, A11 specifies that the sum of the task start time and its
execution time (hence the task’s finish time) is less than or equal W . By A12, the
sum of σij and σji is at most 1 and A13 enforces the same for the sum of εij and εji.
When tasks are assigned to processors, the tasks that run on the same processor are
to be ordered by defining their start time. Let us consider the set Vx of tasks that
are assigned to some processor x (I.e. all tasks i∈ V such that pi = x). A15 enforces
that for any two tasks i, j ∈ Vx, εij = εji = 0. Consequently, the non-overlapping
constraint (A14) will imply an order on these two tasks by raising exactly one of
the two variables σij or σji to 1 (by A12). This set of variables σij for all pairs of
tasks i, j∈Vx will give a total order of the tasks on processor x (transitivity being
enforced by A14 and A17). Then A17 will affect valid starting times to the tasks
while A10 will define the objective to be minimised.

For this independent tasks case, an ordering on a pair of tasks executing on different
processors is not required as there are no precedence constraints and do not require
εij or εji to be set to 1 whenever pi 6=pj. To model the precedence and communication
delays, A16, A18 and A19 are added to the independent tasks case. A19 pre-sets an
ordering for all tasks that are connected by an edge and A17 affects the start times
according to this order. A18 will ensure that the communication delays are taken
into account, but to meet this aim, exactly one of εij or εji must be equal to 1 when
pi 6= pj. This is guaranteed by the addition of A16. Note that A15 and A16 are
both required to enforce that exactly one of εij or εji is set to 1.

Both σij and εij are Boolean variables due to A20. A21 gives the bound on processor
allocation for each task i ∈ V. By A22, all tasks have a start time greater than or
equal to zero. By A23, the makespan W is greater than or equal to zero. By A24,
Wmax gives an upper bound on W and is defined as the sum of all task execution
times and edge communication times. This is a worst case value which ensures that
A17 is correct when σij = 0. Note that there is no strict requirement that σ values
have to correspond to a transitive closure for the task graph. E.g. If σ13 = 1 and
σ35 = 1, then the value of σ15 is not relevant with respect to time ordering.

55

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

4.6.2 RELAXED formulation (SHD-RELAXED)

The RELAXED formulation is introduced to speed up the BASIC formulation. In
the BASIC formulation (SHD-BASIC), A16 is created for all edge pairs i 6= j. In the
RELAXED formulation, these constraints are defined only for tasks with a direct
edge between them. I.e. A25A and A25B are used instead of A16. The formulation
using A25A and A25B instead of A16 is named SHD-RELAXED.

∀j ∈ V : i ∈ δ−(j) pj − pi − εij|P | ≤ 0 (A25A)

∀j ∈ V : i ∈ δ−(j) pi − pj − εji|P | ≤ 0 (A25B)

From Section 4.6.1, it is seen that A16 is included to model communication delays.
However, since communication delay exists only between tasks that have an edge
between them, A16 are needed only for such pairs of tasks.

4.6.3 REDUCED formulation (SHD-REDUCED)

The REDUCED formulation is introduced to remove redundant constraints that
appear in SHD-RELAXED. The logic in A12 is redundant in A17 and the logic in
A13 is redundant in A15. For A17: if σij = 1, then tj ≥ ti + Li and if σji = 1,
then ti ≥ tj + Lj. If σji = σji = 1, then tj ≥ ti + Li and ti ≥ tj + Lj should be
simultaneously valid constraints. This is true only if ti = tj and Li = Lj = 0. If
non-zero task execution times are considered, then by A08, at most one of the σ
variable may be set to 1.

For A15: if εij = 1, then pj ≥ pi + 1 and if εji = 1, then pi ≥ pj + 1. If εij = εji = 1,
then pj ≥ pi+1 and pi ≥ pj+1 should be simultaneously valid constraints. However,
both the constraints cannot be simultaneously true as it is not possible to place a
task on a higher and lower processor index at the same time. Hence, A15 may set
at most one of the ε variables to 1. This allows A12 and A13 to be eliminated from
SHD-RELAXED. The reduced formulation eliminating A12 and A13 from SHD-
RELAXED is named SHD-REDUCED and the performance of SHD-REDUCED
is compared with SHD-RELAXED. Note that A12 and A13 are redundant in the
formulation but not for their linear relaxation.

56

4.6 Proposed formulation

Table 4.1: Comparison between formulations tested

PACKING- PACKING- ILP- ILP- SHD-BASIC,
USUAL COMPACT RBL TC RELAXED,

REDUCED
VARIA |E|.|P |2, |V |2.|P |2 free of z free of z free of z
BLES z variables z variables

CONSTR O(|V |2+ O(|V |2.|P |) O(|V |2+ O(|V |3) O(|V |2)
AINTS |E||P |2) |E||P |2)

4.6.4 Comparison of SHD-RELAXED and SHD-REDUCED with
PACKING formulation, ILP-RBL and ILP-TC

SHD-RELAXED and its reduction SHD-REDUCED are used instead of SHD-BASIC
in the following analysis. SHD-RELAXED generates O(|E|) constraints using A25A
- A25B whereas SHD-BASIC generates O(|V |2) constraints using A16. The PACK-
ING formulation in [11] uses linearisation variables to linearise the bi-linear inequal-
ities arising from communicating edges. These linearisation variables are eliminated
in ILP-RBL [52] by reworking the Boolean logic of the communicating edges. ILP-
TC [52] reworks the linearisation of the bi-linear forms in the PACKING formulation
using a transitivity clause in a manner that aids the elimination of over-defined in-
equalities in ILP-RBL.

For uniformity across comparisons, it is noted that the task scheduling model for
the PACKING formulation unlike SHD-BASIC and its variants do not mandate a
fully connected processor network. Table 4.1 compares the variable and constraint
complexities of the formulations tested.

When ILP-RBL is used to schedule a large number of tasks on a small number of
processors, the contribution of |P |2 towards the constraint complexity of ILP-RBL
diminishes.

The proposed formulation SHD-RELAXED has a constraint complexity of O(|V |2)
as all variable indices are free of the number of processors. The bound on the number
of processors available for scheduling is given by A21. SHD-RELAXED is also free
of the linearisation variable z, making it faster than the PACKING formulation.
SHD-RELAXED and ILP-RBL have a similar constraint complexity over a small
number of processors but is much faster than ILP-RBL over a larger number of

57

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

processors. SHD-RELAXED also runs faster than ILP-TC which have a higher
constraint complexity, as observed from Table 4.1. The reduced formulation SHD-
REDUCED has fewer inequalities than SHD-RELAXED through the elimination of
A12 and A13. However, as noted in Section 4.6.3, these inequalities are redundant
only for the formulation but not their linear relaxation. The experiments carried
out in Section 4.7 confirm that the complexity comparisons in this section are in
agreement with the experimental results.

4.7 Experimental results

The main goals of this section are: (a) performance comparisons of the proposed
MILP formulation SHD-RELAXED with both linearisation of the PACKING for-
mulation in [11] (PACKING-USUAL and PACKING-COMPACT), the MILP
formulations in [52], namely ILP-RBL and ILP-TC and the reduced formulation
SHD-REDUCED from Section 4.6.3 (b) to analyse the behaviour of the MILP for-
mulations with respect to graph structures (c) study the effect of Communication
cost to Computation cost Ratio (CCR) on MILP formulation runtime.

The computations are carried out using CPLEX 11.0.0 [2] on an Intel Core i3 pro-
cessor 330M, 2.13 GHZ CPU and 2 GB RAM running with no parallel mode and
on a single thread on Windows 7.

All experiments are run for the task scheduling model discussed in Section 4.4. I.e.
a fully connected processor network with identical bandwidth capacity is assumed.
The input graphs used for experiments in Section 4.7.1 are from [45] and the input
graphs used for benchmarking in Section 4.7.2 are from [11], [12]. The following two
definitions of graph densities are used:

Ω = |E|/|V | (A26)

ω = (|E|/γ)100 (A27)

with the maximum possible number of edges in the graph as γ = |V |(|V |−1)/2. The
two density equations A26 and A27 arise due the difference in density definitions of
the task graph databases used. It is also worth noting that very high densities are
not realistic for most real software applications.

58

4.7 Experimental results

Two types of performance comparison experiments are carried out: a 1 minute
timeout in Section 4.7.1 and 12 hour timeout in Section 4.7.2. The 1 minute timeout
experiments carried out in Section 4.7.1.1 are to get many results to learn about the
performance behaviour and on which input characteristics it depends. Section 4.7.1.2
compares the relation between characteristics of the task graph structure with re-
spect to the MILP formulations. Section 4.7.1.3 studies the effect of CCR on MILP
formulations. The 12 hour timeout experiments in Section 4.7.2 are longer experi-
ments for a direct comparison between runtime of the MILP formulations, especially
in regards to previous work. Larger input graphs are tackled in these experiments.
A Java implementation of all the MILP formulations compared and some of the
optimal results that it returned can be found in the Green Banana (GB) scheduler
suite [54]. They use the Graph eXchange Language (GXL) format [22] to represent
input task graphs.

4.7.1 MILP comparisons with 1 minute timeout

A database of 207 task graphs, summarised in Table 4.2, comprising of 10, 21 and 30
tasks of the following structures: fork, join, fork-join, in-tree, out-tree, series-parallel,
pipeline, random, stencil and independent tasks is chosen [45]. The densities for the
graphs in the database conform to the definition in A26. The experiments are carried
out for 2, 4, 8 and 16 processors. A one minute timeout is set for each graph.

Table 4.2: Detailed Structure of the 207 Graph Database

Graph Structure n = 10 n = 21 n = 30 Total
Fork-Join 4 4 4 12

Fork 4 4 4 12
Independent 1 1 1 3

InTree 8 8 8 24
Join 4 4 4 12

OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48

Series-Parallel 16 16 16 48
Stencil 4 4 4 12

59

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

4.7.1.1 Overall performance evaluation

In this section, the overall performance of the graphs in the database are compared
for the MILP formulations discussed. The number of graphs for which an optimal
schedule was returned by CPLEX within one minute for the 207 graph set is tallied
and plotted in Figure 4.1. The comparison criteria used here is completed schedules
within one minute.

74

80 78

52

69 69

40

17

72

83
86

66

56

68

80

93

73

91

110

130

71

94

125

143

2p 4p 8p 16p

N
U

M
B

E
R

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

PROCESSORS

PACKING-USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

Figure 4.1: Completed schedules of different formulations over number of processors

It is seen from Figure 4.1 that SHD-RELAXED and SHD-REDUCED outper-
form all the other ILP’s on 4, 8 and 16 processors. PACKING-USUAL marginally
outperforms SHD-RELAXED and SHD-REDUCED over 2 processors, with 74
optimal solutions found in the 207 graph dataset. However, the performance of
PACKING-USUAL and PACKING-COMPACT quickly degrades over 4, 8 and
16 processors in comparison to SHD-RELAXED and SHD-REDUCED. ILP-
TC has a steady performance improvement over 2, 4, 8 and 16 processors unlike
PACKING-USUAL, PACKING-COMPACT and ILP-RBL. This performance
increase is attributed to the constraint complexity of ILP-TC that is indepen-
dent of the number of processors. It is found that an increase in the number of
processors does not necessarily imply a decrease in performance. Other than ILP-
TC, only SHD-RELAXED and SHD-REDUCED have a steady performance
increase over 2, 4, 8 and 16 processors. SHD-RELAXED and SHD-REDUCED
also have a constraint complexity independent of the number of processors. Un-

60

4.7 Experimental results

like ILP-TC with a constraint complexity of O(|V |3), the constraint complexity
of SHD-RELAXED and SHD-REDUCED is O(|V |2). This improved constraint
complexity matches with the experimental comparisons as it is observed that SHD-
RELAXED and SHD-REDUCED outperforms ILP-TC.

4.7.1.2 Structure based performance evaluation

In this section, we analyse the performance of the MILP formulations over the graph
structures given in Table 4.2. Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5
depict the previous results separated by the individual graph structures over 2, 4,
8 and 16 processors for the formulations SHD-RELAXED, SHD-REDUCED,
PACKING-USUAL, PACKING-COMPACT, ILP-RBL and ILP-TC.

From the 2 processor experiments in Figure 4.2, it is seen that SHD-RELAXED and
SHD-REDUCED display a relatively similar performance with respect to PACKING-
USUAL or PACKING-COMPACT except for PIPELINE and RANDOM graphs
where PACKING-USUAL exhibits a better performance. ILP-RBL is also seen to
perform well in comparison with the other formulations (as expected to be the case
over a smaller number of processors). For the 4 processor experiments in Figure 4.3,
it is observed that either SHD-RELAXED or SHD-REDUCED displays a similar or
better performance in relation to the other formulations and for the 8 and 16 pro-
cessor experiments (in Figure 4.4 and Figure 4.5 respectively), their performance
gains over other formulations are observed to be prominent.

The Fork-Join graphs have the best performance with SHD-RELAXED and ILP-
TC whereas the Forks perform best on SHD-REDUCED. Independent graphs
have a similar performance with SHD-RELAXED, SHD-REDUCED, ILP-RBL,
ILP-TC and PACKING-USUAL. InTree graphs on 2, 4 processors are seen to best
perform with SHD-RELAXED, PACKING-USUAL and on 8, 16 processors are
seen to best perform with SHD-REDUCED. OutTree graphs are seen to perform
best with SHD-REDUCED whereas Pipeline graphs are seen to perform best with
SHD-RELAXED (except on 2 processors where PACKING-USAL and ILP-RBL
are seen to perform better). Random graphs are seen to perform best on SHD-
REDUCED (except on 2 processors were PACKING-USUAL and ILP-RBL perform
better). Series-Parallel and Stencil graphs are both seen to perform best over SHD-
REDUCED. Overall, it is observed that SHD-RELAXED or SHD-REDUCED
have the best performance for each graph structure.

61

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

Table 4.3 gives the percentage of individual graph structures that passed the 1 minute
timeout test averaged over 2, 4, 8 and 16 processors for SHD-RELAXED and
SHD-REDUCED in Figure 4.2 to Figure 4.5. It is seen that the graph structures
that perform the best over these two MILP formulations are Random and Pipeline
and the worst are Join, Fork and Independent. These graphs have a very similar
structure because a Fork or Join is a set of Independent tasks with an edge from or to
another task. Independent tasks are in general harder to schedule since they have no
precedence constraints and all possible task combinations on an allocated processor
have to be tried out. Stencil graphs are seen to perform better over SHD-RELAXED
as compared to SHD-REDUCED. The other graph structures are found to have a
similar performance with SHD-RELAXED and SHD-REDUCED.

Table 4.3: Performance Statistics on Individual Graph Structures over SHD-
RELAXED and SHD-REDUCED

RELAXED % Passed REDUCED % Passed
Random 62.5 Random 70
Pipeline 62.5 Pipeline 60.25
Stencil 54 Series-Parallel 56

Series-Parallel 52.25 OutTree 47.75
InTree 44.75 InTree 46.75
OutTree 42.5 Stencil 39.5
Fork-Join 35.25 Fork-Join 33.25

Join 27 Join 29.25
Independent 25 Fork 27

Fork 22.75 Independent 25

4.7.1.3 Effect of CCR on MILP formulation runtime

In this section, the effect of CCR on the performance of MILP formulation is studied.
Of the 207 graphs in the database, 51 each are of CCR 0.1, CCR 1.0, CCR 2.0
and CCR 10. The independent graphs in the database have no communication
edges and are not considered for the analysis. The number of graphs for which an
optimal schedule was returned by CPLEX within one minute is tallied and plotted
in Figure 4.6 for 4 and 8 processors.

It is observed that an increase in CCR results in a decrease in the performance of all
the MILP formulations in the experiment irrespective of the number of processors

62

4.7 Experimental results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
E

R
C

E
N

T
A

G
E

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

GRAPH STRUCTURE

2 PROCESSORS

PACKING -USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-RELAXED

Figure 4.2: Completion percentage of formulations over graph structures 2 pro-
cessors

they are scheduled on. A possible explanation for this behavior is that higher CCR
values increase the schedule length variance between different schedules. A single
task allocated to the wrong processor can imply a strong penalty on the schedule
length due to large remote communication. The LP relaxation of the ILP formula-
tions used by the solver can then be further away from the optimal solution of the
ILP. This results in longer runtimes of the branch-and-bound part of the solver.

This CCR dependent behavior is very interesting as it shows that the ILP runtimes
do not only related to the size of the input problem in terms of number of tasks,
edges and processors, but also depends on the weight values.

4.7.2 MILP comparisons set for a 12 hour timeout

The 12 hour timeout experiments are for a direct comparison between runtimes of
the MILP formulations. The input graphs used for benchmarking in this section
are from [11], [12]. If the CPLEX solver is unable to find an optimal solution
within 12 hours, the program is terminated and the results tabulated. The h:m:s
notation is the standard hours:minutes:seconds taken by the MILP formulation to
find an optimal solution. The graphs with a name starting with ’t’ were generated
randomly and suffixed with the number of tasks in that graph followed by its edge
density and the index used to distinguish graphs when they have the same n and ω

63

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
E

R
C

E
N

T
A

G
E

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

GRAPH STRUCTURE

4 PROCESSORS

PACKING -USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

Figure 4.3: Completion percentage of formulations over graph structures on 4
processors

values. The graphs with a name starting with ’ogra’ are suffixed with the number of
tasks followed by its edge density. These edge densities conform to the percentage
definition of density in (A27). According to [11], the optimal solution for ’ogra’
graphs are obtained when the tasks are well packed (as in ideal schedule). This has
similar characteristics with respect to a number of mutually independent tasks (that
can be well packed as there are no communication delays), for which it is hard to find
the task ordering which yields the optimal schedule. In Table 4.5, the first column
gives the name of the graph, n records the number of tasks in the graph. The symbols
Ω and ω conform to the density definition in A26 and A27 respectively. Column p
refers to the number of processors. The rest of the columns record the solution time
for the MILP formulations being compared. Where the comparison table refers to
the MILP formulation as PACKING, it implies that both PACKING-USUAL
and PACKING-COMPACT in [11] are used for the experiments and the shorter
of the two MILP runtimes is recorded. When the CPLEX solver is unable to find an
optimal solution within 12 hours, the program is terminated and the gap returned
by CPLEX is recorded. Let the feasible schedule length returned when the program
terminates be FSL and the optimal schedule length (to be found) be OSL. The gap
(in percentage) is a guarantee that the the difference between the FSL and OSL

is at most FSL times the gap. I.e. FSL−OSL≤FSL·gap. If a solution is found

64

4.7 Experimental results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
E

R
C

E
N

T
A

G
E

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

GRAPH STRUCTURE

8 PROCESSORS

PACKING -USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

Figure 4.4: Completion percentage of different formulations over graph structures
on 8 processors

within 12 hours, the gap is 0% and not recorded. If no feasible solution could be
found within 12 hours, the gap is infinite and recorded as inf . For example, if the
schedule length returned by the program when it terminates at the end of 12 hours
is 200 units and the gap is 10%, then the optimal schedule length is guaranteed to
be greater than or equal to 180 units.

Table 4.5 compares the proposed formulations SHD-BASIC, SHD-RELAXED
and SHD-REDUCED with PACKING, ILP-RBL and ILP-TC over 2, 4, 8 and 16
processors in Table 4.4. The MILP formulation that yields the fastest result (or the
least gap) is highlighted. It is seen that for most cases SHD-RELAXED or SHD-
REDUCED runs faster than SHD-BASIC. Despite ’ogra’ graphs having a special
structure making it harder to solve optimally, it is seen that the proposed formula-
tions have a significantly improved performance and outdo other formulations when
more processors are available for scheduling. For the random ’t’ graphs, ILP-RBL
runs fast over a smaller number of processors. ILP-TC for most cases displays an
improved runtime with an increase in number of processors, but are found to run
slower with an increase in the number of tasks in the graph.

It is seen from Table 4.4 that 10 out of 16 column entries for the PACKING for-
mulation timeout at 12 hours, indicating a much longer runtime over the proposed
formulations. For most instances, SHD-RELAXED and SHD-REDUCED are

65

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
E

R
C

E
N

T
A

G
E

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

GRAPH STRUCTURE

16 PROCESSORS

PACKING -USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

Figure 4.5: Completion percentage of formulations over graph structures on 16
processors

many orders of magnitude faster than the PACKING formulation and ILP-TC.
In fact, for many instances the runtime of the proposed formulations are seen to
decrease when more processors are available for scheduling.

It is observed from Table 4.5 that SHD-REDUCED has the overall best perfor-
mance in terms of the number of fastest results found over all the MILP formulations
compared. Absolute stability cannot be expected, this being the nature of ILP’s.
From the experiments carried out, it is seen that SHD-RELAXED and SHD-
REDUCED are often an order of magnitude faster than the other formulations
and hence a significant improvement of previous work. The experiments indicate
that ILP performance is structure dependent and their performance degrades with
high CCR.

4.8 Conclusions

A MILP formulation for the task scheduling problem with communication delay
was proposed. Each part of the formulation was motivated and discussed in de-
tail, explaining its role and importance. A major feature of this formulation is the
reduction of the number of variables and constraints by the effective linearisation

66

4.8 Conclusions

27

20

18

15

21

18

16

14

27

20
19

16
17 17 17 17

26

23 23

18

26
25

24

19

CCR0.1 CCR1.0 CCR2.0 CCR10

N
U

M
B

E
R

 O
F

 C
O

M
P

L
E

T
E

D
 S

C
H

E
D

U
L
E

S

COMMUNICATION TO COMPUTATION RATIO

PACKING-USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

(a) Completed schedules of different formulations over CCR on 4 processors
for 51 graph set for a 1 minute timeout

35

16

13 12

18

9

5
7

36

20

16

13

23

20 19
17

41

26
24

18

42

32
30

20

CCR0.1 CCR1.0 CCR2.0 CCR10

N
U

M
B

E
R

 O
F
 C

O
M

P
L
E

T
E

D
 S

C
H

E
D

U
L
E

S

COMMUNICATION TO COMPUTATION RATIO

PACKING-USUAL PACKING-COMPACT ILP-RBL ILP-TC SHD-RELAXED SHD-REDUCED

(b) Completed schedules of different formulations over CCR on 8 processors
for 51 graph set for a 1 minute timeout

Figure 4.6: CCR Comparisons on 4 and 8 Processors Set for a 1 minute Timeout

of the bi-linear equation arising out of communication delays. Further, all variable
indices in the MILP formulation are independent of the number of processors. As
a result, the constraint complexity of the proposed MILP formulation was reduced
to O(|V |2), which is significantly less than previous formulation as analysed in de-
tail. An optimisation of the proposed SHD-RELAXED formulation was developed
through the investigation of redundant terms in its formulation. The proposed for-
mulations were experimentally compared with several existing MILP formulations.
The experimental results indicate that the proposed formulation (SHD-RELAXED)
and its reduction (SHD-REDUCED) provide a drastic improvement in runtime over
other MILP formulations. The analysis of the behaviour of the MILP formulations
with respect to graph structures indicate that some structures perform better than
the others. It was seen that an increase in CCR deteriorates the performance of all
the MILP formulations and to conclude that MILP formulations do not scale well

67

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

for high CCR graphs. It was also seen that a larger number of processors is not
necessarily bad for the performance of the MILP formulation.

68

4.8 Conclusions

Table 4.4: 12 hour Timeout Comparisons on ILP Formulations - Set 1

Graph p PACKING ILP-RBL ILP-TC

ogra20
_55,
n=20
Ω=5.2
ω=55

2 12h 12h 12h
32.09% 26.15% 35.40%

4 8m:49s 18s 21m:9s

8 35m:56s 6m:11s 11m:32s

16 12h 1h:38m:5s 11m:46s
3.92%

t30_56
_1,
n=30
Ω=8.1
ω=56

2 9s 2s 46m:26s

4 7m:32s 17s 5h:17m:51s

8 7h:22m:19s 12h 2h:6m:54s
0.21%

16 12h 12h 1h:11s
8.94% 4.07%

t40_30
_1,
n=40
Ω=5.8
ω=30

2 6m 46s 12h
22.06%

4 12h 29m:33s 12h
7.18% 16.32%

8 12h 12h 12h
9.83% 5.07% 11.56%

16 12h 12h 12h
23.66% 9.43% 23.12%

Ogra50
_ 53,
n=50
Ω=12.9
ω=53

2 12h 12h 12h
46.33% 46.15% inf

4 12h 12h 12h
19.78% 5.26% inf

8 12h 12h 12h
inf 2.46% inf

16 12h 12h 12h
inf 5.58% inf

69

Chapter 4 ILP formulations for Task Scheduling with Communication Delays

Table 4.5: 12 hour Timeout Comparisons on ILP Formulations - Set 2

Graph p BASIC RELAXED REDUCED

ogra20
_55,
n=20
Ω=5.2
ω=55

2 12h 12h 12h
25.78% 30.01% 26.58%

4 14s 20s 27s

8 22s 11s 6s

16 12s 15s 10s

t30_56
_1,
n=30
Ω=8.1
ω=56

2 16s 5s 22s

4 32s 21s 23s

8 7m:38s 48s 2m:6s

16 33s 19s 15s

t40_30
_1,
n=40
Ω=5.8
ω=30

2 3h:49m:40s 3m:29s 5m:2s

4 2h:50m:14s 10m:40s 4m:25s

8 9h:36m:14s 23m:24s 3m:34s

16 2h:12m:11 7m:49s 4m:3s

Ogra50
_ 53,
n=50
Ω=12.9
ω=53

2 12h 12h 12h
48.50% 48.27% 48.22%

4 12h 12h 12h
12.94% 15.76% 12.02%

8 2h:0m:1s 33m:34s 17m:17s

16 1h:23m:4s 58m:2s 2h:16m:48s

70

5 Memory Limited Algorithms for
Task Scheduling on Parallel
Systems

The contributions of the work in this chapter are to

• Provide optimal solutions and near optimal solutions whose quality is guaran-
teed for small and medium sized instances of the task scheduling problem.

• Propose two memory limited optimal scheduling algorithms: Iterative Deep-
ening A* (IDA*) and Depth-First Branch and Bound A* (BBA*) for the task
scheduling problem to overcome the shortcomings of memory unbounded A*
task scheduling algorithm and to see how they fare with respect to the pro-
posed ILP formulations.

• Propose specific pruning techniques for the memory limited algorithms IDA*
and BBA*.

• Use existing pruning techniques that may be used on IDA* and BBA* without
any loss of generality.

• Conduct extensive experiments to evaluate and compare the proposed algo-
rithms with previous optimal algorithms.

Functionality

• IDA* and BBA* are sped-up with the aid of a heuristic which is an under-
estimate on the optimal schedule length and with the aid of pruning techniques
to cut down the number of nodes searched in the algorithmic state space.

• When finding a guaranteed near optimal schedule length is sufficient, the pro-
posed algorithms can be combined, reporting the gap while they run.

Methodology

• The functionality is achieved by running IDA* and BBA* in combination.
IDA* approaches the optimal solution from the top whereas BBA* approaches

71

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

the optimal solution from the bottom. Together, they give a guaranteed bound
on the quality of the solution obtained.

Outcome

• Proposed formulation displays a good improvement in performance, particu-
larly considering that IDA* and BBA* are still able to continue its execution
and find an optimal solution for cases where the A* algorithm runs out of
memory. They are also competitive with the ILP formulations despite these
formulations being experimented on a state of the art solver such as CPLEX.

Publication

Sarad Venugopalan and Oliver Sinnen. Memory Limited Algorithms for Optimal
Task Scheduling on Parallel Systems, submitted to Journal of Parallel and Dis-
tributed Computing, Elsevier.

5.1 Abstract

To fully benefit from a multi-processor system, tasks need to be scheduled optimally.
Given that the task scheduling problem with communication delays, P |prec, cij|Cmax,
is a well known strong NP-hard problem, exhaustive approaches are necessary. The
previously proposed A* based algorithm retains its entire state space in memory
and often runs out of memory before it finds an optimal solution. This chapter
investigates and proposes two memory limited optimal scheduling algorithms: Iter-
ative Deepening A* (IDA*) and Depth-First Branch and Bound A* (BBA*). When
finding a guaranteed near optimal schedule length is sufficient, the proposed algo-
rithms can be combined, reporting the gap while they run. Problem specific pruning
techniques, which are crucial for good performance, are studied for the two proposed
algorithms. Extensive experiments are conducted to evaluate and compare the pro-
posed algorithms with previous optimal algorithms.

5.2 Introduction

The problem of scheduling tasks with precedence constraints and communication
delays onto a set of homogeneous multi-processor system with the objective of min-
imising the overall finish time is essential and fundamental to speed up task exe-

72

5.2 Introduction

cution on a multiprocessor system. The problem addressed is the classic problem
of scheduling task graphs on parallel systems with communication delay, which is
P |prec, cij|Cmax in the α|β|γ notation [18], [51]. Optimal scheduling is a well known
hard problem (an NP-hard optimisation problem[44]), as the time needed to solve
it optimally grows exponentially with the number of tasks. A number of heuristics
have been proposed for this classical problem, but they try to produce good rather
than optimal schedules, e.g. [31], [37], [21], [41], [48], [55], [58], [7], [23]. For the
classical scheduling problem, no α-approximation is known [15]. The only known
guaranteed approximation algorithm in [23] has an approximation factor depending
on communication costs of the longest path in the schedule. While heuristics often
provide good results, there is no guarantee that the solutions are close to optimal,
especially for task graphs with high communication costs [47], [46].

Optimal schedules make a significant difference where the schedule is reused multi-
ple times and in time critical systems with applications to flight control, industrial
automation, telecommunication systems, consumer electronics, robotics and multi-
media systems. The lack of good guaranteed approximation algorithms makes this
very relevant. Moreover, having optimal solutions for scheduling instances allows
to better judge the quality of heuristics and thereby to gain insights into their be-
haviour. The work presented in this chapter addresses the optimal solution of the
P |prec, cij|Cmax scheduling problem.

Previous approaches to optimally solve this scheduling problem are based on Mixed
Integer Linear Programming (MILP) formulations [11], [52] and smart state space
enumerations using A* [28]. Both approaches showed strengths and weaknesses.
The MILP formulations are less efficient for small numbers of processors and when
communication costs are high [53]. They also require powerful solvers, which are like
black boxes and make performance predictions difficult. The compact A* scheduling
algorithm is very well suited to inject problem specific knowledge to prune the search
space, which is crucial for efficient searches [49]. However, the approach suffers from
the well known drawback of A*: it runs out of memory very quickly.

The main contributions of this chapter are 1) to overcome the memory limitations by
proposing two new algorithms: Iterative Deepening A* (IDA*) scheduling algorithm
which employs iterative deepening to limit the memory utilisation of the algorithm
and the Depth-First Branch and Bound A* (BBA*) which improves the solution
as the search traverses through the state space of the P |prec, cij|Cmax scheduling

73

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

problem; 2) to propose an exhaustive search approach based on the two algorithms
that finds a feasible schedule whose quality with respect to the schedule length is
guaranteed, updating the current quality while running; 3) improve the initial lower
bound on the schedule length to reduce the number of states revisited by IDA*
during iterative deepening. 4) to investigate and propose new pruning techniques
for generic and structure specific graphs to significantly reduce the state (solution)
space.

The rest of the chapter is organised as follows. Section 5.3 gives the related work
on other approaches used to optimally solve this scheduling problem. Section 5.4
discusses the task scheduling model and Section 5.5 details the proposed IDA*
and BBA* scheduling algorithms and supplies different methods to improve the
f−function calculations that guides the algorithms. The section also proposes the
gap calculation method to find a feasible schedule with a guaranteed quality on the
schedule length. Section 5.6 proposes a method to find a good initial lower bound
close to the optimal schedule length in order to speed-up the execution of IDA*.
Section 5.7 analyses existing and investigates novel state space pruning techniques
that are essential to speed-up the runtime of the algorithm. Duplicate avoidance
without memory and processor normalisation without memory are the pruning tech-
niques proposed in this chapter. Section 5.8 evaluates and compares the performance
of the proposed algorithms with previous approaches. Section 5.9 concludes by high-
lighting the main results of the chapter and the significance in using memory limited
algorithms to solve the task scheduling problem.

5.3 Related work

Given the NP-hardness of the problem, few attempts have been made to solve it
optimally. The solution space for the scheduling problem is spawned by all possible
processor assignments combined with all possible task orderings. The search space
grows exponentially making it impractical already for small task graphs. In this
section we discuss the Mixed Integer Linear Programming (MILP) formulations
and A* algorithm for the task scheduling problem. We observe the strengths and
weaknesses of each approach and explain the motive for the proposed IDA* and
BBA* scheduling algorithms.

One approach used to solve this problem optimally is by using Mixed Integer Linear
Programming. Examples of MILP formulations are [1], [5], [32], [13], [16] and more

74

5.4 Task scheduling model

recently [11], [52] and [53]. The MILP formulations are generally good but they
are not efficient for high CCR graphs. They exhibit poorer performance when there
are fewer processors available for scheduling [53]. Another method to solve the
scheduling problem is to use the A* algorithm, an optimal search algorithm [28],
[45], [49]. It begins the search with an empty solution space and is then incrementally
grown. A* employs a best-first search technique [33], [14], [42] and is guided by a
problem specific cost function. A* keeps all the nodes in memory and it usually
runs out of memory before it runs out of time making it unusable for medium and
large sized problem instances. This memory problem of the A* search approach has
been recognised earlier and alternative approaches overcoming this problem have
been proposed making trade-offs between memory requirement and performance.
A good comparison between the A* and IDA* techniques (not the task scheduling
problem) is given in [43]. Iterative deepening [57] is a memory limited algorithm
whose search space frontier is first limited to an under-estimate on the optimal
solution. In every successive iteration, this frontier is expanded until an optimal
solution is found. The Depth-First Branch and Bound is another memory bound
algorithm that searches the state space in depth first order. The initial feasible
solution is an overestimate on the optimal solution [39], [57]. These two memory
limited techniques are complementary in their operation, approaching the optimal
solution from below and above, respectively. The optimal scheduling algorithms
proposed in this chapter are based on these two techniques.

5.4 Task scheduling model

Formally, the tasks to be scheduled are represented by a directed acyclic graph
(DAG) defined by a 4-tuple G=(V,E,C, L) where V denotes the set of tasks and
E represents the set of edges. Each edge (i, j) ∈ E defines a precedence relation
between the tasks i, j ∈ V . The model assumes a fully connected network of ho-
mogeneous multiprocessors P = {1, . . . , |P |} with identical communication links.
Each processor may execute several tasks, but each task has to be assigned to ex-
actly one processor, in which it is entirely executed without pre-emption. Further,
no multitasking or parallelism is permitted within a task. The execution time for
each task on each processor and the data transfer times (or communication delays)
between tasks with data dependence are given in advance as part of the task graph.
A task cannot be executed unless all of its predecessors (parents) have completed
their execution and all relevant data is available. The set C = {γij : (i, j) ∈ E}

75

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

denotes the set of edge communication times. If tasks i and j are executed on dif-
ferent processors h, k ∈ P, h 6= k, they incur a communication time penalty γij. If
both tasks are scheduled to the same processor the communication between them
is implemented by data sharing and the communication time is assumed to be zero.
For a graph with |V | = n tasks, the set L = {L1 . . . , Ln} represents the task com-
putation times (execution time length). Let δ−(j) be the set of predecessors of task
i, that is δ−(j) = {i ∈ V |(i, j) ∈ E, j ∈ V }.

Scheduling this task graph G on processors P is the assignment of a processor
allocation pi and a start time ts(i) to each i ∈ V . The task’s finish time is
given by tf (i) = ts(i) +Li, i.e. the task’s start time plus its computation costs. Let
tf(p) = maxi∈V:pi=p{tf (i)} be the processor finish time of p ∈ P and let sl(S) =
maxi∈V {tf (i)} be the schedule length (or makespan) of schedule S, assuming
mini∈V {ts(i)} = 0.

For such a schedule to be feasible, the following two conditions must be fulfilled for
all tasks in G. The Processor Constraint in (5.1) enforces that only one task is
executed by a processor at any point in time, which means for any two tasks i,j ∈ V

i = j ⇒

 tf (i) ≤ ts(j)
or tf (j) ≤ ts(i)

(5.1)

A task cannot be executed unless all of its predecessors (parents) have completed
their execution and all relevant data is available. The Precedence Constraint
given in (5.2) enforces that for every edge (i, j) ∈ E, i, j ∈ V , the destination task
j can only start after the communication associated with (i, j) has arrived at pj.

ts(j) ≥ tf (i) +

 0 if pi = pj

γij otherwise
(5.2)

For task j ∈ V , its start time on processor p is constrained by the Data Ready
Time (DRT) and is represented as tdr(j, p). The DRT for task j is the time when
all communications from task j’s predecessors have arrived at p as shown in (5.3).

76

5.5 Memory limited optimal scheduling algorithms

tdr(j, p) = max
i∈parents(j)

tf (i) +

0 if pi = p

γij otherwise

 (5.3)

If j ∈ V is a source task, then tdr(j, p) = 0. The task may however not be able to
immediately start its execution since the processor assigned may be occupied with
the execution of another task. The Earliest Start Time (EST) of task i ∈ V on
processor p is given by (5.4).

tEST (i, p) = max {tf(p), tdr(i, p)} (5.4)

The computation bottom level of a task i ∈ V is the length of the longest path
starting in i, denoted by cbli. Recursively it is defined in (5.5) as

cbli = Li + max
j∈children(i)

{cblj} (5.5)

Given the start time of any task i, the schedule length sl is bounded by ts(i) + cbli.
In other words, after the task i has started execution, it still takes (at least) the
time to sequentially execute all the tasks on the longest path starting in i.

Let the computation top level of a task j ∈ V be defined as the length of the
longest path (sum of computational task weights) starting in j, denoted by ctlj to
the longest length of its parent, excluding its own weight. Recursively it is defined
as

ctlj = max
i∈parent(j)

{ctli + Li} (5.6)

The objective of this task scheduling problem is to allocate and schedule the tasks
onto processors such that the overall completion time (makespan Cmax = sl) is
minimised [49], [45], [11], [40].

5.5 Memory limited optimal scheduling algorithms

In order to employ IDA* and BBA* to optimally solve the scheduling problem de-
fined in the previous section we formulate it as a combinatorial problem. Essentially,

77

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

the solution space to be searched is created by generating all possible processor al-
locations with all possible task orders. The latter are constrained by the precedence
relations of the tasks expressed through the edges of the task graph. Starting with
an empty schedule, a new state (i.e. partial schedule) is created by selecting an
unscheduled free task (i.e. a task whose predecessors have already been scheduled)
and allocating it to a processor. The start time of the task is the earliest possible as
defined in (5.4). This way, we create |free| · |P | new states from a given state, with
free being the set of free tasks (ready to be scheduled) for the given state. This
solution space has the form of a tree and its size grows exponentially. The complete
schedules are the leaves of the tree at depth |V |, including the ones with optimal
schedule length. This creation of the solution space can be considered an exhaustive
list scheduling with all possible orders and processor allocations.

Given the fast exponential growth of this solution space, smart methods to search
through it are necessary to go beyond graphs with a handful of tasks. A* was
proposed to solve the scheduling problem, but clearly suffers from the high memory
consumption of this best first search approach [28, 45]. The here proposed scheduling
algorithms IDA* and BBA* overcome the memory problem as they both employ
a depth-first search strategy. An essential instrument for both algorithms is to
estimate the best possible schedule length achievable from a partial schedule, which
will be discussed in Section 5.5.2.

Depth-first iterative deepening [26] approach tries to reduce the number of itera-
tions in iterative deepening by setting an initial threshold that is tightly below the
cost of the goal node and then successively increases this threshold. The proposed
IDA* scheduling algorithm follows the depth-first iterative deepening methodology
to traverse its search space. It limits the initial depth of the search tree to a number
that is a lower bound on the schedule length, i.e. the depth is measured in terms
of schedule length of the states and not in terms of scheduled tasks. If a feasible
schedule is not found for the given search depth (i.e. schedule length) on the present
iteration, the next iteration increments the bound (threshold) on its schedule length.
The IDA* scheduling algorithm for any given iteration regenerates all the states for
the previous iteration along with the new states generated for the present iteration.
A tighter lower bound on the schedule length, which determines the initial threshold
of the first iteration, significantly reduces the number of iterations required to find
the optimal schedule length and results in overall fewer number of states generated.

78

5.5 Memory limited optimal scheduling algorithms

BBA* is another memory bound algorithm that searches the state space in depth
first order. The initial feasible solution is an overestimate on the optimal solution
[39], [57]. As such it approaches the optimal solution from above, successively
improving the best found solution.

The proposed IDA* and BBA* scheduling algorithms have a memory requirement
of the order of number of tasks in the graph. This gives both of these algorithms an
extremely small memory footprint when compared to the A* scheduling algorithm,
however at the cost of exploring more states in general. Section 5.5.1 explains the
proposed IDA* scheduling algorithm and Section 5.5.2 discusses the f−function cal-
culations that are used to guide the IDA* scheduling algorithm towards the optimal
solution. Section 5.5.3 explains the proposed BBA* scheduling algorithm and how
it is differs from IDA*. Section 5.5.4 proposes a method to run both the IDA* and
BBA* simultaneously on the same task graph to find a feasible schedule with a guar-
anteed quality. This is useful since finding an optimal solution may take a longer
runtime for the scheduling algorithm and in this case, a feasible solution whose
quality is guaranteed is faster to find.

5.5.1 IDA* Scheduling Algorithm

As stated above, when IDA* is used for combinatorial optimisation, its state space
corresponds to a tree. Each node (usually called state) of the tree corresponds to
a partial solution of the problem to be optimised, which becomes more complete
the deeper the search progresses down the tree. The pseudo-code for the IDA*
scheduling algorithm is given in Algorithm 5.1.

The main components of the IDA* scheduling algorithm are:

• State s: A partial schedule where some tasks have been allocated and sched-
uled on the processors.

• Lower bound SLLB: The lower bound on the schedule length.

• Threshold T : The upper bound on the present iteration depth for the IDA*
scheduling algorithm.

• Initial state s∅: The initial state representing an empty schedule, where no
task has been scheduled yet.

79

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

• Legal Expansion operator: Given a state s, a new state is created by
scheduling one more task, hence growing the partial solution represented by
s. A task that can be scheduled must be free, which means it must be either
independent or all its predecessors have already been scheduled in the partial
schedule of s. We denote the set of all such tasks as free(s). The number
of new states expanded from s is then the product of all free tasks times
the number of processors, |NEW| = |free(s)| · |P |. Each task of free(s)
is scheduled on every processor p ∈ P as early as possible after all other
tasks on the same processor according to (5.4). They constitute the legal
(task, processor) combinations in lines 03 and 04 for Method IDA*_Recursion
of Algorithm 5.1.

• Cost function f : The cost function f(s) is an underestimate of the length
of a complete schedule based on the partial schedule represented by s. The
f−function calculation is discussed in detail in Section 5.5.2.

Algorithm 5.1 uses two main methods IDA*_Round() and IDA*_Recursion(). IDA*_
Round() is used to traverse the state space for all states whose f(s) is less than or
equal to the threshold T . This is done by recursively calling the method IDA*_Recursion().
This method recursively deepens the state space (lines 12 and 13) and exits with
an optimal solution when the round threshold T is equal to f(s) for the given state
(lines 14 and 15). If the solution is not optimal (f(s) > T), the recursion backtracks
(lines 16 and 17) and continues to traverse the search space (lines 03 to 10). Lines 18
to 21 ensure that the threshold T is incremented to max(T + 1,(smallest f(s) > T ,
if it exists)). This is the new threshold for the next round when control is handed
back to the method IDA*_Round().

5.5.2 f function calculation

For the given scheduling problem, f ∗(s) is the minimum schedule length of all pos-
sible schedules that can be constructed using the partial schedule represented by
s. If the function f(s) fulfils f(s) ≤ f ∗(s) for every state s, it is called admissible
[50]. With an admissible f(s), IDA* and BBA* are guaranteed to find an optimal
solution. The number of examined states depends on how close f(s) is to f ∗(s). In

80

5.5 Memory limited optimal scheduling algorithms

general, the more accurate, the fewer states have to be examined and the faster is
the algorithm.

With the requirement of admissibility, the quest of finding a good f function for
the scheduling problem is to find tight lower bounds on the best schedule length
achievable given a partial schedule. The generic f function used with IDA* on its
state is determined from the idle time fidle−time(s), bottom level fbl(s) and data ready
time fDRT (s) calculations in [45], [49]. The idle-time is a load balancing bound by
taking into account the time lost in waiting for communication dependencies to be
resolved and the bottom level is the critical path bound. Given the four components
f(sinit), fidle−time(s), fbl(s), fDRT (s) in [49], the complete f function is

f(s) = max{f(sinit), fidle−time(s), fbl(s), fDRT (s)} (5.7)

The f function defined in (5.7) is also consistent, which means for any state s it holds
that f(s) ≤ f(t), where t is any descendant state of s. This is an important property
for a fast A* algorithm [50] as well as for the memory limited A* algorithms.

5.5.3 Branch and Bound A* Scheduling Algorithm

BBA* is also a depth-first approach, but in contrast to IDA* not with multiple
iterations. Instead it bounds its search with the currently best known solution,
combined with the use of the admissible f -function of Section 5.5.2. The initial upper
bound B on the schedule length is an overestimate of the optimal schedule length
calculated using a list scheduling heuristic with tasks ordered by their computation
bottom level [56], which is fast to compute but not necessarily close to the optimal
schedule length. During the execution of BBA*, when a feasible schedule length
lower than the upper bound B is found, the new solution is updated and the bound
B is set to that schedule length. The algorithm then progressively searches for better
solutions in the state space.

The main components of the BBA* are identical to the IDA* scheduling algorithm,
including the f -function calculations of Section 5.5.2. The main difference is that
the IDA* uses a moving threshold T that increments and eventually arrives at the
optimal schedule length. This allows IDA* to immediately terminate once such a

81

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

feasible solution is found. The BBA*, on the other hand decrements, the overes-
timate B, to arrive at the optimal schedule length. Hence, the algorithm is still
required to traverse through the remaining unchecked nodes (i.e. partial schedules)
in the state space (with an f(s) value identical to B) to prove that the feasible so-
lution is optimal. Once an optimal solution is found, BBA* searches for only those
schedule lengths lower than the optimal schedule length. Then on, the number of
states it searches is similar to the number of states A* would expand to find an
optimal solution. The f -function for any given state helps to prune all the partial
states whose cost is greater than the bound B.

The BBA* scheduling algorithm is given in Algorithm 5.2. The initial value of
B is an overestimate on the schedule length and is provided by a list scheduler
heuristic. The method BBA*_Start() transfers control to the recursive method
BBA*_Recursion(). The threshold B is decremented when a complete schedule
with a lower f -value bestFState is found (as shown in lines 11 to 13 of method
BBA*_Recursion). Once the search space is traversed, control is returned to the
method BBA*_Start() and the optimal schedule is printed.

5.5.4 Gap Calculation

The complimentary nature of IDA* and BBA*, with a lower and upper bound, re-
spectively, can be uniquely combined (run side by side in parallel) to find a solution
with a guaranteed quality for the schedule length. It may arise that an optimal
schedule length is not an absolute necessity given the longer runtime needed to find
one. It may be sufficient to find a guaranteed feasible solution, saving on compu-
tation time. The proposed IDA* algorithm in Section 5.5.1 and BBA* algorithm in
Section 5.5.3 are run in parallel to determine a guaranteed bound on the schedule
length for the task scheduling problem. While the IDA* algorithm approaches the
optimal schedule length (C∗max) from the bottom (T ≤ C∗max), the BBA* approaches
the optimal schedule from the top (B ≥ C∗max). When these two algorithms are run
in parallel, the bounds close in and are improved from both ends. Given T and B at
any instant of time, the worst case gap (in percentage) between the best currently
found solution and the optimal solution is calculated as

gap = ((B − T)/B) · 100 (5.8)

82

5.6 Lower Bound for IDA* Scheduling

The gap is updated and can be reported while the two algorithms are searching.
Once the desired gap with (5.8) is attained, the feasible schedule satisfying the gap
condition is output and the algorithm(s) terminate. The live-updating possibility
also allows to manually terminate a search, knowing that the current solution has a
certain quality. In contrast, an A* based search usually does not offer any solution
until the optimal is found.

5.6 Lower Bound for IDA* Scheduling

A good lower bound close to the optimal schedule length is crucial to reduce the
runtime of the IDA* scheduling algorithm. The tighter the lower bound the less
iterations are necessary, hence fewer states need to be regenerated. In the input to
Algorithm 5.1, T ← SLLB assigns the lower bound on the schedule length to the
round threshold. This section discusses an improved method to determine a lower
bound on the schedule length. The best (maximum of) all lower bounds calculated
is assigned to SLLB. First, Section 5.6.1 reviews analytical lower bounds on the
scheduling lengths for generic graphs. Then, Section 5.6.2 proposes destructive lower
bound calculations based on constraint formulations.

5.6.1 Generic Lower Bound

From the definition of the complete f function and its components it follows that
the f -value of the initial state sinit (no task has been scheduled yet) is

f(sinit) = max{
∑
i∈V Li
|P |

,max
i∈V
{cbli}} (5.9)

which is the maximum of perfect load balancing (total computational weights divided
by number of processors) and the maximum of the bottom level of each task (which
is the length of the critical path of the graph).

5.6.2 Destructive Lower Bounds

Destructive lower bounds are found by starting with a best guess lower bound T and
then look for contradictions on its feasibility. If some method gives us a lower bound
that can be immediately found infeasible, then T+1 is the next valid lower bound.
In general, finding a larger lower bound can be expedited by using binary search

83

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

instead of incremental search. A number of strategies are discussed in [6] to improve
the deduction of infeasibility on the lower bound. This involves strengthening the
time window, deducing additional conjunctions, disjunctions or parallel relations and
using transitive closure to deduce additional constraint relations. In this section, we
use mixed integer linear programming to find destructive lower bounds. The MILP
is here solely used to check infeasibility through constraint violations. If any one of
the constraints is violated, the tested lower bound is infeasible and can be ruled out.
In contrast to completely solving an MILP formulation [53] (which of course shares
the NP-hardness of the scheduling problem), checking for constraint violations is
very fast. In fact, in relation to the typical time to find the optimal solution it
can be considered instantaneous. In the experimental evaluation in Section 5.8, the
proposed algorithms IDA* and BBA* are compared against using the MILP to find
the optimal solution.

5.6.2.1 Scheduling constraints on MILP DECISION-DESTRUCTIVE
(Dec-Dev)

The IDA* scheduling algorithm in Section 5.5.1 takes as input an initial lower bound
(SLLB) returned by a decision problem and expands its search in accordance to
this bound. In order to find a destructive lower bound, the scheduling problem
is formulated as an MILP. Though any constraint programming methodology may
be used to detect constraint violations, the formulation here extends previous work
[53]. The full MILP is given below, where the constraints (A11-A13) and (A17)
are added, which transform the minimisation problem into a decision problem: “is
there a schedule with makespan less than or equal to some given bound". This
decision problem is of course NP-complete, but infeasibility can often be shown very
quickly, only using the pre-solver stage of the CPLEX optimisation solver to check
for constraint violation. In the experiments, the CPLEX pre-solver detects these
constraint violations (if any) in 100-300 milliseconds, which is negligible compared
to typical solution times to find the optimal schedule. However, having tighter lower
bounds, which we achieve with this method, significantly improves the performance
of IDA*.

The process of improving the lower bound is repeatedly carried out using a binary
search. The lower bounding procedure is however non-conclusive. If constraints
are violated for a tested lower bound, the lower bound must be higher. However,
if no constraints are immediately violated that does not mean that there is an

84

5.6 Lower Bound for IDA* Scheduling

optimal solution with a length equal to the lower bound. The decision problem
may terminate with a lower bound that is less than the optimal schedule length. In
general, very tight lower bounds close to the optimal solution may be difficult to find
as it is not possible to determine beforehand which set of edges in the graph will be
communicated remotely (hence induce costs). Nevertheless, we take advantage of
the structure of the task graph to deduce tighter bounds and derive more constraints.

The MILP is formulated as a min-max problem that involves minimising the max-
imum task finish time. The variables t (here in the MILP we simply use t for the
start time instead of ts) and p give the schedule and allocation of tasks on processors,
respectively. The σ and ε variables together ensure that tasks running on the same
processor do not overlap in time. The constraints relate these variables to allow a
fast ILP without the need for linearisation. For each task i ∈ V , let ti ∈ R be the
execution start time and pi ∈ N be the ID of the processor on which task i is to be
executed. In order to enforce non-overlapping constraints, define two sets of binary
variables

∀i, j ∈ V σij =

1 task i finishes before task j starts
0 otherwise

∀i, j ∈ V εij =

1 PI of task i is less than of task j

0 otherwise

where PI is the Processor Index.

Based on the σ and ε binary variables the Decision-Destructive (DEC-Dev)
formulation is proposed next, followed by a detailed explanation of the role of each
constraint. The constraints (A01)-(A10) appear in the formulation SHD-BASIC in
[53] and constraint (A11) appears in the formulation ILP-TransitivityClause
[52]. They are combined with a strengthened time window (A12-A13) to give us
a set of constraints that we then check for constraint violations on the best guess
lower bound.

85

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

min W (A01)
∀i ∈ V ti + Li ≤ W (A02)

∀i 6= j ∈ V σij + σji ≤ 1 (A03)
∀i 6= j ∈ V εij + εji ≤ 1 (A04)
∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 (A05)
∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P | ≥ 0 (A06)
∀i 6= j ∈ V pj − pi − εij|P | ≤ 0 (A07)
∀i 6= j ∈ V ti + Li + (σij − 1)Wmax ≤ tj (A08)

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji) ≤ tj (A09)
∀j ∈ V : i ∈ δ−(j) σij = 1 (A10)
∀i 6= j 6= k ∈ V εij + εjk ≥ εik (A11)

∀i ∈ V ctli ≤ ti (A12)
∀i ∈ V W − cbli ≥ ti (A13)
∀i, j ∈ V σij, εij ∈ {0, 1} (A14)
∀i ∈ V pi ∈ {1, . . ., |P |} (A15)

W ≥ 0 (A16)
W ≤ dlb (A17)∑

i∈V
Li +

∑
i,j∈V

γij = Wmax (A18)

Min-max objective (A01-A02)

These two lines specify the min-max objective. By (A01), W is the schedule length
to be minimised. For each task, (A02) specifies that the sum of the task start time
and its execution time (hence the task’s finish time) is less than or equal W .

Overlap constraints (A03-A05)

These constraints ensure that no two tasks executing on the same processor overlap
in time.

Processor constraints (A06-A07)

These constraints create the relation between the overlap variables ε and the pro-
cessor indices p. (A06)-(A07) iterates over all values i 6= j ∈ V . (A06) and (A07)
are used to enforce the definition condition of ε: if εij = 1 then pj > pi and if
εij = εji = 0 then pj = pi. A discussion on its correctness appears in [53].

Precedence constraints (A08-A10)

The inequalities (A08) to (A10) are enforcing the precedence constraints, including
the consideration of remote communication costs created by the edges E of the task

86

5.6 Lower Bound for IDA* Scheduling

graph.

Transitivity constraints (A11)

The ε variables in the transitivity constraint enforces a partial ordering of the pro-
cessor indices. The constraint εij + εjk ≥ εik is defined for all i 6= j 6= k. If εij = 1
and εjk = 1, εik may still be 0. However, we also have the constraint εik + εkj ≥ εij.
If εjk = 1, then εkj = 0 by (A04). This ensures that εik = 1. As a result, the transi-
tivity is enforced in chains. Adding these constraints is not necessary in the MILP
as they are implicitly contained in the other constraints. However, these additional
constraints help to quicker detect a constraint violation as suggested in [6].

Strengthened time window (A12-A13)

By (A12), the start time of task i is greater than its computational top level (ctl)
discussed in (5.6). By (A13), the start time of task i is less than the difference of the
schedule length W (being minimised in (A01)) and its computational bottom level
(cbl) discussed in (5.5). Again, these two constraints (A12) and (A13) are implicit
in the other constraints, but they tighten the time window and hence help to find
violations quicker [6].

Bounds (A14-A18)

The lines (A14)-(A18) define the bounds or domains of the variables used in the
formulation. By (A14), both σij and εij are Boolean variables. (A15) gives the
bound on processor allocation for each task i ∈ V. By (A16), all tasks have a start
time greater than or equal to zero. By (A17), the destructive lower bound (dlb) on
W is set, hence the schedule length is artificially constrained to test if a solution
within this bound is feasible. By (A18), Wmax gives an upper bound on W and is
defined as the sum of all task execution times and edge communication times (which
is simply an appropriate constant definition for (A08)).

5.6.2.2 Finding Destructive Lower bounds

To find a tight lower bound on the schedule length, we initially determine an an-
alytical lower bound (LB) according to (5.9) and then improve on it. The Upper
Bound (UB) on the schedule length is given by any feasible schedule obtained by
a heuristic. Here a list scheduling algorithm is used to find a valid upper bound,
where task priority is their decreasing computational bottom levels (i.e. the same
algorithm as used for the bound of BBA* in Section 5.5.3). Given a valid lower
and upper bound, a binary search is employed in the interval [LB,UB] and the pivot

87

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

element in the interval is set as the destructive lower bound for that round. The
dlb is then assigned to (A17) of DEC-Dev formulation in Section 5.6.2.1 and the
MILP is checked for constraint violations. If there is a violation, then LB = dlb,

else UB = dlb. The binary search continues and the above steps are repeated until
no further constraint violation appear. The latest value of dlb is recorded as the
new lower bound. The pseudo code for finding the destructive lower bound is given
in Algorithm 5.3. It is important to understand that the UB only decreases for the
purpose of this algorithm. If there is no violation that does not guarantee an optimal
solution can be found for the schedule length equal to dlb. It just means we are not
able to quickly demonstrate that it is infeasible.

5.7 State Space Pruning

In order to control the exponential explosion of states in the solution space, a number
of pruning techniques are investigated in this section. Ideally, we want to employ
previously proposed pruning techniques for state space search [28, 45]. However,
these techniques often rely on a complete and reliable duplication detection as done
in A* with the Open and Closed lists [49]. In A* newly created states are compared
to all the states generated before and duplicates are dropped. IDA* and BBA*
only keep a very limited number of states in memory at any point in time, hence
pruning techniques need to be re-investigated regarding the appropriateness for these
algorithms. We start by briefly revisiting two existing pruning techniques which are
used with IDA* and BBA* and then continue by proposing how to (partially) avoid
duplicates, given that we cannot detect them and end by proposing a new method
for processor normalisation.

5.7.1 Fixed Task Order Pruning

Fixed Task Order (FTO) is a pruning technique developed in [49] due to the difficulty
in scheduling simple graph (sub-)structures, such as independent, fork, join and
fork-join. The main idea is that for certain sub-structures, the order of the tasks
can be fixed. While their structures are very simple, they are often more difficult
to be handled by optimal algorithms, compared to more complex structures, such
as irregular series-parallel graphs [45]. The reason for the poor performance of

88

5.7 State Space Pruning

optimal algorithms on such graphs is due to the higher degree of task ordering
freedom. In all of the above mentioned structures, almost all tasks are independent
of each other (except for the source and sink tasks), hence creating many valid task
orderings. The FTO technique effectively reduces the number of states that need
to be expanded by pruning them for certain graph (sub-)structures. When the task
that are currently free for a given state s fulfil certain conditions (see [49]), they only
need to be scheduled in one specific order (instead of considering all possible orders
as normally) and it can still be guaranteed that an optimal schedule can be found. In
terms of implementation, it suffices to have a flag associated with a state that signals
a fixed order. Then only the first task of the free task queue will be considered in the
expansion (on all available processors). When a new task becomes free, the fixed-
order condition needs to be re-evaluated. The FTO pruning significantly reduces
the size of the state space searched for independent graphs, fork, join and graphs
in fork-join order and graphs that have these graphs as substructures. The FTO
technique can be directly applied to IDA* and BBA* without any loss of generality.

When FTO is used, the duplication avoidance described in Section 5.7.3 cannot
be employed. However, fixing the task order eliminates all duplicates, hence the
duplicate avoidance is obsolete for the above mentioned sub-structures.

5.7.2 Equivalent Schedules

For a given partial schedule that is defined by its processor allocation and task
start times, the order of some of the tasks may be irrelevant for the final schedule
length. The two main considerations here are the finish times of the processors of the
partial schedule and how the communications from the already scheduled tasks (if
any) affect the start time of the yet unscheduled tasks. Together, these observations
allow us to prune some of the equivalent orders (in this case permutations of tasks
on a given processor). The main idea is to try to bring the tasks on each processor
into ascending index order of the tasks by ’bubbling up’ a new task scheduled onto
a processor and to check if the finish time on that processor has not worsened and
the start times of the yet unscheduled tasks is not negatively influenced. If that is
the case, only one order needs to be considered and all other duplicate orderings
may be pruned. A complete procedure for pruning equivalent schedules is given in
[49] and is applied to IDA* and BBA* without any loss of generality.

89

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

5.7.3 Partial Duplicate Avoidance

The same partial schedule may reappear as the search space is traversed, resulting
from the order in which tasks are assigned to processors. For example, on a 2
processor system with 3 tasks A, B, C: task A and task B may be scheduled in
that order on processor p1 and then task C on p2. Alternately task A is scheduled
on p1 followed by task C on p2 and task B on p1. Both orderings result in the same
partial schedule and it is sufficient to consider one of the two.

In the following an algorithm is proposed that avoids that some of the duplicates
are created. The pseudo code for partial avoidance of duplicates without memory is
given in Algorithm 5.4. If the processor index for the task scheduled in the present
round is less than the processor index of the task scheduled in the previous round
and if no new free tasks are added to free(s) for the present round, the node is
pruned by returning a true pruneF lag.

The way in which the state space is created guarantees that all possible processor
allocations and task permutations are generated. With this avoidance algorithm,
we enforce that all free tasks of a state are scheduled to the processors in ascending
order of the processor index. Other orders can be dropped as they will result in the
same schedule, just created in a different order. All free tasks for a given state are
independent of each other by definition, hence they can be scheduled in any order.
All these orders are still created, but the processor allocation is done in order. The
avoidance is restricted by the appearance of new free tasks (when a task is scheduled)
in free(s), because these new tasks need to have the chance to be scheduled on any
processor.

A

C

D

B
P1 P2

A

C
D

B

A

B

C E

P1 P2

AB

E

C

D D

Figure 5.1: Graphs with corresponding schedules

Consider the following example graphs in Figure 5.1 scheduled on two processors p1

and p2. For the graph with 4 tasks, once tasks A and C are scheduled, task B needs

90

5.7 State Space Pruning

to be scheduled before task D in order to satisfy the edge precedence condition. This
implies that a schedule order A→ C → B → D with A, C, D appearing on p1 and
B appearing on p2 is possible, because the If condition on line 01 of Algorithm 5.4
is not executed for the corresponding schedule shown in Figure 5.1.This prevents
the accidental pruning of states that otherwise may not be generated. Consider the
second graph with 5 tasks scheduled on processors p1 and p2. Let the schedule order
of the first four tasks be A→ B → C → D, with A,B on p1 and C,D on p2. Now
if E was to be scheduled on p1, the algorithm prunes this state together with the
entire sub-tree rooted in it. However, the schedule order A → B → E → C → D

with A,B,E on p1 and C,D on p2 is a valid order permitted by the algorithm.

The algorithm employs two checks and a negligible amount of memory for the par-
tial avoidance of duplicates on every state of the partial schedule. Though not all
duplicates are detected, it is considered to be worthwhile taking into consideration
the O(1) time complexity of the algorithm and the benefit when it avoids duplicates
and prunes the entire resultant sub-tree.

5.7.4 Memory Limited Processor Normalisation

The previous section discussed a technique that helped avoiding duplicates that
stem from the order in which tasks are scheduled. Since the processors are homoge-
neous and identical with a complete symmetric communication network, processors
(or their names) are interchangeable. For example consider tasks A,B scheduled on
processor p1 and task C on processor p2. Alternatively, task C can be scheduled
on p1 and tasks A,B on p2. While these two schedules are different (they are no
duplicates per se), they are identical for the addressed scheduling problem as all
processors are the same. We can convert one schedule into the other by simply
swapping the processor names. Only one of the two states needs to be considered
and the other can be pruned. In order to do so, we normalise the processors using the
proposed memory limited processor normalisation algorithm. Unlike the previous
processor normalisation used for A* [45], that relies on duplication detection after
normalisation, the here proposed technique uses a constant time and its memory re-
quirement is of the order of the number of processors. It is not reliant on duplication
detection, instead it avoids the creation of processor equivalent schedules.

91

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

The normalisation idea is that the processors are reordered (i.e. renamed) according
to the index of the first task scheduled on each processor. Let αk be the task id
of the first task on processor pk, whereby the first task is the one with the earliest
start time on pk, αk = {i ∈ V : proc(i) = pk ∧ ts(i) = minj∈V,proc(j)=pk

{ts(j)}}.
For example, there are three processors and their first tasks have task id 10, 5, 7,
respectively. Then, the processor with 5 as its first task is called p1, the processor
with first task 7 is called p2 and the processor with 10 as its first task is called p3.

Now, instead of reordering or renaming processors (as done in [45]), we make sure
that a new task, say j, can only be scheduled on an empty processor if it adheres to
the ascending task id order. To check this, we compare j with αmax = max1≤k≤|P | αk.
If j < αmax, j cannot be scheduled on an empty processor, because that would violate
our processor naming convention.

This is a valid pruning approach, as it does not exclude any possible (unique) pro-
cessor allocations or task orderings. To see that, recall that the tasks are also a
topological order. Hence a task with a higher id can only be scheduled after one
with a lower id if they are independent (otherwise there would be a precedence vi-
olation). But if they are independent, then there will be a state with a different
schedule order (our search space considers all possible orders) where the lower id
task is scheduled before the higher id task. In that case the lower task id can be
scheduled onto an empty processor. It follows that we can prune the state where this
is done in the opposite order, as the schedules would be identical after normalisation.

5.7.4.1 Fixed-task order and processor normalisation

We now have to be careful that other pruning techniques do not conflict with this
processor normalisation. The Fixed Task Order (FTO) pruning fixes the task order
under certain conditions, hence violates our assumption that all possible orders are
generated. For that reason, the processor normalisation is suspended while the task
order is fixed (which is not a disadvantage, because while the tasks are in a fixed
order, no duplicates are created anyway). In other words, each of the fixed tasks
can be scheduled on an empty processor, irrespective of the task id.

When the fixing of the task order ends, and free tasks are scheduled without any
fixed-order, these tasks are again restricted regarding their scheduling to an empty
processor. We resume the initial behaviour and ignore what has happened during the
time when the task order was fixed. With these measures, the processor restriction
remains a valid pruning even when some of the tasks are scheduled in a fixed order.

92

5.7 State Space Pruning

First, the restriction is valid considering only the tasks that have been scheduled
before a fixed-order period and after. These tasks are treated as before. Second,
during the fixed-order period there is no restriction regarding empty processors.
Third, tasks that are scheduled after the fixed-order period are not influenced by
what has happened during the fix-order period, this is simply ignored and only what
has happened before is considered.

The pseudo-code for the proposed processor normalisation algorithm is given in
Algorithm 5.5. If TRUE, line 02 indicates that when N is not scheduled on the next
available empty processor, then the state is pruned. Line 04 indicates that task N
can always be scheduled on a non-empty processor. Line 06 indicates that N can be
scheduled on the next available empty processor. When N is a Fixed Task Object
(lines 07 to 09), the pruning is bypassed by using the previous value of αmax. If N
is not a FTO (lines 10 to 14), the state is not pruned if N > αmax and the values of
αmax, pempty are updated. The external calls FTO() and NonFTO() are not given
for brevity and the name of the method suggests its functionality.

There are only a constant number of check conditions for every state of the schedule
and the time complexity of this algorithm is O(1). The memory complexity corre-
sponding to the size of the variables is O(1). The processor normalisation algorithm
hence significantly reduces the time and memory footprint and speeds up execution.

It is also useful to note that the partial duplicate avoidance can simultaneously
work with processor normalisation. Processor normalisation only has an impact
on scheduling tasks on empty processors (forbidding it for some task ids). Partial
duplication avoidance is only valid for a group of independent tasks (they are all
free at the same time). These free tasks will be scheduled in all possible orders,
including one order where first p1 is filled, then p2, then p3 and so on, never going
back (this forward order is an order that will not be pruned). At the same time this
order can also have a partially increasing id order, so that the tasks that are first on
an empty processor are in increasing id order. This does not contradict the previous
order and it is not pruned by the partial duplication avoidance, hence both pruning
work side by side. When a new free task comes along the situation might change,
but this also stops the partial duplication avoidance.

93

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

5.8 Experimental evaluation

This section performs an experimental evaluation of the two proposed algorithms,
using two approaches. First, we conduct a performance comparison of the proposed
IDA* and BBA* task scheduling algorithms against the A* scheduling algorithm in
[49] and the MILP formulation in [53] for a 1 minute time-out, varying the num-
ber of target processors between 2, 4, 8 and 16 processors. Using relatively small
graphs with a short time-out allows us to gather many results, which can better
reveal strengths and weaknesses of the algorithms and behavioural tendencies. We
also include in these experiments an assessment of the gap calculations defined in
Section 5.5.4 by running IDA* and BBA* algorithms in parallel for gaps (defined in
eq. 5.8) of 5%, 10% and 15% .

Second, we conduct longer performance comparisons between IDA* and BBA*
against the A* scheduling algorithm and the MILP formulation using a 12 hour
time-out. Given the long time-out, this can only be done for few graphs and pro-
cessor numbers, but demonstrates the behaviour for difficult graphs.

The computations are carried out using a single-threaded Java implementation on
an AMD Opteron 6272 @ 2.1 GHz and a Java heap of 1 GB memory on Linux
Ubuntu (Java version 1.7.0_51 on Ubuntu 12.04.4 LTS) . All the input graphs used
for the time-out experiments are from [45], using the Graph eXchange Language
(GXL) format [22] to represent them. The following definition of graph density is
used

Ω = |E|/|V | (5.10)

with the maximum possible number of edges in the graph as γ = |V |(|V | − 1)/2.

In the experiments we expect A* to perform better than the proposed IDA* and
BBA* algorithms, given its best-first search and the heavy use of memory. However,
when A* runs out of memory, the here proposed algorithms will still be able to
produce results.

5.8.1 Comparisons with 1 minute time-out

A database of 207 task graphs, summarised in Table 4.2, comprising of 10, 21 and 30
tasks of the following structures: fork, join, fork-join, in-tree, out-tree, series-parallel,

94

5.8 Experimental evaluation

pipeline, random, stencil and independent tasks is chosen [45]. The densities for the
graphs in the database conform to the definition in (5.10). The experiments are
carried out for 2, 4, 8 and 16 processors. A one minute time-out is set for each
graph.

123

89 88
93

96

80 78
74

100

81
77 75

86

115

157
160

83

122

150

164

128

94

86
80

142

105

92

81

155

108

97
91

2p 4p 8p 16p

Schedule Comparisons for 207 Graphs Set for a 1 Minute Timeout

A* IDA* BBA* SHD-RELAXED SHD-REDUCED GAP05% GAP10% GAP15%

Figure 5.2: Completed schedules (out of 207) in 1 minute over algorithms for
different number of processors

Table 5.1: Detailed Structure of the 207 Graph Database

Graph Structure n = 10 n = 21 n = 30 Total
Fork-Join 4 4 4 12

Fork 4 4 4 12
Independent 1 1 1 3

InTree 8 8 8 24
Join 4 4 4 12

OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48

Series-Parallel 16 16 16 48
Stencil 4 4 4 12

95

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

A* returns either an optimal solution or no solution if it runs out of memory. It is
seen from Figure 5.2 that A* as expected, outperforms both IDA* and BBA* by
up to 22%. The gap experiments are run on 2 physical cores, each for 1 minute.
With gaps of 5, 10 and 15 percent from the optimal schedule length, the number
of completed schedules finding a feasible solution within one minute are steadily
seen to rise. With a gap of 5%, IDA*+BBA* is already seen to be better than
A* on 2 and 4 processors. A* is also seen to be better than IDA* and BBA*
individually, but the improvements are less pronounced over more processors. This
is remarkable given the less (memory) resources IDA* and BBA* use. On the other
hand, the ILP’s RELAXED and REDUCED [53] have a pronounced performance
increase over more processors. In general, the ILP formulations are finding the most
optimal schedules within the time limit. However, it needs to be considered in the
assessment of these results that the ILP’s are solved by a highly optimised CPLEX
solver, whereas the state space search approaches (IDA*, BBA* and A*) are proof-
of-concept implementations in Java. In that light it is remarkable, that they already
outperform the ILPs for 2 processors and show significant potential in general.

5.8.2 Comparisons with 12 hour time-out

In this set of experiments, we used demanding graphs and ran the algorithms A*,
IDA*, BBA*, the ILP’s: RELAXED and REDUCED for up to 12 hours. For a
number of graphs for which A* runs out of memory, IDA* and BBA* were also
not able to find an optimal solution within 12 hours. Table 5.2 lists results for four
selected graphs and helps to bring out the advantages in using memory limited
algorithms.

The first column gives the name of the graph, the second column gives the number
of tasks (n). The third column gives the graph density (Ω) and the fourth column
gives the number of processors (p) the task graph is scheduled on. The rest of the
columns give the names of the algorithms tested. It is seen for the Outtree graph
that IDA* and BBA* are slower than A* and both the MILP formulations. For
the Intree and Join graph, where A* runs out of memory, IDA* and BBA* benefit
from fast runtime. For the Random graph, the MILP formulations are found to

96

5.9 Conclusions

give the best results, whereas A* runs out of memory and both IDA*, BBA* times
out at the end of 12 hours. The experiments presented here are for a 1 GB Java
memory heap, but when the heap memory is reduced to 512 MB or 256 MB, A*
was not surprisingly found to run out of memory sooner. In summary, IDA* and
BBA* showed their potential to provide optimal or guaranteed solutions when other
solution methods might fail.

5.9 Conclusions

This chapter proposed two new optimal scheduling algorithms named IDA* and
BBA*. In contrast to previous algorithms, they use a limited memory and their
implementations have a small memory footprint. Their approaches are complimen-
tary, approaching the optimal solution from below and above. Using this nature
they can be innovatively employed to compute non-optimal but quality guaranteed
solutions. The destructive lower bound was introduced for the proposed algorithms
along with other pruning techniques such as duplicate avoidance and processor nor-
malisation. In an extensive experimental evaluation it was shown that IDA* and
BBA* perform reasonably well in comparison with A*, given that they are memory
limited. They can provide solutions when A* runs out of memory and are compet-
itive when non-optimal, but quality guaranteed solutions are sufficient. IDA* and
BBA* even perform better than strong ILP approaches on 2 processors, despite the
employed highly optimised ILP solvers. As the experiments show, no single algo-
rithm will always provide the fastest solution time. The proposed algorithms are a
useful addition to the optimal scheduler spectrum.

In future work, it seems promising to investigate the parallelisation of IDA* and
BBA* to speed-up their execution time. It may also be worth investigating an A*-
IDA* hybrid algorithm wherein A* hands off execution to IDA* when it almost runs
out of memory and then rely on IDA* to find an optimal solution.

97

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

Algorithm 5.1 Pseudo-code for IDA*
Input: Graph G, processors |P |, T ← SLLB, numTasks← n
cTask ← φ, cProc← −1//Current Task, Current Processor
pTask ←-1, pProc←-1//Previous Task, Previous Processor
#freeTasks(s)←|free(s)|, depth← 0, s← φ
Output: Optimal Schedule represented by state s
Method: IDA*_Round()
01: While(True) //Overall smallest f(s) when all tasks are scheduled
02: T =IDA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,T);

Method: IDA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,T)
01: done← 0
02: If(free(s) 6= φ)//if there exists free tasks for state s
03: For each i = 1 to #freeTasks(s) do
04: For each j = 1 to |P | do
05: depth← depth+ 1
06: Sanitise_schedule();// Removes scheduled entries when backtracked
07: #freeTasks(s)←|free(s)|
08: Schedule a picked task t from free(s) onto proc j. Add it to state s.
09: pTask ← cTask, pProc← cProc
10: cTask ← t, cProc← j
11: Update smallest f(s) > T if exists
12: If(f(s) ≤ T AND depth ≤ numTasks)
13: done =IDA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,T);
14: Else If(s is a complete solution AND f(s) = T)
15: Print optimal solution s and exit.
16: If(done = 0)//Recursion exits and backtrack search tree
17: depth← depth− 1
18: If(smallest f(s) > T exists)
19: return T ← smallestf(s)
20: Else
21: return T ← T + 1

98

5.9 Conclusions

Algorithm 5.2 Pseudo-code for BBA*
Input: Graph G, processors |P |, B ←List Scheduling Heuristic, numTasks← n
cTask ← φ, cProc← −1//Current Task, Current Processor
pTask ←-1, pProc←-1//Previous Task, Previous Processor
#freeTasks(s)←|free(s)|, depth← 0
s← φ, bestFState← φ
Output: Optimal Schedule represented by state s
BBA*_Start()
01: BBA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,bestFState,B);
02: Print optimal solution bestFState and exit

Method: BBA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,bestFState,B)
01: done← 0
02: If(free(s) 6= φ)//if there exists free tasks for state s
03: For each i = 1 to #freeTasks(s) do
04: For each j = 1 to |P | do
05: depth← depth+ 1
06: Sanitise_schedule();// Removes scheduled entries when backtracked
07: #freeTasks(s)←|free(s)|
08: Schedule a picked task t from free(s) onto proc j. Add it to state s.
09: pTask ← cTask, pProc← cProc
10: cTask ← t, cProc← j
11: If(f(s) ≤ B AND depth = numTasks)
12: bestFState← s
13: B ← f(s)
14: If(f(s) ≤ B AND depth ≤ numTasks)
15: done =BBA*_Recursion(cTask, cProc, pTask, pPproc,#freeTasks(s),depth,s,B);
16: If(done = 0)//Recursion exits and backtrack search tree
17: depth← depth− 1

99

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

Algorithm 5.3 Pseudo code for finding destructive lower bound
Input: LB, UB
Output: dlb
Method: BinarySearch(LB, UB)
01: While (LB 6= UB)
02: pivot← d(LB+UB)/2e
03: dlb← pivot
04: Assign dlb to (A17) of DEC-Dev formulation
05: Check DEC-Dev for constraint violations
06: If(any constraint is violated)
07: LB← dlb
08: Else
09: UB← dlb
10: End While
11: Output dlb

Algorithm 5.4 Partial Duplicate Avoidance
Input:
pthis ← p

taskScheduledT hisRound

pprev ← p
taskScheduledP reviousRound

Partial state s
Output: pruneF lag
Method:FindDupNoMem(pthis, pprev, s)
01: If(isNewFreeNode(s) = FALSE)
02: If(pthis < pprev)
03: return TRUE
04: return FALSE

100

5.9 Conclusions

Algorithm 5.5 Pseudo-code for Processor Normalisation

Input: N ← TaskToSchedule,pN //processor for task N .
pempty// index of first empty processor, i.e. number of non-empty processors+1
αmax ← 0
Output: prune
Method: Processor_Normal(N,pN ,αmax, pempty)
01: prune← FALSE
02: If (pN > pempty)
03: return prune← TRUE
04: If (pN < pempty)
05: return prune← FALSE
06: If (pN = pempty)
07: If(FTO(N,pN ,αmax))
08: pempty ← pN+1//Update the next empty processor
09: return prune← FALSE //remain with previous αmax
10: Else If(nonFTO(N,pN ,αmax))
11: If(N > αmax)
12: αmax ← N
13: pempty ← pN+1
14: return prune← FALSE
15. Else
16: return prune← TRUE

101

Chapter 5 Memory Limited Algorithms for Task Scheduling on Parallel Systems

Table 5.2: 12 hour Time-out Comparisons on Algorithms Tested

Graph n Ω p A* IDA* BBA* RELAXED REDUCED

OutTree-
Unbalanc
ed-
MaxBf-
3_Nodes
10
CCR_
10.01

10 0.90 2 1s 3s 5s 2s 2s

4 1s 7s 8s 2s 2s

8 1s 3m:32s 11s 2s 2s

16 1s 13m:22s 16s 2s 2s

Intree_
Unbal-
anc ed_
MAXBf-
3_
Nodes_
21_CCR
_ 0.10

21 0.95 2 NoMem > 12h > 12h > 12h > 12h

4 NoMem 1s 1s > 12h > 12h

8 NoMem 1s 1s 1s 1s

16 1s 1s 1s 1s 1s

Join_
Nodes_
30_
CCR_
10.01

30 0.96 2 NoMem 1s 1s > 12h > 12h

4 NoMem 1s 1s > 12h > 12h

8 NoMem 2s 1s > 12h > 12h

16 NoMem 3s 2s > 12h > 12h

Random
_30
Den-
sity_
2.10_
CCR_
0.99

30 2.1 2 NoMem 1m:45s > 12h > 12h > 12h

4 NoMem > 12h > 12h 12s 7s

8 NoMem > 12h > 12h 7s 3s

16 NoMem > 12h > 12h 3s 1s

102

6 Conclusions and Future Work

This work investigated existing solutions to the task scheduling problem onto a sys-
tem of multi-processors. The scheduling problem was formulated as 1) an Integer
Linear Program and 2) as memory limited state space search algorithms (IDA* and
BBA*). The ILP formulations in Chapter 1(Packing formulation) acted a framework
for further improvements. The ILP formulations in Chapter 2, namely ILP-RBL and
ILP-TC rework the linearisation of bi-linear forms arising out of communication de-
lays. ILP-RBL was experimentally found to be faster than the Packing formulation
when scheduled on a small number of processors and ILP-TC was found to be faster
than the Packing formulation when scheduled a larger number of processors. In
Chapter 3, the definition of the overlap variable (to ensures that tasks running on
the same processor do not overlap in time) is modified and the ILP formulation re-
worked to check if this may result an speed improvement. The resulting formulation,
ILP-DELTA was experimentally observed to have a speed performance similar to
(but not better than) ILP-TC. Chapter 4 proposed three ILP formulations: SHD -
BASIC. SHD - RELAXED and SHD - REDUCED. They have the property that size
of the proposed formulations in terms of variables is made independent of the num-
ber of processors. Extensive experiments are carried out to test the speed efficiency
of the proposed formulations. Results confirm a significant speed improvement in
comparison to the previous ILP formulations discussed. Chapter 5 proposes the
memory limited algorithms IDA* and BBA*. Their limited memory requirements
allows them to continue execution and to find an optimal solution whereas the A*
scheduling algorithm when it runs out of memory terminates without returning a
solution. The IDA* and BBA* are combined to give a solution whose quality is
guaranteed, when finding an optimal solution is not compulsory. Extensive experi-
mental evaluation indicates that the memory limited algorithms are useful in finding
an optimal solution when A* runs out of memory. They are also found to be com-
petitive with the ILP formulations, inspite of them using a state of the art solver
such as CPLEX.

103

Chapter 6 Conclusions and Future Work

In future work, it appears to be promising to investigate the parallelisation of IDA*
and BBA* to speed-up their execution time. It may also be worth investigating an
A*-IDA* hybrid algorithm wherein A* hands off execution to IDA* when it almost
runs out of memory and then rely on IDA* to find an optimal solution.

104

References

[1] Chapter 3, Parallel machines - Linear programming and enumerative algo-
rithms. Annals of Operations Research, 7:99–132, 1986.

[2] ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2007.

[3] A. Gupta G. Karypis A. Grama and V. Kumar. Introduction to Parallel Com-
puting. Pearson, Addison Wesley, second edition, 2003.

[4] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook.
The Traveling Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics). Princeton University Press, Princeton, NJ, USA, 2007.

[5] Armin Bender. MILP Based Task Mapping for Heterogeneous Multiprocessor
Systems. In in Proceedings European Design Automation Conference, pages
190–197. IEEE, 1996.

[6] Peter Brucker and Sigrid Knust. A linear programming and constraint
propagation-based lower bound for the rcpsp. European Journal of Operational
Research, 127:355–362, 1998.

[7] E. G. Coffman Jr. and R. L. Graham. Optimal scheduling for two-processor
systems. Acta Informat., 1:200–213, 1972.

[8] Pablo E. Coll, Celso C. Ribeiro, and Cid C. de Souza. Multiprocessor scheduling
under precedence constraints: Polyhedral results. Discrete Applied Mathemat-
ics, 154(5):770–801, 2006. IV ALIO/EURO Workshop on Applied Combinato-
rial Optimization.

[9] Pierluigi Crescenzi and Viggo Kann. Approximation on the Web: A Com-
pendium of NP Optimization Problems. In RANDOM, pages 111–118, 1997.

[10] Abhijit Davare, Jike Chong, Qi Zhu, Douglas Michael Densmore, and Alberto L.
Sangiovanni-Vincentelli. Classification, Customization, and Characterization:
Using MILP for Task Allocation and Scheduling. Technical Report UCB/EECS-
2006-166, EECS Department, University of California, Berkeley, Dec 2006.

105

References

[11] T. Davidović, L. Liberti, N. Maculan, and N. Mladenovic. Towards the Op-
timal solution of the Multiprocessor Scheduling Problem with Communication
Delays. In 3rd Multidisciplinary International Conference on Scheduling: The-
ory and Application., pages 128–135, 2007.

[12] Tatjana Davidović and Teodor Gabriel Crainic. Benchmark-problem instances
for static scheduling of task graphs with communication delays on homogeneous
multiprocessor systems. Comput. Oper. Res., 33:2155–2177, August 2006.

[13] Tatjana Davidović, Leo Liberti, Nelson Maculan, and Nenad Mladenović. Math-
ematical programming-based approach to scheduling of communicating tasks.
Technical report, 2004.

[14] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the
optimality of A*. J. ACM, 32(3):505–536, July 1985.

[15] Maciej Drozdowski. Scheduling for Parallel Processing. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[16] Christodoulos A. Floudas and Xiaoxia Lin. Mixed Integer Linear Programming
in Process Scheduling: Modeling, Algorithms, and Applications. Annals of
Operations Research, 139(1):131–162, 2005.

[17] Satoshi Fujita and Masafumi Yamashita. Approximation Algorithms for Mul-
tiprocessor Scheduling Problem. IEICE Transactions on Information and Sys-
tems, 83:503–509, 2000.

[18] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Op-
timization and Approximation in Deterministic Sequencing and Scheduling: A
Survey. 5:287–326, 1979.

[19] Yongpei Guan and RaymondK. Cheung. The berth allocation problem: models
and solution methods. OR Spectrum, 26:75–92, 2004.

[20] Yongpei Guan and RaymondK. Cheung. The berth allocation problem: mod-
els and solution methods. In Container Terminals and Automated Transport
Systems, pages 141–158. Springer Berlin Heidelberg, 2005.

[21] T. Hagras and J. Janecek. A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems. Parallel Computing,
31(7):653–670, 2005.

106

References

[22] R.C. Hull and A. Winter. A short introduction to the gxl software exchange for-
mat. In Reverse Engineering, 2000. Proceedings. Seventh Working Conference
on, pages 299–301, 2000.

[23] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee.
Scheduling Precedence Graphs in Systems with Interprocessor Communication
Times. SIAM J. Comput., 18(2):244–257, 1989.

[24] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee.
Scheduling precedence graphs in systems with interprocessor communication
times. SIAM J. Comput., 18(2):244–257, 1989.

[25] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-
22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York., pages 85–103, 1972.

[26] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artif. Intell., 27(1):97–109, September 1985.

[27] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471,
1999.

[28] Yu-Kwong Kwok and Ishfaq Ahmad. On multiprocessor task scheduling using
efficient state space search approaches. Journal of Parallel and Distributed
Computing, 65(12):1515–1532, 2005.

[29] L. Liberti. Compact linearization for bilinear mixed-integer problems. Technical
report, 2005.

[30] Leo Liberti. Compact linearization for binary quadratic problems. 4OR, 5:231–
245, 2007.

[31] Welf Löwe and Wolf Zimmermann. Scheduling Iterative Programs onto LogP-
Machine. 1685:332–339, 1999. Euro Par 99 Parallel Processing, Springer, Lec-
ture Notes in Computer Science.

[32] Nelson Maculan, Stella C. S. Porto, Celso Carneiro Ribeiro, Cid Carvalho
de Souza, Ribeiro Cid, and Carvalho Souza. A New Formulation for Schedul-
ing Unrelated Processors under Precedence Constraints. RAIRO Operations
Research, 33:87–91, 1997.

107

References

[33] Zbigniew Michalewicz and David B. Fogel. Chapter 4: How to solve it - modern
heuristics: second, revised and extended edition (2. ed.). Springer, 2004.

[34] John E. Mitchell. Application to Linear Programming.
www.rpi.edu/mitchj/handouts/lp/lp.pdf.

[35] K. Olukotun and L. Hammond. The future of microprocessors., volume 3.
Queue - Multiprocessors, September 2005.

[36] Kunle Olukotun and Lance Hammond. The Future of Microprocessors. Queue,
3(7):26–29, September 2005.

[37] A. Palmer and O. Sinnen. Scheduling Algorithm Based on Force Directed Clus-
tering. pages 311–318, dec. 2008. Parallel and Distributed Computing, Appli-
cations and Technologies, 2008. PDCAT 2008. Ninth International Conference
on.

[38] David Pisinger. Where are the hard knapsack problems? Computers and OR,
32, 2005.

[39] David Poole and Alan K. Mackworth. Chapter 3: Artificial Intelligence - Foun-
dations of Computational Agents. Cambridge University Press, 2010.

[40] Camille C. Price and UdoW. Pooch. Search techniques for a nonlinear multipro-
cessor scheduling problem. Naval Research Logistics Quarterly, 29(2):213–233,
1982.

[41] A. Radulescu and A.J.C. van Gemund. Low-cost task scheduling for distributed-
memory machines. Parallel and Distributed Systems, IEEE Transactions on,
vol 13(6):648–658, jun 2002.

[42] S.J. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice
hall, 2010.

[43] U.K. Sarkar, P.P. Chakrabarti, S. Ghose, and S.C. De Sarkar. Reducing reex-
pansions in iterative-deepening search by controlling cutoff bounds. Artificial
Intelligence, 50(2):207 – 221, 1991.

[44] V. Sarkar. Partitioning and scheduling parallel programs for multiprocessors.
MIT press, 1989.

[45] Ahmed Zaki Semar Shahul and Oliver Sinnen. Scheduling task graphs optimally
with A*. Journal of Supercomputing, 51(3):310–332, March 2010.

108

References

[46] O. Sinnen and L. Sousa. Scheduling Task Graphs on Arbitrary Processor Ar-
chitectures Considering Contention. In High Performance Computing and Net-
working (HPCN’01), volume 2110 of Lecture Notes in Computer Science, pages
373–382. Springer-Verlag, 2001.

[47] O. Sinnen and L. Sousa. Experimental Evaluation of Task Scheduling Accuracy:
Implications for the Scheduling Model. IEICE Transactions on Information and
Systems, E86-D(9):1620–1627, September 2003.

[48] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on Parallel
and Distributed Computing). Wiley-Interscience, 2007.

[49] Oliver Sinnen. Reducing the solution space of optimal task scheduling. Comput.
Oper. Res., 43:201–214, March 2014.

[50] Peter Norvig Stuart J. Russell. Artificial Intelligence - A Modern Approach.
Prentice Hall. ISBN 0-13-103805-2.

[51] B. Veltman, B. J. Lageweg, and J. K. Lenstra. Multiprocessor Scheduling with
Communication Delays. 16(2-3):173–182, 1990.

[52] Sarad Venugopalan and Oliver Sinnen. Optimal Linear Programming Solu-
tions for Multiprocessor Scheduling with Communication Delays. In Yang Xi-
ang, Ivan Stojmenovic, BernadyO. Apduhan, Guojun Wang, Koji Nakano, and
Albert Zomaya, editors, Algorithms and Architectures for Parallel Processing,
volume 7439 of Lecture Notes in Computer Science, pages 129–138. Springer
Berlin Heidelberg, 2012.

[53] Sarad Venugopalan and Oliver Sinnen. ILP formulations for optimal task
scheduling with communication delays on parallel systems, IEEE transactions
on parallel and distributed systems. volume 26, pages 142–151, 2015.

[54] Sarad Venugopalan and Oliver Sinnen. Green banana task sched-
uler for multiprocessor systems., URL (Case Sensitive): http:// home-
pages.engineering.auckland.ac.nz/ ˜parallel/ OptimalTaskScheduling/.

[55] Tao Yang and Apostolos Gerasoulis. List scheduling with and without commu-
nication delays. Parallel Computing, 19(12):1321–1344, 1993.

[56] Tao Yang and Apostolos Gerasoulis. List scheduling with and without commu-
nication delays. Parallel Comput., 19(12):1321–1344, December 1993.

[57] Weixiong Zhang. Chapter 2: State-space search - algorithms, complexity, ex-
tensions, and applications. Springer, 1999.

109

References

[58] A.Y. Zomaya, C. Ward, and B. Macey. Genetic scheduling for parallel processor
systems: comparative studies and performance issues. Parallel and Distributed
Systems, IEEE Transactions on, 10(8):795–812, aug 1999.

110

	thesis
	blank_pdf
	thesis
	blank_pdf
	thesis

