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Abstract. This paper is about real-time refinement of the 3D positions
of a large number of stationary point-targets from a sequence of 2D im-
ages which are taken by a hand-held, calibrated camera group. To cope
with the large data quantity arriving rapidly, an efficient iterative algo-
rithm was developed. The problem and solution are expressed entirely
within the computational framework of conformal geometric algebra. The
iterative solution involved a pose estimation step and two strategies for
pose estimation are investigated. Experiments are performed to evaluate
the algorithm based on synthetic and real data.

1 Introduction

Recovering the positions of many point-targets over a large area is computa-
tionally expensive. This paper describes an efficient iterative algorithm to refine
target positions from a sequence of 2D images. The targets used in this project
are point-lights (left Figure 1). A group of rigidly co-located calibrated cameras
(right Figure 1) is moved along an arbitrary path and takes images of the tar-
gets. The image points of the targets are transformed to 3D lines which are used
by the algorithm to update the 3D positions of the targets. The algorithm is
expressed entirely within the computational framework of conformal geometric
algebra (CGA). This is a continuation of work reported in [9, 10] in the applica-
tion of the conformal model of geometric algebra.

1.1 Geometric Algebra and Conformal Model

In this section, the basic concepts and operations of geometric algebra that
are required in this paper are briefly introduced. For a detailed introduction to
geometric algebra, refer elsewhere e.g. [1–3].

Geometric algebra (GA) is the application of Clifford algebras to geometric prob-
lems. It integrates many concepts and techniques, such as linear algebra, vector
calculus, differential geometry, complex numbers and quaternions, into a coher-
ent framework. A geometric algebra over R is denoted Gp,q with p positive and



Fig. 1. Left: targets; six of them are encircled. Right: camera group.

q negative basis elements. Let x1, x2, . . ., xr be vectors. X = x1 ∧ x2 ∧ . . . ∧ xr

is defined as a r-blade where ’∧’ is called outer product. r is the grade which
indicates the dimensionality of the blade. A linear combination of multiple r-
blades constructs a r-vector. Gr

p,q denotes the r-vectors in Gp,q . A linear combi-
nation of a set of elements with different grades is a multivector. For example,
if A is a multivector then it can be written as A =

∑
r 〈A〉r where 〈A〉r repre-

sents the grade r part of A. 〈A〉 or 〈A〉
0

represents the scalar part of A. The
part of A containing the grades in another multivector B is denoted as 〈A〉B .
AcB = Σr,s 〈〈A〉r 〈B〉s〉 is defined as the left contract inner product of A and B.
The outer product can be related with the inner product by the following equa-
tion: Ac(BcC) = (A ∧ B)cC. Reverse of X is defined as X̃ = xr ∧ . . . ∧ x2 ∧ x1.
The dual of a blade X is defined as X∗ = XcI−1, where the pseudo-scalar I is
an n-blade e1 ∧ . . .∧ en based the orthogonal basis ({ei : i = 1 . . . n}, ei · ej = 0
for i 6= j, ei · ei = 1) of R

n within Gn. The norm of a multivector A can be

calculated by |A| =

√∣∣∣
〈
ÃA

〉∣∣∣. If S is a linear operator, the outermorphism S

is defined by S(X) = S(x1) ∧ S(x2) . . . ∧ S(xr). The derivative of multivector
valued function F with respect to multivector X is denoted ∂XF . The following
result [11] is used later development,

∂X

〈
XY X−1Z

〉
=

〈
Y X−1Z

〉
X
−

〈
X−1ZXY X−1

〉
X

.

where X , Y , Z be multivectors where Y and Z are independent of X .

GA expresses a number of models of 3D Euclidean space (E3), such as 3D Eu-
clidean model, 4D homogeneous model and 5D conformal model. In this paper we
use the conformal model of geometric algebra (CGA) based on G4,1. G4,1 is based
on the orthonormal basis {e1, e2, e3, e+, e−} where e2

k = e2
+ = 1 and e2

− = −1. It
is usually more convenience to use the basis {eo, e1, e2, e3, e} as it has a better
geometric interpretation, where eo = e

−
−e+

2
is associated with the origin and

e = e− + e+ with the point at infinity. CGA allows a rich set of objects to be
represented directly as blades (e.g. point, line, plane, circle, sphere, tangents and
orientations) and allows a variety of operations to be represented as versors (e.g.



rotor, translator, motor). A vector is represented as v = v1e1 +v2e2 +v3e3 where
v1, v2, v3 are scalars. A point with location at the Euclidean point p ∈ G1

3 is
represented as p = p + eo + 1

2
p 2e ∈ G1

4,1. A line is represented by Λ = p ∧ v ∧ e

where p ∈ G1
4,1 is a point and v ∈ G1

3 is a direction vector. A line is normalised by

the mapping Λ → Λ
‖Λ‖ . A dual sphere centered at point p with radius ρ is given

by s = p− 1

2
ρ2e. A Euclidean motion is represented by a Motor M = exp

(
− 1

2
B

)

where B = B − te where B ∈ G2
3 and t ∈ G1

3 . A motor M has several properties
which are important for deriving the algorithm: (i) M ∈ G0,2,4

4,1 , (ii) MM̃ = 1,

(iv) if X ∈ Gk
4,1 then the transformation of X is given by MXM̃ ∈ Gk

4,1.

1.2 Problem Description

The targets are defined in a world coordinate system denoted CSW . Since the
geometric relationship between the individual cameras which comprise the cam-
era group is fixed and known, the camera group can be associated with a single
moving coordinate system denoted CSM .

An initial estimate of the positions of n targets {p0
i ∈ G1

4,1, i = 1 . . . n} is given
[10]. The initial pose of the camera group CSM is also given and represented
as a motor Mo. The camera group CSM is moved to m positions on the path
in CSW . The movement of CSM is tracked and represented by a sequence of
motors Mk, k = 1 . . .m. At each position in CSW , a set of images are captured
and the image points of the targets are extracted and converted to normalised
lines {Λk

i ∈ G3
4,1, i = 1 . . . , k = 1 . . .m} in CSM . These lines are processed to

refine the initial target position estimates. When CSM is moved to the next
position, the new estimate of target positions will be calculated based on the
previous estimate and a new set of lines. For m positions on the path, m iterations
of updates are performed.

The problem can now be summarised as: Given a group of lines in CSM , a
previous estimate of a set of points and a previous pose, we wish to update the
coordinates of these points in CSW .

2 Target Refinement Using Geometric Algebra

The solution to the problem is analysed and developed in this section. At the
beginning of the motion of the camera group we are given are initial positions
of targets and initial pose. A each position we are given a new set of lines
between optical centers and visible targets in CSM. The following steps need to
be done during camera motion: (i) pose estimation of CSM ; (ii) transformation
of corresponding lines from CSM into CSW ; (iii) update of target positions.



2.1 Pose estimation: Objective Function Versus Point-Line

Constraint

We estimate the pose of CSM by two strategies (i) non-linear optimisation of
an objective “error” function. (ii) root finding of a 4-blade point-line constraint

equation.

The distance d between a point p and a line Λ is defined [11]: d2(p, Λ) =
− 1

2
〈ΛpΛp〉. The total distance between all points and their associated lines is

defined as:

d2 =
∑

j

∑

i

αi

(
d2(pi, Λj)

)
(1)

where αi ∈ {0, 1} indicates whether the target is visible by any of the cameras.
pi is a target point and Λj is assumed to be a line which connects pi to different
cameras (i.e., their optical centers) in CSW . If the lines are given in CSM and
the pose of CSM is represented by M then Λ in Equation 1 is replaced by MΛM̃

as

d2(M) = −
1

2

∑

i

∑

j

αi

〈
(MΛjM̃)pi(MΛjM̃)pi

〉
. (2)

This objective function produces a scalar with a well-defined geometric meaning.

An alternative distance measure is expressed in an implicit way by the equation

p ∧ (MΛM̃) = 0. (3)

which indicates point p is on line Λ. We call this point-line constraint.

For all target points, the point-line constraint becomes

∑

i

αi


∑

j

pi ∧ (MΛjM̃)


 = 0 (4)

where αi ∈ {0, 1} indicates whether the target is visible by any of the cam-
eras. This point-line constraint expresses a geometric distance measure and is
commonly applied in computer vision, see [5, 8].

2.2 Two Strategies for Iterative Pose Estimation

The poses of CSM is estimated iteratively either by using the objective function
in Equation (1) or the point-line constraint in Equation (4). The two strate-
gies can be regarded as special cases of the following basic update: Mk =
f(Mk−1, ∆M) where ∆M is (“small”) multivector and f is some associated
function. The two strategies identified with different f and a different way of
estimating ∆M .



Quasi-Newton Optimisation We estimate poses of CSM based on the Quasi-
Newton optimization technique which is described in [6] (pages 413–447). We
use a non-linear minimisation routine (called ”dfpmin”) which implements the
Bryden-Fletcher-Goldfarb-Shanno (BFGS) update. The ”dfpmin” routine re-
quires an objective function and its gradient. The motor M representing the
pose of CSM is parameterised M = M(x) where x ∈ R

6. We use M(x) in
the objective function d2 in Equation 2 to express the objective function as
g(x) = d2(M(x)). The gradient [∇xg(x))]i = ∂xi

g(x) is given by ∂xi
M ∗ ∂Md2.

The derivative ∂Md2 is calculated as follows:

∂Md2 = −
1

2
∂M

〈
MΛM̃pMΛM̃p

〉

= −
1

2

(
2∂̇M

〈
ṀΛM̃pMΛM̃p

〉
+ 2∂̇M

〈
MΛ

˙̃
MpMΛM̃p

〉)

= −2
〈
ΛM̃pMΛM̃p

〉
M

(5)

where the operator 〈. . .〉M denotes the projection of a general multivector onto
the grades being present in multivector M . The routine ”dfpmin” returns the
estimated parameters x of the motor M(x).

Updating Poses Using the Point-Line Constraint This technique uses the
point-line constraint in Equation (3) for distance measurement. Given the previ-
ous motor Mk−1, Mk can be estimated as Mk = f(Mk−1, ∆Mk) = ∆MkMk−1.
We prefer updating a pose by ∆MM rather than by ∆M + M because ∆MM

preserves the properties of a motor while ∆M +M is not a motor anymore, and
needs to be projected back into a motor. Another reason is that ∆MM can ap-
ply the “law of indices” property of the exponential function for simplification.
The chained poses are also used in [12] for rotor interpolation.

Assume the previous pose M and line Λ are known. Let us update the current
pose ∆MM . The constraint becomes

(
∆̃Mp′∆M

)
∧ Λ = 0 (6)

where p′ = M̃pM represents a point in the previous CSM . ∆M needs to be
estimated.

In order to solve for ∆M , it is necessary to linearise the motor part (i.e.,

∆̃Mp′∆M) of the equation. The motion of the camera group is considered as
a general motion, which is formulated using an exponentiated bivector; ∆M is
expressed in the form

exp

(
−

∆B − ∆te

2

)

where ∆B is a bivector and ∆t is a vector.



The Euclidean transformation (i.e., ∆M) of a point p′ can be approximated as
follows:

∆̃Mp′∆M = exp

(
∆B − ∆te

2

)
p′ exp

(
−

∆B − ∆te

2

)

≈

(
1 +

∆B − ∆te

2

)
p′

(
1 −

∆B − ∆te

2

)

= p′ −
p′∆B

2
+

p′(∆te)

2
+

∆Bp′

2
−

(∆te)p′

2
−

(∆B − ∆te)p′(∆B − ∆te)

4
≈ p′ − p′c∆B + p′c(∆te) (7)

In Equation (7), two approximations are involved. The first approximation in-

volves truncating the Taylor series for exp(X) (i.e., exp(X) ≈ 1+X + X2

2!
+ · · · ).

The second approximation involves removing second order terms from the final
product and works well only when the motion ∆M is sufficiently small (say,
its rotation angle is smaller than 10 degree). This condition is satisfied when
the camera group moves “smoothly” along its path and is sampled sufficiently
frequently.

[8] describes the linearision of a transformation for a single point in a similar
way, but by different expressions. By substituting the approximated expression
of ∆̃Mp′∆M given by Equation (7) back into constraint Equation (6), the con-
straint becomes

p′ ∧ Λ + (p′c∆B) ∧ Λ − (p′c(∆te)) ∧ Λ = 0. (8)

with two unknowns: ∆B and ∆t. Therefore, ∆M is calculated by estimating ∆B

and ∆t. A set of point-line correspondences are required to solve for ∆B and
∆t in Equation 8. As any linear geometric algebra equation can be expressed in
matrix form, we solve the equation by solving a matrix equation. The matrix of
the system of linear equations takes the form

Ax = b. (9)

This can be solved by any standard technique such as LU decomposition. From
x we obtain ∆B and ∆t and hence ∆M . A calculated ∆M is just one of the
steps towards the desired motor and this process is repeated until convergence.
The first step towards the target motor is denoted by ∆M1. By repeating this
procedure, Mk2, . . . , Mkn are estimated, which converge towards Mk where n it-
erations are necessary. ∆M is calculated as ∆Mn . . . ∆M2∆M1. The convergence
rate depends on the “speed” of the expected transformation (i.e., the movement
of the cameras within the space where images are taken). We stop the approxi-
mation (iteration) if ‖∆Mi‖ ≤ ε (e.g., ε = 10−6), which indicates that no further
improvement can be achieved. Several iterations are sufficient to obtain the next
pose of the camera group.



2.3 Update Target Positions

With the estimated pose M of CSM , the given lines Λ in CSM can be trans-
formed to CSW by MΛM̃ .

Given all the lines in CSW for all poses, the current target positions can be
calculated by Lemma 1 [10],

Lemma 1. Let Λj ∈ G3
4,1, j ∈ J be a set of normalised lines and S(x) =∑

j∈J S(x, Λj) where S(x, Λj) = x − (xcΛj). If SI3 6= 0 then the point q ∈ G1
4,1

closest to all the lines in the least squares sense is given by the center of the

normalised dual sphere

s = −
S(I3)cI4

S(I3)cI3

(10)

where I3 = e1 ∧ e2 ∧ e3 and I4 = eo ∧ e1 ∧ e2 ∧ e3.

As the target positions are estimated in real time, an increasingly large number of
lines and frequently repeated calculations would require too much computational
resource. Rather than storing all the lines we update some summary variables
to implement the iterative algorithm.

In Lemma 1, S(I3) and S(I4) depend on all lines and vary with each update. As
S(I3) = S(e1) ∧ S(e2) ∧ S(e3) and S(I4) = S(eo) ∧ S(e1) ∧ S(e2) ∧ S(e3) it is
only necessary to store and and update S(eo), S(e1), S(e2) and S(e3).

During the iterations, the information of lines, needed for estimating the target
positions, are accumulated in S(eo), S(e1), S(e2) and S(e3). Recall S is defined
as

S(q) =

n∑

i=1

(q − (qcΛi)cΛ
−1
i ),

The current estimate of S(ej) can be updated based on previous Sk−1(ej) and
the new lines Λk1 . . . Λkm coming in at current time k as

Sk(ej) = Sk−1(ej) + S(ej , Λk), (11)

where

S(ej , Λk) =

m∑

i=1

(ej − (ejcΛki)cΛ
−1

ki ).

3 Experiments

Experiments were carried out on simulated data as well as on real data. Both
kinds of data allowed us to test the validity and performance of our algorithm
using point-line constraint and the objective function (Quasi-Newton optimisa-
tion) pose update. Noise was added to test the stability of the algorithm.



3.1 Simulated Data

In order to test and evaluate the iterative algorithm for estimating target po-
sitions, we generated a simulated line data. We have the ground truth target
position obtained using a total station. We generated a synthetic path for CSM

in a real scene (a lab at Industrial Research Ltd.). Synthetic lines we created
using this path and projecting the known targets through the real calibrated
camera group model. In order to test the noise resistance of the the algorithm,
we simulate the noisy data with different levels of noise. The stability of the
algorithm is investigated by adding Gaussian noise with deviation σ ∈ [0.2, 1.0]
pixels (see Figure 2). With the smallest noise, the errors of estimation decrease

Fig. 2. The RMS (Root Mean Square) of errors in targets vs update times with dif-
ferent levels of noise.

k θ1 − θ2 ‖t1 − t2‖

1 0.0001 0.0001

5 0.0002 0.0000

10 0.0000 0.0002

15 0.0001 0.0001

20 0.0000 0.0000

26 0.0004 0.0000

Table 1. Comparison of results obtained for the kth pose (rotation and translation).
θ1 and t1 are rotation angle (in degree) and translation vector (in millimeter) of the
pose using the quasi-Newton method; θ2 and t2 are those for our method.



smoothly by around 30%. With more noise, the error curve fluctuates within
a wider range. But the error is still reduced as the update process continues.
Even with the biggest noise, the target position is refined by around 20%. We
applied the simulated data to both algorithms. Both algorithms are validated by
a comparison of experimental results with ground truth, and also between both.
Table 1 shows comparisons for estimating 26 different poses of CSM along a 3D
path.

Comparisons showed that both pose update strategies achieve almost the same
results. The strategy using point-line constraint was nearly twice as fast as
Quasi-Newton strategy. The Quasi-Newton method proved more robust under
all considered conditions, and the point-line constraint method is limited to the
condition that differences between subsequent poses are small because no global
convergence protection was implemented.

3.2 Real Data

Real data sequences of images captured by the camera group as shown in Fig-
ure 1, right. The lab room is visualised using VRML software; see Figure 3.
Results for real data were not as good (for both pose update strategies) as for
simulated data.

We believe that this can be partially explained by small errors in the camera
group model. A better camera group calibration should reduce these errors.

During simulation the same camera group model is used for projection (targets
mapped to image points) and backprojection (image points mapped to lines)
and so any errors have no influence.

Estimated poses and target positions are also visualised in Figure 3. Comments
about performance comparisons between both estimation methods apply quali-
tatively for real data the same way as given for simulated data.

4 Conclusion

We developed an iterative algorithm for refining 3D target positions over a large
number of images. We acquire (from 2D images) lines pointing towards 3D tar-
gets. The use of the conformal model of geometric algebra (CGA) benefits the
development of the solution in both theory and practice. CGA provides a com-
pact symbolic representation of objects and their transformations. A variety of
objects (e.g., vectors, points, lines, spheres) and operations (e.g. motors) can
be represented in a single algebra which simplifies the implementation. The use
of a single motor element to represent a euclidean transformation (in stead of
separate rotation and translation), further simplified the implementation.

The iterative target update algorithm performed well over a wide variety of
conditions. Two iterative strategies are used for pose estimation. The point-line



Fig. 3. A model of the used lab space. Red points are estimated targets; the figure also
shows a few CSM coordinate systems along the path of the camera group.

constraint strategy proved to be more efficient than the Quasi-Newton optimi-
sation strategy, but less robust in stability.
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