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Abstract
Background subtraction is one of the main techniques to extract moving objects from background scenes. A
mixture of Gaussians is a common model for background subtraction. There are several parameters involved in
such a model. Obviously, the assignment of initial values to these parameters affects the accuracy of background
subtraction. In this paper, we analyze in detail the impact of different initial parameter values based on our model
implementation. Both indoor and outdoor video sequences have been tested. This parameter value analysis
provides suggestions how to choose suitable initial parameter values, assign reasonable thresholds which ensure
better results, while using a mixture of Gaussians model in video surveillance applications.
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1 Introduction

The mixture of Gaussians model (MOGS) became in-
creasingly popular in image sequence analysis due to
its robustness and stability [3][4]:

1. MOGS characterize static scenes.
A common example is the paper [9] by Stauffer
and Grimson which models each background
pixel’s distribution using a mixture of Gaussians
model; this model allowed (for example) to
monitor continuously a university campus. It
learns patterns of activities at a given site, then
monitors and classifies activities based on these
learned patterns. The system provides statistical
descriptions of typical activity patterns despite of
rainy, snowy, or sunny weather.

2. MOGS characterize object colors or object
trajectories.
For examples of applications of mixture of
Gaussians model for modelling object colors or
tracking of a moving object, see papers [6, 7] by
Raja et al. Gaussians mixture models were used
to estimate probability densities of the color of
human skin, clothing, and background. These
models were used to detect, track, and segment
people, faces, or hands [8].

Further mixture of Gaussians model applications are to
model noise distributions or shaded areas [2]. Paper
[2] presents a method for detecting moving object shad-
ows against a static background scene using a Gaussian
shadow model. The chosen shadow model is parame-
terized with several features including the orientation,
mean and center position of a shadow region. Using

a mixture of Gaussians model to characterize moving
objects also allows to deal with partial occlusions (but
often in a time-consuming way).

In this paper we use a mixture of Gaussians model for
modelling static background scenes. We present our
results of implementing a mixture of Gaussians model
based on both indoor and outdoor video sequences. A
detailed analysis of assigning different values to the pa-
rameters in a mixture of Gaussians model is presented.
These experimental results provide some guidelines for
the selection of different parameter values.

2 Related work

An important property of Gaussian distributions is that
they still remain Gaussian distributions after any linear
transformation. This property is one of the reasons
that the Gaussian models are very commonly used for
solving estimation problems [1]. Gaussian models are
widely used in adaptive systems. Especially in video
surveillance applications, normally a Gaussian distri-
bution is assumed in order to make the system adaptive
to uncontrolled changes like in illumination, outdoor
weather, color changes, and so on.

A Gaussian mixture is apdf (i.e., point distribution
function) consisting of a weighted sum of Gaussian
densities [1]. The Gaussian mixture model belongs
to a class of density models which combine several
functions as additive components.

Let Xt be the variable which represents the current
pixel in frameIt, K is the number of distributions, and
t represents time (i.e., the frame index),ωi,t is an esti-
mate of the weight of theith Gaussian in the mixture at
timet, η is a Gaussian probability density function,µi,t



is the mean value of theith Gaussian in the mixture at
time t, Σi,t is the covariance matrix of theith Gaussian
in the mixture at timet. These functions are combined
together to provide a combined density function, which
can be employed, for example, to model colors of a
dynamic scene or object. Probabilities are computed
for each color pixel while a model is constructed.

A Gaussian mixture model can be formulated in gen-
eral as follows:

P (Xt) =
K∑

i=1

ωi,tη(Xt;µi,t,Σi,t) (1)

where, obviously,

K∑
i=1

ωi,t = 1 (2)

The mean of such a mixture equals

µt =
K∑

i=1

ωi,tµi,t (3)

that is, the weighted sum of the means of the compo-
nent densities.

For example, papers [5, 6, 7] are all based on using the
Gaussian mixture model. In [7], a number of Gaussian
functions are taken as an approximation of a multi-
model distribution in color space, and conditional prob-
abilities are computed for all color pixels, probabil-
ity densities are estimated from the background colors,
and peoples’ clothing, heads, hands, and so forth. Two
assumptions are made, one is that a person of interest
in an image will form a spatially contiguous region in
the image plane. Another is that the set of colors for
either the person or the background are relatively dis-
tinct, the pixels belonging to the person may be treated
as a statistical distribution in the image plane.

An adaptive technique based on the Gaussian mixture
model is discussed in [9] for the tracker module of a
video surveillance system. This technique is to model
each background pixel as a mixture of Gaussians. The
Gaussians are evaluated using a simple heuristics to hy-
pothesize which are most likely to be part of the “back-
ground process”. Each pixel is modelled by a mixture
of K Gaussians as stated in Equation(1), whereK is
the number of distributions. Normally,K equals 3, 4
or 5 in practice. Every new pixel valueXt is checked
against the existingK Gaussian distributions until a
match is found. Based on the matching results, the
background is updated as follows:

Xt matchescomponenti if Xt is within 2.5 standard
deviation of this distribution (multiple matches are pos-
sible); in case of such a match, the parameters of theith
component are updated as follows:

ωi,t = (1 − α)ωi,t−1 + α (4)

µi,t = (1 − ρ)µi,t−1 + ρXt (5)

σ2
i,t = (1 − ρ)σ2

i,t−1 (6)

+ρ(Xt − µi,t)T(Xt − µi,t)

whereρ = αP(Xt|µi,t−1,Σi,t−1). α is the predefined
learning parameter,σ2

i,t is the variance of theith Gaus-
sian in the mixture at timet, µt is the mean of the pixel
at time t,Xt is (as above) the recent pixel at time t.

The parameters for all the unmatched distributions re-
main unchanged, what means that

µi,t = µi,t−1 and (7)

σ2
i,t = σ2

i,t−1 (8)

But the corresponding weightsωi,t need to be adjusted
using the formula:

ωi,t = (1 − α)ωi,t−1 (9)

If Xt matches none of theK distributions, then the
least probable distribution (i.e., the distribution with
the lowest weight) is replaced by a distribution where
the current value acts as its mean value, the variance
is chosen to be “high” and the a-priori weight is “low”
[9].

The background estimation problem is solved by
specifying the Gaussian distributions, which have
the most supporting evidence and the least variance.
Because the moving object has larger variance than a
background pixel, so in order to represent background
processes, first the Gaussians are ordered by the value
of ωi,t/‖Σi,t‖ in decreasing order. The background
distribution stays on top with the lowest variance by
applying a thresholdT , where

B = argminb

(∑b
i=1 ωi,t∑K
i=1 ωi,t

> T

)
(10)

(Note that the denominator is supposed to be equal to 1
in case of proper normalization.) All pixelsXt which
do not match any of these components will be marked
as foreground.

3 Analysis of parameter values

ThresholdT is to define the fraction between back-
ground distribution and foreground distribution. This
value is based on the background scene and the number
of components in the Gaussian mixture model. We can
obtain it from a testing procedure before starting the
real application system. A small value ofT (say,T =
0.1) will lead to a situation, in which not all background
distribution is covered; a largeT value (say,T = 0.9)
will lead to a situation in which the foreground distri-
bution is “merging” with the background distribution.
TheT value we used in our program equals 0.79. We
will analyze other parameter values in the following.



3.1 Number of components

K denotes the number of components in a Gaussian
mixture model. For simple indoor scenes, a small value
of K is sufficient, perhapsK = 2; for outdoor complex
scenes, a largerK is needed, usually 3, 4, or 5.

Figure 1 presents our indoor testing results without re-
moving noise. The values we assigned toK are from
1 to 5. Figure 1 illustrates our general experience that
adding more components in a Gaussian mixture model
does not help in improving the quality of the extracted
foreground region. On the contrary, the quality of the
extracted foreground region even decreased forK > 1.
This is because although more components can model
more distributions, indoor simple scenes are often not
characterized by complex changes, and updating com-
ponents of the model causes more noise. Figure 1 illus-
trates thatK = 1 or K = 2 appears here to be the best
choice.

Figure 1: Top left: an original image of a captured
sequence. Top right: result forK = 1. Middle left:
K = 2. Middle right: K = 3. Bottom left: K = 4.
Bottom right:K = 5.

In complex outdoor scenes, assigningK = 1 or K = 2
is typically insufficient. For example, we also tested
on a winter traffic sequence (uncommon to Auckland)
which involves bad weather, snow, and wind. In order
to control the movement of snow, waving leaves, and so
forth, we defined pixels with values within 4 times stan-
dard deviation to be background.K is set to 3. Figure
2 illustrates that, although most small movement of tree
leaves and snow are controlled, foreground regions of
walking people are missing. The extracted foreground
regions are not clear, because vehicles are not running
as fast as they normally would on a highway without

Figure 2: Top left: an original image of the sequence.
Top right: result forK = 3. Bottom left: K = 4.
Bottom right:K = 5.

snow. We increased the value ofK to 4 and 5. The
quality of the extracted regions improved.

3.2 Learning rate α

There are two learning rates defined in [9]: one is the
predefined learning rateα, the other is the calculated
learning rateρ. ρ is used as a second filter in [9]. As
we already summarized in [10], usingρ as a second
learning rate is not helpful. We tried usingρ with a
very small value, say, less than10−5. The increase
in computation time is costly. In general, assume that
the computation time of using one learning rateα is
m seconds; then the computation time of using two
learning ratesα andρ was greater than2m seconds.

Figure 3: Top left: an original image of the sequence.
Top right: result forα = 0.1. Bottom left: α = 0.01.
Bottom right:α = 0.5.

In conclusion, we used one learning rateα only. How
to assign a reasonable value toα will depend on the
given background scenery. A slowly changing back-
ground scene needs a small learning rate, a fast chang-



ing background scene needs a larger learning rate. The
valueα can be obtained from a testing sequence. Here
we present an example of using differentα values for
indoor testing data, see Figure 3. The results in Figure
3 are background estimation before removing noise.
Figure 3 illustrates that using valueα = 0.1 is the best
choice for the illustrated cases.

3.3 Assigning initial values

There is an initialization procedure when starting
the surveillance system. Assigning different initial
values in this procedure will affect the extraction of
foreground regions. There are two values that need
initial consideration: mean and standard deviation. We
will discuss them separately.

Regarding the mean value, from our testing sequences
we conclude that assigning either a very large value or
a very small value can be considered to be of bene-
fit. Figure 4 shows test results without removing noise.
Increasing the mean value from zero to 50 does not
impact the extraction of the walking person (as fore-
ground region) very much, and this was experienced
for various scenes. In the shown example, the result
improved for value 100, but this is not standard for
complex backgrounds, and results often were less satis-
factory for mean around 100, compared to means below
50. (There are possibilities that the foreground region
will be misclassified as the background region.) Large
mean values, such as 355 or -999, also proved to be
more robust.

Figure 4: Top left: an original image of the sequence.
Top right: result for mean= 0. Middle left: mean
= 50. Middle right: mean= 100. Bottom left: mean
= 355. Bottom right: mean= −999.

Figure 5: Top left : an original image of the sequence.
Top right: result for standard deviation= 0. Bottom
left: standard deviation= 100. Bottom right: standard
deviation= 350.

In the initialization procedure, we assign in general
a very large value to the standard deviation based
on our experiments. Figure 5 shows testing results
again for the standard sequence used in this paper
(without removing noise): for standard deviation
equals zero (as an extreme value), many background
pixels are misclassified as foreground region even for
this simple background. Standard deviation values
between 100 and 350 are recommended. In general,
using a small value of the standard deviation causes
that background pixels are too often classified as
foreground distribution.

There are other options to assign a value to the stan-
dard deviation. The least probable distribution will be
replaced if the current pixel does not match with any
of the existing distributions. The mean value will be
replaced using the current pixel value. The standard
deviation value needs to be large. Figure 6 shows test
results without removing noise. If assigning the stan-
dard deviation value to 2, then almost the whole scene
is classified as being foreground. This is because pix-
els with lower values of the standard deviation will be
easily classified into the foreground distribution. The
middle row of Figure 6 are results of assigning stan-
dard deviation values to 12 and 42, respectively. The
extracted foreground regions improve in these cases. If
assigning standard deviation values between 112 and
212, then part of the foreground region pixels are mis-
classified as background. This is because the newly
appearing pixels will be misclassified in the distribution
which has a high variance, taking too long to update the
variance value to its real value. Distributions with high
weighting values tend to be classified as background.

4 Conclusions

The Gaussian mixture models are a type of density
models which are composed of a number of



Figure 6: Top left: an original image of the sequence.
Top right: result for standard deviation= 2. Middle
left: standard deviation= 12. Middle right: standard
deviation= 42. Bottom left: standard deviation= 112.
Bottom right: standard deviation= 212.

components (functions). These functions can be
used to model the colors of objects or backgrounds
in a scene. This allows color-based object tracking
and background segmentation. Adaptive Gaussian
distributions are applicable for modelling changes,
especially when related to fast moving objects such as
vehicles on a highway.

The usage of Gaussian distributions has to be based on
the application context. It can provide analysis results
for long duration scenes (e.g., a surveillance system
that monitors a car park or a campus day and night).
It is also quite suitable for complex scenes or multi-
colored objects. For outdoor scenes, different weather
is taken into account. The Gaussian mixture model
allows us to adapt to weather changes, such as from
rain to snow, from cloudy to sunny, and so forth. Small
movements in scenes like waving trees can also be han-
dled. For simple indoor scenes or objects which ap-
pear to be monocolored, a small number of components
in a Gaussian mixture model is suggested, say one or
two components. For outdoor complex scenes, a larger
number of components in a Gaussian mixture model
is suggested, say starting with 3, but not extending 5
(very much). The maximum number is important if
care has to be taken about computation time and system
efficiency. In general, more components do have the
potential for further improvement.

Of course, how to assign suitable values to parameters
during an initialization period will also depend on spe-
cific applications. Values of parameters and other suit-

able initial values can be obtained during a pre-testing
procedure. The higher the number of components of
a mixture model, the better the results for a complex
scene, but the computation time increases. Assigning
a very small value to the learning rate will avoid that
a slowly moving and large object melts into the back-
ground, but will affect the system’s adaptation. One
needs to balance out all these conditions according to
different applications and environments.
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