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Abstract

Background subtraction is one of the main techniques to extract moving objects from background scenes. A
mixture of Gaussians is a common model for background subtraction. There are several parameters involved in
such a model. Obviously, the assignment of initial values to these parameters affects the accuracy of background
subtraction. In this paper, we analyze in detail the impact of different initial parameter values based on our model
implementation. Both indoor and outdoor video sequences have been tested. This parameter value analysis
provides suggestions how to choose suitable initial parameter values, assign reasonable thresholds which ensure
better results, while using a mixture of Gaussians model in video surveillance applications.
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1 Introduction a mixture of Gaussians model to characterize moving

_ ) ~ objects also allows to deal with partial occlusions (but
The mixture of Gaussians model (MOGS) became inyften in a time-consuming way).

creasingly popular in image sequence analysis due to ) )
its robustness and stability [3][4]: In this paper we use a mixture of Gaussians model for

modelling static background scenes. We present our
results of implementing a mixture of Gaussians model

based on both indoor and outdoor video sequences. A
detailed analysis of assigning different values to the pa-
rameters in a mixture of Gaussians model is presented.
These experimental results provide some guidelines for
the selection of different parameter values.

1. MOGS characterize static scenes.
A common example is the paper [9] by Stauffer
and Grimson which models each background
pixel's distribution using a mixture of Gaussians
model; this model allowed (for example) to
monitor continuously a university campus. It
learns patterns of activities at a given site, then
monitors and classifies activities based on thes®@ Related work
learned patterns. The system provides statistical
descriptions of typical activity patterns despite of An important property of Gaussian distributions is that
rainy, snowy, or sunny weather. they still remain Gaussian distributions after any linear
transformation. This property is one of the reasons
2. MOGS  characterize object colors or object that the Gaussian models are very commonly used for
trajectories. solving estimation problems [1]. Gaussian models are
For examples of applications of mixture of widely used in adaptive systems. Especially in video
Gaussians model for modelling object colors orsyryeillance applications, normally a Gaussian distri-
tracking of a moving object, see papers [6, 7] bypution is assumed in order to make the system adaptive

Raja et al. Gaussians mixture models were usegp uncontrolled changes like in illumination, outdoor
to estimate probability densities of the color of weather, color changes, and so on.

human skin, clothing, and background. These

models were used to detect, track, and segmerﬁ\ Gaussian mixture is g@df (i.e., point distribution
people, faces, or hands [8]. function) consisting of a weighted sum of Gaussian

densities [1]. The Gaussian mixture model belongs

. . o to a class of density models which combine several
Further mixture of Gaussians model applications are t?unctions as additive components

model noise distributions or shaded areas [2]. Paper
[2] presents a method for detecting moving object shadtet X; be the variable which represents the current
ows against a static background scene using a Gaussigixel in framel,, K is the number of distributions, and
shadow model. The chosen shadow model is parame-represents time (i.e., the frame index), is an esti-
terized with several features including the orientation,mate of the weight of théth Gaussian in the mixture at
mean and center position of a shadow region. Usingimet, n is a Gaussian probability density functiqn,:



is the mean value of th&h Gaussian in the mixture at wir = (1—a)wii—1+a (4)

Fimet, Yt is the cpvariance matrix 'of thigh Gaussi.an pie = (1= plpis_1+ pXy (5)
in the mixture at time¢. These functions are combined o2, = (1-p)o? ©6)
together to provide a combined density function, which Bt P)%it-1

can be employed, for example, to model colors of a +p(Xe — pie) T (Xe — 10

dynamic scene or object. Probabilities are computeqvherep — aP(X,

) - - |pi t—1, 2i1—1). o is the predefined
for each color pixel while a model is constructed. ’

learning parameteaﬁt is the variance of thé&h Gaus-
A Gaussian mixture model can be formulated in gen-Sian in the mixture at time, 1., is the mean of the pixel

eral as follows: at time t, X, is (as above) the recent pixel at time t.

K The parameters for all the unmatched distributions re-

P(X,) = Zwi (X ity St (1)  main unchanged, what means that

i=1 it = fig—1 and @)

where, obviously, ol = 0 ®)
K But the corresponding weighis ; need to be adjusted
dwie=1 (2)  using the formula:
=1

wu = (1 — a)wi7t_1 (9)
The mean of such a mixture equals
If X; matches none of th& distributions, then the
K least probable distribution (i.e., the distribution with
Mt = Z Wit it (3)  the lowest weight) is replaced by a distribution where
i=1 the current value acts as its mean value, the variance

that is, the weighted sum of the means of the compolrz]Chosen to be "high” and the a-priori weight is *low

nent densities.
The background estimation problem is solved by

For example, papers [5, 6, 7] are all based on using thgpecifying the Gaussian distributions, which have

Gau5_5|an mixture model. In [7], a n_umber of GaUSS'QQhe most supporting evidence and the least variance.
functions are taken as an approximation of a multi-gea;5e the moving object has larger variance than a
model distribution in color space, and conditional pmb'background pixel, so in order to represent background

abilities are computed forfall cohlor pixlfls, probatl>il— processes, first the Gaussians are ordered by the value
ity densities are estimated from the background co OrSps wit/| il in decreasing order. The background

and peOP'eS’ clothing, heads,_ hands, and so forth. TWistribution stays on top with the lowest variance by
assumptions are made, one is that a person of 'ntereﬁbplying a threshold™. where

in an image will form a spatially contiguous region in

the image plane. Another is that the set of colors for . . 25:1 Wit

either the person or the background are relatively dis- B = argmin, < K > T (10)

. . . i=1 ¥i,t

tinct, the pixels belonging to the person may be treated

as a statistical distribution in the image plane. (Note that the denominator is supposed to be equal to 1

An adaptive technique based on the Gaussian mixturld! ¢ase of proper normalization.) All pixels, which
model is discussed in [9] for the tracker module of ad© NOt match any of these components will be marked
video surveillance system. This technique is to modef*S foreground.

each background pixel as a mixture of Gaussians. The ]

Gaussians are evaluated using a simple heuristicsto hya  Analysis of parameter values

p?ctjzizlzi\;\ggg,arga@ﬁ sti)l(llg?a:;/ t:]ggeﬂzg Ef tgem?xaiﬁl:éThresholdT is to define the fraction between back-
9 P ' P y ground distribution and foreground distribution. This

of K Gaussians as stated in Equatidn, whereK is )
L value is based on the background scene and the number
the number of distributions. Normally$ equals 3, 4 . . .
of components in the Gaussian mixture model. We can

or 5 in practice. Every new pixel valu§, is checked o . .
. - . o ; obtain it from a testing procedure before starting the
against the existingd Gaussian distributions until a S
real application system. A small value Bf(say, T =

irani[ligr(lnsur:?juizcltpdz?jgisog)lfg\?vsmamhmg results, th%._l) yvill I_ead_ to a situation, in which not all background

' distribution is covered; a largg value (say,l’ = 0.9)
X, matchescomponent if X; is within 2.5 standard will lead to a situation in which the foreground distri-
deviation of this distribution (multiple matches are pos-bution is “merging” with the background distribution.
sible); in case of such a match, the parameters atthe The T value we used in our program equals 0.79. We
component are updated as follows: will analyze other parameter values in the following.



3.1 Number of components

K denotes the number of components in a Gaussian§
mixture model. For simple indoor scenes, a small value =
of K is sufficient, perhap& = 2; for outdoor complex
scenes, a largdx is needed, usually 3, 4, or 5.

Figure 1 presents our indoor testing results without re-
moving noise. The values we assignedifaare from
1to 5. Figure 1 illustrates our general experience that
adding more components in a Gaussian mixture model
does not help in improving the quality of the extracted
foreground region. On the contrary, the quality of the
extracted foreground region even decreasedifos 1.
This is because although more components can model
more distributions, indoor simple scenes are often not L
characterized by complex changes, and updating conE'gu“_e 2: Top left: an original image of the sequence.
ponents of the model causes more noise. Figure 1 illug OP Mght: result fork” = 3. Bottom left: X' = 4.
trates tha’’ — 1 or K — 2 appears here to be the best BOWOM right: & = 5.
choice. snow. We increased the value Afto 4 and 5. The

o quality of the extracted regions improved.

3.2 Learningrate «

There are two learning rates defined in [9]: one is the
predefined learning rate, the other is the calculated
learning ratep. p is used as a second filter in [9]. As
we already summarized in [10], usingas a second
learning rate is not helpful. We tried usingwith a
very small value, say, less thah—>. The increase

in computation time is costly. In general, assume that
the computation time of using one learning rates

m seconds; then the computation time of using two
learning ratesy and p was greater tha@m seconds.

—

Figure 1: Top left: an original image of a captured b
sequence. Top right: result fdf = 1. Middle left:
K = 2. Middle right: K = 3. Bottom left: K = 4.
Bottom right: K = 5.

In complex outdoor scenes, assignifig= 1 or K = 2

is typically insufficient. For example, we also tested
on a winter traffic sequence (uncommon to Auckland)
which involves bad weather, snow, and wind. In order
to control the movement of snow, waving leaves, and sd-igure 3: Top left: an original image of the sequence.
forth, we defined pixels with values within 4 times stan- Top right: result fora = 0.1. Bottom left: & = 0.01.

dard deviation to be background is set to 3. Figure Bottom right: v = 0.5.

2 illustrates that, although most small movement of tree

leaves and snow are controlled, foreground regions ofn conclusion, we used one learning rat®nly. How
walking people are missing. The extracted foregroundo assign a reasonable valuedowill depend on the
regions are not clear, because vehicles are not runningjven background scenery. A slowly changing back-
as fast as they normally would on a highway withoutground scene needs a small learning rate, a fast chang-



ing background scene needs a larger learning rate. Th
valuea can be obtained from a testing sequence. Here
we present an example of using differentalues for
indoor testing data, see Figure 3. The results in Figure
3 are background estimation before removing noise.
Figure 3 illustrates that using value= 0.1 is the best
choice for the illustrated cases.

3.3 Assigning initial values

There is an initialization procedure when starting
the surveillance system. Assigning different initial
values in this procedure will affect the extraction of
foreground regions. There are two values that need

initial consideration: mean and standard deviation. WGFigure 5: Top left : an original image of the sequence.
will discuss them separately. Top right: result for standard deviatica 0. Bottom

Regarding the mean Va|ue, from our testing Sequencégft-st‘andard deviatior= 100. Bottom rlght standard
we conclude that assigning either a very large value ofleviation= 350.

a very small value can be considered to be of benem the initialization procedure, we assign in general

fit. Figure 4 shows test results without remOVing nOise.a very |arge value to the standard deviation based
Increasing the mean value from zero to 50 does nogn our experiments. Figure 5 shows testing results
impact the extraction of the walking person (as fore-again for the standard sequence used in this paper
ground region) very much, and this was experienceqwithout removing noise): for standard deviation

for various scenes. In the shown example, the resu@quab zero (as an extreme value), many background
improved for value 100, but this is not standard forpixels are misclassified as foreground region even for
complex backgrounds, and results often were less satighig simple background. Standard deviation values
factory for mean around 100, compared to means belowetween 100 and 350 are recommended. In general,
50. (There are possibilities that the foreground regionysing a small value of the standard deviation causes

will be misclassified as the background region.) Largehat background pixels are too often classified as
mean values, such as 355 or -999, also proved to bgyreground distribution.

more robust. . .
There are other options to assign a value to the stan-

dard deviation. The least probable distribution will be
replaced if the current pixel does not match with any
of the existing distributions. The mean value will be
replaced using the current pixel value. The standard
deviation value needs to be large. Figure 6 shows test
results without removing noise. If assigning the stan-
dard deviation value to 2, then almost the whole scene
is classified as being foreground. This is because pix-
els with lower values of the standard deviation will be
easily classified into the foreground distribution. The
middle row of Figure 6 are results of assigning stan-
dard deviation values to 12 and 42, respectively. The
extracted foreground regions improve in these cases. If
assigning standard deviation values between 112 and
212, then part of the foreground region pixels are mis-
classified as background. This is because the newly
appearing pixels will be misclassified in the distribution
which has a high variance, taking too long to update the
variance value to its real value. Distributions with high
weighting values tend to be classified as background.

Figure 4. Top left: an original image of the sequence,  conclusions

Top right; result for mear= 0. Middle left: mean

= 50. Middle right: mean= 100. Bottom left: mean The Gaussian mixture models are a type of density
= 355. Bottom right: mean= —999. models which are composed of a number of



able initial values can be obtained during a pre-testing
procedure. The higher the number of components of
a mixture model, the better the results for a complex
scene, but the computation time increases. Assigning
a very small value to the learning rate will avoid that
a slowly moving and large object melts into the back-
ground, but will affect the system’s adaptation. One
needs to balance out all these conditions according to

Figure 6: Top left: an original image of the sequence.
Top right: result for standard deviatioa 2. Middle
left: standard deviatioa- 12. Middle right: standard
deviation= 42. Bottom left: standard deviatioa 112.
Bottom right: standard deviatioa 212.

components (functions). These functions can be
used to model the colors of objects or backgrounds
in a scene. This allows color-based object tracking
and background segmentation. Adaptive Gaussian
distributions are applicable for modelling changes,
especially when related to fast moving objects such as
vehicles on a highway.
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The usage of Gaussian distributions has to be based on [g]

the application context. It can provide analysis results
for long duration scenes (e.g., a surveillance system
that monitors a car park or a campus day and night).
It is also quite suitable for complex scenes or multi-
colored objects. For outdoor scenes, different weather
is taken into account. The Gaussian mixture model
allows us to adapt to weather changes, such as from
rain to snow, from cloudy to sunny, and so forth. Small
movements in scenes like waving trees can also be han-
dled. For simple indoor scenes or objects which ap-
pear to be monocolored, a small number of components
in a Gaussian mixture model is suggested, say one or
two components. For outdoor complex scenes, a larger
number of components in a Gaussian mixture model
is suggested, say starting with 3, but not extending 5
(very much). The maximum number is important if
care has to be taken about computation time and system
efficiency. In general, more components do have the
potential for further improvement.

Of course, how to assign suitable values to parameters
during an initialization period will also depend on spe-
cific applications. Values of parameters and other suit-

[7]

[8]
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different applications and environments.
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