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Abstract

A quasiperiod of a word or an infinite string is a word which covers ev-
ery part of the string. A word or an infinite string is referred to as quasiperi-
odic if it has a quasiperiod. It is obvious that a quasiperiodic infinite string
cannot have every word as a subword (factor). Therefore, the question
arises how large the set of subwords of a quasiperiodic infinite string can
be [Mar04].

Here we show that on the one hand the maximal subword complexity
of quasiperiodic infinite strings and on the other hand the size of the sets
of maximally complex quasiperiodic infinite strings both are intimately
related to the smallest Pisot number tP (also known as plastic constant).

We provide an exact estimate on the maximal subword complexity for
quasiperiodic infinite words.
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In his tutorial [Mar04] Solomon Marcus discussed some open questions on
quasiperiodic infinite words. Soon after its publication Levé and Richomme
[LR04] gave answers on some of the open problems. In connection with Mar-
cus’ Question 2 they presented a quasiperiodic infinite word (with quasiperiod
aba) of exponential subword complexity, and they posed the new question of
what is the maximal complexity of a quasiperiodic infinite word.

In a recent paper [PS10] we estimated the maximal asymptotic (in the sense
of [Sta12]) subword complexity of quasiperiodic infinite words. More precisely,
it is shown in [PS10] that every quasiperiodic infinite word ξhas at most f (ξ,n) ≤
O(1) · t n

P factors (subwords) of length n, where tP is the smallest Pisot num-
ber, that is, the unique positive root of the polynomial t 3 − t −1. Moreover, the
general construction of [Sta93, Section 5] yields quasiperiodic infinite words
achieving this bound. In fact, also Levé’s and Richomme’s [LR04] example meets
this upper bound.

Surprisingly, it turned out in [PS10] that there are also infinite words meet-
ing this bound having aabaa—a different word—as quasiperiod. Moreover, it
was shown that all other quasiperiods yield infinite words asymptotically below
this bound.

The aim of this paper is to compare these two maximal quasiperiods aba
and aabaa in order to obtain an answer which one of them yields infinite words
of greater complexity. Here we compare the quasiperiods aba and aabaa in two
respects.

1. Which one of the words aba or aabaa generates the larger set (ω-language)
of infinite words having q as quasiperiod, and
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2. which one of the words aba or aabaa generates an ω-word ξq having a
maximal subword function f (ξq ,n)?

As a measure of ω-languages in Item 1 we use the Hausdorff dimension and
Hausdorff measure of a subset of the Cantor space of infinite words (ω-words).
We obtain that, when neglecting the fixed prefix q of quasiperiodic ω-words
having this quasiperiod q , for both words, the sets of ω-words having quasi-
period aba or aabaa have the same Hausdorff dimension log tP and the same
Hausdorff measure tp , both values showing the close connection to the small-
est Pisot number.

A difference for these quasiperiods appears when we consider the constant
in the bound on f (ξ,n). It turns out that the bounding constants caba and
caabaa satisfy caba < caabaa, thus aabaa is the quasiperiod having the maximally
achievable subword complexity for quasiperiodic ω-words.

1 Notation

In this section we introduce the notation used throughout the paper. By N =
{0,1,2, . . .} we denote the set of natural numbers. Let X be an alphabet of cardi-
nality |X | = r ≥ 2. By X ∗ we denote the set of finite words on X , including the
empty word e, and Xω is the set of infinite strings (ω-words) over X . Subsets of
X ∗ will be referred to as languages and subsets of Xω as ω-languages.

For w ∈ X ∗ and η ∈ X ∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets L ⊆ X ∗ and B ⊆ X ∗∪Xω. For
a language L let L∗ :=⋃

i∈NLi , and by Lω := {w1 · · ·wi · · · : wi ∈ L \ {e}} we denote
the set of infinite strings formed by concatenating words in L. Furthermore |w |
is the length of the word w ∈ X ∗ and pref(B) is the set of all finite prefixes of
strings in B ⊆ X ∗∪Xω. We shall abbreviate w ∈ pref(η) (η ∈ X ∗∪Xω) by w v η.

We denote by B/w := {η : w ·η ∈ B} the left derivative of the set B ⊆ X ∗∪
Xω. As usual, a language L ⊆ X ∗ is regular provided it is accepted by a finite
automaton. An equivalent condition is that its set of left derivatives {L/w : w ∈
X ∗} is finite.

The sets of infixes of B or η are infix(B) := ⋃
w∈X ∗

pref(B/w) and infix(η) :=⋃
w∈X ∗

pref({η}/w), respectively. Similarly suff(B) := ⋃
w∈X ∗

B/w is the set of suf-

fixes of elements of B . In the sequel we assume the reader to be familiar with
basic facts of language theory.
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2 Quasiperiodicity

2.1 General properties

A finite or infinite word η ∈ X ∗∪ Xω is referred to as quasiperiodic with quasi-
period q ∈ X ∗ \ {e} provided for every j < |η| ∈N∪ {∞} there is a prefix u j v η of
length j −|q | < |u j | ≤ j such that u j ·q v η, that is, for every w v η the relation
u|w | @ w v u|w | ·q is valid (cf. [LR04, Mar04]).

Next we introduce the finite language Pq which generates the set of quasi-
periodic ω-words having quasiperiod q . We set

Pq := {v : e @ v v q @ v ·q} . (1)

Corollary 4 of [PS10] yields the following characterisation of ω-words having
quasiperiod.

ξ has quasiperiod q if and only if pref(ξ) ⊆ pref(P∗
q ) (2)

We list some further properties of the set of quasiperiodic ω-words which will
be useful in the sequel.

Proposition 2.1
Pω

q = {ξ : pref(ξ) ⊆ pref(P∗
q )} (3)

There is a W ⊆ infix(P |q|
q ) such that

Pω
q = q · (W ·q)ω . (4)

Proof. Eq. (3) is Eq. (4) of [PS10].
For the proof of the second identity observe that every word in P |q|

q starts

with the quasiperiod q . Then the assertion follows from the identity Pω
q = (P k

q )ω,
k ≥ 1, Eq. (3) and the rotation property (V ·W )ω =V · (W ·V )ω. o

Proposition 2.2 If F = {ξ : ξ ∈ Xω∧pref(ξ) ⊆ pref(F )} and its set of left deriva-
tives {F /w : w ∈ X ∗} is finite then {suff(F )/w : w ∈ X ∗} is also finite and suff(F ) =
{ξ : ξ ∈ Xω∧pref(ξ) ⊆ infix(F )}.

The assumption that {F /w : w ∈ X ∗} be finite is essential, consider e.g. F =
{aω}∪⋃

n∈N anb{a,b}n ·aω. Here infix(F ) = {a,b}∗ but suff(F ) 6= {a,b}ω.
Proof. Let V ⊆ X ∗ be finite such that {F /w : w ∈ X ∗} = {F /w : w ∈ V }. Then

{suff(F )/w : w ∈ X ∗} ⊆ {
⋃

v∈V ′ F /v : V ′ ⊆V } is obviously finite.
Concerning the second assertion, the inclusion “⊆” follows from pref(ξ/w) ⊆

infix(F ) whenever w ∈ X ∗ and ξ ∈ F .



Quasiperiods, Subword Complexity and Pisot Numbers 5

Let now pref(ζ) ⊆ infix(F ). Then for every v ∈ pref(ζ) there are wv and ζv

such that v ·ζv ∈ F /wv . Since the set {F /w : w ∈ X ∗} is finite, there are infinitely
many v ∈ pref(ζ) such that F /wv = F /w for some w ∈ pref(F ). Consider the
infinite set Wζ,w := {v : v ∈ pref(ζ)∧F /wv = F /w}. Then pref(Wζ,w ) = pref(ζ)
and, since F = {ξ : pref(ξ) ⊆ pref(F )}, we obtain w ·ζ ∈ F . o

3 Hausdorff Dimension and Hausdorff Measure

3.1 General properties

First, we shall briefly describe the basic formulae needed for the definition of
Hausdorff measure and Hausdorff dimension of a subset of Xω. For more back-
ground and motivation see Section 1 of [MS94].

In the setting of languages and ω-languages this can be read as follows (see
[MS94, Sta93]). For F ⊆ Xω, r = |X | ≥ 2 and 0 ≤α≤ 1 the equation

ILα(F ) := lim
l→∞

inf
{ ∑

w∈W
r−α·|w | : F ⊆W ·Xω∧∀w(w ∈W ⇒|w | ≥ l )

}
(5)

defines the α-dimensional metric outer measure on Xω. The measure ILα sat-
isfies the following properties (see [MS94, Sta93]).

Proposition 3.1 Let F ⊆ Xω, V ⊆ X ∗ and α ∈ [0,1].

1. If ILα(F ) <∞ then ILα+ε(F ) = 0 for all ε> 0.

2. It holds the scaling property ILα(w ·F ) = r−α·|w | · ILα(F ).

Then the Hausdorff dimension of F is defined as

dimF := sup{α :α= 0∨ ILα(F ) =∞} = inf{α : ILα(F ) = 0} .

It should be mentioned that dim is countably stable and invariant under scal-
ing, that is, for Fi ⊆ Xω we have

dim
⋃

i∈NFi = sup{dimFi : i ∈N} and dim w ·F0 = dimF0 . (6)

We have the following relations between languages of finite words and the Haus-
dorff dimension (cf. [MS94, Sta93]).

Proposition 3.2 1. Let V ⊆ X ∗. Then dimV ω = limsup
n→∞

log|X | |V ∩X n |
n .
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2. If F = {ξ : pref(ξ) ⊆ pref(F )} and pref(F ) is a regular language then dimF =
lim

n→∞
log|X | |pref(F )∩X n |

n .

From Eq. (2) and Proposition 2.1 we see that the sets of ω-words having quasi-
period q have a special shape. With respect to Hausdorff measure ω-languages
having this shape satisfy the following properties.

Lemma 3.3 Let V ⊆ X ∗ and dimV ω =α. Then

1. ILα(V ω) ≤ 1, and

2. if V is a regular language then ILα(V ω) > 0.

3. If F = {ξ : ξ ∈ Xω∧pref(ξ) ⊆ pref(F )}, MF = {F /w : w ∈ pref(F )} is finite
and α= dimF then ILα(F ) ≥ |X |−α·(|MF |−1).

3.2 The Hausdorff measure of Pω
aba and Pω

aabaa

The Hausdorff dimension of Pω
aba and Pω

aabaacan be easily estimated from Propo-
sition 3.2 and [PS10, Section 4] as log|X | tP where tP the smallest Pisot number,
that is, the (single) positive root of the polynomial t 3 − t −1.

What concerns the Hausdorff measure of Pω
aba consider the (partial) au-

tomaton in Fig. 1 accepting pref(Pω
aba). It has four states z1, z2, z3, z4 and which

correspond to the left derivatives pref(Pω
aba), pref(Pω

aba)/a, pref(Pω
aba)/ab and

pref(Pω
aba)/aba, respectively.

����
��
��

���� ���� ����
-

z z

yy
z1 z2 z3 z4

a

b a

b
a

Figure 1: Deterministic automaton accepting Pω
aba

In view of Eq. (3) the identity pref(Pω
aba)/w = pref(Pω

aba)/v holds if and only
if Pω

aba/w = Pω
aba/v , and thus from Lemma 3.3.3 we infer ILα(Pω

aba) ≥ t−3
P . On the

other hand, Eq. (4), Proposition 3.1.2 and Lemma 3.3.1 imply ILα(Pω
aabaa) ≤ t−5

P .
This estimate, however, does not seem to represent the ‘real’ size of the sets

Pω
aba and Pω

aabaa: All ω-words in Pω
aba start with aba and all ω-words in Pω

aabaa
start with the longer word aabaa. Thus, in view of Proposition 3.1.2, these pre-
fixes contribute the factors t−3

P and t−5
P , respectively, to the Hausdorff measure.
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In order to eliminate the influence of the prefixes we consider instead the
sets suff(Pω

q ) of all tails (suffixes) of ω-words in Pω
q . In view of Eq. (6) we have

dimsuff(F ) = dim
⋃

w∈X ∗ F /w = dimF , that is dimsuff(Pω
q ) = dimPω

q . The Haus-
dorff measures ILα(suff(Pω

aba)) and ILα(suff(Pω
aabaa)), α= log|X | tP , are obtained

using the procedure of [MS94, Section 3]:
To this end we consider for F = suff(Pω

q ) the adjacency matrix Aq : Let {F /w :

w ∈ pref(F )} = {F1 = F,F2, . . . ,Fk } (without repetitions) and Aq = (ai , j )k
i , j=1 where

ai , j := |{x : x ∈ X ∧Fi /x = F j }|.
In view of Proposition 2.2 this adjacency matrix is the adjacency matrix of

the minimal partial automaton Bq accepting the language infix(Pω
q ). The au-

tomata Baba and Baabaa are depicted in Table 1.

Baba W W /aa W /b W /a

a W /a W /a W /aa
b W /b W /b W /b

Baabaa V V /a V /a4 V /b V /ba V /aa V /a3

a V /a V /aa V /ba V /aa V /a3 V /a4

b V /b V /b V /b V /b V /b

Table 1: Automata Baba and Baabaa accepting W = infix(P∗
aba) and V =

infix(P∗
aabaa), respectively

We obtain the adjacency matrices

Aaba =


0 0 1 1
0 0 1 0
0 0 0 1
0 1 1 0

 and Aaabaa =



0 1 0 1 0 0 0
0 0 0 1 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 1 0 0 0


(7)

Here the boldface entries correspond to the terminal strongly connected com-
ponents (irreducible square submatrices) (cf. [MS94, Section 3]). These subma-
trices have the Frobenius eigenvalue (eigenvalue of maximum modulus) tP > 1.

Then, for q ∈ {aba, aabaa}, the value ILα(suff(Pω
q )) is the topmost entry of

a non-negative eigenvector ~aq of Aq corresponding to the eigenvalue |X |α =
tP having the maximum entry 1 at positions corresponding to the terminal
strongly connected component. This yields

~a>
aba = (tp , t−2

p , t 1
p ,1) and ~a>

aabaa = (tp ,1+ t−2
p , t−3

p , t−2
p , t 1

p ,1, t−1
p ) (8)

and the value ILα(suff(Pω
q )) = tP , for both q = aba and q = aabaa.
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As a consequence, if we neglect the influence of the prefixes, with respect
to Hausdorff measure both maximal quasiperiods have the same behaviour. It
is interesting to state that in view of dimsuff(Pω

q ) = log|X | tp and ILα(suff(Pω
q )) =

tP , q ∈ {aba,aabaa}, these values are closely related to the smallest Pisot num-
ber.

4 Subword Complexity

4.1 The subword complexity of quasiperiodicω-words

In this section we investigate upper bounds on the subword complexity func-
tion f (ξ,n) for quasiperiodic ω-words. If ξ ∈ Xω is quasiperiodic with quasi-
period q then Eq. (2) shows infix(ξ) ⊆ infix(P∗

q ). Thus

f (ξ,n) ≤ |infix(P∗
q )∩X n | for ξ ∈ Pω

q . (9)

Similarly to the proof of Proposition 5.5 of [Sta93] let ξq := ∏
v∈P∗

q \{e} v where
the order of the factors v ∈ P∗

q \ {e} is an arbitrary but fixed well-order, e.g. the
length-lexicographical order. This implies infix(ξ) = infix(P∗

q ). Consequently,
the tight upper bound on the subword complexity of quasiperiodic ω-words
having a certain quasiperiod q is fq (n) := |infix(P∗

q )∩X n |.
The following facts are known from the theory of formal power series (cf.

[BP85, SS78]). As infix(P∗
q ) is a regular language the power series

∑
n∈N fq (n) · t n

is a rational series and, therefore, fq satisfies a recurrence relation

fq (n +k) =∑k−1
i=0 mi · fq (n + i ) (10)

with integer coefficients mi ∈ Z. Thus fq (n) = ∑k ′−1
i=0 gi (n) ·λn

i where k ′ ≤ k, λi

are pairwise distinct roots of the polynomial χq (t ) = t n −∑k−1
i=0 ai · t i and gi are

polynomials of degree not larger than k.
The growth of fq (n) mainly depends on the (positive) root λq of largest

modulus among theλi and the corresponding polynomial gi . Using Corollary 4
of [Sta85] (see also [PS10, Eq. (8)]) one can show—without explicitly inspecting
the polynomials χq (t )—that the polynomial gi corresponding to the maximal
root λq is constant.

Lemma 4.1 ([PS10, Lemma 16]) Let q ∈ X ∗\{e}. Then there are constants cq,1,cq,2 >
0 and a λq ≥ 1 such that

cq,1 ·λn
q ≤ |infix(P∗

q )∩X n | ≤ cq,2 ·λn
q .
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Next we are looking for those quasiperiods q which yield the largest value of λq

among all quasiperiods.

Lemma 4.2 ([PS10, Lemma 18]) Let X be an arbitrary alphabet containing at
least the two letters a,b. Then the maximal value λq is obtained for q = aba or
aabaa.
This value is λaba = λaabaa = tP where tP is the positive root of the polynomial
t 3 − t −1.

Remark 4.3 The bound in Lemma 4.2 is independent of the size of the alphabet
X .

4.2 Quasiperiods of maximal subword complexity

We have seen that the quasiperiods aba and aabaa yield quasiperiodic ω-
words of maximal asymptotic subword complexity. In this section we inves-
tigate which one of these two quasiperiods yields ω-words ξ ∈ {a,b}ω of larger
subword complexity f (ξ,n), that is, forces the larger constant cq,2 where
q ∈ {aba, aabaa} in the upper bound of Lemma 4.1.

From the deterministic automata Baba and Baabaa (see Table 1) accept-
ing the languages infix(P∗

aba) and infix(P∗
aabaa), respectively, we obtain the adja-

cency matrices Aaba and Aaabaa of Eq. (7) and their characteristic polynomials

χaba(t ) = t · (t 3 − t −1) and
χaabaa(t ) = t 2 · (t 3 − t −1) · (t 2 +1) .

(11)

So both sequences (|infix(P∗
aba)∩ X n |)n∈N and (|infix(P∗

aabaa)∩ X n |)n∈N satisfy
the recurrence relation fq (n+7) = fq (n+4)+ fq (n+3)+ fq (n+2) with the initial
values (1,2,3,4,5,7,9) for q = aba (see also [LR04]) and (1,2,3,4, ,6,8,10) for q =
aabaa which shows already that the growth of (|infix(P∗

aabaa)∩ X n |)n∈N is the
larger one.

In order to calculate the growth of ( fq (n))n∈N q ∈ {aba,aabaa} more accu-
rately, we observe the following. The characteristic polynomialsχaba andχaabaa

have as root of maximal modulus the smallest Pisot number tP > 1. The other
roots satisfy |t | < 1 or, additionally, t = ±p−1 in case of χaabaa. Thus tP > 1
determines the growth of ( fq (n))n∈N.

Using the standard methods of recurrent relations one obtains for a quasiperi-
odicω-word ξwith quasiperiod aba the largest achievable subword complexity

f (ξ,n) = INT(
2t 2

P+3tP+2
2tP+3 · t n

P ), for large n, where INT(α) is the integer closest to
the real α.
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Similarly, for a quasiperiodic ω-word η with quasiperiod aabaa the largest

achievable subword complexity satisfies f (η,n) = INT(
13t 2

P+16tP+9
10tP+15 · t n

P ), for large

n. Observe that for the constants it holds
2t 2

P+3tP+2
2tP+3 < 13t 2

P+16tP+9
10tP+15 .
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A Calculating the Constants

In the appendix we give a derivation of how to calculate the constants
2t 2

P+3tP+2
2tP+3

and
13t 2

P+16tP+9
10tP+15 in the expansion of f (ξ,n) and f (η,n). To this end we start

from the deterministic automata Baba and Baabaa accepting W = infix(P∗
aba)

and V = infix(P∗
aabaa), respectively (see Table 1).

From the automata Baba and Baabaa we calculate the adjacency matrices
Aaba and Aaabaa (see Eq. (7)). For these we have faba(n) := infix(W ) ∩ X n =
e0 ·A n

aba ·e and faabaa(n) := infix(V )∩X n = e0 ·A n
aabaa ·e where e0 is the row vector

(1,0, . . . ,0) and e is the all ones column vector, both being chosen of appropriate
length.

Then faba(n) and faabaa(n) fulfil recurrence relation faba(n + 4) = ∑3
j=0χ j ·

faba(n + j ) and faabaa(n + 7) = ∑6
j=0χ

′
j · faabaa(n + j ) where t 4 −∑3

j=0χ j · t j =
χaba(t ) and t 7−∑6

j=0χ
′
j · t j =χaabaa(t ) are the characteristic polynomials of the

matrices Aaba and Aaabaa, respectively (cf. Eq. (11)).
The non-zero roots of the polynomials χaba(t ) and χaabaa(t ) are the roots

tP , t1, t2 of t 3−t−1 and, for χaabaa(t ) additionally, i and −i where i=
√

−1 is the
imaginary unit. The roots tP , t1, t2 satisfy the relations tP+t1+t2 = 0, tP ·t1·t2 = 1,
tP > 1 and |t1| = |t2| < 1.

Since both characteristic polynomials have only simple non-zero roots, faba(n)
and faabaa(n) satisfy the following identities (cf. [BR88, GKP94, SS78]).

faba(n) = γ1 · t n
P +γ2 · t n

1 +γ3 · t n
2 , n ≥ 1 and (12)

faabaa(n) = γ′1 · t n
P +γ′2 · t n

1 +γ′3 · t n
2 +γ′4 · in +γ′5 · (−i)n , n ≥ 2. (13)

For the function faabaa(n) the following initial conditions hold.

faabaa(2) = 3 = γ′1 · t 2
P +γ′2 · t 2

1 +γ′3 · t 2
2 +γ′4 · i2 +γ′5 · (−i)2

faabaa(3) = 4 = γ′1 · t 3
P +γ′2 · t 3

1 +γ′3 · t 3
2 +γ′4 · i3 +γ′5 · (−i)3

faabaa(4) = 6 = γ′1 · t 4
P +γ′2 · t 4

1 +γ′3 · t 4
2 +γ′4 · i4 +γ′5 · (−i)4

faabaa(5) = 8 = γ′1 · t 5
P +γ′2 · t 5

1 +γ′3 · t 5
2 +γ′4 · i5 +γ′5 · (−i)5

faabaa(6) = 10 = γ′1 · t 6
P +γ′2 · t 6

1 +γ′3 · t 6
2 +γ′4 · i6 +γ′5 · (−i)6

(14)



12 R. Polley and L. Staiger

Then faabaa(5)− faabaa(3)− faabaa(2) = 1 and faabaa(6)− faabaa(4)− faabaa(3) = 0
in view of t 3 = t +1 for t ∈ {tP , t1, t2} imply

2 · i · (γ′4 −γ′5)+ (γ′4 +γ′5) = 1 , and

i · (γ′4 −γ′5)−2 · (γ′4 +γ′5) = 0
(15)

which in turn yields γ′4 +γ′5 = 1
5 and γ′4 −γ′5 = −2·i

5 . Thus we may reduce the
numbers of equations in Eq. (14) to three.

faabaa(2) = 3 = γ′1 · t 2
P +γ′2 · t 2

1 +γ′3 · t 2
2 −1/5

faabaa(3) = 4 = γ′1 · t 3
P +γ′2 · t 3

1 +γ′3 · t 3
2 −2/5

faabaa(4) = 6 = γ′1 · t 4
P +γ′2 · t 4

1 +γ′3 · t 4
2 +1/5

(16)

And for faba(n) we obtain the following three equations from the initial condi-
tions.

faba(1) = 2 = γ1 · tP +γ2 · t1 +γ3 · t2

faba(2) = 3 = γ1 · t 2
P +γ2 · t 2

1 +γ3 · t 2
2

faba(3) = 4 = γ1 · t 3
P +γ2 · t 3

1 +γ3 · t 3
2

(17)

To solve these for values of γ1 and γ′1, respectively, we use Cramer’s rule. To this
end we consider the following determinant and use the identities t1 + t2 =−tP ,
t1 · t2 = t−1

P , which hold for the roots tP , t1, t2 of t 3 − t −1.∣∣∣∣∣∣
x 1 1
y t1 t2

z t 2
1 t 2

2

∣∣∣∣∣∣ = (t2 − t1) ·
∣∣∣∣∣∣

x 1 0
y t1 1
z t 2

1 t2 + t1

∣∣∣∣∣∣= (t2 − t1) ·
∣∣∣∣∣∣

x 1 0
y 0 1
z −t1 · t2 t2 + t1

∣∣∣∣∣∣
= (t2 − t1) · y · t 2

P + z · tP +x

tP

Applying Cramer’s rule to Eqs. (17) and (16) yields

γ1 = 2 · t 2
P +3 · tP +2

2 · t 2
P +3

= 10 · t 2
P +15 · tP +10

5 · (2 · t 2
P +3)

≈ 1,6787356, and (18)

γ′1 = 13 · t 2
P +16 · tP +9

5 · (2 · t 2
P +3)

≈ 1,876608 (19)

Since |t1| = |t2| < 1 we have |γ2 ·t n
1 +γ3 ·t n

2 | < 1 and |γ′2 ·t n
1 +γ′3 ·t n

2 ±|2
5 || < 1 for

sufficiently large n ∈N. Thus, for these n ∈N, the values of faba(n) and faabaa(n)
are the integers closest to γ1 · t n

P and γ′1 · t n
P , respectively.
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