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Abstract

Probabilistic databases address well the requirements of an increasing number
of modern applications that produce large volumes of uncertain data from a variety
of sources. We propose probabilistic keys as a principled tool helping organizations
balance the consistency and completeness targets for their data quality. For this
purpose, algorithms are established for an agile schema- and data-driven acquisition
of the marginal probability by which keys should hold in a given application domain,
and for reasoning about these keys. The efficiency of our acquisition framework is
demonstrated theoretically and experimentally.

Keywords: Data and knowledge visualization; Data models; Data profiling; Database
semantics; Key; Management of integrity constraints; Probabilistic database; Require-
ments engineering; Visualization

1 Introduction

Background. The notion of a key is fundamental for understanding the structure and
semantics of data. For relational databases, keys were already introduced in Codd’s
seminal paper [6]. Here, a key is a set of attributes that holds on a relation if there are
no two different tuples in the relation that have matching values on all the attributes
of the key. Keys uniquely identify tuples of data, and are applied in data cleaning,
integration, modeling, processing, and retrieval.
Motivation. Relational databases target applications with certain data, such as ac-
counting, inventory and payroll. Modern applications, such as data integration, informa-
tion extraction, and financial risk assessment produce large volumes of uncertain data
from a variety of sources. For instance, RFID (radio frequency identification) is used to
track movements of endangered species of animals, such as wolverines. Here it is sensible
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Table 1: Probabilistic relation
W1 (p1 = 0.2)

rfid time zone
w1 2pm z1
w1 3pm z1
w1 3pm z2

W2 (p2 = 0.45)
rfid time zone
w1 2pm z1
w1 3pm z1
w2 3pm z2

W3 (p3 = 0.3)
rfid time zone
w1 2pm z1
w1 3pm z2
w2 3pm z2

W4 (p4 = .05)
rfid time zone
w1 3pm z1
w1 3pm z2
w2 3pm z2

to apply probabilistic databases. Table 1 shows a probabilistic relation (p-relation), which
is a probability distribution over a finite set of possible worlds, each being a relation.

Keys address the consistency dimension of data quality in traditional databases. Due
to the veracity inherent to probabilistic databases as well as the variety of sources the
data originates from, the traditional concept of a key requires revision in this context.
In our example, for instance, there is no non-trivial key that is satisfied by all possible
worlds: the key k1 = k{time, zone} holds in the worlds W1 and W2, k2 = k{rfid, time}
holds in W2 and W3, and k3 = k{rfid, zone} holds in W3 and W4. One may argue to
remove possible worlds that violate a key but this would neither address the complete-
ness dimension of data quality nor would it make sensible use of probabilistic databases.
Instead, we propose the new concept of a probabilistic key, or p-key for short, which
stipulates a lower bound on the marginal probability by which a traditional key holds in
a probabilistic database. In our example, k1, k2, and k3 have marginal probability 0.65,
0.75, and 0.35, respectively, which is the sum of the probabilities of those possible worlds
which satisfy the key. Indeed, the marginal probability of a key provides a control mech-
anism to balance consistency and completeness targets for the quality of data. Larger
marginal probabilities represent stricter consistency and more liberal completeness tar-
gets, while smaller marginal probabilities represent more liberal consistency and stricter
completeness targets. Having fixed these targets in the form of a marginal probability,
p-keys can be utilized to control these data quality dimensions during updates. When
new data arrives, p-keys can help detect anomalous patterns of data in the form of p-key
violations. That is, alerts can be automatically sent out when a data set would not meet a
desired lower bound on the marginal probability of a key. In a different showcase, p-keys
can also be used to infer probabilities that query answers are unique. In our example,
we may wonder about the chance that different wolverines are in the same zone at the
same time, indicating potential mating behavior. We may ask

SELECT DISTINCT rfid FROM Tracking WHERE zone=‘z2’ AND time=‘2pm’

and using our p-keys enables us to derive a minimum probability of 0.65 that a unique
answer is returned, that is, different wolverines are in zone z2 at 2pm at most with prob-
ability 0.35. These bounds can be inferred without accessing any portion of a potentially
big data source at all, only requiring that the key k1 has at least marginal probability
0.65 on the given data set.
Contributions. The examples motivate us to stipulate lower bounds on the marginal
probability of keys. The main inhibitor for the uptake of p-keys is the identification of
the right lower bounds on their marginal probabilities. While it is already challenging
to identify traditional keys which are semantically meaningful in a given application
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Figure 1: Armstrong PC-table for {k1≥0.65, k2≥0.75, k3≥0.35} and its profile of p-keys

CD table
rfid time zone W
w1 2:00pm z1 1, 2, 3
w1 3:00pm z1 1, 2, 4
w1 3:00pm z2 1, 3, 4
w2 3:00pm z2 2, 3, 4

P table
W P
1 .2
2 .45
3 .3
4 .05

domain, identifying the right probabilities is an even harder problem. Lower bounds
appear to be a realistic compromise here. Our contributions can be summarized as
follows. Modeling. We propose p-keys kX≥p as a natural class of semantic integrity
constraints over uncertain data. Their main target is to help organizations balance
consistency and completeness targets for the quality of their data. P-keys can distinguish
semantically meaningful from meaningless patterns in large volumes of uncertain data
from a variety of sources, and help quantify the probability for unique query answers.
Reasoning. We characterize the implication problem of p-keys by a simple finite set
of Horn rules, as well as a linear time decision algorithm. This enables organizations to
reduce the overhead of data quality management by p-keys to a minimal level necessary.
For example, enforcing k{rfid}≥0.3, k{rfid,time}≥0.25, and k{rfid,zone}≥0.35, would be
redundant as the enforcement of k{rfid,time}≥0.25 is already implicitly done by enforcing
k{rfid}≥0.3. Visualization. For the schema-driven acquisition of the right marginal
probabilities by which keys should hold, we show how to visualize concisely any given
system of p-keys in the form of an Armstrong PC-table. An Armstrong PC-table is a
perfect semantic summary of all p-keys currently perceived meaningful by the analysts.
That is, the Armstrong PC-table satisfies every key with the exact marginal probability
that is perceived to best represent the application domain. Any problems with such
perceptions are explicitly pointed out by the PC-table. For example, the left of Figure 1
shows an Armstrong PC-table for {k1≥0.65, k2≥0.75, k3≥0.35}. In the CD table, the W
column of a tuple shows the identifiers of possible worlds to which the tuple belongs.
The P -table shows the probability distribution on the possible worlds. Any p-key that is
not implied by this set is violated, in particular the keys k{rfid}, k{time} and k{zone}
all have marginal probability zero in the p-relation from Table 1, which is represented
by this PC-table. Profiling. For the data-driven acquisition of p-keys we compute
the marginal probability of every key from a given PC-table. This is also known as data
profiling, and our paper is the first to propose probabilistic data profiling techniques. For
example, if we want to know the marginal probabilities by which an attribute set forms
a key in the PC-table from Figure 1, then our algorithm would return the profile k∅≥0,
k{rfid}≥0, k{time}≥0, k{zone}≥0, k{rfid,time}≥0.75, k{rfid,zone}≥0.35, k{time,zone}≥0.65,
and k{rfid,time,zone}≥1, as visualized on the right of Figure 1. Experiments. Our
experiments demonstrate that our visualization and profiling techniques work efficiently
in the context of our acquisition framework.
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Organization. We discuss related work in Section 2. P-keys are introduced in Section 3,
and axiomatic and linear-time algorithmic characterizations of their implication problem
are established in Section 4. These lay the foundation for the schema- and data-driven
discovery algorithms of p-keys in Section 5. Experiments with these algorithms are
presented in Section 6. We conclude and sketch future work in Section 7.

2 Related Work

Poor data quality is arguably the biggest inhibitor to deriving value from big data [31].
P-keys provide a principled tool to balance the consistency and completeness require-
ments of an organization on the quality of their data [23, 30]. Primary impact areas of
p-keys include data integration [5] where keys cannot be expected to hold with proba-
bility one; data modeling [27] where p-keys may represent target constraints that avoid
data redundancy with certain degrees of probability; data processing [18] where p-keys
facilitate updates and query answer exploration of targeted degrees of quality; compliance
validation of business rules [25] where data is uncertain; in duplicate detection [3] where
anomalous patterns of uncertain data are found; and in data cleaning and linkage [2].
The concept of probabilistic keys is new but naturally derived from previous research.

Our contributions extend results on keys from traditional relations, covered by our
framework as the special case where the p-relation consists of one possible world only.
Extensions include work on the classical implication problem [1, 7, 11, 13, 14, 15], Arm-
strong relations [4, 9, 12, 13, 21, 29] and the discovery of keys from relations [16, 22, 29].
In fact, our axiomatic and algorithmic characterizations of the implication problem as
well as the schema- and data-driven discovery of the right probabilities of keys is novel.
Specifically, Armstrong databases and data profiling have not been studied yet for prob-
abilistic data. For certain relations there is empirical evidence that Armstrong databases
help with the acquisition of meaningful business rules [4, 20, 21, 29]. Our techniques will
make it possible to conduct such empirical studies for p-keys in the future.

There is a large body of work on the discovery of “approximate” business rules, such
as keys, functional and inclusion dependencies [10, 17, 24]. Approximate means here that
not all tuples satisfy the given rule, but some exceptions are tolerable. Our constraints
are not approximate since they are either satisfied or violated by the given p-relation
or the PC-table that represents it. Again, it is future work to investigate approximate
versions of probabilistic keys.

Closest to our approach is the work on possibilistic keys [19], where tuples are at-
tributed some degree of possibility and keys some degree of certainty saying to which tu-
ples they apply. In general, possibility theory is a qualitative approach, while probability
theory is a quantitative approach to uncertainty. This research thereby complements the
qualitative approach to keys in [19] by a quantitative approach.

Keys have also been included in description logic research [26, 33], but we are unaware
of any work concerning keys on probabilistic data.
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3 Probabilistic Keys

We introduce some preliminary concepts from probabilistic databases and the central
notion of a probabilistic key.

A relation schema is a finite set R of attributes A. Each attribute A is associated with
a domain dom(A) of values. A tuple t over R is a function that assigns to each attribute
A of R an element t(A) from the domain dom(A). A relation over R is a finite set of
tuples over R. Relations over R are also called possible worlds of R here. An expression
kX over R with X ⊆ R is called a key. A key kX is said to hold in a possible world W
of R, denoted by W |= kX, if and only if there no two tuples t1, t2 ∈ W such that t1 6= t2
and t1(X) = t2(X). A probabilistic relation (p-relation) over R is a pair r = (W , P )
of a finite non-empty set W of possible worlds over R and a probability distribution
P :W → (0, 1] such that

∑
W∈W P (W ) = 1 holds. Table 1 shows a probabilistic relation

over relation schema Wolverine={rfid,time,zone}. World W2, for example, satisfies the
keys k{rfid, time} and k{zone, time}, but violates the key k{rfid, zone}. The marginal
probability of a key kX in the p-relation r = (W , P ) over relation schema R is the sum
of the probabilities of those possible worlds in r which satisfy the key. We will now
introduce the central notion of a probabilistic key.

Definition 1 A probabilistic key, or p-key for short, over relation schema R is an
expression kX≥p where X ⊆ R and p ∈ [0, 1]. The p-key kX≥p over R is satisfied by, or
said to hold in, the p-relation r over R if and only if the marginal probability of kX in
r is not smaller than p.

In our running example over relation schema Wolverine, the p-relation from Ta-
ble 1 satisfies the p-keys k{rfid, time}≥0.75 and k{rfid, zone}≥0.35, but violates the p-keys
k{rfid, time}≥0.9 and k{rfid, zone}≥0.351.

4 Reasoning Tools

When using sets of p-keys to manage the consistency and completeness targets on the
quality of an organization’s data, it is important that their overhead is reduced to a
minimal level necessary. In practice, this requires us to reason about p-keys efficiently.
It is the goal of this section to establish basic tools to reason about the interaction of
p-keys. This will help us identify efficiently the largest probability by which a given key
is implied from a given set of p-keys, and to optimize the efficiency of updates and query
answers, for example. The results will also help us develop our acquisition framework
later.

Let Σ∪ {ϕ} denote a set of constraints over relation schema R. We say Σ implies ϕ,
denoted by Σ |= ϕ, if every p-relation r over R that satisfies Σ, also satisfies ϕ. We use
Σ∗ = {ϕ : Σ |= ϕ} to denote the semantic closure of Σ. For a class C of constraints,
the C-implication problem is to decide for a given relation schema R and a given set
Σ ∪ {ϕ} of constraints in C over R, whether Σ implies ϕ. We will now characterize the
C-implication problem for the class of p-keys axiomatically by a simple finite set of Horn
rules, and algorithmically by a linear time algorithm.
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Table 2: Axiomatization P = {T ,Z,S,W}

kR≥1 kX≥0

kX≥p

kXY≥p

kX≥p+q

kX≥p
(Trivial, T ) (Zero, Z) (Superkey, S) (Weakening, W)

Axioms. We determine the semantic closure by applying inference rules of the form
premise

conclusion
. For a set R of inference rules let Σ `R ϕ denote the inference of ϕ from Σ

by R. That is, there is some sequence σ1, . . . , σn such that σn = ϕ and every σi is an
element of Σ or is the conclusion that results from an application of an inference rule in
R to some premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ : Σ `R ϕ} be the syntactic closure
of Σ under inferences by R. R is sound (complete) if for every set Σ over every R we have
Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both sound

and complete. The set P of inference rules from Table 2 forms a finite axiomatization
for the implication of p-keys. Here, R denotes the underlying relation schema, X and Y
form attribute subsets of R, and p, q as well as p+ q are probabilities.

Theorem 1 P forms a finite axiomatization for p-keys.

Proof The soundness is a straightforward consequence of the definitions. Indeed, T is
sound since every possible world over R is a relation that cannot contain two different
tuples with matching values on all the attributes of R. The soundness of Z is satisfied
trivially. The soundness of S follows from the fact that every possible world that satisfies
kX also satisfies kXY . The soundness of W follows immediately from the definition of
a p-key with lower bounds.

For the completeness of L let R be some relation schema and Σ ∪ {kX≥p} be a set
of p-keys over R such that kX≥p /∈ Σ+

L . We need to show that kX≥p /∈ Σ∗. From
kX≥p /∈ Σ+

L we conclude that p > 0 and R − X 6= ∅, due to Z and S,W , respectively.
Let p′ := sup{p′′ : kZ≥p′′ ∈ Σ ∧ Z ⊆ X}. In particular, p′ = 0, if there is no kZ≥p′′ ∈ Σ
where Z ⊆ X. We conclude that p′ < p, as otherwise the following would apply: Since
kZ≥p′ ∈ Σ we get kX≥p′ ∈ Σ+

L by S and kX≥p ∈ Σ+
L by W. We now define the following

p-relation r = (W , P ) over R:

W1 with P (W1) = 1− p′
X R−X

0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1

W2 with P (W2) = p′

X R−X
0 · · · 0 0 · · · 0

Note that W1 ∈ W and W2 ∈ W , if p′ > 0. As kX does not hold in world W1, it follows
that kX holds with probability p′ on r. Since p′ < p, we conclude that kX≥p does not
hold on r. It remains to show that every p-key kZ≥q ∈ Σ holds on r. If Z 6⊆ X, then
kZ holds in both worlds W1 and W2, and the probability of kZ is 1. Consequently, kZ≥q
holds on r. Otherwise, Z ⊆ X and the probability with which kZ holds on r is p′.
Moreover, as Z ⊆ X and kZ≥q ∈ Σ we have p′ ≥ q. Consequently, kZ≥q holds on r.
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For example, the set Σ = {k{time}≥0.2, k{rfid}≥0.3} imply the p-key ϕ = k{rfid, time}≥0.25,
but not the p-key ϕ′ = k{rfid, time}≥0.35. Indeed, ϕ can be inferred from Σ by applying
S to k{rfid}≥0.3 to infer k{rfid, time}≥0.3, and applying W to k{rfid, time}≥0.3 to infer ϕ.
If a data set is valid for the set Σ of p-keys, it is also valid for every p-key ϕ implied
by Σ. The larger the data set, the more time we save by avoiding redundant validation
checks.
Algorithms. In practice, the semantic closure Σ∗ of a finite set Σ is infinite and even
though it can always be represented finitely, it is often unnecessary to determine all
implied p-keys. In fact, the implication problem for p-keys has as input Σ ∪ {ϕ} and
the question is whether Σ implies ϕ. Computing Σ∗ and checking whether ϕ ∈ Σ∗ is
not feasible. In fact, we will now establish a linear-time algorithm for computing the
maximum probability p, such that kX≥p is implied by Σ. The following theorem allows
us to reduce the implication problem for p-keys to a single scan of the input.

Theorem 2 Let Σ ∪ {kX≥p} denote a set of p-keys over relation schema R. Then Σ
implies kX≥p if and only if X = R or p = 0 or there is some kZ≥q ∈ Σ such that Z ⊆ X
and q ≥ p.

Proof We show the sufficiency first. If X = R, then the soundness of T and W imply
that Σ |= kX≥p. If p = 0, then the soundness of Z ensures that Σ |= kX≥p. If there
is kZ≥q ∈ Σ such that Z ⊆ X and q ≥ p, then the soundness of S and W imply that
Σ |= kX≥p.

It remains to show the necessity. Let R − X 6= ∅, p > 0 and be Σ such that for all
Z ⊆ X we have q < p. Using the terminology from the completeness proof of Theorem 1
it follows that p′ := sup{p′′ : kZ≥p′′ ∈ Σ ∧ Z ⊆ X} < p. Consequently, the p-relation r
from the completeness proof of Theorem 1 shows that Σ does not imply kX≥p.

Theorem 2 enables us to design Algorithm 1, which returns the maximum probability
p by which a given key kX is implied by a given set Σ of p-keys over R. If X = R,
then we return probability 1. Otherwise, starting with p = 0 the algorithm scans all
input keys kZ≥q and sets p to q whenever q is larger than the current p and X contains
Z. We use |Σ| and R to denote the total number of attributes that occur in Σ and R,
respectively.

Theorem 3 On input (R,Σ, kX), Algorithm 1 returns in O(|Σ|+|R|) time the maximum
probability p with which kX≥p is implied by Σ.

Given R,Σ, kX≥p as an input to the implication problem we can use Algorithm 1 to
compute p′ := max{q : Σ |= kX≥q} and return an affirmative answer if and only if p′ ≥ p.

Corollary 4 The implication problem of p-keys is decidable in linear time.

Given the p-key set Σ = {k{time}≥0.2, k{rfid}≥0.3} and the key k{rfid, time}, Algo-
rithm 1 returns p = 0.3. Consequently, the p-key k{rfid, time}≥0.25 is implied by Σ, but
k{rfid, time}≥0.35 is not implied by Σ.
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Algorithm 1 Inference

Require: R,Σ, kX
Ensure: max{p : Σ |= kX≥p}

1: if X = R then
2: p← 1;
3: else
4: p← 0;
5: for all kZ≥q ∈ Σ do
6: if Z ⊆ X and q > p then
7: p← q;

8: return p;

5 Tools for Acquiring Probabilistic Keys

Figure 2: Acquisition framework

Applications will benefit from the ability of an-
alysts to acquire a good lower bound for the
marginal probability by which keys hold in the
domain of the application. For that purpose,
analysts should communicate with domain ex-
perts. We establish two major tools that help
analysts to communicate effectively with domain
experts. We follow the framework in Figure 2.
Here, analysts use our algorithm to visualize ab-
stract sets Σ of p-keys in the form of some Arm-
strong PC-table, which is then inspected jointly
with domain experts. In particular, the PC-
table represents simultaneously for every key kX
the marginal probability that quality data sets
in the target domain should exhibit. Domain
experts may change the PC-table or supply new
PC-tables to the analysts. For that case we es-
tablish an algorithm that profiles p-keys. That
is, the algorithm computes the marginal proba-
bility of each key in the given PC-table. Such
profiles are also useful for query optimization, for example.

5.1 Visualizing Abstract Sets of P-Keys as Armstrong PC-tables

Our results will show that every abstract set of p-keys can be visualized in the form of
a single PC-table that represents a p-relation that satisfies all given p-keys and violates
all those p-keys not implied by the given set. This notion is known as an Armstrong
database, which we formally recall here [8]. Let Σ denote a set of p-keys over a given
relation schema R. A p-relation r = (W , P ) over R is Armstrong for Σ if and only if for
all p-keys ϕ it holds that r satisfies ϕ if and only if Σ implies ϕ. The following theorem
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shows that every distribution of probabilities to keys, that follows the inference rules
from Table 2, can be represented by a single p-relation which exhibits this distribution
in the form of marginal probabilities.

Theorem 5 Let l : R → [0, 1] be a function such that l(R) = 1 and for all X, Y ⊆ R,
l(XY ) ≥ l(X) holds. Then there is some p-relation r over R such that r satisfies kX≥l(X),
and for all X ⊆ R and for all p ∈ [0, 1] such that p > l(X), r violates kX≥p.

Proof Let {l1, . . . , ln} = {l(X) : X ⊆ R} such that l1 < l2 < . . . < ln, and let l0 = 0.
Define a probabilistic relation r = ({W1, . . . ,Wn}, P ) as follows. For all i = 1, . . . , n,
the world Wi is an Armstrong relation for the key set Σi = {kY : l(Y ) ≥ li}, and
P (Wi) = li − li−1. For all X ⊆ R, let l(X) = lj for j ∈ {1, . . . , n}. Then, kX holds on
Wi if and only if i ≤ j. Consequently, kX has marginal probability l(X) with respect to
r, and kX≥l(X) is satisfied. However, r violates kX≥p for every p > l(X).

Let Σ be a set of p-keys. For all X ⊆ R, let pX := sup{p : ∃Y ⊆ X(kY≥p ∈
Σ ∪ {kR≥1})}. Then for all Z ⊆ R, Σ implies kZ≥p if and only if p ≤ pZ . Now, let
l(X) := pX . Then l(R) = pR = 1 and l(XY ) = pXY ≥ pX = l(X). By Theorem 5 it
follows that there is some Armstrong p-relation r, since for all Z ⊆ R and all p ∈ [0, 1],
Σ implies kZ≥p if and only if r satisfies kZ≥p.

Instead of computing Armstrong p-relations we compute PC-tables that are concise
representations of Armstrong p-relations. We call these Armstrong PC-tables. Recall
the following standard definition from probabilistic databases [32]. A conditional table
or c-table, is a tuple CD = 〈r,W 〉, where r is a relation, and W assigns to each tuple t in
r a finite set Wt of positive integers. The set of world identifiers of CD is the union of the
sets Wt for all tuples t of r. Given a world identifier i of CD, the possible world associated
with i is Wi = {t|t ∈ r and i ∈ Wt}. The semantics of a c-table CD = 〈r,W 〉, called
representation, is the set W of possible worlds Wi where i denotes some world identifier
of CD. A probabilistic conditional database or PC-table, is a pair 〈CD,P 〉 where CD
is a c-table, and P is a probability distribution over the set of world identifiers of CD.
The set of possible worlds of a PC-table 〈CD,P 〉 is the representation of CD, and the
probability of each possible world Wi is defined as the probability of its world identifier.
For example, Figure 1 shows a PC-table 〈CD,P 〉 that is Armstrong for the p-relation in
Table 1.

We will now describe an algorithm that computes an Armstrong PC-table for every
given set Σ of p-keys. In our construction, the number of possible worlds is determined
by the number of distinct probabilities that occur in Σ. For that purpose, for every
given set Σ of p-keys over R and every probability p ∈ [0, 1], let Σp = {kX : ∃kX≥q ∈
Σ∧q ≥ p} denote the p-cut of Σ, i.e., the set of keys over R which have at least marginal
probability p. It is possible that Σ does not contain any p-key kX≥p where p = 1. In
this case, Algorithm 2 computes an Armstrong PC-table for Σ that contains one more
possible world than the number of distinct probabilities occurring in Σ. Processing the
probabilities Σ from smallest p1 to largest pn, the algorithm computes as possible world
with probability pi − pi−1 (line 5) a traditional Armstrong relation for the pi-cut Σpi .
For this purpose, the anti-keys are computed for each pi-cut (line 6), and the set W of
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Algorithm 2 Armstrong PC-table

Require: R,Σ
Ensure: Armstrong PC-table 〈CD,P 〉 for Σ

1: Let p1, . . . , pn denote the i-th smallest probabilities pi occurring in Σ; . If pn < 1,
n← n+ 1 and pn ← 1

2: p0 ← 0;
3: P ← ∅;
4: for i = 1, . . . , n do
5: P ← P ∪ {(i, pi − pi−1)}; . World i has probability pi − pi−1
6: A−1i ← Set of anti-keys for Σpi ; . Anti-keys to be realized in world i

7: A−1 ← ∅;
8: for all X ∈ A−11 ∪ · · · ∪ A−1n do
9: A−1 ← A−1 ∪ {(X, {i : X ∈ A−1i })}; . Worlds in which X is an anti-key

10: for all A ∈ R do
11: t0(A)← cA,0;

12: CD ← {(t0, {1, . . . , n})}; . Tuple t0 is part of every world
13: j ← 0;
14: for all (X,W ) ∈ A−1 do . For each X that is an anti-key in every world in W ...
15: j ← j + 1;
16: for all A ∈ R do . Add some tj that realizes agree set X in every world in W

17: tj(A)←
{
cA,0 , if A ∈ X
cA,j , otherwise

;

18: CD ← CD ∪ {(tj,W )};
19: return 〈CD,P 〉;

those worlds i is recorded for which X is an anti-key with respect to Σpi (line 9). The
CD-table contains one tuple t0 which occurs in all possible worlds (line 12), and for each
anti-key X another tuple tj that occurs in all worlds for which X is an anti-key and that
has matching values with t0 in exactly the columns of X (lines 14-18).

Theorem 6 For every set Σ of p-keys over relation schema R, Algorithm 2 computes
an Armstrong PC-table for Σ in which the number of possible worlds coincides with the
number of distinct probabilities that occur in Σ ∪ {kR≥1}.

In our running example, Σ contains the p-keys k{rfid, time}≥0.75, k{time, zone}≥0.65,
and k{rfid, zone}≥0.35. Applying Algorithm 2 to Wolverine and Σ may result in the
Armstrong PC-table of Figure 3. Finally, we derive some bounds on the time complex-
ity of finding Armstrong PC-tables. Additional insight is given by our experiments in
Section 6.

Theorem 7 The time complexity to find an Armstrong PC-table for a given set Σ of
p-keys over relation schema R is precisely exponential in |Σ|.
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Figure 3: An Armstrong PC-table
CD table

rfid time zone W
w1 2pm z1 1, 2, 3, 4
w1 3pm z2 1
w2 4pm z1 1
w3 2pm z3 1, 2
w1 5pm z1 2, 3, 4
w4 2pm z1 3, 4
w1 2pm z4 4

P table
W P
1 .35
2 .3
3 .1
4 .25

Proof Given R and Σ as input, Algorithm 2 computes an Armstrong PC-table for Σ in
time at most exponential in |Σ|. Indeed, an Armstrong relation for Σpi can be computed
in time at most exponential in |Σpi | ≤ |Σ|, and we require no more than |Σ| computations
of such relations.

There are cases where the number of tuples in any Armstrong PC-table for Σ over R
is exponential in |Σ|. Such a case is given by Rn = {A1, . . . , A2n} and

Σn = {{A1, A2}≥1, . . . , {A2n−1, A2n}≥1}

with |Σn| = 2 · n. Every Armstrong PC-table requires 2n + 1 tuples, and there is only
one possible world.

There are also cases where the number of tuples in some Armstrong PC-table for Σ
over R is logarithmic in |Σ|. Such a case is given by Rn = {A1, . . . , A2n} and

Σn = {(X1 · · ·Xn)≥1 : Xi ∈ {A2i−1, A2i} for i = 1, . . . , n}

with |Σn| = n·2n. One Armstrong PC-table for Σ represents a single possible world which
has n + 1 tuples that realize the n agree sets R − {A2i−1, A2i}, the sets of attributes on
which some pair of distinct tuples have matching values.

5.2 Profiling of P-Keys from PC-tables

The profiling problem of p-keys from a given PC-table 〈CD,P 〉 over a relation schema
R is to determine for all X ⊂ R, the marginal probability pX of kX in the p-relation
r = (W , P ) that 〈CD,P 〉 represents. The problem can be solved as follows: for each
X ⊂ R, initialize pX ← 0 and for all worlds W ∈ W , add the probability pW of W to
pX , if X contains some minimal key of W , see Algorithm 3. The set of minimal keys of
a world W is given by the set of minimal transversals over the disagree sets of W (the
complements of agree sets) [28]. Applying Algorithm 3 to the PC-table from Figure 1
returns the p-keys k{time, zone}≥0.65, k{rfid, time}≥0.75, k{rfid, zone}≥0.35 and kX≥0 for
all remaining X ⊂ R, as illustrated on the right of Figure 1.
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Algorithm 3 Profiling

Require: PC-table 〈CD,P 〉 over relation schema R
Ensure: For all X ⊂ R, the maximum pX such that kX≥pX holds on p-relation r =

(W , P ) that 〈CD,P 〉 represents
1: for all X ⊂ R do
2: pX ← 0;

3: for all W ∈ W do
4: M(W )← Set of minimal keys on W ; . by known algorithm, e.g., [28]
5: for all X ⊂ R do
6: if X contains some M ∈M(W ) then
7: pX ← pX + P (W );

8: return {(X, pX) : X ⊆ R};

6 Experiments

In this section we report on some experiments regarding the computational complexity
of our algorithms for the visualization and discovery of probabilistic keys.

6.1 Visualization

The Armstrong construction takes as input a set Σ of randomly generated p-keys, and
outputs an Armstrong PC-table for Σ. The random generation of Σ was achieved by
firstly sampling n probabilities pn from [0, 1] and for each attribute set X ⊂ R, we assign
a probability randomly sampled from the set {0}∪{p1, p2, . . . , pn}. For our experiments,
n was at most 15.

The left of Figure 4 shows the number of tuples in the Armstrong PC-table as a
function of applying Algorithm 2 to the exponential case from the proof of Theorem 7
(black line), the logarithmic case described after Theorem 7 (blue line), and the random
generation (red line). The figure illustrates that the average size of an Armstrong PC-
table grows linearly in the input key size. The worst-case exponential growth occurs
rarely on average. This demonstrates that Armstrong PC-tables exhibit small sizes on
average, which makes them a practical tool to acquire meaningful p-keys in a joint effort
with domain experts.

The right of Figure 4 shows the time for computing Armstrong PC-tables from the
given sets of randomly created p-keys. It shows that Armstrong PC-tables can be com-
puted efficiently for the input sizes considered. In fact, their computation hardly ever
exceeded 1 second. The left of Figure 6 shows the graphical user interface of our visu-
alization tool, developed in R. The input interface is shown on the left, and the output
PC-table on the right.

6.2 Profiling

Figure 6 shows the time for profiling p-keys from the given Armstrong PC-tables we
randomly created previously. It illustrates that the profiling problem can be solved

12



Figure 4: Results of experiments with visualization

Size of Armstrong PC-tables Time to compute Armstrong PC-table

efficiently for input sizes typical for our acquisition framework, see Figure 2. Large input
sizes will require more sophisticated techniques.

7 Conclusion and Future Work

We have introduced probabilistic keys that stipulate lower bounds on the marginal

Figure 5: Control mechanism p

probability by which keys shall hold on large vol-
umes of uncertain data. The marginal probability
of keys provides a principled mechanism to con-
trol the consistency and completeness targets for
the quality of an organization’s data, as illustrated
in Figure 5. We have established axiomatic and al-
gorithmic tools to reason about probabilistic keys.
This can minimize the overhead in using them for
data quality management and query processing.
These applications are effectively unlocked by de-
veloping support for identifying the right marginal
probabilities by which keys should hold in a given
application domain. For this challenging problem,
we have developed schema- and data-driven algo-
rithms that can be used by analysts to communicate
more effectively with domain experts. The schema-
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Figure 6: GUI for visualization and times for profiling p-keys

driven algorithm converts any input in the form of an abstract set of probabilistic keys
into an Armstrong PC-table that satisfies the input and violates all probabilistic keys not
implied by the input. Analysts and domain experts can jointly inspect the Armstrong
PC-table which points out any flaws in the current perception of marginal probabilities.
The data-driven algorithm computes a profile of the probabilistic keys that a given PC-
table satisfies. Such PC-tables may represent some exemplary data sets or result from
changes to a given Armstrong PC-table in response to identifying some flaws during
their inspection. Experiments confirm that the computation of Armstrong PC-tables is
typically efficient, their size is small, and profiles of probabilistic keys can be efficiently
computed from PC-tables of reasonable size.

In future research we will apply our algorithms to investigate empirically the useful-
ness of our framework for acquiring the right marginal probabilities of keys in a given
application domain. This will require us to extend empirical measures from certain
[20, 21, 22] to probabilistic data sets. Particularly intriguing is the question whether
PC-tables or p-relations are more useful. We will also investigate the scalability of the
profiling problem to large data sets, by applying the MapReduce framework to recent
data profiling techniques [16]. It is also interesting to raise the expressivity of probabilistic
keys by allowing the stipulation of upper bounds or other features.
Acknowledgement. This research is supported by the Marsden fund council from
Government funding, administered by the Royal Society of New Zealand.
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