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Abstract

The space of one-sided infinite words plays a crucial rôle in several
parts of Theoretical Computer Science. Usually, it is convenient to regard
this space as a metric space, the Cantor-space. It turned out that for sev-
eral purposes topologies other than the one of the Cantor-space are use-
ful, e.g. for studying fragments of first-order logic over infinite words or
for a topological characterisation of random infinite words.

Continuing the work of [SS10], here we consider two different refine-
ments of the Cantor-space, given by measuring common factors, and com-
mon factors occurring infinitely often. In particular we investigate the re-
lation of these topologies to the sets of infinite words definable by finite
automata, that is, to regular ω-languages
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1 Introduction

The space of one-sided infinite words plays a crucial rôle in several parts of The-
oretical Computer Science (see the surveys [St97, Th90]). Usually, it is conve-
nient to regard this space as a topological space provided with the CANTOR topol-
ogy. This topology can be also considered as the natural continuation of the left
topology of the prefix relation on the space of finite words (cf. [CJ09]).

It turned out that for several purposes other topologies on the space of infi-
nite words are also useful [Re86, St87], e.g. for investigations in first-order logic
[DK09], to characterise the set of random infinite words [CM03] or the set of
disjunctive infinite words [St05] and to describe the converging behaviour of
not necessarily hyperbolic iterative function systems [FS01, St03].

Most of these approaches use topologies on the space of infinite words which
are refinements of the CANTOR topology showing a certain kind of shift invari-
ance. In [SS10] a unified treatment of those shift invariant topologies is given,
and here we built on this work, introducing two new topologies arising natu-
rally from the consideration of finite subwords occurring in infinite words.

2 Notation and Preliminaries

We introduce the notation used throughout the paper. By N = {0,1,2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
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|X | ≥ 2, and X ∗ be the set (monoid) of words on X , including the empty word
e, and Xω be the set of infinite sequences (ω-words) over X . For w ∈ X ∗ and
η ∈ X ∗∪ Xω let w ·η be their concatenation. This concatenation product ex-
tends in an obvious way to subsets W ⊆ X ∗ and P ⊆ X ∗∪ Xω. For a language
W let W ∗ := ⋃

i∈NW i be the submonoid of X ∗ generated by W , and by W ω :=
{w1 · · ·wi · · · : wi ∈ W à {e}} we denote the set of infinite strings formed by con-
catenating words in W . Furthermore |w | is the length of the word w ∈ X ∗ and
pref(P ) (infix(P )) is the set of all finite prefixes (infixes) of strings in P ⊆ X ∗∪Xω.
We shall abbreviate w ∈ pref(η) (η ∈ X ∗∪Xω) by w v η. If ξ ∈ Xω by infix∞(ξ) ⊆
infix(ξ) we denote the set of infixes occurring infinitely often in ξ.

Further we denote by P/w := {η : w ·η ∈ P } the left derivative or state of the
set P ⊆ X ∗∪Xω generated by the word w . We refer to P as finite-state provided
the set of states {P/w : w ∈ X ∗} is finite. It is well-known that a language W ⊆ X ∗

is finite state if and only if it is accepted by a finite automaton, that is, it is a
regular language.1

In the case of ω-languages regular ω-languages, that is, ω-languages ac-
cepted by finite automata, are the finite unions of sets of the form W ·V ω, where
W and V are regular languages (cf. e.g. [St97]). Every regular ω-language is
finite-state, but, as it was observed in [Tr62], not every finite-state ω-language
is regular (cf. also [St83]).

It is well-known that the families of regular or finite-state ω-languages are
closed under Boolean operations (see [PP04, St97, Th90, Th97] or [St83]).

3 The CANTOR Topology and Regularω-languages

In this section we list some properties of the CANTOR topology on Xω and reg-
ular ω-languages (see [St97, Th90]).

3.1 Basic properties of the CANTOR topology

We consider the space of infinite words (ω-words) Xω as a metric space with
metric % defined as follows

%(ξ,η) :=
{

0, if ξ= η , and
sup{r 1−|w | : w ∈ pref(ξ)∆pref(η)} if ξ 6= η .

(1)

1Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the NERODE right congru-
ence of P .
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Here r > 1 is a real number2, ∆ denotes the symmetric difference of sets and
we set sup; := 0, that is, %(ξ,η) = 0 if and only if ξ= η.

Since pref(ξ)∆pref(η) ⊆ (pref(ξ)∆pref(ζ)) ∪ (pref(ζ)∆pref(η)), the metric %
satisfies the ultra-metric inequality

%(ξ,η) ≤ max{%(ξ,ζ),%(ζ,η)} .

A subset E ⊆ Xω is open if for every ξ ∈ E there is an ε> 0 such that η ∈ E for
all η with %(ξ,η) < ε. Complements of open sets are called closed. The smallest
closed set containing a given set F ⊆ Xω, C (F ), is referred to as the closure of F .

Gδ-sets are countable intersections of open sets and Fσ-sets are countable
unions of closed sets. In a metric space every open set is an Fσ-set, and every
closed set is a Gδ-set.

We list some further well-known properties of the metric space (Xω,%).

Property 1 The following is true.

1. The non-empty sets w · Xω are open balls with radius r−|w | in the metric
space (Xω,%).3 These balls are simultaneously closed.

2. Open sets in (Xω,%) are of the form W ·Xω where W ⊆ X ∗.

3. A subset E ⊆ Xω is open and closed (clopen) in (Xω,%) if and only if E =
W ·Xω where W ⊆ X ∗ is finite.

4. A subset F ⊆ Xω is closed in (Xω,%) if and only if F = {ξ : pref(ξ) ⊆ pref(F )}.

5. The closure of F satisfies C (F ) := {ξ : ξ ∈ Xω∧pref(ξ) ⊆ pref(F )}
= ⋂

n∈N
(pref(F )∩X n) ·Xω .

The space (Xω,%) is a complete space, that is, every sequence4 (ξi )i∈N where
%(ξ j ,ξk ) < r−i whenever i ≤ j ,k converges to some ξ ∈ Xω. Moreover, (Xω,%) is
a compact space, that is, for every family of open sets (Ei )i∈J such that

⋃
i∈J Ei =

Xω there is a finite sub-family (Ei )i∈J ′ satisfying
⋃

i∈J ′ Ei = Xω.

2It is convenient to choose r = |X |. Then every ball of radius r−n is partitioned into exactly r
balls of radius r−(n+1)

3Observe that e ∉ pref(ξ)∆pref(η) and Eq. (1) imply %(ξ,η) = inf{r−|w | : w @ ξ∧w @ η}.
4Those sequences are usually referred to as CAUCHY sequences.
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3.2 Regularω-languages

As a last part of this section we mention some facts on regular ω-languages
known from the literature, e.g. [PP04, St97, Th90]. Regular ω-languages are
well-known for being the ω-languages definable by finite automata. We will
not refer to this feature, instead we list some basic properties of this family of
ω-languages.

The first one shows among other properties the importance of ultimately
periodicω-words. Denote by Ult := {w ·vω : w, v ∈ X ∗à {e}} the set of ultimately
periodic ω-words.

Theorem 1 (Büchi [Bü60]) The family of regular ω-languages is a Boolean al-
gebra, and if F ⊆ Xω is regular, then u ·F and F /w are also regular.

Every non-empty regularω-language contains an ultimately periodicω-word,
and regular ω-languages E ,F ⊆ Xω coincide if and only if E ∩Ult= F ∩Ult.

For regularω-languages we have the following topological characterisations
analogous to Property 1.

Property 2 Let F ⊆ Xω be regular and E ⊆ Xω be finite-state. Then in CAN-
TOR topology the following hold true.

1. F is open if and only if F =W ·Xω where W ⊆ X ∗ is a regular language.

2. F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )} and pref(F ) is
regular.

3. pref(E) is a regular language.

4. C (E) is a regular ω-language.

Finally, we provide an example of a regular ω-language which is not a Gδ-set
and a necessary and sufficient topological condition when finite-state ω-lan-
guages are regular.

Example 1 (Landweber [La69]) For u ∈ X ∗à {e} the ω-language X ∗ ·uω is reg-
ular, an Fσ-set but not a Gδ-set. o

Theorem 2 ([St83]) Every finite-stateω-language in the class Fσ∩Gδ is a Boolean
combination of regular ω-languages open in (Xω,%), thus, in particular, a regu-
lar ω-language.
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4 Topologies Defined by Subword Metrics

It was shown that regular ω-languages are closely related to the (asymptotic)
subword complexity of infinite words (cf. [St93, Section 5] and [St12]). There-
fore, as other refinements of the CANTOR topology we introduce two topologies
defined via metrics on Xω which are based on the sets of subwords occurring
or occurring infinitely often in the ω-words, respectively.

Definition 1 (Subword metrics)

%I (ξ,η) :=sup{r 1−|w | : w ∈ (pref(ξ)∆pref(η))∪ (infix(ξ)∆ infix(η))}

%∞(ξ,η) :=sup{r 1−|w | : w ∈ (pref(ξ)∆pref(η))∪ (infix∞(ξ)∆ infix∞(η))}

These metrics respect except for the length of the shortest non-common prefix
of ξ and η also the length of the shortest non-common subword (non-common
subword occurring infinitely often). Thus

%I (ξ,η) ≥ %(ξ,η) and %∞(ξ,η) ≥ %(ξ,η), (2)

%I (ξ,η) = max
{
%(ξ,η),sup{r 1−|u| : u ∈ infix(ξ)∆ infix(η)}

}
, and (3)

%∞(ξ,η) = max
{
%(ξ,η),sup{r 1−|u| : u ∈ infix∞(ξ)∆ infix∞(η)}

}
. (4)

Similar to the case of % one can verify that %I and %∞ satisfy the ultra-metric
inequality. Therefore, balls in the metric spaces (Xω,%I ) are (Xω,%∞) are si-
multaneously open and closed. Moreover, Eq. (2) shows that both topologies
refine the CANTOR topology of Xω, that is, ω-languages open (closed) in CAN-
TOR topology are likewise open (closed, respectively) in both spaces (Xω,%I )
and (Xω,%∞).

4.1 Shift-invariance

We call a metric space (Xω,%′) shift invariant if for every open set E ⊆ Xω and
every word w ∈ X ∗ the sets w ·E and E/w are also open. In this part we show
that the metric spaces (Xω,%∞) and (Xω,%I ) are shift-invariant. According to
Corollary 2 of [SS10] this property guarantees that the closure of a finite-stateω-
language is again finite-state (cf. the stronger Property 2.4 for the CANTOR topol-
ogy).

To this end we derive some simple properties of the metrics.

Lemma 1 Let u ∈ X ∗ and v, w ∈ X m . Then
%∞(u ·ξ,u ·η) ≤ %∞(ξ,η), (5)

%∞(ξ,η) ≤ r m ·%∞(w ·ξ, v ·η), (6)

%I (u ·ξ,u ·η) ≤ %I (ξ,η), and (7)

%I (ξ,η) ≤ r m ·%I (w ·ξ, v ·η). (8)
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Proof. All inequalities are trivially satisfied if ξ = η. So, in the following, we
may assume ξ 6= η.

As infix∞(ξ) = infix∞(u ·ξ), Eqs. (5) and (6) follow from Eq. (4) and the re-
spective properties of the metric % of the CANTOR topology %(u ·ξ,u ·η) ≤ %(ξ,η)
and %(w ·ξ, v ·η) ≥ %(w ·ξ, w ·η) = r−|w | ·%(ξ,η).

Let %I (ξ,η) = r−n , that is, infix(ξ)∩X n = infix(η)∩X n and w @ ξ and w @ η

for some w ∈ X n . Then, obviously, v @ u · ξ and v @ u · η for some v ∈ X n .
Moreover, infix(u ·ξ)∩X n = (infix(u ·w)∩X n)∪(infix(ξ)∩X n) = infix(u ·η)∩X n .
This proves Eq. (7).

If w 6= v then in view of %(w ·ξ, v ·η) ≥ r−(m−1), Eq. (8) is obvious. Let w = v
and %I (ξ,η) = r−n for some n ∈N. We have to show that %I (w ·ξ, w ·η) ≥ r−(n+m).

If %(ξ,η) = r−n then %(w ·ξ, w ·η) = r−(n+m) and Eq. (3) proves %I (w ·ξ, w ·η) ≥
r−(n+m).

If %(ξ,η) < r−n in view of %I (ξ,η) = r−n we have (infix(ξ)∆ infix(η))∩X n+1 6=
;, that is, u ∈ (infix(ξ)∆ infix(η))∩ X n+1 for some u ∈ infix(ξ), say. Now, it suf-
fices to show (infix(wξ)∆ infix(wη))∩X n+m+1 6= ;.
Assume v ′u ∉ infix(wξ)∆ infix(wη) for all v ′ ∈ X m . Then u ∈ infix(ξ) implies
v ′u ∈ infix(wξ)∩ infix(wη) for some v ′ ∈ X m . Since |w | = |v ′| = m, we have
u ∈ infix(η), a contradiction. o

As a consequence we obtain our result.

Corollary 1 The topologies (Xω,%I ) and (Xω,%∞) are shift invariant.

Proof. We use the fact that, in view of Lemma 1, the mappings Φu and Φm

defined by Φu(ξ) := u ·ξ and Φm(w ·ξ) := ξ for w ∈ X m are continuous w.r.t. the
metrics %I and %∞, respectively.

Thus, if F ⊆ Xω is open in (Xω,%I ) or (Xω,%∞) then Φ−1
u (F ) = F /u and, for

m = |w |, also w ·F =Φ−1
m (F )∩w ·Xω are open sets. o

4.2 Balls in (X ω,%I ) and (X ω,%∞)

Denote by K I (ξ,r−n) and K∞(ξ,r−n) the open balls5 of radius r−n around ξ in
the spaces (Xω,%I ) and (Xω,%∞), respectively. For w @ ξ with |w | = n +1 and
W := X n+1∩infix(ξ), V := X n+1∩infix∞(ξ), W := X n+1àinfix(ξ) and V := X n+1à
infix∞(ξ) we obtain the following description of balls via regular ω-languages.

K I (ξ,r−n) = w ·Xω∩ ⋂
u∈W

X ∗ ·u ·Xωà ⋃
u∈W

X ∗ ·u ·Xω, and (9)

K∞(ξ,r−n) = w ·Xω∩X ∗ · ((
∏

u∈V
X ∗ ·u)ωà ⋃

u∈V
X ∗ ·u ·Xω). (10)

5Since %I and %∞ satisfy the ultra-metric inequality, they are also closed balls of radius
r−(n+1).
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In Eq.(10) the order of the words u ∈ V can be arbitrarily chosen. In partic-
ular, Eqs. (9) and (10) show that balls in (Xω,%I ) and (Xω,%∞) are regular ω-
languages. Thus every non-empty open subset in each of the spaces contains
an ultimately periodic ω-word.

An immediate consequence of the representations in Eqs. (9) and (10) is the
following relation between the space (Xω,%I ) and the CANTOR space (Xω,%).

Lemma 2 1. Every ball K I (ξ,r−n) is a Boolean combination of regular ω-
languages open in (Xω,%), therefore, simultaneously an Fσ- and a Gδ-set
in the CANTOR topology.

2. Every open set in (Xω,%I ) is an Fσ-set in CANTOR topology.

Proof. 1. It is well-known know that open sets in a metric space are simul-
taneously Fσ- and Gδ-sets. Then, according to Property 1, the set K I (ξ,r−n) is
simultaneously an Fσ- and Gδ-set in the CANTOR topology.

2. is a consequence of 1 and the fact that there are only countably many
open balls in (Xω,%I ). o

Eqs. (9) and (10) and Lemma 2 show a connection between certain regular ω-
languages and the open sets in (Xω,%I ). It would be interesting if we could
characterise some regular ω-languages open in (Xω,%I ) using CANTOR topol-
ogy. The next example considering the simple case of closed sets, however,
shows that not every regular ω-language closed in CANTOR topology is open
in (Xω,%I ).

Example 2 ([Ho14]) Consider the regularω-language F = {1,00}ω ⊆ {0,1}ω which
is closed in the CANTOR topology. Assume F to be open in (Xω,%I ). Then
η=∏

i∈N102i ∈ F and, therefore, K I (η,r−n) ⊆ F for some n ∈N, n ≥ 1.
Consider ξ = ∏n

i=0 102i · ∏∞
i=2n+1 10i ∉ F . Then we have

∏n
i=0 102i @ η,∏n

i=0 102i @ ξ and, moreover,

infix(ξ)∩ {0,1}2n = (infix(
∏n

i=0 102i )∪0∗ ·1 ·0∗∪0∗)∩ {0,1}2n

= infix(η)∩ {0,1}2n .

It follows %I (ξ,η) ≤ r−2n , that is, ξ ∈ K I (η,r−n) ⊆ {1,00}ω, a contradiction. o

Using the Morse-Hedlund Theorem (cf. also the proof of Theorem 1.3.13 of
[Lo02]) one obtains special representations of small balls containing ultimately
periodic ω-words. To this end we derive the following lemma.

Lemma 3 Let w,u ∈ X ∗,u 6= e and ξ ∈ Xω. Then w ·u @ ξ and infix(ξ)∩X |w ·u| =
infix(w ·uω)∩X |w ·u| imply ξ= w ·uω.
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Proof. First observe that |infix(w ·uω)∩ X |w ·u|| = |infix(w ·uω)∩ X |w ·u|+1|.
Thus, for every v ∈ infix(w ·uω)∩ X |w ·u|, there is a unique v ′ ∈ infix(w ·uω)∩
X |w ·u| such that v @ a · v ′ for some a ∈ X . Consequently, the ω-word ξ ∈ Xω

with w ·u @ ξ and infix(ξ)∩X |w ·u| = infix(w ·uω)∩X |w ·u| is uniquely specified.

Lemma 4 Let w ·uω ∈ Xω where |w | ≤ |u| and let m > |w |+|u| and n > |u|. Then

K I (w ·uω,r−m) = {w ·uω}, and (11)

K∞(w ·uω,r−n) = w ′ ·X ∗ ·uω where w ′ @ w ·u and |w ′| = n. (12)

Proof. Every ξ ∈ K I (w · uω,r−m) satisfies w · u @ ξ and infix(ξ) ∩ X m =
infix(w ·uω)∩X m , and the assertion of Eq. (11) follows from Lemma 3.

If ξ ∈ K∞(w ·uω,r−n) then there is a tail ξ′ of ξ such that u @ ξ′ and infix∞(ξ)∩
X n = infix(ξ′)∩X n = infix(uω)∩X n whence, again by Lemma 3, ξ′ = uω. o

This allows us to state the following property concerning isolated points6 in
the spaces (Xω,%I ) and (Xω,%∞). The additional Item 3 in connection with
Lemma 2.2 shows a further difference between both spaces.

Corollary 2 1. The set of isolated points of the space (Xω,%I ) is Ult.

2. The space (Xω,%∞) has no isolated points and all sets of the form X ∗ ·uω

are simultaneously closed and open.

3. In the space (Xω,%∞) there are open sets which are not Fσ-sets in CANTOR

topology.

Proof. Since every non-empty open subset of (Xω,%I ) and also (Xω,%∞)
contains an ultimately periodic ω-word, every isolated point has to be ulti-
mately periodic. Now Eq. (11) shows that every w ·uω is an isolated point in
(Xω,%I ), and Eq. (12) proves that (Xω,%∞) has no isolated points. The remain-
ing part of Item 2 follows from Eq. (12) and X ∗ ·uω =⋃

w∈X n w ·X ∗ ·uω.
Finally, it is known that XωàX ∗ ·uω is not an Fσ-set in CANTOR topology (cf.

Example 1). o

4.3 Non-preservation of regularω-languages

In this section we investigate whether similar to the CANTOR topology the clo-
sure of a finite-state ω-language is always regular in the spaces (Xω,%I ) and
(Xω,%∞).

6A point ξ is referred to as isolated if %′(ξ,η) ≥ εξ for all η 6= ξ. Here the distance εξ > 0 may
depend on ξ.
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In contrast to the CANTOR topology it is, however, not true that the closure
of finite-state ω-languages are regular. We can even show that in both spaces
(Xω,%I ) and (Xω,%∞) there are regular ω-languages with non-regular closures.

Since we do not have a characterisation like the Property 1.5 for the closures
C I and C∞ in the spaces (Xω,%I ) and (Xω,%∞), respectivly, we circumvent this
obstacle by presenting examples where the closure C I (F ) or C∞(F ) of a regular
ω-language F is shown to be larger than F but does not contain more ultimately
periodic ω-words than F . In view of Theorem 1 this implies that the closures
cannot be regular ω-languages.

For the closure C I we use that, according to Example 1 the ω-language
{0,1}∗ ·0ω is no Gδ-set in the CANTOR topology, thus in view of Lemma 2.2 not
closed in (Xω,%I ).

Example 3 We show that C I ({0,1}∗ ·0ω)∩Ult= {0,1}∗ ·0ω. Let w ·uω ∉ {0,1}∗ ·0ω.
Then u ∉ {0}∗ and 0|w ·u| ∉ infix(w ·uω). Now Eq. (9) yields K (w ·uω,r−|w ·u|)∩
X ∗ ·0|w ·u| ·Xω =;. Thus %I (w ·uω, v ·0ω) ≥ r−|w ·u| for all v ∈ X ∗ whence w ·uω ∉
C I ({0,1}∗ ·0ω). The other inclusion being trivial.

Assume C I (({0,1}∗ ·0ω) were a regularω-language. Then Theorem 1 implies
CA({0,1}∗ ·0ω) = {0,1}∗ ·0ω, that is, {0,1}∗ ·0ω is closed in (Xω,%I ), a contradiction
to Lemma 2.2. o

Since {0,1}∗ · 0ω is closed in (Xω,%∞), we cannot use this ω-language in that
case.

Example 4 ξi ∩X n = infix∞(ζ)∩X n for n ≤ 2i +1. This implies %∞(ξi ,ζ) ≤ r−2i ,
that is, limi→∞ξi = ζ ∈C∞(F ) in (Xω,%∞). o

5 Completeness and Compactness

Here we show that the spaces (Xω,%I ) and (Xω,%∞) are neither complete nor
compact.

To show that they are not complete we consider the sequence (ξi )i∈N where
ξi := ∏∞

j=i 0 j 1. This sequence converges in CANTOR topology to the limit point
0ω. Since (Xω,%I ) and (Xω,%∞) refine (Xω,%), the limit points, if they exist,
should be the same. But infix(ξi ) and infix∞(ξi ) both contain the word 1 which
is not in infix(0ω) = infix∞(0ω). Thus %I (ξi ,0ω) = %∞(ξi ,0ω) = 1.

It remains to show that the sequence (ξi )i∈N fulfils the CAUCHY property.
To this end we observe that for j ≥ i we have 0i @ ξ j and infix(ξ j ) ∩ X i =
infix∞(ξ j )∩ X i = {0i }∪ {0m10i−m−1 : 0 ≤ m < i }. Thus %I (ξ j ,ξk ) ≤ r−i and also
%∞(ξ j ,ξk ) ≤ r−i for j ,k ≥ i .



11

In general it holds that no topology refining the CANTOR topology is com-
pact. A proof uses Corollary 3.1.14 in [En77]. Here we provide the more illustra-
tive and seemingly stronger examples of partitions of the whole space Xω into
infinitely many open subsets.

Example 5 Let X = {0,1}. Then the sets 0i 1 · Xω for i ∈N are open in the CAN-
TOR topology, hence open in (Xω,%I ) and according to Corollary 2.1 the set {0ω}
is also open (Xω,%I ).

Then
{
{0ω}

}∪{
0i 1 ·Xω : i ∈N}

is a partition of Xω into sets open in (Xω,%I ).

Example 6 Let X = {0,1}. Then the sets 0i 1 · Xω for i ∈N are open in the CAN-
TOR topology, hence open in (Xω,%∞) and according to Corollary 2.2 the set
X ∗ ·0ω is open and closed in (Xω,%∞).

Then
{

X ∗ ·0ω}∪{
0i 1 ·XωàX ∗ ·0ω : i ∈N}

is a partition of Xω into sets open
in (Xω,%∞).

6 Subword Complexity

In Section 4 we mentioned that regular ω-languages are closely related to the
(asymptotic) subword complexity of infinite words. Adapting the metrics %I

and %∞ to subwords we may draw some connections to the level sets F (τ)
γ of the

asymptotic subword complexity (see [St93, St12]).
First we introduce the concept of asymptotic subword complexity.

Definition 2 (Asymptotic subword complexity)

τ(ξ) := lim
n→∞

log|X | |infix(ξ)∩X n |
n

Using the inequality |infix(ξ)∩X n+m | ≤ |infix(ξ)∩X n | · |infix(ξ)∩X m | it is easy
to see that the limit in Definition 2 exists and

τ(ξ) = inf
{ log|X | |infix(ξ)∩X n |

n
: n ∈N∧n ≥ 1

}
. (13)

Eq. (5.2) of [St93] shows that in Definition 2 and Eq. (13) one can replace the
term infix(ξ) by infix∞(ξ).

Let, for 0 < γ ≤ 1, F (τ)
γ := {ξ : ξ ∈ Xω ∧ τ(ξ) < γ} be the lower level sets of

the asymptotic subword complexity. For γ = 0 we set F (τ)
0 := Ult (instead of

F (τ)
0 =;). We want to show that these sets are open in (Xω,%I ) and (Xω,%∞). As

a preparatory result we derive the subsequent Lemma 5.
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Let En(ξ) := {η : infix(η)∩ X n ⊆ infix(ξ)} and E ′
n(ξ) := {η : infix∞(η)∩ X n ⊆

infix∞(ξ)} be the sets of ω-words having only infixes or infixes occurring in-
finitely often of length n of ξ, respectively. These sets can be equivalently de-
scribed as

En(ξ) = XωàX ∗ · (X n à infix(ξ)) ·Xω and

E ′
n(ξ) = X ∗ · (XωàX ∗ · (X n à infix∞(ξ)) ·Xω), respectively

which resembles in some sense the characterisation of open balls in Eqs. (9)
and (10). In fact, it appears that the sets En(ξ) and E ′

n(ξ) are open in the respec-
tive spaces (Xω,%I ) and (Xω,%∞).

Lemma 5 Let ξ ∈ Xω. Then ξ ∈ En(ξ)∩E ′
n(ξ), the set En(ξ) is open in (Xω,%I )

and the set E ′
n(ξ) is open in (Xω,%∞).

Proof. The first assertion is obvious. For a proof of the second one we show
that η ∈ En(ξ) implies that the ball K I (η,r−n) is contained in En(ξ).

Let η ∈ En(ξ) and ζ ∈ K I (η,r−n). Then, %I (η,ζ) < r−n , that is, in particular,
infix(η)∩X n = infix(ζ)∩X n , whence ζ ∈ En(ξ)

The proof for E ′
n(ξ) is similar. o

This much preparation enables us to show that the level sets are open sets.

Theorem 3 Let 0 ≤ γ≤ 1. Then the sets F (τ)
γ are open in (Xω,%I ) and (Xω,%∞).

Proof. For γ = 0 we have F (τ)
γ = Ult which is, according to Corollary 2, open

as well in (Xω,%I ) as in (Xω,%∞).
Let γ > 0 and τ(ξ) < γ. We show that then En(ξ) ⊆ F (τ)

γ and E ′
n(ξ) ⊆ F (τ)

γ for

some n ∈N. Together with Lemma 5 this shows that F (τ)
γ contains, with every ξ,

open sets containing this ξ.

If τ(ξ) < γ then in view of Eq. (13) for some n ∈Nwe have
log|X | |infix(ξ)∩X n |

n < γ.

Then for every η ∈ En(ξ) it holds τ(η) ≤ log|X | |infix(ξ)∩X n |
n < γ and, consequently,

En(ξ) ⊆ F (τ)
γ .

The proof for (Xω,%∞) is similar using infix(∞) instead of infix and the re-
spective modification of Eq. (13) whose validity was mentioned above. o

The proof shows also that ξ ∈ F (τ)
γ implies that XωàX ∗ ·(X nàinfix(ξ))·Xω ⊆ F (τ)

γ

for some n > 0. Thus F (τ)
γ is a countable union of regular ω-languages closed

in CANTOR topology, hence an Fσ-set in CANTOR topology. The sets F (τ)
γ are

finite-state7 non-regular ω-languages because their complement Xω à F (τ)
γ is

non-empty and does not contain any ultimately periodicω-word. Thus, in view
of Theorem 2, they are not Gδ-sets in CANTOR-space and they are examples of

7In particular, they satisfy F (τ)
γ /w = F (τ)

γ for w ∈ X ∗.
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sets open in (Xω,%I ) and (Xω,%∞) which are non-regular Fσ-sets in CANTOR-
space.
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