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Abstract

This paper briefly presents advances in development of efficient Evolutionary
Algorithms (EA) for a wide class of large non-linear constrained optimization prob-
lems. In particular, two important engineering applications are taken into account,
namely residual stress analysis in railroad rails, and vehicle wheels, as well as a
wide class of problems resulting from the Physically Based Approximation (PBA)
of experimental data. However, the main objective of this research is to develop
various means of significant acceleration of the EA-based approach for large op-
timization problems, and to provide ability to solve problems when standard EA
procedure fails. The efficiency of speed-up techniques proposed was examined using
several simple but demanding benchmark problems. Results obtained so far are
very encouraging and indicate possibilities of further development of acceleration
techniques proposed.

Keywords: Evolutionary Algorithms, computation efficiency increase, large
non-linear constrained optimization problems.

1 Introduction

Development of several new acceleration techniques for Evolutionary Algorithms (EA) is
briefly discussed in this paper. Though our approach is very general, the target practical
objective of this research is development and application of the improved EA to chosen
problems of computational mechanics, including residual stress analysis in railroad rails
and vehicle wheels [4, 12, 13, 18], as well as a wide class of problems resulting from the
Physically Based Approximation (PBA) of experimental and/or numerical data [7, 13].
The PBA is a hybrid method allowing for simultaneous use of the whole experimental,
theoretical, and heuristic knowledge of the analyzed problems, taking into account their
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likelihood. Moreover, the improved EA may be also applied to a wide class of other
engineering and scientific problems formulated in terms of large non-linear constrained
optimization.

In contrast to majority of deterministic methods, the EA may be successfully applied
with similar efficiency to both the convex and non-convex problems [3, 9]. However, the
standard EA are generally rather slowly convergent methods. Therefore, this research is
focused, first of all, on significant acceleration of the EA-based solution process. More-
over, the improved EA should provide possibility of solving such problems, when the
standard EA methods fail.

2 General optimization problem formulation

In considered optimization problems a function given in the discrete form, e.g. expressed
in terms of its nodal values, is sought. These problems may be posed in a following
general way:

find a function u = u(x),x ∈ R
N , that yields the stationary point of a functional

Φ(u) satisfying the equality A(u) = 0, and inequality constraints B(u) ≤ 0. After
discretization we seek a vector u = {ui} consisting of nodal values ui, i = 1, 2, ..., n.
These nodal values are defined on a mesh formed by arbitrarily distributed nodes. Here,
N is the dimension of the physical space (1D, 2D or 3D), and n is a number of decision
variables.

In the particular case of the PBA approach [7], the functional to be optimized and
related constraints consist of the weighted experimental, and theoretical parts. The
experimental part is defined as the weighted averaged error resulting from discrepancies
between the measured data and its approximation. The theoretical part is based on a
known theory (e.g. energy functional in mechanics), and/or on a heuristic principle (e.g.
smoothness requirement).

3 EA acceleration techniques

The EA are understood here as real-value coded genetic algorithms consisting of selection,
crossover, and mutation operators [3, 9]. Our long-term research includes various ways
for increasing efficiency of the EA. Recently, we have proposed several new acceleration
techniques, including solution smoothing and balancing, a’posteriori error analysis and
related techniques, an adaptive step-by-step mesh refinement, as well as non-standard
parallel and distributed computations [5, 14, 16]. These general ideas may be applied in
various ways. Some basic concepts are described below.

3.1 Smoothing

In the problems considered unknowns (decision variables) mostly are discretized function
values (e.g. nodal values). When using the EA approach they usually present together
quite rough solution. Therefore, we have proposed two various approaches for smoothing
of raw EA results. One of them is based on the Moving Weighted Least Squares (MWLS)
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technique [8, 14, 17]. The second approach uses the mean solution curvature taken
together with the fitness function evaluating individuals in a population [5].

When using the extra smoothing procedure based on the MWLS technique, it is very
useful to introduce the following weighting function [7]:

w2
i =

(

h2
i +

g4

h2
i + g2

)

−p−1

(1)

where hi is a distance between nodes, p is the local approximation order, and g

is a smoothing intensity parameter. Such type of weighting function allows to control
intensity of solution smoothing by adjusting the parameter g.

Smoothing techniques are applicable to any optimization problems where a smooth
(at least in subdomains) function is sought. However, application of smoothing to raw EA
solution may result in violating of constraints. For instance, in problems of mechanics,
it may cause global equilibrium loss of a considered body. The equilibrium is restored
in a series of standard EA iterations after smoothing. However, it may also be restored
at once by means of an artificial balancing of global body forces, performed directly
after the smoothing. More general approach for any optimization problems uses elitism
strategy. Smoothing is applied to all individuals in population, but the best individual
from unsmoothed population is additionally preserved unaltered. It guarantees that at
least one individual always satisfies constraints.

3.2 A’posteriori error analysis

A’posteriori solution error analysis is based on the assumption that we are able to generate
reference solutions of sufficient quality for the error estimation [1]. We have already
proposed such new technique for the reference solutions generation, based on a stochastic
nature of the EA [16]. We have also improved evolutionary operators (mutation, crossover
and selection) to take into account all information about estimated local and global
solution errors [5, 16].

Other related techniques include weighted solution averaging, generation of popula-
tion of representatives, as well as non-standard distributed and parallel computations
[16].

3.3 Adaptive step-by-step mesh refinement

The approach using step-by-step mesh refinement starts the analysis from a coarse mesh,
where a solution is obtained much faster than in the fully dense mesh case. However,
such solution is usually not precise enough. The precision of the solution is increased by
inserting new nodes in the best possible locations. Such process is repeated until errors
in all nodes are smaller than their admissible level. The iterative solution procedure is
as follows:

1. Evaluation of solution on a coarse mesh.

2. Smoothing of the above rough solution (e.g. using MWLS method).
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3. Mesh refinement and the best approximation (or interpolation) of initial function
values at inserted nodes.

4. Repetition of this procedure until a sufficiently dense mesh is reached.

Furthermore, step-by-step mesh refinement may be combined with a’posteriori error
analysis and additional smoothing techniques [5, 16].

3.4 Other techniques

In our research we also consider other acceleration techniques, well known in the field of
evolutionary computation, including efficient constraint handling techniques [2], hybrid
algorithms combining EA with deterministic methods [6], as well as parallel and dis-
tributed algorithms [11]. So far we have shortly investigated efficient approaches based
on penalty functions for constraint handling [14]. Their influence on the solution process
was sometimes found significant. Recently, we have also studied techniques proposed for
estimation of the convergence point of populations [10]. Preliminary results are encour-
aging, but wider research is needed.

4 Sample benchmark problems

The efficiency of the proposed techniques was examined by using simple but demanding
benchmark problems, including ones resulting from the PBA approach. Most of the con-
sidered benchmarks may be analyzed as either 1D or 2D problems, and allow to choose
for testing almost any number of decision variables involved (large problems). Our set of
benchmark problems includes residual stress analysis in chosen elastic-perfectly plastic
bodies (prismatic bar, thick-walled cylinder) under various appropriate cyclic loadings
(such as bending moment, internal pressure, torsion, tension) [5, 14, 16]. We also inves-
tigated several benchmarks using the PBA approach and simulated pseudo-experimental
data, including smoothing of beam deflections, and reconstruction of residual stresses
[5, 14, 15]. Smoothing of real experimental data obtained by the vision measurement
system was successfully applied as well [15].

Two simple chosen benchmark problems are formulated in a more detailed way below.

4.1 Residual stress analysis in a cyclically bending bar

Considered is residual stress analysis in a bar subject to pure cyclic bending. Assumed is
an elastic-perfectly plastic material, and a rectangular cross-section (b× 2H) of the bar.
This problem may be posed as the following optimization:

Find stresses σ = σ(y, z) minimizing the total complementary energy

min
σ(y,z)

∫ b/2

−b/2

∫ H

−H

σ2(y, z) dz dy (2)

and satisfying constraints:
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• global self-equilibrium equation

M =

∫ b/2

−b/2

∫ H

−H

σ(y, z)z dz dy = 0 (3)

• yield condition for the total stresses

|σ + σe| ≤ σY , (4)

where σY is the yield stress (plastic limit), and σe is the purely elastic solution of the
same problem.

Due to symmetry, only a half of the cross-section (b ×H) may be considered. After
discretization, where the sought stress σ = σ(y, z) is replaced by the piecewise linear
function spanned over the nodal values σi, the following formulation is obtained:

find stresses σ1, σ2, ..., σn satisfying

min
σ1,σ2,...,σn−1

h2

9

(

n
∑

k=1

σ2
kαk

)

, σn =
−1

znαn

n−1
∑

k=1

σkzkαk , (5)

where αk are the Simpson integration coefficients. The following inequality constraints

|σk + σe
k| ≤ σY , k = 1, 2, ..., n. (6)

have to be also satisfied. Though simple Simpson method for numerical integration
is used in the above formulation, in real calculations any other effective method may be
applied.

4.2 Smoothing of beam deflections using the PBA approach

Given free-supported beam displacements wexp, experimentally measured at points xj,
j = 1, 2, ...,m we seek nodal values wi, i = 1, 2, ..., n of the smoothed displacements w.
The following PBA formulation of this problem is considered:

find the stationary point of the functional

Φ (w) = λΦE (w) + (1− λ) ΦT (w) , λ ∈ [0, 1] , (7)

where

ΦE (w) =
1

m

m
∑

j=1

(

wj − w
exp
j

ej

)2

, (8)

ΦT (w) =
1

L

∫ L

0

κ2

κ2
ref

dx ≈
1

L

∫ L

0

(w′′)2

(

w′′

ref

)2dx ≈
1

n

n
∑

i=1

(w′′

i )
2

(

w′′

ref

)2 , (9)

satisfying boundary conditions

w (0) = w (L) = 0 , (10)
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admissible local error constraints

∣

∣wj − w
exp
j

∣

∣ ≤ ej , (11)

and admissible global error constraint

√

ΦE (w) ≤ eE . (12)

In the above formulation wj is an approximation built upon sought values wi at node
xj, while ej and eE are admissible errors, L is the beam length, κ is the mean local
curvature at a point [7], κref and κ′′

ref are reference values, λ is a dimensionless scalar
weighting factor determining a reasonable balance between the experiment and theory
[7].

5 On numerical results

The main objective of numerous executed tests was to examine the efficiency of the
proposed speed-up techniques on large optimization problems. Typical results illustrating
our research are shown in Fig. 1-2. They were obtained for the already mentioned simple
benchmark problems. Some other results of our numerical analysis have already been
described in our other papers [5, 14, 16]. However, this research is still in progress. Final
results of a wide analysis comparing efficiency of all proposed techniques using various
benchmark problems are expected in the near future. Especially interesting may be
results of interactions between particular speed-up techniques simultaneously applied.

The standard EA in our tests used rank selection, heuristic crossover (with probability
PC = 0.9), and non-uniform mutation (with probability PM = 0.1). In Fig. 1 one may
see the influence an additional smoothing has on the convergence of the mean solution
error. These results were obtained for benchmark 4.1 (bending bar 2D model) involving
288 decision variables (each one corresponding to one nodal value in the cross-section).
The MWLS technique with p = 1, and g = 5 was used for smoothing. For more complex
problems higher order p of the local approximation may be needed. The purpose of this
test was also to show, that additional cost of smoothing is relatively small when compared
with advantages due to acceleration of calculations. Optimization processes shown in Fig.
1 were carried out in both cases for 5000 iterations. One may easily notice the additional
time (about 15% more) needed for all extra smoothing operations, which were repeated
after each 200 iterations. This extra time is not significant when compared with gains
obtained. In the case of this benchmark test application of the smoothing technique
based on the MWLS allowed to achieve up to about 1.8 times efficiency increase. Similar
speed-up was obtained when dealing with 1088 decision variables in the same benchmark.
In numerical analysis of bending bar of the same but 1D model smoothing technique using
1D MWLS approach allowed to obtain acceleration up to about 4 times [14].

The results shown in Fig. 2 were obtained for benchmark 4.2 and randomly generated
pseudo-experimental data (with admissible error up to 20%). They present solution pro-
cess for one (optimal) value of the λ parameter determining balance between experiment
and theory involved. In numerical analysis of the PBA problems necessary is to solve
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Figure 1: Convergance of the mean solution error for the standard EA and EA using
smoothing approach - benchmark 4.1

optimization problem for each value of λ. Adjusting of the λ parameter may be done
in various ways [7], e.g. by applying the simple bisection method. In Fig. 2 one may
find comparison of the improved EA (using smoothing and step-by-step mesh refinement)
with the standard EA. When using the step-by-step mesh refinement technique, the pro-
cess started with 10 nodes, and after two refinements the final number of 37 nodes was
reached. This strategy was also combined with a smoothing technique using the MWLS
approach. In this case application of the improved EA allowed to reach a speed-up of
about 300 times.

Similar approach using the step-by-step mesh refinement combined with smoothing
was also evaluated for other PBA benchmarks, and involving much bigger number of
decision variables. In the case of reconstruction of residual stresses in the cyclically
pressurized thick-walled cylinder, the optimization process involved up to about 1200
decision variables, and the speed-up factor about 140 times was reached [14].

6 Final remarks

Results obtained so far are very encouraging and indicate possibilities of further develop-
ment of speed-up techniques proposed. Each of the new speed-up techniques allowed for a
significant computational efficiency increase. For more complex benchmarks considered,
the speed-up factor up to about 140 times was reached so far [14].

Future research includes, inter alia, testing of further new acceleration techniques
and their combinations, as well as application of the improved EA to real large complex
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Figure 2: Convergance of the mean solution error for the standard and improved EA -
benchmark 4.2

engineering problems, including broad PBA data smoothing, and residual stress analysis
in railroad rails, and vehicle wheels.
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