
CDMTCS
Research
Report
Series

Two Anytime Algorithms for
the Halting Problem

C. S. Calude1 and M. Dumitrescu2

1

University of Auckland, NZ

2

Bucharest University, Romania

CDMTCS-493

December 2015

Centre for Discrete Mathematics and

Theoretical Computer Science

Two Anytime Algorithms for the Halting Problem

Cristian S. Calude

Department of Computer Science, University of Auckland

Auckland, New Zealand

www.cs.auckland.ac.nz/~cristian

Monica Dumitrescu

Faculty of Mathematics and Computer Science

Bucharest University, Romania

http://fmi.unibuc.ro/ro/scoala_doctorala_mate/monica_dumitrescu

December 23, 2015

Abstract

The halting problem, the most (in)famous undecidable problem, has important appli-

cations in theoretical and applied computer science and beyond, hence the interest in its

approximate solutions.

A program which eventually stops but does not halt “quickly” stops at a time which

is algorithmically compressible. This result was converted into anytime algorithms for the

halting problem for which the stopping time (cut-off temporal bound) is very large and,

in general, cannot be significantly improved.

In this paper we propose two classes of anytime algorithms for the halting problem,

a theoretical one based on probability theory and another, more practical one, based on

order statistic. Previous experimental studies for small Turing machines suggest that some

anytime algorithms in these classes may be indeed feasible. Extensive experimental work

is needed in this direction.

1 Introduction

The halting problem asks to decide, from a description of an arbitrary program and an input,
whether the computation of the program on that input will eventually stop or continue forever.
In 1936 Alonzo Church, and independently Alan Turing, proved that (in Turing’s formulation)
an algorithm to solve the halting problem for all possible program-input pairs does not exist ;
two equivalent models have been used to describe computation by algorithms (an informal
notion), the lambda calculus by Church and Turing machines by Turing. The halting problem
is historically the first proved undecidable problem; it has many applications in mathematics,
logic and theoretical as well as applied computer science, mathematics, physics, biology, etc.

1

www.cs.auckland.ac.nz/~cristian
http://fmi.unibuc.ro/ro/scoala_doctorala_mate/monica_dumitrescu

Due to its practical importance approximate solutions for this problem have been proposed for
quite a long time, see [15, 14, 7, 19, 24, 6, 5, 2].

Anytime algorithms trade execution time for quality of results [12]. These algorithms can be
executed in two modes: either by a given contract time to execute or an interruptible method.
Instead of correctness, an anytime algorithm returns a result together with a “quality measure”
which evaluates how close the obtained result is to the result that would be returned if the
algorithm ran until completion (which may be prohibitively long). To improve the solution,
anytime algorithms can be continued after they have halted. That is similar to the use of
iterative processes in numerical computing in which, after the process has been halted, if the
output is not considered to be acceptable, then it can be refined by resuming the iterative
process.

Following Manin [19] we use a more general form of anytime algorithm as an approximation
for a computation which may never stop. An anytime algorithm for the halting problem works
in the following way: to test whether a program eventually stops on a given input we first
effectively compute a threshold time – the interruptible (stopping) condition – and then run
the program for that specific time. If the computation stops, then the program was proved to
halt; if the computation does not stop, then we declare that: a) the program will never stop
and b) evaluate the error probability, i.e. the probability that the program may eventually stop.
The goal is to prove that the error probability can be made as small as we wish. By running
the program a longer time we can improve its performance either by getting to the halting time
or by decreasing the probability error. Another important goal is to develop feasible anytime
algorithms for the halting problem.

In [7, 6] anytime algorithms for the halting problem have been developed using the fact – proved
in [7] – that programs which take a long time to halt stop at algorithmically “compressible
times”, i.e. times which a computer can generate from “smaller” inputs. The stopping times
obtained using this method are very large and the theoretical bounds cannot be improved,
see [6]. However, experimental results reported in [24] for small Turing machines indicate much
smaller stopping times.

In this paper we use methods from probability theory and statistics to design two types of
anytime algorithms for the halting problem. The first algorithm depends on a computable
probability distribution; the second one depends on a sampling method. In this way we obtain
two classes of anytime algorithms to choose from in practical applications. The experimental
results cited above suggest that some anytime algorithms in these classes may be indeed feasible.
Extensive experimental work is needed in this direction.

The paper is organised as follows. We start with a section including the basic notation. Section 3
presents the computability and complexity part while Section 4 is dedicated to probability
and statistics. In Section 5 we present the probabilistic framework for our paper. Section 6
constructs a natural computable probability for the set of running-times. Section 7 is the main
section: it contains the proposed anytime algorithms and the proofs of their correctness. The
last section discusses the power and limits of the proposed algorithms and open problems.

2

2 Notation

In the following we will denote by Z+ the set of positive integers {1, 2, . . . } and let Z+ =
Z+ [{1}; R is the set of reals. The domain of a partial function F : Z+ �! Z+ is denoted by
dom (F): dom (F) = {x 2 Z+ | F (x) < 1}. We denote by #S the cardinality of the set S.

We assume familiarity with elementary computability theory and algorithmic information the-
ory [18, 3, 11].

For a partially computable function F : Z+ �! Z+ we denote by F (x)[t] < 1 the statement
“F has stopped exactly in time t”. For t 2 Z+ we consider the computable set

Stop(F, t) = {x 2 Z+ | F (x)[t] < 1},

and note that
dom(F) =

[

t2Z+

Stop(F, t). (1)

3 Complexity and universality

The algorithmic complexity relative to a partially computable function F : Z+ �! Z+ is the
partial function rF : Z+ �! Z+ defined by

rF (x) = inf
�
y 2 Z+ | F (y) = x

.

If F (y) 6= x for every y � 1, then rF (x) = 1. That is, the algorithmic complexity of x is the
smallest description/encoding of x with respect to the interpreter/decoder F , or infinity if F
cannot produce x.

A partially computable function U is called universal if for every partially computable function
F : Z+ �! Z+ there exists a constant kU,F such that for every x 2 dom (rF) we have

rU (x)  kU,F ·rF (x) . (2)

Theorem 1 ([6]). A partially computable function U is universal iff for every partially com-
putable function F : Z+ �! Z+ there exists a constant cU,F such that for every x 2 dom (F)
we have

rU (F (x))  cU,F · x. (3)

The difference between (2) and (3) is in the role played by F : in the traditional condition (2),
F appears through rF (which sometimes may be incomputable), while in (3) F appears as
argument of rU, making the second member of the inequality always computable.

A universal partially computable function U “simulates” any other partially computable
function F in the following sense: if x 2 dom (F), then from (3), one can deduce that
rU (F (x))  cU,F · x, hence there exists y  cU,F · x in dom (U) such that U (y) = F (x). In
particular, rU(x) < 1, for all x 2 Z+.

3

The set dom(U) – see (1) for U = F – is computable enumerable, but not computable (the
undecidability of the halting problem), its complement dom(U) is not computably enumerable,
but the sets (Stop(U, t))t�1 are all computable.

To solve the halting problem means to determine for an arbitrarily pair (F, x), where F is a
partially computable function and x 2 Z+, whether F (x) stops or not, or equivalently, whether
x 2 dom(F), that is, x 2 Stop(F, t), for some t 2 Z+. In view of (2) or (3) solving the halting
problem for a fixed universal partially computable function U is enough to solve the halting
problem. From now on we fix a universal partially computable function U and study the halting
problem U(x) < 1, for x 2 Z+.

4 A glimpse of probability and statistics

In this section we define the main notions from probability theory and statistics used in this
paper. For more details see [1, 8, 22].
A probability space is a triple (⌦,B (⌦) ,Pr) , where ⌦ is non-empty set, B (⌦) is a �-field of
subsets of ⌦ and Pr : B (⌦) �! [0, 1] is a probability measure, that is, it satisfies the following
two conditions: a) the probability of a countable union of mutually-exclusive sets in B (⌦) is
equal to the countable sum of the probabilities of each of these sets, and b) Pr (⌦) = 1. We
interpret B (⌦) as “the family of events” and ⌦ as “the certain event”.
A function X : ⌦ �! A, where A ✓ R is equipped with a ��field B (A) such that for every
B 2 B(A) we have X�1(B) 2 B(⌦), is called random variable ; in this case X induces a
probability (called probability distribution of X) PX : B (A) �! [0, 1] defined by

PX (B) = Pr
�
X�1 (B)

�
= Pr ({! | X (!) 2 B}) , B 2 B (A) ,

which identifies the probability space (A,B (A) , PX) .

The random variable X has a discrete probability distribution if A is countable. If we denote
by PX (x) the probability of the event {X = x}, then the discrete probability distribution of X
is completely defined by the numbers PX (x) 2 [0, 1] , x 2 A, with

P
x 2 A

PX (x) = 1.

The Cumulative Distribution Function of a random variable X with a discrete distribution is
the function CDFX : R �! [0, 1] defined by

CDFX (y) = Pr (X  y) =
X

{x2A |x y}

PX(x), y 2 R.

In this case, CDFX is a stair-function (with piecewise-constant sections). For example, the
discrete probability distribution X that expresses the probability of a given number of events
occurring in a fixed interval of time and/or space, provided these events occur with a known
average rate and independently of the time since the last event, is called the Poisson dis-
tribution. More precisely, the random variable X defined on A = Z+ [{0} has a Pois-
son distribution with an average � if PX (x) = �x

x!
exp (��) , x = 0, 1, 2, . . . ; in this case,

CDFX (y) =
1P

x=0, xy

�x

x!
exp (��) , y 2 R and limy!1 CDFX(y) = 1. In Figure 1 the values of

CDFX (y) , with an average � = 3 for 0  y < 8, are pictured.

4

2 4 6 8

0.2

0.4

0.6

0.8

1.0

Figure 1: CDFX for an example of Poisson distribution.

The Inverse Cumulative Distribution Function or quantile function qX : [0, 1] �! A is defined
by the equation CDFX (qX (p)) = p, p 2 [0, 1] whose solution is given by

qX (p) = inf {y 2 A | p  CDFX (y)} , p 2 [0, 1] .

For fixed r 2 [0, 1], the value (number) qX (r) is called the rth quantile of the random variable
X. Quantiles are important indicators that give information about the location and clustering of
the probability values {PX (x) , x 2 A} . For example, if the data being studied are not actually
distributed according to an assumed probability distribution, or if there are outliers far removed
from the mean, then quantiles may provide useful information. Beside the classical quartiles –
first, second (median), third – the lower and upper "th quantiles, qX (") and qX (1� ") , give
important informations about the “tails” of the probability distribution (for small " > 0). For
more details see [1].
The notions and results discussed above are theoretical. Can they be reformulated in an
inferential approach, that is, can we extract information about the probability distribution of
the random variable X from observations of the phenomenon described by X? Thus, instead
of working with the theoretical CDFX , can we characterise the probability distribution of a
random variable X by means of a long-enough sequence of observations (x1, ..., xN) 2 AN that
are independent, identically distributed replicates of the random variable X? The answer is
affirmative. In what follows (x1, ..., xN) will be called an N -dimensional sample and its values
x1, ..., xN data points. The Empirical Cumulative Distribution Function is defined by

ECDFX,N (y) =
{1  i  N | xi  y}

N
, y 2 R. (4)

The rth sample quantile of an N -dimensional sample, qX,N : [0, 1] �! {x1, ..., xN} , is defined
by

qX,N (r) = inf {y 2 {x1, ..., xN} | r  ECDFX,N (y)} , r 2 [0, 1] .

Suppose that we order increasingly the observed data points and denote the sequence by

x(1)  x(2)  ...  x(N�1)  x(N). (5)

5

The order statistic of rank k is the kth smallest value in (5).

The following result shows how to compute the rth sample quantile (see [13],[8, Ch. 6]):

Theorem 2. Let (x1, ..., xN) 2 AN be N independent, identically distributed replicates of the
random variable X. Then, for an N-dimensional sample, the rth sample quantile is equal to the
order statistic of rank dNre, that is, qX,N (r) = x(dNre).

In view of Theorem 2, the rth quantile qX (r) will be estimated with the rth sample quantile
qX,N (r) , that is with x(dNre).

Inference-based-decisions are made using statistical procedures using sets of observations. An
inference-based-decision of a hypothesis results in one of two outcomes: the hypothesis is ac-
cepted or rejected. The outcome can be correct or erroneous. The set of observations leading
to the decision “reject the hypothesis” is called the critical region.

Fix the probability space (A,B(A), PX) induced by a random variable X. Consider a critical
region B ⇢ A,B 2 B(A) and an observed value x 2 A. A hypothesis H is a statement such that
for every x 2 A “Hx is true00 2 B (A) and “Hx is false00 2 B (A). An inference-based-decision
has the following form:

If the observed value x 2 A belongs to B, then decide to reject the hypothesis Hx.

An error occurs if we reject Hx on the basis of B, when Hx is true. The error probability, that is
the probability of an erroneous decision, is PX ({x 2 B | Hx is true}). Of course, only decisions
with (very) low error probability are of genuine practical interest.

5 A probabilistic framework

In this section we describe the probabilistic framework for developing our anytime algorithms.
The finite running-times1 of the computations U (x) are the set of stopping times for the halting
programs of U:2

TU =
�
t 2 Z+ | there exists x 2 Z+ such that x 2 Stop (U, t)

=
�
t 2 Z+ | there exists x 2 Z+ such that U (x) [t] < 1

.

Lemma 3. For every M 2 Z+ there is a program x 2 dom(U) which stops in time larger than
M , hence TU is infinite.

Proof. The statement in the lemma is true because otherwise all programs would stop in time
at most M , hence dom(U) would be decidable, a contradiction.

1
See [10] for modelling running-times.

2
Recall that U (x) [t] < 1 means that the computation U (x) has stopped exactly in time t.

6

In what follows we will work with the random variable

RT = RTU : dom(U) �! TU,

called the running-time associated with U, defined by

RT (x) = min{t > 0 | U(x)[t] < 1}. (6)

The random variable RT is completely specified by a computable probability distribution on the
set of finite running-times of programs of U,

(
PRT (t) , t 2 TU | PRT (t) 2 (0, 1) ,

X

t 2 TU

PRT (t) = 1

)
, (7)

chosen to “reflect in some natural way” the behaviour of the halting programs.3

We will consider two cases, depending on whether we work with this distribution directly or in-
directly. In the first case the anytime algorithm will use the probabilistic threshold qRT (1� ").
In the second case we will use an N -dimensional sampling of TU obtaining a sequence of inde-
pendent, identically distributed running-times (t1, ..., tN) and choose, according to Theorem 2,
t(dN(1�")e), the order statistic of rank (dN(1� ")e), as the fitted threshold.

The cumulative distribution function CDFRT : R �! [0, 1] of the discrete random variable
RT : dom(U) �! TU is then defined by the formula:

CDFRT (y) = PRT ({t 2 TU | 1  t  y}) =
yX

t=1, t2TU

PRT (t).

In particular, for every k 2 TU, we have CDFRT (k) =
kP

t=1

PRT (t) .

The inverse cumulative distribution function which produces the quantiles of RT is then equal
to

qRT (r) = inf {k 2 TU | CDFRT (k) � r} , r 2 (0, 1) .

For " 2 (0, 1) we now use the (1� ")�quantile qRT (1� ") as a probabilistic threshold separating
the “the upper "�tail” of the distribution, i.e. those very large running-times t making the event
“U(x)[t] < 1” negligible according to PRT .

6 A computable discrete probability distribution for finite

running-times

In this section we propose a discrete, computable and “natural” probability distribution for (7)
PRT = P⇢.

3
An example will be presented in Section 6.

7

A computable probability distribution for TU is a discrete probability distribution ⇢ such
that ⇢(t) is a computable real4 for each t 2 TU. We construct the computable probability
distribution ⇢ by using the function f = fU : Z+ ⇥ Z+ ! Z+ defined by

f(x, t) =

(
2�x

t
, if x 2 Stop(U, t),

0, otherwise.
(8)

The function f is computable because the sets Stop(U, t) are computable for every t 2 Z+.

Theorem 4. The real numbers

�(t) = �U(t) =
1X

x=1

f(x, t), (9)

⌥ = ⌥U =
1X

t=1

�(t) (10)

are computable and 0  � < ⌥ < 1.

Proof. We first note that because Stop(U, t) ⇢ Z+ we have:

�(t) =
1X

x=1

f(x, t) =
1X

x=1, x2Stop(U,t)

2�x

t
<

1

t
.

Next we show that for every t 2 Z+ the real �(t) = 0.�1�2 . . . �n . . . is computable. If x � n
is in Stop(U, t), then x contributes to �(t) with the term 2�x/t  2�n/t  2�n. Hence,
if all x � n would be in Stop(U, t), then their cumulative contribution to �(t) would beP1

x=n 2
�x/t < 2�n/t  2�n, hence �(t) < 0.�1�2 . . . �n + 2�n. To determine �1, �2, . . . , �n we

just need to calculate
Pn

x=1 2
�x/t.

A similar argument works for ⌥. The solution is to run all non-stopping programs x for enough
time such that their cumulative contribution becomes too small to affect the first n�1 digits of
⌥. Consider the binary expansion ⌥ = 0.�1�2 . . . and n � 2. If all programs x � n would halt
on U in time 1 (an impossibility as there exist programs with arbitrarily large running-times),
then their cumulative contribution to ⌥ would be less than 2�n, that is, ⌥ < 0.�1�2 . . . �n+2�n.
We now run in parallel the programs x = i, 1  i  n, for at most time bi = n·2n�i, respectively,
add 2�i/ti for each program which has stopped in time ti  bi and dismiss the ones that have
not halted in time bi. In this way we get all the correct bits �1�2 . . . �n�1 as the cumulative
contribution of the dismissed programs – some of which may eventually stop – is at most n ·2n.
As

1P
t=1

2�t = 1, we have 0 < ⌥ < 1; in view of (10), 0  � < ⌥.

Using Theorem 4 we construct by normalisation the following computable probability distribution
⇢ on the set of finite running-times TU:

⇢(t) =
�(t)

⌥
=

1

⌥

1X

x=1

f(x, t), t = 1, 2, . . . (11)

4
That is, there is an algorithm computing the nth binary digit of the binary expansion of ⇢(t), see [21,

p. 159].

8

Indeed, from (11) and (10) we have:
1X

t=1

⇢(t) =
1X

t=1

1

⌥

1X

x=1

f(x, t) = 1.

Using ⇢ we define the computable discrete probability space

(TU,B(TU), P⇢),

where B(TU) is the set of all subsets of TU and P⇢(t) = ⇢(t).

The series (9) is a computable semi-measure [17, Section 4] with a computable sum5 – by
Theorem 4, (10) – an essential property for the computability of the probability P⇢.

The above probability space – inspired from [7] – is “natural” because the discrete probability
distribution combines the construction of the halting probability ⌦ number, see [3], with the
time complexity of halting programs (normalised by the computable number ⌥, see (10)). In
detail, the function (12) biases the programs x – assumed to be uniformly distributed – by
dividing 2�x to the program’s stopping time t: according to [7], the longer t is, the smaller
the halting probability becomes, so if the program never halts, that is t = 1, the probability
is zero.

The contribution of the running time t – which is essential for assuring the computability of ⌥,
see the proof of Theorem 4 – decreases significantly the probability P⇢ posing a challenge for
the implementation of the corresponding anytime algorithms presented in the next section. The
value of t can be decreased to log(t+1) or, more generally, to g(t), where g is a non-decreasing,
unbounded, computable function. A more substantial improvement can be obtained using
Proposition 1.5.2 in [20].

To further justify the “naturalness” of the probability P⇢ we need to show that it reflects the
behaviour of both halting and non-halting programs. To this aim we use the series (9) to define
a variation of ⇢, namely a computable probability distribution r on the set of all running times,
finite or infinite, TU [{1} as follows:

r(t) =

(
�(t), if t 2 TU,
1�⌥, t = 1.

(12)

As by (10) and (11)

1X

t=1

r (t) + r (1) =
1X

t=1

1X

x=1

f (x, t) + r (1) = 1,

we can define Pr(t) = r(t) for t 2 TU [{1} to obtain the computable probability space
(TU [{1},B(TU [{1}), Pr), where B(TU [{1}) is the set of all subsets of TU [{1}.
In contrast with P⇢ – which deals only with finite running times – Pr handles also the infinite
running time, the running time of non-halting programs. The normalisation factor ⌥ makes P⇢

“reflect” the behaviour of non-halting programs too as the restriction of Pr to TU is
5
The sum of a computable semi-measure may be not computable as in Specker theorem [23].

9

P⇢(t) =
Pr(t)

⌥
, t 2 TU.

Of course, there are many other computable probability distributions for TU.

7 Anytime algorithms for the halting problem

As we mentioned in Section 3, to solve the halting problem is enough to fix a universal U and
to decide, for an arbitrary program x, whether U(x) < 1 or U(x) = 1.

Our aim is to construct two classes of anytime algorithms for testing the incomputable predicate
“U(x) < 1”. The decision to accept/reject the hypothesis “U(x) < 1” will be based on the
running-time of the computation U(x). A decision made by the anytime algorithm is erroneous
when it returns the output “U(x) = 1”, when, in fact, U(x) < 1 (U(x) eventually stops after
a very long time).

The halting problem will be re-formulated within the probabilistic framework presented in
Section 5 as follows:

For arbitrary x 2 Z+, test the hypothesis Hx : {U(x) < 1}
against the alternative H 0

x : {U(x) = 1}.

The decision of rejecting Hx will be taken on the basis of a critical time region Bx. In both
proposed anytime algorithms, the critical regions will not depend on x, that is, B = Bx, for
every x 2 Z+.

An erroneous decision occurs when we reject Hx on the basis of B, but Hx is true. The quality
of this decision is expressed by the probability of an erroneous decision, i.e. the probability that
a halting program x stops in a time t 2 B.

In what follows we will work with an a priori computable discrete probability space
(TU,B(TU), PRT) defined in (7) and the running-time random variable RT defined in (6).
Our main example is PRT = P⇢.

7.1 A probabilistic anytime algorithm for the halting problem

In this section we develop our first anytime algorithm based on a fixed computable probability
distribution PRT .

Theorem 5. For every " 2 (0, 1) we have

PRT ({t 2 TU | t > qRT (1� ")}) < ", (13)

hence lim"!1 PRT ({t 2 TU | t > qRT (1� ")}) = 0.

10

Proof. Using the definition of PRT we have:

PRT ({t 2 TU | t > qRT (1� ")}) = 1� PRT ({t 2 TU | t  qRT (1� ")})
= 1� CDFRT (qRT (1� "))

< 1� (1� ") = ".

We now use the inequality (13) in Theorem 5 to propose the following probabilistic anytime
algorithm for the halting problem:

Fix " = 2�M with M 2 Z+. Let x be an arbitrary program for U. If the
computation U (x) does not stop in time less than or equal to qRT (1� "), then
decide that U(x) = 1.

If the computation U (x) stops in time less than or equal to qRT (1� "), then obviously U(x) <
1. Otherwise, the answer to the question whether U (x) < 1 is unknown and algorithmically
unknowable. The above anytime algorithm gives an approximate answer.

To analyse the quality of the answer produced by this anytime algorithm we choose the com-
putable critical time region6

B(PRT , ") = {t 2 Z+ | t > qRT (1� ")},

and the critical program region

C(PRT , ") = {x 2 Z+ | U(x)[t] = 1, for some t 2 B(PRT , ")}.

Note that
Z+ \ dom(U) ⇢ C(PRT , ") ⇢ Z+.

The anytime algorithm may output the answer “U(x) = 1” when in fact U(x) < 1. To
evaluate the quality of the anytime algorithm we need to “compare” the set C(PRT , ") – which
gives the “anytime” answers “U(x) = 1” – with the exact set Z+ \dom(U) – giving the correct
answers “U(x) = 1”. Theorem 5 does this indirectly, by looking at the running-times, that is
by evaluating

for every program x 2 C(PRT , "), the probability PRT that x stops in a time in
B(PRT , "); this probability is less than ".

The smaller " is chosen, the less chances (according to PRT) are for any program which does
not stop in time smaller than qRT (1� ") to eventually halt.

This result is stronger than the ones obtained in [7, 6] where the probability and the stopping
decision depend on the program x.

6
BPRT ," is independent of x.

11

To implement the anytime algorithm above we need an algorithm to compute

qRT

�
1� 2�M

�
= min

�
t 2 TU | CDFRT (t) � 1� 2�M

.

As the set TU is only computable enumerable, we will not be able to compute exactly
qRT

�
1� 2�N

�
, but an upper bound for it. To this aim we consider a computably enumer-

ation of TU = {t1, t2, . . . , ti, . . . } and compute the following new bound:

gqRT

�
1� 2�M

�
= min

(
t 2 Z+ |

tX

t=1

� 1� 2�M

)
� qRT

�
1� 2�M

�
.

Obviously, the anytime algorithm will work correctly with the larger bound, but this will
increase its time complexity.

7.2 A statistically-fitted anytime algorithm for the halting problem

In what follows we will work in an abstract, unknown computable discrete probability space
(TU,B(TU), PRT) as in (7) and we will use an inferential approach to construct a statistically-
fitted anytime algorithm for the halting problem.

We will sample TU to obtain a long sequence of independent, identically distributed running-
times (t1, ..., tN) according to the discrete random variable RT and choose, using Theorem 2,
t(dN(1�")e), the order statistic of rank (dN(1� ")e), as the fitted threshold.

We use the following sampling algorithm for the set TU:

1. First we run U(x) for many programs x according to a dovetailing method, i.e. we
run in parallel the programs controlled by their time complexities. In this way we can
obtain a very large set of halting programs (all stopping in a time less than a fixed
large time) as well as their stopping times.

2. Next we perform a random sampling to obtain N identically distributed running-times
from the generated halting programs.

In detail: we denote the halting programs by

POSL = (x1, . . . , xL)

and their running-times by

TPOS
L

= (⌧1, . . . , ⌧L).

By construction, the running-times in TPOS
L

are independent.

In the second step we implement a random sampling (see, for example, [16]) to extract N
identically distributed running-times from TPOS

L

,

(t1, ..., tN),

12

which represent N independent, identically distributed replicates of the random variable RT ,
so Theorem 2 applies.
Next we consider the order statistics t(1)  t(2)  · · ·  t(N) (see (5)). For a small " > 0 we use
Theorem 2, that is,

qRT,N (1� ") = t(dN(1�")e),

to define the fitted threshold as the order statistic of rank dN(1� ")e. The computable critical
time region7 is then

B(RT,N, ") = {t 2 Z+ | t > qRT,N (1� ")} = {t 2 Z+ | t > t(dN(1�")e)}.

Theorem 6. Fix N 2 Z+ and " 2 (0, 1). Then, the probability PRT of an erroneous decision
based on the critical time region B(RT,N, ") is

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= 1�

t(dN(1�")e)X

t=1, t2TU

PRT (t) . (14)

Proof. Let x 2 Z+ be an arbitrary program for which the hypothesis Hx : {U(x) < 1} is true.
Then, with respect to the probability space (TU,B(TU), PRT) , the probability of an erroneous
decision based on B(RT,N, ") is:

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= 1� PRT

�
RT (x)  t([N(1�")])

�

= 1� CDFRT

�
t(dN(1�")e)

�

= 1�
t(dN(1�")e)X

t=1, t2TU

PRT (t).

Next we show that the error probability (14) can be made arbitrarily small.

Lemma 7. For every ↵ 2 (0, 1), limN!1 t(dN↵e) = 1.

Proof. The sequence of positive integers (t(dN↵e))N�1 is non-decreasing and, by Lemma 3, un-
bounded.

We can now prove the following analogues of Theorem 5.

Corollary 8. For every " 2 (0, 1), limN!1 PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= 0.

Proof. In view of (14), (7) and Lemma 7 we have:

lim
N!1

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= 1� lim

N!1

t(dN(1�")e)X

t=1, t2TU

PRT (t) = 0.

7
BU,N," is independent of x.

13

Corollary 9. For every N 2 Z+,

lim
"!0

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= 1�

t(N)X

t=1, t2TU

PRT (t).

Proof. Fix an N 2 Z. If 0 < " < "0, then B(RT,N, ") ◆ B(N, "0), hence

lim
"!0

��
t 2 TU | t > t(dN(1�")e)

 �
=
�
t 2 TU | t > t(N)

.

Finally, we have:

lim
"!0

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
= lim

"!0

�
1� CDFRT

�
t([N(1�")])

��

= 1� CDFRT

�
t(N)

�

= 1�
t(N)X

t=1, t2TU

PRT (t).

Using Corollary 8 and Corollary 9 we obtain the following statistically-fitted anytime algorithm
for the halting problem:

Fix " = 2�M with M 2 Z+ and a sample size N 2 Z+. Use the sampling
algorithm to generate the running-times {t(1), t(2) . . . , t(N)}. Let x be an arbitrary
program for U. If the computation U(x) does not stop in time less than or equal
to t(dN(1�")e), then decide that U(x) = 1.

Denoting the critical programs region by

C(RT,N, ") = {x 2 Z+ | U(x)[t] = 1, for some t 2 B(RT,N, ")}

we get
Z+ \ dom(U) ⇢ C(RT,N, ") ⇢ Z+.

To evaluate the quality of the statistically-fitted anytime algorithm we need to “compare” the set
C(RT,N, ") – which gives the “anytime” answers “U(x) = 1” – with the exact set Z+\dom(U)
– giving the correct answers “U(x) = 1”. We proceed in the same way as for the probabilistic
anytime algorithm, i.e. by looking at the running-times. Fix � 2 (0, 1). Using Corollary 8 with
given " 2 (0, 1) we get an N 2 Z+ such that for every program x 2 C(RT,N, "), the probability
PRT that x stops in a time in the set B(RT,N, ") is smaller than �. This procedure can be
fine-tuned by using Corollary 9.

There are many choices of random sampling algorithms which can be used in the second step of
the sampling algorithm. The choices determine how large should be L – the number of halting
programs – as a function of N as well as the quality of “randomness” (see [4]).

Let PRT (t) = P⇢(t), " = 2�M , � = 2�K . The following algorithm – based on Corollary 8 and
Corollary 9 – calculates N (in terms of M,K) such that

PRT

��
t 2 TU | t > t(dN(1�")e)

 �
< �.

14

First calculate min{T 2 Z+ |
PT

t=1 ⇢(t) > 1�2�K} and then calculate min{N 2
Z+ | t(dN(1�2�M)e) � T} using the sampling algorithm.

8 Conclusions

In this paper we have proposed two classes of anytime algorithms for the halting problem, a
theoretical one based on probability theory and another, more practical one, based on order
statistic.

Our proposed anytime algorithms depend on the computable probability distribution (first
algorithm) and sampling method (second algorithm). Making the “right” choices is essential for
successful applications. There are a few ways to guide and improve the quality of these choices.
One possibility is to test how “natural” is a particular computable probability distribution for
some universal U using the sampling algorithm and, vice–versa, to test how “fit” is the sampling
algorithm with respect to some preferred computable probability distribution, for example, P⇢.

For example we can use the two-sample Kolmogorov-Smirnov goodness-and-fit test (see [9, pp.
309–314]) to test how “natural” is a particular computable probability distribution, say P⇢, for
a given universal U.

Using the sampling algorithm on U we produce the sample (t1, ..., tN) which represents N
independent, identically distributed replicates of the random variable RT = RTU and use the
associated Empirical Cumulative Distribution Function (see (4)) ECDFRT,N (that is, X =
RT). On the other hand, using a simulation technique we generate K independent, identically
distributed values (u1, ..., uK) from the probability distribution P⇢ and denote the associated
Empirical Cumulative Distribution Function by ECDF⇢,N .

The two-sample Kolmogorov-Smirnov test compares these two empirical distribution functions
in order to accept/reject the null hypothesis that the two datasets were drawn from “the same
stochastic source”. The null hypothesis, denoted by H0 : {PRT = P⇢}, states that the data
produced by the sampling algorithm for the particular universal U fits the computable proba-
bility distribution P⇢. The decision of accepting/rejecting H0 is taken on the basis of numerical
comparison of ECDFRT,N and ECDF⇢,N .

Accordingly, the following algorithm can be used to run the probabilistic anytime algorithm:

(1) Choose a computable probability distribution {PRT (t) , t 2 TU} as in (7).

(2) Choose N and use the sampling algorithm to generate (t1, . . . , tN).

(3) Apply a goodness-of-fit test to compare the chosen probability model (7) with the sample
distribution of the data (t1, . . . , tN).

(4) Choose a particular ".

• If the model fits the data, then continue with the probabilistic anytime algorithm.

15

• If the model does not fit the data, then continue with the statistically-fitted any-
time algorithm.

Next we enumerate some basic features of our proposed anytime algorithms. The following are
positive features:

(P1) We have proposed two classes of anytime algorithms.

(P2) The cut-off temporal bounds for both classes of anytime algorithms do not depend on
programs.

(P3) The a priori computable probability PRT = P⇢ was not arbitrarily chosen: it reflects the
halting behaviour of the chosen universal machine. Two methods to construct natural
variations of this probability have been presented.

(P4) We can test empirically the choice of the computable probability distribution and sam-
pling, hence adopt parameters suiting different universal machines and classes of pro-
grams.

However, the approach has limits:

(L1) Because of (P1) and the use of a universal machine, the cut-off temporal bounds derived
for the probabilistic anytime algorithm are expected to be large. This can be mitigated
to some extent by (P3).

(L2) The statistically-fitted anytime algorithm is “PRT free”, but the evaluation of its quality
is not, hence the choice of N is not “PRT free”.

(L3) Working with a fixed universal machine and programs x instead of pairs (program, y)
increases the computational time as the simulation of the computation program(y) on
U, that is, U(x) = program(y), takes longer than running program(y).

(L4) We don’t have a computational complexity analysis of concrete examples of our proposed
anytime algorithms.

The experimental results in [24] suggest that some of the anytime algorithms in the proposed
classes may be indeed feasible. It is a natural important followup to develop theoretical and
experimental analyses of various anytime algorithms in both classes.

Acknowledgement

We thank Yu. Manin, L. Staiger and G. Tee for useful comments and suggestions.

16

References

[1] Barry C. Arnold, N. Balakrishnan and H. N. Nagaraja. A First Course in Order Statistics,
John Wiley, New York, 2008.

[2] L. Bienvenu, D. Desfontaines, A. Shen. What percentage of programs halt? in M. M.
Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (eds.). Automata, Languages, and
Programming I, Lecture Notes in Computer Science 9134, Springer, 2015, 219–230.

[3] C. S. Calude. Information and Randomness: An Algorithmic Perspective, Springer-Verlag,
Berlin, 2002. (2nd edition)

[4] C. S. Calude. Quantum randomness: From practice to theory and back, in S. B. Cooper, M.
Soskova (eds.). The Incomputable: Journeys Beyond the Turing Barrier, Springer, Berlin,
to appear, 2016.

[5] C. S. Calude and D. Desfontaines. Universality and almost decidability, Fundamenta In-
formaticae 138(1-2) (2015), 77–84.

[6] C. S. Calude and D. Desfontaines. Anytime algorithms for non-ending computations, In-
ternational Journal of Foundations of Computer Science 26, 4 (2015), 465–475.

[7] C. S. Calude and M. A. Stay. Most programs stop quickly or never halt, Advances in
Applied Mathematics 40 (2008), 295–308.

[8] A. DasGupta. Probability for Statistics and Machine Learning, Springer, New York, 2011.

[9] W. J. Conover. Practical Nonparametric Statistics John Wiley, New York, 1971.

[10] C. A. Furia, D. Mandrioli, A. Morzenti and M. Rossi. Modeling Time in Computing,
Springer, Berlin, 2012.

[11] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity, Springer, Hei-
delberg, 2010.

[12] J. Grass. Reasoning about computational resource allocation. An introduction to anytime
algorithms, Magazine Crossroads 3, 1 (1996), 16–20.

[13] P. J. Haas. Simulation. Quantile Estimation, Lecture Notes #9, Stanford University, MS &
E 223, Spring Quarter 2005–2006, http://web.stanford.edu/class/msande223/handouts/
lecturenotes09.pdf.

[14] J. D. Hamkins and A. Miasnikov. The halting problem is decidable on a set of asymptotic
probability one, Notre Dame Journal of Formal Logic 47 (4) (2006), 515–524.

[15] R. H. Lathrop. On the learnability of the uncomputable, in L. Saitta (ed.). Proceedings
International Conference on Machine Learning, Morgan Kaufmann, 1996, 302–309.

[16] P. S. Levy and S. Lemeshow. Sampling of Populations. Methods and Applications, John
Wiley, NJ, 1999. (3rd edition)

17

http://web.stanford.edu/class/msande223/handouts/lecturenotes09.pdf
http://web.stanford.edu/class/msande223/handouts/lecturenotes09.pdf

[17] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer Verlag, New York, 2008. (3rd edition)

[18] Yu. I. Manin. A Course in Mathematical Logic for Mathematicians, Springer, Berlin, 2010.
(2nd edition)

[19] Yu. I. Manin. Renormalisation and computation II: time cut-off and the Halting Problem,
Mathematical Structures in Computer Science 22 (2012), 729–751.

[20] Y. I. Manin. Zipf’s law and L. levin probability distributions. Functional Analysis and Its
Applications, 48, 2 (2014), 116–127.

[21] M. Minsky. Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood
Cliffs, NJ, 1967.

[22] P. Olofsson. Probability, Statistics, and Stochastic Processes, Wiley-Interscience, New York,
2005.

[23] E. Specker. Nicht konstruktiv beweisbare Sätze der Analysis. The Journal of Symbolic
Logic 14 (1949), 145–158.

[24] H. Zenil. Computer runtimes and the length of proofs, in M. J. Dinneen, B. Khoussainov,
A. Nies (eds.). Computation, Physics and Beyond, Lecture Notes in Computer Science
7160, Springer, 2012, 224–240.

18

