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Abstract. Curvature is a frequently used property in two-dimensional
(2D) shape analysis, directly or for derived features such as corners or
convex and concave arcs. This paper presents curvature estimators which
follow approaches in differential geometry. Digital-straight segment ap-
proximation (as known from digital geometry) is used in those estima-
tors. Results of multigrid experiments are evaluated leading to a com-
parative performance analysis of several curvature estimators.

1 Introduction

The curvature of digital curves needs to be estimated in a wide variety of pat-
tern recognition or image analysis applications. Because these curves consist of
discrete points, no analytic (i.e., parametric) representation is at hand, and cur-
vature can therefore not be computed as in differential geometry. The goal of
methods proposed for curvature estimation is to decide whether a point on a dis-
crete curve has a particular curvature, for example compared to those at other
points in some neighborhood, or for segmenting curves into convex or concave
arcs. ([3, 4] discuss non-curvature based methods for the latter task.)

Proposed measures often do not correspond to the real (but unknown) cur-
vature values of the underlying (i.e., prior to digitization) curve but based on
heuristics. As far as they are designed for corner detection, such an approach
may behave well in applications. See, for example, methods proposed in [1, 7,
16, 17]. A corner is (informally) defined as a “high-curvature point” on a simple
digital arc or curve. In early days of image analysis, low resolution images did
not allow for more precise measurements, anyway. But nowadays, high resolu-
tion images support to define curvature estimation approaches which are derived
from definitions of differential geometry (for example in [2, 9]) or heuristics (as
many of the methods reviewed in [13]). Curvature estimation is also of impor-
tance for characterizing surfaces in 3D space. For example, [18] defines and uses
curvature maps for rectifying scanned patches (e.g., of Michelangelo’s David). A
review on curvature methods is given in two chapters of [10].

The next section presents curvature estimation methods based on three dif-
ferent categories of curvature definition, also adding estimators which use cubic



splines (for cubic splines, see, e.g., [15]), and in general with an emphasis on using
digital straight segment (DSS) approximations (for related algorithms, see, e.g.,
[10]). We tested these estimators on specific geometric objects and derived some
qualitative analysis of their performance when increasing grid resolution. Finally,
a critical discussion of methods is given. Altogether, the paper contributes by
proposing new curvature estimators and a testing methodology.

2 Curvature Estimation

We consider 8-curves ρ in digital pictures defined on Z2. In order to detect a
corner at pixel pi on a curve ρ, it is common practice to consider an angular
measure based on a predecessor pi−kb

, pi itself, and a successor pi+kf
, where

kb, kf > 0 are constant, scaled (e.g., both equal to k = 0.02 · n, where n is the
number of pixels on ρ), or variables within a defined interval. Angular measures,
resulting from kb and kf , are used to identify pi as a “high curvature point”.

Obviously, such non-adaptive specifications of values of kb or kf do not reflect
the shape of the given digital curve. Adaptive (unique) specifications of kb or kf

can be based, for example, on DSS approximation (see, e.g., [2, 9]); those values
reflect the shape of the curve.

2.1 Derivative of the Tangent Angle

The curvature estimation method of [9] is an example for defining curvature
based on changes in orientations of the tangent. Let p and q be two points on
a plane curve, and δ the angle between positive directions of both tangents at
those points (see Figure 1). Curvature κ at p is defined to be the limit

κ(p) = lim
pq→0

δ

pq
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Figure 1: Curvature Definition

Algorithm 1 Curvature Estimation HK2003
Compute-curvature(Curve C)
For point p in C do
compute s1 (q, p) and s2 (p, q′) with DSS-Algorithm
compute θ1 = arctan

(
|q.x−p.x|
|q.y−p.y|

)
and θ2 = arctan

(
|p.x−q′.x|
|p.y−q′.y|

)
compute θ = 1

2 · θ1 + 1
2 · θ2

compute δ1 = |θ1 − θ| and δ2 = |θ2 − θ|
return 1

2 ·
δ1

‖s1‖2
+ 1

2 ·
δ2

‖s2‖2

3

Fig. 1. Tangent based curvature estimation.



Algorithm HK2003 uses backward (ending at pi) and forward (beginning at pi)
DSSs for approximating the tangent at pi.

Algorithm 1 Curvature Estimation HK2003

Compute-curvature(Curve ρ)

For point pi in ρ do

kb (kf ) is the length of the longest backward (forward) DSS starting at pi

lb = d2(pi−kb , pi) and θb = tan−1

„
|xi−kb

−xi|
|yi−kb

−yi|

«
lf = d2(pi+kf , pi) and θf = tan−1

„ ˛̨̨
xi+kf

−xi

˛̨̨
˛̨̨
yi+kf

−yi

˛̨̨ «
compute θ = 1

2
· θb + 1

2
· θf

compute δb = |θb − θ| and δf = |θf − θ| (Note that δb = δf .)

return δb
2lb

+
δf

2lf

Only positive curvature values are returned. Convexity or concavity of arcs can-
not be decided just based on those values, but we can classify both situations
when also using coordinates of pi−kb

, pi and pi+kf
.

2.2 Radius of the Osculating Circle

The osculating circle at a point p on a smooth curve γ is defined in differential
geometry by starting with a circle that intersects γ at p and also at two points
pb and pf (left and right of p); see dashed circle in Figure 2. Moving both points
into p results into the osculating circle at p with center c. The absolute value
of curvature at point p is then defined as the reciprocal value of the radius
r = d2(c, p).

The following calculation of the osculating circle makes use of the geometric
property that three points uniquely define a circle. The parameters can be com-
puted by the intersection of two bisectors, which are two different sides of the
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Fig. 2. The dashed circle is incident with points pb, p, and pf ; it ‘moves’ into the oscu-
lating circle centered at c. The triangle illustrates the discrete estimation in HK2005.



triangle defined by pi−kb
, pi and pi+kf

. At point pi we compute two DSSs as in
HK2003. The algorithm is as follows:

Algorithm 2 Curvature Estimation HK2005

Compute-curvature(Curve ρ)

For point pi in ρ do

kb (kf ) is the length of the longest backward (forward) DSS starting at pi

compute bisecting lines gb and gf of segments pi−kbpi and pi+kf pi

compute c as intersection of gb and gf

compute radius r = d2 (c, pi)

return 1
r

2.3 Derivative of the Curve

A parametrized curve γ(t) = (x(t), y(t)) allows to calculate curvature based on
derivatives; the curvature is as follows

κ =

∣∣∣ x′

x′′
y′

y′′

∣∣∣
(x′2 + y′2)

3
2

(1)

Using second order curves. Algorithm M2003 [13] approximates the digital
curve ρ locally at pi by second order polynomials using also pixels pi−kb

and
pi+kf

. The approximating polynomial γ(t) = (x(t), y(t)) is defined by

x(t) = a2t
2 + a1t + a0

y(t) = b2t
2 + b1t + b0

with t ∈ [−1, 1]. Let t = −1 define pi−k, t = 0 specifies pixel pi, and t = 1 defines
pi+k. In this particular case, Equation (1) takes the following form

κ =
2(a1b2 − a2b1)

(a2
1 + b2

1)
3
2

(2)

at point pi, with

a2 − a1 + a0 = xi−kb

a0 = xi

a2 + a1 + a0 = xi+kf

for x(t). Analogously, for y(t) we obtain

a1 =
xi+kf

− xi−kb

2

a2 =
xi+kf

+ xi−kb

2
− xi

b1 =
yi+kf

− yi−kb

2

b2 =
yi+kf

+ yi−kb

2
− yi



Using spline curves. [14] uses approximating cubic B-spline curves for repre-
senting a digitized curve. Based on curvature information, corners are detected
and control points are consecutively adjusted in order to fit the curve more
closely. The local approach in [12] is also based on approximating splines. We
can also approximate the original curve globally by an interpolating periodic
spline curve. Suppose we compute a decomposition of a digital curve using DSS
segmentation. We can then use the points between two consecutive DSSs as in-
terpolating points (let us call them DSS break points) and get a close and smooth
analytical representation of the underlying digital object. See Figure 3. By dif-
ferentiating these parametric curves we compute then (positive or negative !)
curvature at every sample point.
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Fig. 3. Interpolating periodic spline based on break points of the DSS segmentation.

Since the curvature is computed on sample points and not on grid points
itself, we need to map the curvature at sample points onto pixels. We propose
two possible mappings:

(i) Interpolation. Suppose we have a DSS segmentation with break points
q0...qn. Computing chord length parametrizations t1, . . . , tn, we know that s(ti) =
qi. This allows to compute the curvature at all interpolating points qi. Once we
know the curvature at every pi we use linear interpolation to assign a curvature
value to grid points pi between qi and qi+1, for i = 0, ..., n− 1 (see Figure 3).

(ii)Averaging. In this mapping, all sample points si of the spline are taken
into account. The idea of this mapping is as follows: All grid points pi receive
a certain amount of sample points assigned to them, namely all sample points
which are closer to pi than to any other grid points. We define the mean of the
sum of all curvature values of all sample points assigned to one grid point pi as
the curvature at pi.

Experiments showed that the difference between both mappings is minor.
especially for larger grid resolution. Therefore we recommend interpolation since
it is unique, and not many sample points have to be computed.



3 Multigrid Analysis

We analyze the introduced measures with respect to multigrid convergence (see,
for example, [10] for this evaluation strategy which corresponds to high-resolution
imaging: ideal mathematical objects are digitized with increasing grid resolution,
and behavior of algorithms is analyzed on those multigrid input data).

We tested curvature estimation on two geometric objects, the ellipse and the
hyperbolic spiral.

3.1 Experiments on the Ellipse

We used Gauss digitization to digitize ellipses, each with increasing grid resolu-
tion. Used elliptical regions are defined by

x2

a2
+

y2

b2
≤ 1, where a = 2 · b and 10 ≤ b ≤ 520

We extracted 8-curves via border tracking of resulting digital ellipses, which are
the input for the curvature estimators. The curvature at point p = (x, y) on the
elliptical curve equals

1
κ

= a2b2

(
x2

a4
+

y2

b4

)
But how to find the corresponding point p = (x, y) for a border pixel pi on the
ellipse in order to compute the absolute or relative error?

A first option is that we identify p with pi. A second option is that we choose
p as the intersection of the ellipse x2

a2 + y2

b2 ≤ 1 with the straight line y = yi

xi
x.

The resulting difference between both options proved to be of marginal impact,
and errors are close to zero for b > 200. We decided for the second option.

For every size (or resolution) b, we computed the mean mb of absolute and
relative errors of estimated curvature, at every border pixel.

Resulting scattered points are filtered by a sliding mean using 1
39

∑19
i=−19 mb+i

and drawn in increments of 10 into the diagrams. Our DSS-based algorithms are
also modified such that calculated values of kb and kf are replaced by a uniform
value of k = 0.02 · n. Looking at absolute errors, all (using the DSS-approach)
estimators seem to be multigrid convergent.

But looking at relative errors in Figure 4, only the error curve of the estimator
based on the spline approach shows convergent behaviour. [Note that we draw
both spline approaches (interpolating and averaging) into this diagram. Since
the results are similar for increasing resolutions, we decided to use only the
error curve for the interpolating approach.] All other curves seem to be slightly
divergent for increasing grid resolution, but do not depart more than 7% from the
smallest error value. The relative error for HK2003 exceeding 100% is relatively
large.

Looking at absolute errors when using a global constant k = 0.02 ·n, all esti-
mators also seem to be multigrid convergent, and it is noticable that a uniform



Multigrid Analysis of an Ellipse
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Fig. 4. Relative error curves, using the DSS approach.
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(global) k is of benefit compared to the original DSS-approach. This is proba-
bly due to the fact that an ellipse is a “uniformly smooth” curve; see also our
discussion in the next section.

But in contrast to the DSS-approach, all relative error curves seem to be
convergent when using the global constant k = 0.02 · n. Since the error curves
of HK2005 and M2003 are very similar to each other, we left out the one for
HK2005. Note that HK2005 is fitting circles to the curve, which is a special



case of a second order curve. As M2003 is fitting general second order poly-
nomials to the underlying digital curve, we assume M2003 to be superior over
HK2005. Looking at the spline curve based on a global constant, we can at first

Multigrid Analysis of an Ellipse
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Fig. 6. Comparison between spline curves, using either DSSs or global constant.

see a similar behavior, but for b < 300 the DSS-based spline method takes the
lead; see Figure 6. The DSS-based spline method performed best when testing
on a circle (i.e., multigrid studies).

3.2 Experiments on the Hyperbolic Spiral

We assume the Euclidean plane with the origin as pole and the x-axis as distinct
oriented line. We can transform polar coordinates into Cartesian coordinates by
(r, ϕ)polar = (r · cos(ϕ), r · sin(ϕ))Cartesian. The hyperbolic spiral is defined in
polar coordinates as

ρ =
a

ϕ
with a > 0

Its curve consists of two branches which are mirror-symmetric to the y-axis. Both
branches are asymptotic towards y = a and the origin. The osculating circle for
angle ϕ equals

1
κ

=
a

ϕ

(√
1 + ϕ2

ϕ

)3

In our multigrid experiments we digitized the hyperbolic spiral by sampling
the curve into 100,000 points, for an angle ϕ between π

6 ≤ ϕ ≤ 2π. For any



sample point, we took the closest grid point as an object pixel (of course, more
than one sample point correspond to one object pixel in general). We choose
a = 1.0, thus we get the polar coordinates (ρ = 1

ϕ , ϕ) for the sample points,
or (ρ · cosϕ, ρ · sinϕ) in Cartesian coordinates. We introduced a scalingfactor s
with 1 ≤ s ≤ 1, 520 and multiplied it with the Cartesian coordinates. Thus we
have finally ( s

ϕ · cosϕ, s
ϕ · sinϕ). Note that increasing the scaling factor s by 1

corresponds to an increment of a by 1.
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Fig. 7. Digitization of the hyperbolic spiral for ϕ ∈ [π
6
, 2π] and scalingfactor s = 25.

In our experiments we used DSS-based k-values or a global constant (again,
we choose k = 0.02 · n). Results for HK2005 and M2003 proved to be nearly
identical, and we only show M2003.

While tracking the border of the spiral, we computed a first maximum-length
8-DSS starting at grid point corresponding to (s, 2π) and ending at grid point
corresponding to (s, π

6 ). Then we estimated the curvature at all points between
point A (see Figure 7) and point C. (Alternatively, we could also start with
a maximum DSS from the end of the spiral. ) For object pixel p, we find the
corresponding point on the spiral by taking the line intersecting p and the origin,
and measuring the distance and the angle with respect to the x-axis.

We computed for every scaling factor s the mean ms of the error at all border
pixels between point A and point C. Again we applied the sliding mean filter,
and draw results in steps of 10 into the diagram. Also again, all estimators for
both approaches (DSS or global) seem to be multigrid convergent with respect to
absolute errors. For higher resolutions, both approaches of HK2003 appear to be
identical. M2003 has smaller error values for higher resolutions when applying
the global constant, but errors go faster towards zero for the DSS approach: both
curves intersect about at s > 330.

In the second experiment we used the same setup but measure the relative
error in percent. Looking at relative errors in Figure 8 we notice that curves for
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HK2003 are converging towards an relative error of 55%. Again we notice that
the DSS approach is converging faster.

For M2003 we again observe a divergent behaviour of the DSS-approach
and a convergent behaviour for the global approach. But we have to point out
that for resolutions between 30 and 1,000 the error of the DSS approach remains
clearly below 45% while the error for the global constant does not drop below
100% for resolutions smaller than 450. It is interesting to ask for the reason for
this behaviour, since we expected a faster convergence for the global constant
based on the results for the ellipse.

4 Discussion

Applying the DSS approach for curvature estimators does not seem to guarantee
multigrid convergence (in difference to DSS-based multigrid convergent length
estimation). However, from our experiments we could also conclude that DSS
based curvature estimators have a good overall performance, even for low resolu-
tions. (This is probably due to the fact that no parameters have to be adjusted,
since the shape of the curve is reflected in the DSS.)

The global constant allowed for some superior results over the DSS approach
for the high-curvature section of the hyperbolic curve. The global constant seems
to guarantee in general multigrid convergence. Estimated values at segments of
high curvature seem to be more accurate than those at segments of low curvature.

The spline-based curvature estimation performs best and is highly recom-
mended for future curvature estimators when using very-high (from today’s point
of view) resolution images.



More details about curvature estimations and related experiments can be
found in [8].
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