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ABSTRACT

Generalized Hyperbolic distribution and its family were recoginized by researchers for the
valuable non-Gaussian properties that are applicable in almost all areas of finance and risk
management. However due to the complexity of the distribution, there are several problems
revealed during implement the distribution to statistical application, in particular the R language.
The primary aim of my research is to identify those problems, investigate both theoretical
and computational solutions. The basic function that base R provides for most of the classical
distribution are probability distribution function (p), density function (d), quantile function (q)
and random number generation (r). For generalized hyperbolic distribution and its family, we also
followed the same rule. The current estimation approaches for probability distribution function
(CDF) and quantile functions of GHyp distribution and skew hyperbolic student’s t distribution
which is the limiting case are found to be unstable, inaccurate and lack of efficiency. The problems
of GHyp distribution can be solved computationally whilst the problems of the skew hyperbolic
student’s t distribution requires proposing a new theoretical method, i.e. the split t transformation
method.

Besides the problems with CDF and quantile function estimation approach, there are concerns
with the current generalized inverse Gaussian distribution random number generation approach
which is closely related to GHyp distribution random variates generator. There are few remedies
of the concerns has been proposed but not yet implemented include rejection method using
either gamma distributed hat function or a two/three parts hat function. These approaches are
implemented and compared with the current implemented approaches. Besides the generalized
inverse Gaussian distribution, we also investigate the random number generation approach of
the hyperbolic distribution which is the sub-case of the GHyp distribution.

Apart from the basic functionality of the GHyp distribution, the other prospective of my
research was to overhaul the current algorithm and functions for linear modeling using hyperbolic
distribution. We also developed a set of functions include but not limited to plot function, summary
function in order to have a degree of consistency with the existing model fitting procedures in R.
These functions are demonstrated with some real data examples. The algorithm is then compared
with several robust modeling techniques using those examples.
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RESEARCH BACKGROUND

1.1 Overview

Theoretical distributions play a critical role in statistics as they model the pattern of variation.

There are numerous theoretical distributions developed and these distribution can be categorized

as discrete distributions or continuous distributions with respect to the random variate type.

They can also be categorized as univariate distributions and multivariate distributions with

respect to the dimension of the random variates.

My research is focused on continuous univariate distributions as continuous distributions

are generally amenable to more elegant mathematical treatment than are discrete distributions

([72]). The most common univariate continuous distributions in practice have been systematically

summarized in [72] and [73]. These distributions have been classified to 19 families, normal

distributions, gamma distributions, Weibull distributions to name a few, in accordance to the

characteristics which are considered as one of the important model selection criteria to explain

the pattern of variation in the data.

Because of the non-Gaussian characteristics of the data in regard to financial market volatility,

skewed and semi-heavy or heavy tailed distributions have often been proposed for applications

in finance to capture the non-Gaussian characteristics. These distributions include but are not

limited to: the Student’s t distribution which can exhibit heavy and semi-heavy tail behaviour;

and the normal-Laplace distribution and generalized normal-Laplace distribution discussed in

[87] which exhibit semi-heavy tail behaviour.

Among these distributions, implementations of Student’s t distribution, and in particular

its skewed extensions, are commonly discussed in the literature. The asymmetric Student’s t

distribution was first proposed for finance applications in [55] when extending the ARCH model.

Skewed extensions were then considered as a preferred remedy when the normality assumption

1
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is violated and have been discussed in several papers, [66], [37], [109], [81], [58], [112], to name a

few. However the skew t type of most of the discussions feature two identical polynomial tail rate

decays, and in consequence the skewness of those proposed distributions is limited. There are two

exceptions, the first one is discussed in [66] where the skew t distribution has two parameters to

control the left and right tails respectively. The second one is discussed in [112] where the skew t

distribution has an additional third parameter to control the skewness.

One alternative to the skew Student’s t distributions are the distributions of the generalized

hyperbolic (GHyp) family which also have valuable non-Gaussian properties, in particular skew-

ness and semi-heavy tails, but have been less discussed. Therefore the primary aim of this thesis

is to address and provide solutions to computational problems arising in the use of the family of

univariate GHyp distributions in statistical applications in the environment of R in particular.

There are approximately 120 packages dealing with distributions implemented in The Com-

prehensive R Archive Network (CRAN) apart from the GeneralizedHyperbolic and the SkewHy-

perbolic packages. These packages deal with various aspects of distributions which include but

are not limited to discrete distributions, continuous distributions, mixtures of probability laws,

random matrices, copulas, random number generation, moments, skewness, and kurtosis.

Of these packages, there are two packages worth mentioning here. The first one is the distr

package which provides a conceptual treatment of distributions by means of S4 classes ([31]). In

particular, there are general functions RtoDPQ, RtoDPQ.d and RtoDPQ.LC in the distr package

which approximate the density, cumulative distribution (CDF) and quantile function from random

numbers for absolute continuous, discrete and Lebesgue decomposed distributions respectively.

The results however are empirical as the functions use simulation to do the approximation. In

Chapter 2, we describe some utility functions contained in the package DistributionUtils. These

utility functions consist of general routine functions that calculate the CDF and quantile function

for any unimodal univariate continuous distribution by numerical integration and root finding.

The results obtained are not based on simulation and have specified levels of accuracy. Although

the main intention has been to develop functions for distributions which conform to the standard

approach suggested in [95], the package itself was developed in part to support the packages

GeneralizedHyperbolic [91], VarianceGamma [92], SkewHyperbolic [94] and NormalLaplace [93]

which implement functions to work with respectively the generalized hyperbolic, variance gamma,

skew hyperbolic Student’s t and normal Laplace distributions.

The second package to consider is the Runuran package. This package provides an interface to

the UNU.RAN library for universal non-uniform random number generators ([80]). It provides a

collection of algorithms for generating non-uniform pseudorandom variates as a library of C func-

tions ([77]). The package provides random number generators for both continuous distributions,

including the GHyp distribution, and discrete distributions as well as multivariate continuous

distributions. For each type of distribution, there are several random number generation methods

implemented. For instance: adaptive rejection sampling implemented in the ars.new function; in-

2
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verse transformed density rejection implemented in itdr.new function; polynomial interpolation

of the inverse CDF implemented in the pinv.new function; simple ratio-of-uniforms implemented

in the srou.new function; and transformed density rejection implemented in the tdr.new func-

tion; all for univariate continuous distributions. Of these random number generators, of most

interest is the polynomial interpolation of inverse CDF as it is not only an algorithm for random

number generation but also for quantile function approximation. This algorithm is thoroughly

reviewed in Chapter 4.

1.1.1 The Generalized Hyperbolic Distribution

The GHyp distribution family and its subclasses were introduced by O. Barndorff-Nielsen in his

paper for modeling the particle-size distribution of windblown sand ([9]). It was then recognized

that this distribution’s properties would be useful for financial asset distributions which have

non-Gaussian characteristics. For instance, it is well known that the returns of most financial

assets have semi-heavy tails and feature skewness. Since the GHyp distribution is obtained as

a variance-mean mixture of the normal distribution, it possesses semi-heavy tails and exhibits

skewness for certain parameter values ([86]).

The GHyp distribution is also very flexible and has a number of important statistical dis-

tributions as members or limiting cases: the normal distribution; the Student’s t distribution;

the hyperbolic distribution; the normal inverse Gaussian (NIG) distribution and the Laplace

distribution; to name a few. A comprehensive discussion regarding these distributions and their

subclasses is given in [85]. In [22], the application of these distributions in finance has also been

reviewed in detail. Of those, the hyperbolic, NIG and skew hyperbolic Student’s t distributions

are in particular of interest in this research.

The hyperbolic distribution attracted a number of researchers’ interest after it was introduced

in [9]. Some of its properties, such as infinite divisibility, were then presented in [15], [8] and [53].

The maximum likelihood estimation of the distribution was considered in some detail in [12].

[40] extensively discussed fitting empirical financial returns with high accuracy using the fact

that the log density of hyperbolic distribution is a hyperbola whilst the log density of the normal

distribution is a parabola. In that paper, a hyperbolic Lévy motion is applied as a model of stock

returns. [41] investigated further empirical evidence that the hyperbolic model is superior to the

well-known α-stable model for log return data. Both papers argue that the hyperbolic distribution

provides an alternative approach to model heavy tailed return data by means of a Lévy process.

[21] then proposed a hyperbolic diffusion model for stock prices. [74] in addition illustrated the

fitting of the hyperbolic distribution to the daily returns of the German stocks that have been

included in DAX during the period 1974 to 2002. Just as statistical modeling of financial returns

by means of the hyperbolic distribution has been shown in the literature to be effective, the NIG

distribution appears be an attractive alternative distribution.

Similar to the hyperbolic distribution, a mathematically simpler NIG Lévy process is proposed

3
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in [10] and it is demonstrated that the NIG distribution can approximate most hyperbolic

distributions closely. The NIG distribution has then been discussed extensively in [11], [19], [88]

and [69]. Recently, there are a number of applications derived using the distribution, including

[24], [39], [56], [20], [68], [44], [105].

Unlike these first two subclass distributions, the skew hyperbolic Student’s t distribution

has not been investigated as much. It was first briefly mentioned by [86]. Then it was briefly

discussed in several papers include [16], [66], [22], [36] and [82]. Subsequently K. Aas and I. H.

Haff provided a comprehensive discussion regarding the distribution in [1]. They also argued

that the special behavior of its tails which could be an alternative for modeling skewed and heavy

tailed data.

Apart from the subclass distributions, the proper generalized hyperbolic distribution is also

considered in some research. The proper generalized hyperbolic distribution is often briefly

discussed in the literature of the subclass distributions, [8] and [86] in particular. In the area of

applications, [86] and [39] extended the hyperbolic Lévy process to the generalized hyperbolic

Lévy process while [89] proposed the generalized hyperbolic diffusion model for finance.

Before giving a definition of the Ghyp distribution, it is necessary to introduce the generalized

inverse Gaussian distribution (GIG). This distribution was introduced by [51]. However, there was

not much discussion of the distribution until it was used by [100] to construct a compound Poisson

distribution. The moments and density function are given by [23]. Some of the probabilistic

properties including infinite divisibility and self-decomposability were shown by [15] and [53]

respectively. The distribution was then reviewed and discussed extensively in [67]. [43] has shown

an asymptotic convolution property of the distribution then applied it to calculate the probability

of ruin in the general risk model and discussed some related applications. In recent years, the

distribution has been applied to model neural activity in [64] using the results from [17].

Definition 1. The GIG distribution has three parameters λ, χ, ψ. The probability density function

is

(1.1) f (x)= 1
Kλ(χ,ψ)

xλ−1exp
[
−1

2
(χx−1 +ψx)

]
I(0,−∞)(x)

where Kλ is the modified Bessel function of the third kind with order λ, λ ∈ R, χ> 0 and ψ> 0.

When λ> 0, χ= 0 and ψ> 0, the GIG distribution reduces to the gamma distribution. When λ< 0,

χ> 0 and ψ= 0, the distribution becomes the inverse gamma distribution.
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Figure 1.1: A selection of GIG distributions with various χ, ψ and λ

There are at least 4 parameterizations of the GIG distribution in the literature ([67] and [33]

) which are

1. λ, χ, ψ

2. λ, δ, γ

3. λ, α, β

4. λ, ω, η
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Table 1.1: Relationships between four parameterizations of the GIG distribution at fixed values

of µ and δ.

To: Parameterization

From: Parameterization 1 2 3 4

λ, χ, ψ λ, δ, γ λ, α, β λ, ω, η

1. λ, χ, ψ δ=p
χ α=√

ψ/χ ω=p
χψ

(χ> 0, ψ> 0) γ=p
ψ β=p

χψ η=√
χ/ψ

2. λ, δ, γ χ= δ2 α= γ/δ ω= δγ
(γ> 0, δ> 0) ψ= γ2 β= γδ η= δ/γ

3. λ, α, β χ=β/α δ=√
β/α ω=β

(α> 0, β> 0) ψ=αβ γ=√
αβ η= 1/α

4. λ, ω, η χ=ωη δ=p
ωη α= 1/η

(ω> 0, η> 0) ψ=ω/η γ=√
ω/η β=ω

The moment generating function can be shown as

(1.2) M(t)= Kλ(χ,ψ−2t)
Kλ(χ,ψ)

The mean and variance are therefore

(1.3) E(X )= Kλ+1(χ,ψ)
Kλ(χ,ψ)

(1.4) Var(X )= Kλ(χ,ψ)Kλ+2(χ,ψ)− (Kλ+1(χ,ψ))2

(Kλ(χ,ψ))2

The description of the GHyp distribution starts with the definition of the distribution class

followed by the relevant subclasses and limiting distributions.

Definition 2. The generalized hyperbolic distributions GHyp(λ,α,β,δ,µ) are defined as a gen-

eralized inverse Gaussian (GIG) distribution-variance-mean mixture of the normal distribution,

i.e.

(1.5) GHyp(λ,α,β,δ,µ) :=MixGIG(λ,δ2,α2−β2)(µ,β)

The parameters λ,µ ∈R, α,δ≥ 0, |β| ≤α must satisfy the following conditions:

• |β| <α and δ> 0 if λ= 0

• |β| <α and δ≥ 0 if λ> 0

• |β| =α and δ> 0 if λ< 0

The GHyp distribution investigated in the research, which appears from next chapter onwards,

refers to the proper GHyp distribution defined as follows.
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Definition 3. The univariate proper GHyp distribution has five parameters λ, α, β, µ and δ. The

probability density function is

(1.6) f (x)= (
√
α2 −β2 /δ)λp

2πKλ(δ
√
α2 −β2 )

eβ(x−µ)Kλ−1/2(α
√
δ2 + (x−µ)2 )

where Kλ is the modified Bessel function of the third kind with order λ and λ,µ ∈R, α,δ> 0 and

|β| <α
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Figure 1.2: A selection of GHyp distributions with various µ and δ when α= 1, β= 0 and λ= 1
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Figure 1.3: A selection of GHyp distributions with various α, β and λ when µ= 0 and δ= 1

The moment generating function can be shown to be

(1.7) M(t)= etµ
(

α2 −β2

α2 − (β+ t)2

)λ/2 Kλ(δ
√
α2 − (β+ t)2 )

Kλ(δ
√
α2 −β2 )

Therefore the mean and variance of the proper GHyp distribution are derived as

(1.8) E(X )=µ+ βδ√
α2 −β2

Kλ+1(ζ)
Kλ(ζ)

(1.9) Var(X )= δ2
(

Kλ+1(ζ)
ζKλ(ζ)

+ β2

α2 −β2

(
Kλ+2(ζ)
Kλ(ζ)

−
(

Kλ+1(ζ)
Kλ(ζ)

)2))
where ζ= δ

√
α2 −β2 . With the Bessel function involved, the density function can only be inte-

grated numerically which means neither the CDF nor the quantile function possesses a closed

form.

The tails of the proper GHyp distribution can be shown to behave as

(1.10) f (x)∼ const|x|λ−1e(−α|x|+βx) x →±∞

The proper GHyp distribution has at least four parameterizations in the literature ([86]) which

are

8
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1. µ, δ, α, β, λ

2. µ, δ, ζ, ρ, λ

3. µ, δ, ξ, χ, λ

4. µ, δ, ᾱ, β̄, λ

Table 1.2: Relationship between four parameterizations of the GHyp distribution at fixed values

of µ and δ.

To: Parameterization

From: Parameterization 1 2 3 4

µ, δ, α, β, λ µ, δ, ζ, ρ, λ µ, δ, ξ, χ, λ µ, δ, ᾱ, β̄, λ

1. µ, δ, α, β, λ ζ= δ
√
α2 −β2 ξ= 1√

1+δ
p
α2−β2

ᾱ= δα

(α> 0, δ> 0) ρ =β/α χ= 1

α

√
1+δ

p
α2−β2

β̄= δβ

2. µ, δ, ζ, ρ, λ α= ζ

δ
p

1−ρ2
ξ= 1/

√
1+ζ ᾱ= ζ/

√
1−ρ2

(ζ> 0, δ> 0) β= ρα χ= ζρ β̄= ρᾱ
3. µ, δ, ξ, χ, λ α= 1−ξ2

δξ
p
ξ2−χ2

ζ= 1/ξ2 −1 ᾱ= 1−ξ2

ξ
p
ξ2−χ2

(ξ> 0, δ> 0) β=αχ/ξ ρ = χ/ξ β̄= ᾱχ/ξ

4. µ, δ, ᾱ, β̄, λ α= ᾱ/δ ζ=
√
ᾱ2 − β̄2 ξ= 1√

1+
p
ᾱ2−β̄2

(ᾱ> 0, δ> 0) β= β̄/δ ρ = β̄/ᾱ χ= β̄

ᾱ

√
1+
p
ᾱ2−β̄2

The hyperbolic distribution is a subclass of the GHyp distribution when λ= 1.

Definition 4. The hyperbolic distribution has four parameters α, β, µ and δ. The probability

density function is

(1.11) f (x)=
√
α2 −β2

2δαK1(δ
√
α2 −β2 )

e−α
p
δ2+(x−µ)2 +β(x−µ)

where µ ∈R, |β| <α and δ≥ 0.

As for the proper GHyp distribution, there are multiple parameterizations for the hyperbolic

distribution ([14] and [86]), four of which are

1. µ, δ, α, β

2. µ, δ, ζ, π

3. µ, δ, ψ, γ

4. µ, δ, ξ, χ

9
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Table 1.3: Relationships between four parameterizations of the Hyperbolic distribution at fixed

values of µ and δ.

To: Parameterization

From: Parameterization 1 2 3 4

µ, δ, α, β µ, δ, ζ, π µ, δ, ψ, γ µ, δ, ξ, χ

1. µ, δ, α, β ζ= δ
√
α2 −β2 ψ=α+β ξ= 1√

1+δ∗
p
α2−β2

(α> 0, δ> 0) π=β/
√
α2 −β2 γ=α−β χ= β

α

√
1+δ

p
α2−β2

2. µ, δ, ζ, π α= ζ
p

1+π2 /δ ψ= ζ

δ(
p

1+π2 +π)
ξ= 1/

√
1+ζ

(ζ> 0, δ> 0) β= ζπ/δ γ= ζ

δ(
p

1+π2 −π)
χ= πp

(1+ζ)(1+π2)

3. µ, δ, ψ, γ α= (φ+γ)/2 ζ= δpψγ ξ= 1√
1+δpφγ

(ψ> 0, γ> 0, δ> 0) β=αχ/ξ ρ = χ/ξ β̄= ᾱχ/ξ

4. µ, δ, ξ, χ α= 1−ξ2

δξ
p

xi2− chi2 ζ= (1− xi2)/xi2 ψ= (1−ξ2) ξ+χ
δξ2

p
ξ2−χ2

(ξ> 0, δ> 0) β= χ(1−ξ2)
δξ2

p
ξ2−χ2

π= χp
ξ2−χ2

γ= (1−ξ2)(ξ−χ)
δξ2

p
xi2−chi2

The mean and variance of the hyperbolic distribution are given by

(1.12) E(X )=µ+δπR1(ζ)

(1.13) Var(X )= δ2 (
ζ−1R1(ζ)+π2S1(ζ)

)
where Rλ and Sλ are defined as

(1.14) Rλ(ζ)= Kλ+1(ζ)
Kλ(ζ)

(1.15) Sλ(ζ)= Kλ+2(ζ)Kλ(ζ)−K2
λ+1(ζ)

K2
λ
(ζ)

.

The hyperbolic distribution appears not as complex as the proper GHyp distribution. As a

consequence, there were functions to implement linear modeling with hyperbolic errors ([107]).

Those functions are reviewed in Section 1.1.2.

The second subclass distribution is the NIG distribution which is obtained when λ=−1/2.

Definition 5. The NIG distribution has four parameters α, β, µ and δ. The probability density

function is

(1.16) f (x)= αδ

π
eδ
p
α2−β2 +β(x−µ) K1(α

√
δ2 + (x−µ)2 )√

δ2 + (x−µ)2

where µ ∈R, 0≤ |β| ≤α and δ≥ 0.

10
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There are at least three parameterizations of the NIG distribution in the literature ([11] and

[88]) which are

1. α, β, µ, δ

2. ᾱ, β̄, µ, δ

3. χ, ξ, µ, δ

Table 1.4: Relationships between three parameterizations of the NIG distribution at fixed values

of µ and δ.

To: Parameterization

From: Parameterization 1 2 3

µ, δ, α, β µ, δ, ᾱ, β̄ µ, δ, χ, ξ

1. µ, δ, α, β ᾱ= δα χ= β

α

√
1+δ

p
(α2−β2)

(0≤ |β| ≤α, δ≥ 0) β̄= δβ ξ= 1√
1+δ

p
(α2−β2)

2. µ, δ, ᾱ, β̄ α= ᾱ/δ χ= β̄

ᾱ

√
1+
p

(ᾱ2−β̄2)

(0≤ |β̄| ≤ ᾱ, δ≥ 0) β= β̄/δ ξ= 1√
1+
p

(ᾱ2−β̄2)

3. µ, δ, χ, ξ α= 1−ξ2

ξ2δ
p

(1−χ2ξ2)
ᾱ= 1−ξ2

ξ2
p

(1−χ2ξ2)

(−1< χ< 1, 0< ξ< 1, δ> 0) β= χ(1−ξ2)
ξδ
p

(1−χ2ξ2)
β̄= χ(1−ξ2)

ξ
p

(1−χ2ξ2)

The moment generating function of the NIG distribution is in a much simpler form which can

be shown to be

(1.17) M(t)= eδ(
p
α2−β2 −

p
α2−(β+t)2 )+µt

Consequently, the mean and variance have simple explicit expressions which are

(1.18) E(X )=µ+ δβ̄/ᾱ(
1− (

β̄/ᾱ
)2

)1/2

and

(1.19) Var(X )= δ2

ᾱ
(
1− (

β̄/ᾱ
)2

)3/2

The tails of the NIG distribution can be shown to behave as

(1.20) f (x)∼ const|x|−3/2e(−α|x|+βx) x →±∞

11
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The NIG distribution appears more tractable than the hyperbolic distribution without losing

the attractive property of semi-heavy tails, therefore linear modeling using the NIG distribution

can potentially be possible as it is for the hyperbolic distribution.

The skew hyperbolic Student’s t distribution is the limiting distribution of the GHyp distribu-

tions when λ=−ν/2 and α= |β|.

Definition 6. The skew hyperbolic Student’s t distribution has four parameters β, ν, δ and µ.

The probability density function is

(1.21) f (x)=
2(1−ν)/2δν|β|(ν+1)/2eβ(x−µ)K ν+1

2
(
√
β2(δ2 + (x−µ)2) )

γ(ν/2)
p
π (

√
δ2 + (x−µ)2 )(ν+1)/2

, β 6= 0

and

(1.22) f (x)= γ (ν+1)/2p
πδγν/2

(
1+ (x−µ)2

δ2

)−(ν+1)/2

, β= 0

where γ is the gamma function. δ,µ,β ∈ R and ν > 0. When β = 0 and δ = 1, the distribution

reduces to the ordinary Student’s t distribution.
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Figure 1.4: A selection of Skew Hyperbolic Student’s t distributions with various β, ν when µ= 0

and δ= 1

The distribution does not appear to have alternative parameterizations in the literature.
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The mean and variance are given by

(1.23) E(x)=µ+ βδ2

ν−2

and

(1.24) Var(X )= 2β2δ4

(ν−2)2(ν−4)
+ δ2

ν−2

Unlike the two subclasses described above, β is non-zero, the tails of skew hyperbolic Student’s t

distribution behave as one exponential and one polynomial. ([1])

Definition 7. In the polynomial tail, the density function is given by

f (x)∼ const|x|−ν/2−1 when

β< 0, x →−∞
β> 0, x →∞

In the exponential tail, the density function is given by

f (x)∼ const|x|−ν/2−1exp(−2|βx|) when

β< 0, x →−∞
β> 0, x →∞

As ν→ 0, the polynomial tail tends to decay extremely slowly, therefore it becomes extreme

heavy and is difficult to approximate numerically.

Despite the valuable properties of the GHyp distributions, the package developments in

The Comprehensive R Archive Network remain incomplete due to the complexity of the GHyp

distributions.

1.1.2 The GeneralizedHyperbolic Package

The GeneralizedHyperbolic package ([91]) (version 0.2-0) in CRAN, published March 1, 2010

by Associate Professor David Scott, provides density, distribution and quantile functions for the

hyperbolic distribution, the GHyp distribution, the generalized inverse Gaussian distribution and

the skew-Laplace distribution. In addition it provides functions for fitting the hyperbolic distribu-

tion and the normal inverse Gaussian distribution to data. Apart from these core functions, it also

contains functions gigChangePars, ghypChangePars and hyperbChangePars to interchange

respectively between the parameterizations of GIG, GHyp and hyperbolic distribution illustrated

in Table 1.1, 1.2 and 1.3.

Before reviewing the functions for the GHyp distribution, it is worthwhile to point out possible

failures of the algorithm of the CDF of the GIG distribution. The algorithm which is implemented

in the pgig function can potentially fail to converge or to return incorrect results when the it

computes cumulative probabilities in the tail area. Since the core part of CDF approximation of

the GIG distribution is actually the incomplete Bessel function calculation (see Chapter 2 and 3
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for more discussions), approaches to remedy these shortcoming are discussed in Chapter 2, while

the improved results for the pgig function are discussed in Chapter 3.

The functions pghyp and qghyp are designed to obtain the CDF and quantile functions of

the GHyp distribution. The function pghyp of package version 0.2-0 breaks the real line into 8

regions by function ghypBreaks in order to determine the integral of the density function. For

the upper and lower extreme regions (density < 10−5), the probability is set to 1 or 0 accordingly.

The function qghyp, on the other hand, is more complex. The chief drawbacks of the published

qghyp function are:

• Inefficiency. It tends to be slow when dealing with large number of quantiles. It again uses

the breakup of the real line into the same 8 regions as pghyp function.

• Lack of flexibility. Only one method is available. It first sets the two extreme tails (density

< 10−5) as −∞ or ∞. In the 6 inner regions the function splinefun is used to fit values

of the distribution function generated by pghyp. The quantiles are then found using the

uniroot function.

• Not particularly accurate, generally expected to be accurate to five decimal places.

The search for accurate and efficient integration routines for obtaining the CDF and quantile

function is discussed in Chapter 4.

Besides the probability and quantile function, a good random number generator function is

equally important for a distribution. Since the hyperbolic distribution is a GHyp distribution with

λ= 1 and the GHyp distribution is a mixture of the GIG distribution and normal distribution,

possible approaches for the function rhyperb and rgig are reviewed respectively in Chapter 5.

The current rghyp function uses the mixing method which generates random observations using

the mixing property of the generalized inverse Gaussian distribution. It first samples σ2 from the

generalized inverse Gaussian distribution N−(λ,σ2,α2−β2). The sampling approach for this step

is Dagpunar’s approach ([33]) for the GIG distribution. Then it returns the random variable with

conditional normal distribution Y ∼ N(µ+βσ2,σ2). Y is GHyp distributed and in the case λ= 1,

a random observation from the hyperbolic distribution is obtained. However there are concerns

with the current GIG distribution random number generation approach. Some remedies for these

concerns which have been proposed but not implemented, including [34], [79] and [78]. These

approaches are implemented and compared with the currently implemented approaches in 5.

Besides these, we also implement one approach for the hyperbolic distribution without using the

mixing property and investigate the best approaches for random number generation of the GIG

distribution as well as the hyperbolic distribution.

Another aspect of the GeneralizedHyperbolic package is the fitting of the subclass distribu-

tions to data. These applications, reviewed separately, are derived for the hyperbolic distribution

and the NIG distribution.
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Fitting the hyperbolic distribution is done through the hyperbFit function. The hyperbFit

function implements this with the hyperbFitStart function providing the starting values for the

optimization routine ([107]). There are three approaches in the hyperbFit function to optimize

the transformed parameters π, log(ζ), log(δ) and µ to ensure ζ,δ> 0

• “BFGS” A quasi-Newton method which is implemented in the optim function.

• “Nelder-Mead” An implementation of the Nelder-Mead simplex method which is in the

optim function as well.

• “nlm” The nlm function which is an implementation of the method proposed by Schnabel,

Koontz and Weiss ([90]).

However, without good starting values, the optimization routine is likely to fail using any of

these three approaches. Therefore, the hyperbFitStart provides four approaches to find a set of

starting values.

• “BN” A method from [9] which based on ψ and γ (see section 3.2) can represent the absolute

slopes of the left and right asymptotes to the log density function.

• “FN” Based on a fitted normal distribution as it is a limit of the hyperbolic distribution.

• “SL” Based on a fitted skew-Laplace distribution of which the log density are two straight

line with absolute slopes 1/α, 1/β.

• “MoM” A method based on [18].

The work in Richard Trendall’s Master Thesis ([107]) shows the fitting functions still need to

be improved to provide a reliable platform for estimation in regression with hyperbolic errors.

Consideration of fitting functions are the basis of the material discussed in Chapter 6.

Likewise fitting the NIG distribution is done through the nigFit function. The nigFit

function implements this with the nigFitStart function providing the starting values for the

optimization routine ([91]). Apart from the three optimization approaches implemented for fitting

the hyperbolic distribution, there are three additional approaches in the nigFit function to

optimize the transformed parameters π, log(ζ), log(δ) and µ to ensure ζ,δ> 0

• “L-BFGS-B” A limited-memory algorithm, described in [30], based on the gradient projection

method and uses a limited memory BFGS matrices to approximate the Hessian of the

objective function. The algorithm is implemented in the optim function.

• “nlminb” An implementation of the PORT optimization routine, described in [47], which is

in the nlminb function.

• “constrOptim” The constrOptim function minimizes the objective function subject to linear

inequality constraints using the barrier method with logarithmic barrier function ([75]).
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Although the NIG distribution appears more tractable than the hyperbolic distribution, the

optimization routines are not stable with arbitrarily chosen start values using any of the six

approaches. Therefore, the nigFitStart provides three approaches to find a set of starting

values.

• “FN” Based on a fitted normal distribution as it is a limit of the NIG distribution.

• “Cauchy” Based on a fitted Cauchy distribution as it is also a limit of the NIG distribution.

• “MoM” A method based on [18].

Due to the similarity of the NIG and the hyperbolic distributions, the work discussed in Chapter

6 can also be extended to improve linear modeling using the NIG distribution.

1.1.3 The Skew Hyperbolic Student’s t Distribution Package

Functions for the skew hyperbolic Student’s t distribution are implemented specifically in the Ske-
wHyperbolic package ([94]) (version 0.3-2) in The Comprehensive R Archive Network (CRAN),

published February 26, 2013 by Associate Professor David Scott and Fiona Grimson. The package

provides density, CDF, quantile functions and random number generation for the skew hyper-

bolic Student’s t distribution as well as implements the functions that fit the skew hyperbolic

distribution to data.

The functions pskewhyp and qskewhyp are designed to obtain the distribution and quantile

functions of the skew hyperbolic Student’s t distribution. The published version of function

pskewhyp uses the numerical integration function integrate to integrate the density function

from −∞ to x if x is to the left of the mode, and from x to ∞ if x is to the right of the mode ([94]).

However this approach fails badly when the distribution is skewed. This also has an impact

on quantile function calculations. The quantile function qskewhyp uses numerical root finding

function uniroot to find the x where F(x)= q. F(x) is approximated either as CDF approach or

by spline approximation. The two options aim for accurate and efficient calculation respectively.

But we have discovered that neither of these is stable when the distribution is skewed.

Apart from the SkewHyperbolic package, there is an alternative approach, the so-called

the black-box approach, proposed in [38], implemented in the Runuran package. The algorithm,

primarily designed for random number generation, is based on polynomial interpolation with five

nodes of the inverse CDF utilizing Newton’s formula together with Gauss-Lobatto integration.

We are convinced it is accurate for a fairly wide parameter range, however it is known that the

polynomial interpolation becomes numerically unstable in the tails of the distributions ([38]). In

addition, the approach is rather complicated and difficult to adjust if necessary.

In my research, we propose a new CDF approximation approach which transforms the density

function by the split t transformation, then integrates numerically by the Gaussian quadrature
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with Richardson extrapolation or the integrate function. This approach, discussed in Chapter 4,

is straightforward, relatively stable and addresses some of the previous concerns.

The other aspect of the package is fitting the skew hyperbolic Student’s t distribution to

data. This is achieved by the skewFit and skewFitStart functions. The skewFitStart function

provides the starting values for the optimization routine ([94]).

The three optimization approaches in the skewhypFit function are adapted from the hyperbFit

function to optimize the transformed parameters π, log(ν), log(δ) and µ to ensure ν,δ> 0. Like

the hyperbolic distribution, the optimization routine will fail to obtain good results using any of

these three approaches without carefully chosen start values. Therefore, the skewhypFitStart

function uses a linear approximation approach to estimate the start values. The function first

linearly approximates the log-density of the fitted skew hyperbolic student’s t distribution to

estimate the start value of ν and β. Then it solves the moment equations for mean and variance

to obtain the start value of δ and µ.

Since the variance →∞ when ν≤ 4, the estimate of ν must > 4. It is noted the approach will

not work if the distribution is too skewed, this is due to the number of points in the lighter tail

being insufficient to fit the required linear model. The improvement of fitting the skew hyperbolic

Student’s t distribution, in particular the optimization routine, is indeed required to obtain

more stable outcomes from linear regression with the skew hyperbolic Student’s t distribution.

Therefore the updated CDF approximation approach together with the linear regression with the

hyperbolic distribution approach provide a starting point for such improvements in the future.
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UTILITY FUNCTIONS

The utility functions, contained in the package DistributionUtils can be categorized according

to purpose, as testing functions for distributions, general routine functions, Bessel function

related functions and plotting functions.

The first group of functions are functions which allow the testing of distribution function

routines. Most of these functions have been developed in the past by David J. Scott and Christine

Yang Dong to provide support for other packages. In this group are the functions for inver-

sion tests, the Massart inequality, standard errors of moments, and integration of a density.

Since DistributionUtils lacks a goodness-of-fit test ([95]), I have in addition implemented the

goodness-of-fit test using Moran’s log spacing statistic.

The second group of functions comprises general routines for performing common tasks to

do with distributions: calculating the distribution function and the quantile function given the

density function; and calculating moments by integration.

Further functions concern Bessel functions and their inclusion in the package is due to their

importance in the distributions related to the generalized hyperbolic distribution. One of these

functions is independently important being the first available implementation of the incomplete

Bessel K function in R. Indeed, the incomplete Bessel K function is not implemented in the usual

collections of special functions such as Netlib. This implementation is due to Slevinsky and

Safouhi, see [101] and [102]. Their basic algorithm has been improved in order to allow it handle

some extreme cases as well as vectors.

2.1 Functions for Testing Distributions

The functions that have been developed in the past for testing distributions are the functions

for inversion tests, the Massart inequality, standard errors of moments, and the integration of a
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density.

The inversion tests compare the difference of a given value and the value after transfor-

mation then back transformation. There are two functions in the package to carry out such

tests. The function inversionTestpq basically aims to check that qDist(pDist(x)) = x for

randomly generated values x from a specific distribution. It first generates n random variates

from the test distribution then calculates the probabilities of those random values under the test

cumulative distribution. Lastly, it computes the quantiles for those probabilities and compares

them with original random values. Similarly, the function inversionTestqp aims to check that

pDist(qDist(qs)) = qs for a set of probabilities qs. It applies the quantile function, followed

by the distribution function to the set of probabilities specified in qs.

Both of the functions return a list but with slightly different components. The outcome of

function inversionTestpq contains qDist(pDist(x)), x, the differences qDist(pDist(x)) -

x and number of random numbers generated from the distribution. The outcome of function

inversionTestqp includes pDist(qDist(p)), p, and the differences pDist(qDist(qs)) - qs.

The Massart Inequality test, implemented in the function distIneqMassart, is based on the

Massart version of the Dvoretzky-Kiefer-Wolfowitz inequality :

(2.1) Pr
(
supx|F̂n(x)−F(x)| > t|)≤ 2 exp(−2nt2)

where F(x) is the distribution function of the test distribution and F̂n(x) is the empirical distri-

bution function for a sample of n independent and identically distributed random variates with

distribution function F(x). This inequality is true for all distribution functions and all n and t.

The idea of the test using the Massart inequality is that if the value of t is such that the bound

on the right side of the inequality is small, then if a sample is from the desired distribution, the

supremum should be less than t with high probability. The distIneqMassart function generates

n random variates from the test distribution, then computes the supremum sup of the absolute

difference between the empirical distribution F̂n(x) from those random variates and the true

distribution function F(x). Then it computes t which is the t as in (2.1) calculated from the

supplied probability bound value (default 0.001). Finally, the function compares sup and t. If

sup < t, then the test has not detected any evidence that the sample is not from the desired

distribution.

2.1.1 Moran Test

The Moran test, proposed in [83], tests the goodness-of-fit of a random sample of xi, i = 1, . . .n, to

a continuous univariate distribution with cumulative distribution function F(x,θ), where θ is a

vector of known parameters.

The key advantage of the Moran test compared to other tests such as Kolmogorov-Smirnov

test and Cramér-von Mises Test is that the asymptotic distribution of the Moran test statistic

does not change substantially if instead of θ being known, it is estimated efficiently as θ̂, for
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example using maximum likelihood estimation. This property was investigated and confirmed for

a number of distributions in [52].

Assume x1 < x2 < . . .< xn, the spacing D i(θ) is defined as

(2.2) D i(θ)= yi − yi−1 (i = 1, . . . ,m),

where yi = F(xi,θ), m = n+1, y0 = 0 and ym = 1. The Moran statistic is then

(2.3) M(θ)=−
n∑

i=1
logD i(θ).

The test is clearly limited as the parameters are usually unknown in practice. It was extended

to test for estimated parameters in [32] which is implemented in the package. The test statistic

is:

(2.4) T(θ̂)= (M(θ̂)+1/2k−C1)/C2,

where M(θ̂), the Moran statistic, has mean γm and variance σ2
m expanded to order m−1 as

γm = m(logm+γ)− 1
2
− 1

12m
+ . . . ,

σ2
m = m

(
π2

6
−1

)
− 1

2
− 1

6m
+ . . . ,(2.5)

where γ≈ 0.57722 is Euler’s constant. C1 and C2 are then defined as

C1 = γm −σm
p

n/2

C2 = σmp
2n

(2.6)

(2.7)

This test has null hypothesis H0: a random sample of n values of x comes from distribution

F(x,θ). Here θ is expected to be the maximum likelihood estimate θ̂, an efficient estimate. The

test rejects H0 at significance level α if T(θ̂)> χ2
n(α).

The Moran test function takes the format as below:

moranTest ( x , densFn , param = NULL, . . . )

x

The data vector that is being tested.

densFn

The root name of the distribution to be tested, for instance ‘norm’ for the Normal distribu-

tion.
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param

A vector giving the parameter values for the distribution specified by densFn. If no param

values are specified, then the default parameter values of the distribution are used instead

. . .

Additional arguments to allow specification of the parameters of the distribution other than

specified by param argument.

2.2 General Routine Functions

As mentioned in Chapter 1, the general routine functions in the distr package approximate

the distribution function and quantile function by sampling. On the other hand the algorithms

investigated and implemented in the functions described in the following, are able to perform

general routine tasks for any univariate unimodal continuous distribution by means of numerical

calculation. Before we describe these two functions, we first introduce two general auxiliary

functions developed to support the general CDF and quantile function approximation algorithms.

2.2.1 General Auxiliary Functions

The first general auxiliary function is the distStepSize function. This function implements an

algorithm to determine the appropriate step size when determining the range of the specified

unimodal distribution. The algorithm used is:

1. Simulate a small random sample of the specified unimodal distribution and appximate the

median xmedian of the distribution by sampling.

2. If the distribution specified is the skew hyperbolic Student’s t distribution, i.e. skewhyp(β,

δ, µ, ν), then the step size calculation is specially arranged. Recall the description of

skew hyperbolic Student’s t distribution in Section , when β is non-zero, the tails of skew

hyperbolic Student’s t distribution behave as one exponential and one polynomial. The step

size of skew hyperbolic Student’s t distribution is calculated as

a) The step size of polynomial declining tail is δ|β|(νD)
−2
ν , where D is the current distance

value. The step size of the exponentially declining tail is δ.

b) If β> 0, the right tail is polynomial tail and the left tail is exponential tail, vice versa.

c) If β= 0, the distribution is symmetric, and then the step size is eδ/ν.

3. If the distribution specified is any other unimodal distribution then the step size for the left

tail is xmedian −Q0.25 where Q0.25 is the empirical 0.25-quantile from the random sample

generated in step 1. The step size for the right tail is Q0.75 − xmedian where Q0.75 is the

empirical 0.75-quantile from the random sample generated in step 1.
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The distStepSize function has the format

distStepSize ( densFn , dist ,
param = NULL, side = c ( “r ight” ,“ l e f t ” ) , . . . )

densFn

The root of the name of the density function for which the step size is required.

dist

Current distance value, for skew hyperbolic distribution only.

param

The parameter values for the distribution specified by densFn. If no param values are

specified, then the default parameter values of each distribution are used instead.

side

Define the side of distribution. “right” for a step to the right, “left” for a step to the left.

. . .

Additional arguments to allow specification of the parameters of the distribution other than

specified by param argument.

Apart from the distStepSize function, a general algorithm to calculate the mode of a

unimodal continuous distribution is implemented in the distMode function. The algorithm is

1. Approximate the median xmedian of the specified distribution by sampling.

2. The lower bound of the interval xlow is found by iteratively performing xmedian− i∗xstepsizeL

until the value of xlow ensures log f (xlow) < log f (xmedian). xstepsizeL is determined by the

application of distStepSize function on left tail.

3. The upper bound of the interval xhigh is found by iteratively performing xmedian+ i∗xstepsizeR

until the value of xhigh ensures log f (xhigh)> log f (xmedian). xstepsizeR is determined by the

application of the distStepSize function on right tail.

4. The maximum density of that interval is claimed to be the distribution mode.

The distMode function has the format as

distMode ( densFn , param = NULL, . . . )

densFn

The root of the name of the density function for which the mode is required.

23



CHAPTER 2. UTILITY FUNCTIONS

param

The parameter values for the distribution specified by densFn. If no param values are

specified, then the default parameter values of each distribution are used instead.

. . .

Additional arguments to pass to the optimize function.

2.2.2 Distribution Function Calculation

The general routine algorithm calculates the distribution function for all unimodal distributions

that have a continuous density function defined as:

F(x)=
∫ x

−∞
f (t)dt

For random variables with the density function f (x), the distribution function is calculated as

F(x)=
{ ∫ x

−∞ f (t)dt if t ≤ tmode

1−∫ ∞
x f (t)dt if t > tmode

The integration is achieved numerically by the integrate function from the stats package.

The algorithm is implemented in the function pDist which has the format

pDist ( densFn = “norm” , q , param = NULL, subdivis ions = 100 ,
lower . t a i l = TRUE, intTol = . Machine$double . eps ^0.25 ,
valueOnly = TRUE, . . . )

densFn

The root of the name of the density function for which the CDF is required.

q

The quantiles of the probabilities that are required to be computed.

param

The parameter values for the distribution specified by densFn. If no param values are

specified, then the default parameter values of each distribution are used instead.

subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the distribution function calculation.

lower.tail

If lower.tail = TRUE, the cumulative distribution is taken from the lower tail.

intTol

The required relative accuracy of the numerical integration function integrate.
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valueOnly

If valueOnly = TRUE calls to pDist function only return the value obtained for the integral.

If valueOnly = FALSE an estimate of the accuracy of the numerical integration is also

returned.

. . .

Additional arguments to allow specification of the parameters of the distribution other than

specified by param argument.

This function is fairly flexible as the requested absolute accuracy for the function integrate

can be adjusted by intTol in the argument list, therefore the accuracy of probabilities can be

adjusted accordingly. The default intTol is (.Machine$double.eps)^(0.25) = 0.0001220703

on a 32-bit system, so the accuracy of probability calculation is expected to be around 10−4. The

output of this function contains a list of p and error where p is the probability required and

error is the estimate of the accuracy of the approximation to the distribution function.

2.2.3 Quantile Function Calculation

The quantile function is the inverse of the distribution function, i.e. F(x)−1 therefore the calcula-

tion of quantile function requires the use of the pDist function discussed in Section 2.2.2. The

general algorithm for a unimodal continuous distribution consists of two approaches depending

on priorities. If efficiency is the priority then the distribution function is approximated by spline

interpolation, the Spline approach. Alternatively numerical integration of the density function,

the Integrate approach, is used for precise calculation.

Given p = F(x)−1 and f (x) is the associated density function, both approaches use the one

dimensional root finding function uniroot to find the root for F(x)− p = 0 over a finite interval.

The main differences between these two approaches are the method of approximation of F(x) and

the method of determination of the appropriate interval.

The Integrate approach uses the pDist function to approximate F(x) and the appropriate

interval is determined as

1. Compute pmode = F(xmode)−1 where xmode is obtained from the distMode function described

in Section 2.2.1.

2. If p ≤ pmode then f (x) is numerically integrated iteratively from xmode − xstepsizeL until

x ≤ (xmode − i∗ xstepsizeL).

3. If p > pmode then f (x) is numerically integrated iteratively from xmode + xstepsizeR until

x ≥ (xmode + i∗ xstepsizeR).

This approximation method involves a significant number of integrations, thus the time

required is roughly linear in the number of quantiles being calculated, which can be a time-

consuming task. The advantage of this approach is accuracy. The tolerance of the function
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uniroot as well as the accuracy of function pDist can be adjusted by uniTol in the argument

list. The default setting for uniTol is also (.Machine$double.eps)^(0.25) thus the accuracy

is expected to be around 10−4. It nevertheless can be set to 10−10 or 10−12 if the accuracy is

needed to be around 10−8.

The Spline method on the other hand uses spline interpolation via the spline function to

approximate the major part of F(x). The extreme tail approximation where the probabilities are

≤ 10−5 still uses the Integrate method.

The Spline approach is set out as

1. Compute the upper bound xhigh and lower bound xlow of which the probabilities are ≤ 10−5.

2. Divide the interval [xlow, xhigh] into n sub-intervals.

3. Construct the function giving the spline interpolation within the interval. This function

therefore approximates F(x).

This approach is expected to be less efficient when a single quantile calculation is required.

This is because the spline function approximates the interval with same number of sub-intervals

regardless of the number of quantiles required. However with the requirement of large number

of quantiles, the Spline approach is more efficient as the spline approximation is only done once

provided that the probability is greater than 10−5.

This general quantile approximation algorithm is implemented in function qDist which has

the format

qDist ( densFn = “norm” , p , param = NULL,
lower . t a i l = TRUE, method = “spl ine” , nInterpol = 501 ,
uniTol = . Machine$double . eps ^0.25 ,
subdivis ions = 100 , intTol = uniTol , . . . )

densFn

The root of the name of the density function for which the quantile function is required.

p

The probabilities of the quantiles that are required to be computed.

param

The parameter values for the distribution specified by densFn. If no param values are

specified, then the default parameter values of each distribution are used instead.

lower.tail

If lower.tail = TRUE, the cumulative distribution is taken from the lower tail.

method

The approximation method.
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nInterpol

Number of points used for cubic spline interpolation of the distribution function.

uniTol

The desired accuracy (convergence tolerance) of the one dimentional root search function

uniroot.

subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the distribution function calculation.

intTol

The required relative accuracy of the numerical integration function integrate.

. . .

Additional arguments to allow specification of the parameters of the distribution other than

specified by param argument.

2.2.4 Moment Calculation

The function momIntegrated in this package implements the calculation of moments and absolute

moments about a given location for any distribution that has a continuous density function. The

algorithm of this function is based on

(2.8) µk =
∫ ∞

−∞
(x−a)k f (x)dx,

where µk denotes the kth moment about location a. When the absolute moment is required,

|x−a|k replaces (x−a)k in (2.8).

The function momIntegrated calls the corresponding density function by the root for the

distribution’s name in the argument list and forms (x−a)k f (x). Then the function integrate is

applied to perform the integration in (2.8).

The function momIntegrated has the format

momIntegrated ( densFn , param = NULL, order , about = 0 ,
absolute = FALSE, . . . )

densFn

The root of the name of the density function for which the distribution function is required.

param

The parameter values for the distribution specified by densFn. If no param values are

specified, then the default parameter values of each distribution are used instead.
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order

The order of the moment or absolute moment to be calculated.

about

The point about which the moment is to be calculated.

absolute

Whether absolute moments or ordinary moments are to be calculated.

. . .

Additional arguments to allow specification of the parameters of the distribution other than

specified by param argument.

2.3 Bessel Functions

There are two functions concerning Bessel functions. One is for incomplete Bessel K function

calculation and the other is for Bessel function ratio calculation. The implementation of the

Bessel function ratio uses exponential scaling of the Bessel function to avoid over- or underflow,

but is otherwise unremarkable.

We will discuss the incomplete Bessel K function implementation in detail only because

changes have been made to improve its performance.

The incomplete Bessel K function can be defined as

(2.9) Kν(x, y)=
∫ ∞

1

e−xt−y/t

tν+1 dt,

and has been a computational challenge due to the integration complexity. Richard M. Slevinsky

and Hassan Safouhi proposed the Slevinsky-Safouhi formulas I and II for analytical calculation

of higher order derivatives in 2009 ([101]). They then extended and applied the Slevinsky-Safouhi

formula I to a recursive algorithm to approximate the incomplete Bessel function analytically.

They have also provided the original code of the function incompleteBesselK which it is claimed

rapidly computes the incomplete Bessel function to pre-determined accuracies of between ±1e−10

and ±1e−15 over a range of x and y ([102]). This algorithm has been implemented by David

J. Scott and Thomas Tran in R code which calls a Fortran routine to carry out the calculation.

However it was found that the algorithm could fail to converge or gave incorrect results when

either x or y take extremely small values. Furthermore, the incompleteBesselK function can

only handle x and y as scalars. These shortcomings motivated the modification of the algorithm.

2.3.1 Modified Algorithm

The recursive algorithm, currently implemented in the incompleBesselK function ([102]), is set

out as:
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1. For F(x)= ∫ x
0 f (t)dt, set:

(2.10) N0(x)= F(x)
xσ0 f (x)

and D0(x)= 1
xσ0 f (x)

2. For n = 1,2, . . . , Nn(x) and Dn(x):

(2.11) Dn(x)=
(
x2 d

dx

)n 1
xσ0 f (x)

and Nn(x)=
(
x2 d

dx

)n F(x)
xσ0 f (x)

The approximations for Dn(x) and Nn(x) are

D̃n(x, y,ν)=
(
t2 d

dt

)n
(tν+1et+xy/t)

∣∣∣
t=x

= (−xy)nxν+1ex+y
r∑

i=0

(
n
r

)
(−y)−r

r∑
i=0

A i
rxi

(2.12)

Ñn(x, y,ν)= Nn(x)−F(x)Dn(x)

=
n∑

r=1

(
n
r

)
D̃n−r(x)

(
x2 d

dx

)r−1 (
xσ0 f (x)

)
= e−x−y

xνy

n∑
r=1

(
n
r

)
D̃n−r(x, y,ν)(xy)r

r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

(2.13)

3. The approximation to Kν(x, y)= ∫ ∞
x f (t) is

(2.14) G̃(1)
n (x, y,ν)= xν

Ñn(x, y,ν)
D̃n(x, y,ν)

In this recursive algorithm, we have modified the calculation of numerator and denominator

to reduce the impact of x and y when they take extreme values. In the modified algorithm we

introduce a new variable D̃∗
n, where

D̃∗
n = (−xy)−ne−(x+y)D̃n(x, y,ν)

= xν+1
r∑

i=0

(
n
r

)
(−y)−r

r∑
i=0

A i
rxi.

(2.15)
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Then

Ñn(x, y,ν)= e−x−y

xνy

n∑
r=1

(
n
r

)
D̃n−r(x, y,ν)(xy)r

r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

= e−x−y

xνy

n∑
r=1

(
n
r

)
(−xy)n−rxν+1ex+y

n−r∑
r=0

(
n− r

r

)
(−y)−r

r∑
i=0

A i
rxi(xy)r

r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

= e−x−y

xνy

n∑
r=1

(
n
r

)
(−xy)nxν+1ex+y

n−r∑
r=0

(
n− r

r

)
(−y)−r

r∑
i=0

A i
rxi

(−1)−r
r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

= (−xy)n

xνy

n∑
r=1

(
n
r

)
(−1)−rD̃∗

n−r(x, y,ν)
r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

(2.16)

thus

(2.17) G̃(1)
n (x, y,ν)= xν

Ñn(x, y,ν)
D̃∗

n(x, y,ν)(−xy)ne(x+y)

2.3.2 Exponential Scaled Algorithm

The incomplete Bessel function is exponentially scaled by e2
pxy in order to avoid overflow or

underflow issues. As Slevinksy and Safouhi proposed, the condition for applying the G(1)
n trans-

formation is that the integrand f (t)= e−t−xy/t/tν+1 satisfies the first order linear homogeneous

differential equation ([102]):

(2.18) f (t)=− t2

t2 − xy+ (ν+1)t
f ′(t)

The new integrand f (t) = e−t−xy/t+2
pxy /tν+1 can be shown to also satisfy that equation. As t is

the variable in the integrand therefore d
dt 2

pxy = 0. Since e2
pxy Kν(x, y) satisfies the condition

for the G(1)
n transformation hence the approximation can use the exponentially scaled quantities

D̃n(x, y,ν) and Ñn(x, y,ν) which have forms:

D̃∗
n(x, y,ν)=

(
t2 d

dt

)n
(tν+1e−2

pxy )
∣∣∣
t=x

= xν+1e−2
pxy

r∑
i=0

(
n
r

)
(−y)−r

r∑
i=0

A i
rxi

(2.19)

Ñn(x, y,ν)=
n∑

r=1

(
n
r

)
D̃∗

n−r(x)
(
x2 d

dx

)r−1 (
xσ0 e2

pxy f (x)
)

= e2
pxy

xνy
(−xy)n

n∑
r=1

(
n
r

)
D̃∗

n−r(x, y,ν)
r−1∑
s=0

(
r−1

s

)
y−s

s∑
i=0

A i
s(−x)i

(2.20)

This gives the exponential scaled version of the approximation G̃(1)∗
n (x, y,ν)= e2

pxy G̃(1)
n (x, y,ν).
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2.3.3 The Vectorized Incomplete Bessel Function

The incompleteBesselK function uses five sub-routines:

combinatorial

The binomial coefficients

SSFcoef with ν−1

The Slevensky-Safouhi coefficient when ν= ν−1

SSFcoef with −ν−1

The Slevensky-Safouhi coefficient when ν=−ν−1

GNUM

The numerator Ñn(x, y,ν)

GDENUM

The denominator D̃n(x, y,ν)

Three of these, including combinatorial and SSFcoef with both ν−1 and −ν−1, do not

involve x and y. These can thus be removed from the main routine and calculated once only for

all x and y in the vectorized function.

The vectorized incomplete Bessel function incompleteBesselKV has the form:

incompleteBesselKV ( x , y , nu ,
t o l = ( . Machine$double . eps )^0 .5 ,
nmax = 90 , expon . scaled = FALSE)

x, y

Vector values of the first and second arguments of the incomplete Bessel K function.

nu

ν, scalar value of the order of the incomplete Bessel K function.

tol

The tolerance for the ratio of difference between successive approximations of the incomplete

Bessel K function.

nmax

The maximum iterations for the approximation.

expon.scaled

If TRUE then e−2
pxy Kν(x, y,ν) is returned.
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2.4 Examples and Discussion

In this section, we will illustrate examples for some of the utility functions and then discuss the

modification of the Bessel function.

2.4.1 momIntegrated function

We will first illustrate the momIntegrated function by calculating central and raw moments for

the normal distribution. The example first calculates the central moments of normal distribution

with µ= 2, σ= 1 by the central moment formula

(2.21) E
[
(X −µ)k

]
=

0 if k is odd

σk(k−1)!! if k is even

It then uses the momChangeAbout function in the DistrUtils package to obtain raw moments

from (2.21). Afterwards, the central moments and raw moments are calculated again by the

momIntegrated function and compared with the previous result. The comparison is only for 1st

moment and 8th moment, carried out by the checkEquals function in the RUnit package. The

function returns TRUE if both terms are equal, FALSE otherwise.

normalMom <− function ( order , mean, sd ) {
i f ( order%%2 == 0 ) {

nMom <− sd^order * sqrt (2^order / pi ) *
gamma( ( order − 1 ) /2 + 1)

} e lse {
nMom <− 0

}
return (nMom)

}
mean <− 2
sd <− 1
centralMom <− sapply ( 1 : 8 , normalMom, mean = mean, sd = sd )
centralMom
[ 1 ] 0 1 0 3 0 15 0 105
rawMom <− momChangeAbout( “ a l l ” , centralMom , mean, 0)
rawMom
[ 1 ] 2 5 14 43 142 499 1850 7193
m1 <− momIntegrated ( “norm” , order = 1 , mean = mean, sd = sd ,

about = 0)
m8 <− momIntegrated ( “norm” , order = 8 , mean = mean, sd = sd ,

about = 0)
checkEquals (rawMom[ 1 ] , m1)
[ 1 ] TRUE
checkEquals (rawMom[ 8 ] , m8)
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[ 1 ] TRUE
cm1 <− momIntegrated ( “norm” , order = 1 , mean = mean, sd = sd ,

about = m1)
cm8 <− momIntegrated ( “norm” , order = 8 , mean = mean, sd = sd ,

about = m1)
checkEquals ( centralMom [ 1 ] , cm1)
[ 1 ] TRUE
checkEquals ( centralMom [ 8 ] , cm8)
[ 1 ] TRUE

2.4.2 pDist and qDist function

The examples for pDist function comprise the calculation of selected distribution functions with

a variety of parameters, plus comparisons between the pDist function and implementations

of the specific distribution function. The distribution included in the example is the gamma

distribution with shape = 3 and tolerance = 10(−12). The example first illustrates the output of

the pDist function, then the comparison between pDist function and pgamma function result.

> n = 10
> x = rgamma(n , shape = 3)
> p = pDist ( “gamma” , q = x , shape = 3 , intTol = 10^(−12))
> p − pgamma( x , shape = 3)

[ 1 ] −1.110223e−16 0.000000e+00 1.110223e−16 8.326673e−17 3.330669e−16
[ 6 ] 0.000000e+00 1.110223e−16 2.803313e−15 0.000000e+00 5.551115e−17

The integration error, in the example, is no more than 10−8. This is as expected in Section

2.2.2. The differences between the pDist function and the specific distribution function for the

gamma distribution is barely more than 10−15. The result indicates the pDist function is fairly

accurate for at least the gamma distribution.

The examples for qDist function comprise the calculation of selected quantile functions using

both methods, plus comparison between qDist function and implementations of the specific

quantile function. The distribution included in the examples is again the gamma distribution.

Both examples use gamma distribution with shape= 3 but with different methods. We will

start with the default method, that is, the Spline method.

> qs <− c (0 .001 , 0.025 , 0.05 , 0 .1 , 0 .5 , 0 .9 , 0.95 , 0.975 , 0.999)
> q <− qDist ( “gamma” , p = qs , shape = 3)
> q − qgamma( qs , shape = 3)
[ 1 ] 1.703598e−05 −2.282323e−06 6.257252e−06 −9.850411e−07 1.500261e−05
[ 6 ] 1.205959e−05 2.187905e−05 1.610092e−05 −2.847725e−05

This example not only shows the output generated by the qDist function but also compares it

with the specific quantile function of gamma distribution with shape= 3. The difference is around
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10−5. The Integration method with small tolerance would be expected to reduce this difference.

Therefore qDist uses the Integrate method with 10−12 tolerance in the next example.

> q <− qDist ( “gamma” , p = qs , shape = 3 ,
method = “integrate” , uniTol = 10^(−12))

> q − qgamma( qs , shape = 3)
[ 1 ] 9.660328e−13 −2.220446e−16 −2.220446e−16 −4.884981e−15 0.000000e+00
[ 6 ] 8.881784e−16 −1.065814e−14 8.881784e−16 −2.504663e−13

The differences in the example have significantly decreased to less than 10−12. This illustrates

the accuracy for qDist function is as expected in Section 2.2.3.

There are other distributions have been tested: the normal distribution, GHyp distribution,

and hyperbolic distribution, to name a few. The pDist and qDist function appear to handle most

of the distributions reasonably well. However the performance of qDist declines as the skew

hyperbolic Student’s t distribution ν decreases even when the step sizes for this distribution are

carefully chosen, i.e. as mentioned in Section 2.2.3 when the tail is declining exponentially the

step is just a linear function of the current distance from the mode. If the tail is declining only as

a power of x, an exponential step is used. The main difficulty is that when the skew hyperbolic

Student’s t distribution ν≤ 4, the central moments which relate to the variance, the skewness

and the kurtosis, can be undefined, as discussed in detail in Chapter 3.

2.4.3 Incomplete Bessel K Function

The discussion for the incomplete Bessel K function has two aspects, efficiency and accuracy. The

reference values for accuracy tests are generated from Maple, symbolic computation software

which also performs highly accurate integration.

The efficiency tests are carried out by comparing the evaluation time of modified vectorized,

exponential scaled vectorized and the original function. The test vector x comprises 4833 val-

ues within a normal value range, from 1×10−4 to 1000. The test vector y also contains 4833

values within a normal value range, from 2×10−6 to 10000. The ratios of the x and y values are

designed to be contained in {0.1,0.2,0.5,1,2,5,10,20,50}. The value of ν is set as a fixed num-

ber. First we compare the incompleteBesselK function with the modified vectorized function

incompleteBesselKV.

system . time (
for ( i in 1 : length ( x ) ) {

xval <− x [ i ]
yval <− y [ i ]
incompleteBesselK ( xval , yval , nu ,

t o l = ( . Machine$double . eps ) ^ ( 0 . 8 5 ) )
}

)
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user system elapsed
81.439 0.048 81.506

system . time (
for ( i in 1 : length ( x ) ) {

val <− x [ i ]
yval <− y [ i ]
incompleteBesselK ( xval , yval , nu)

}
)

user system elapsed
54.361 0.035 54.407

The current function evaluation takes 81.506 seconds with tolerance

(.Machine$double.eps)^(0.85) and 54.407 seconds with tolerance

(.Machine$double.eps)^(0.5).

system . time (
incompleteBesselKV ( x , y , nu ,

t o l = ( . Machine$double . eps ) ^ ( 0 . 8 5 ) )
)

user system elapsed
79.819 0.045 79.879

system . time (
incompleteBesselKV ( x , y , nu ,

t o l = ( . Machine$double . eps ) ^ ( 0 . 5 ) )
)

user system elapsed
52.996 0.023 53.026

The modified function evaluation takes 79.879 seconds with tolerance

(.Machine$double.eps)^(0.85) and 53.026 seconds with tolerance

(.Machine$double.eps)^(0.5). The vectorization slightly improves the performance of func-

tion. We then comparing the current function with vectorized and exponentially scaled function.

system . time (
incompleteBesselKV ( x , y , nu ,

t o l = ( . Machine$double . eps ) ^ ( 0 . 8 5 ) ,
expon . scaled = TRUE)

)
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user system elapsed
68.777 0.036 68.823

system . time (
incompleteBesselKV ( x , y , nu ,

expon . scaled = TRUE)
)

user system elapsed
30.724 0.014 30.743

It is found that the exponential scaling improves the efficiency of the calculation. The exponen-

tial scaled function evaluation takes 68.823 seconds with tolerance (.Machine$double.eps)^(0.85)

and 30.743 seconds with tolerance

(.Machine$double.eps)^(0.5).

As mentioned in 2.3.1 and 2.3.2, the modifications are motivated by the instability of algorithm

when x and ytake extreme values. Therefore, we will compare the robustness and accuracy for

boundary values. The relative percentage error, to assess the performance of our functions, is

calculated by

(2.22)
∣∣∣∣Maple IBF− IBF

Maple IBF

∣∣∣∣∗100%

We first assign x and y extreme values that would cause current published incompleteBesselK

function to fail, i.e.

x y nu MapleIBF
1e−08 1e−06 2 0.4999997
1e−07 1e−06 2 0.4999996
1e−05 1e−08 −10 3.630000e+55
1e−04 1e−08 −10 3.630000e+45
1e−03 1e−08 −10 3.630000e+35
1e−02 1e−08 −10 3.630000e+25
1e−01 1e−08 −10 3.630000e+15
2e+00 1e−08 −10 3.543585e+02

The incompleteBesselK and modified incompleteBesselKV functions give results as fol-

lows:

IBF Error (%) ScaledIBF Error (%) UnscaledIBF Error (%)
NA NA 0.4995116 0.097% 0.4984131 0.32%
NA NA 0.4999997 2e−5% 0.4996338 0.073%
NA NA 3.628800e+55 0.031% 3.628800e+55 0.031%
NA NA 3.628800e+45 0.031% 3.628800e+45 0.031%
NA NA 3.628800e+35 0.031% 3.628800e+35 0.031%
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NA NA 3.628800e+25 0.031% 3.628800e+25 0.031%
NA NA 3.628800e+15 0.031% 3.628800e+15 0.031%
NA NA 3.543585e+02 1.1e−8% 3.543585e+02 1.2e−8%

The results show that the incompleteBesselK function does not converge when either x or y

is small. Our modified algorithm function not only converges but also gives results fairly close to

the reference incomplete Bessel function values. The percentage errors are less than 0.1% for all

scaled function results and almost all unscaled function results. However we have noticed that

the percentage errors for scaled function are almost the same the unscaled for most x and ys.

We then assign x and y values that cause the current published incompleteBesselK function

to converge to an incorrect result.

x y nu MapleIBF
20 20 −10 5.40e−18
20 20 −2 1.10e−18
20 20 −0.5 8.95e−19
20 20 0 8.39e−19
20 20 0.5 7.89e−19
20 20 1 7.44e−19
20 20 2 6.64e−19
10 20 10 2.17e−14
10 20 20 7.71e−15
50 50 −0.5 4.85e−45
50 50 1 4.31e−45
50 50 2 4.00e−45
50 50 10 2.44e−45

The incompleteBesselK and modified incompleteBesselKV function give results as follows:

IBF Error (%) UnscaledIBF Error (%)
−2.655221e−19 104.92% 5.401687e−18 0.031%

1.062089e−19 90.34% 1.099504e−18 0.045%
2.606352e−19 70.88% 8.946629e−19 0.038%
3.034539e−19 63.83% 8.392878e−19 0.034%
3.398683e−19 56.92% 7.890999e−19 0.013%
3.694221e−19 50.35% 7.435078e−19 0.066%
4.084956e−19 38.48% 6.640409e−19 0.006%
8.783273e−15 59.52% 2.167917e−14 0.096%
2.029216e−13 2531.93% 7.713683e−15 0.048%
9.230958e−46 80.97% 4.848076e−45 0.040%
1.403802e−45 67.43% 4.307802e−45 0.051%
1.660748e−45 58.48% 3.998809e−45 0.030%
2.084525e−45 14.57% 2.438327e−45 0.069%
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The modified function appears to be more precise when the incomplete Bessel function values

are small. Although the current version has supposedly converged, the percentage error can be as

high as 2531.93% while the corresponding percentage error for modified function is only 0.048%.

The modified incomplete Bessel function function performance in the GIG distribution CDF

approximation is discussed in Chapter 3.
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3
PROBABILITY FUNCTION AND QUANTILE FUNCTION ESTIMATION

3.1 The Generalized Inverse Gaussian Distribution

As pointed out in Chapter 1 the CDF approximation algorithm, proposed in [102] and imple-

mented in the function pgig, has problems for extreme values of the arguments. These problems

are the primary motivation to improve the current incomplete Bessel function calculation ap-

proach, discussed in Chapter 2. In the extreme tail of the GIG distribution, the current incomplete

Bessel function approach tends to overflow/underflow as either x or y take extremely small values.

Moreover, the incomplete Bessel function calculation approach is an approximation of the GIG

distribution tail probability and can perform badly towards the centre of the distribution. To

naively apply the approach as proposed in [102] can cause problems. To see this, recall the density

function f (x) of the GIG distribution

(3.1) f (x)= 1
Kλ(χ,ψ)

xλ−1e−(χx−1+ψx)/2

which can be re-written as

(3.2) f (x)= (ψ/χ)λ/2/(2
p
χψ )

Kλ(
p
χψ )

xλ−1e−(χx−1+ψx)/2

Therefore the CDF F(x) is

(3.3) F(x)= 1− (ψ/χ)λ/2/(2
p
χψ )

Kλ(
p
χψ )

∫ ∞

x
tλ−1e−(χt−1+ψt)/2

It was shown in [103] that by variable substitution t′ =ψt/2, the CDF can be expressed as

(3.4) F(x)= 1− (ψ/χ)λ/2/(2
p
χψ )

Kλ(
p
χψ )

K−λ
(ψz

2
,
χ

2z

)
,
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which can be approximated as [102]

(3.5) F(x)= 1− (ψ/χ)λ/2/(2
p
χψ )

Kλ(
p
χψ )

G̃(1)
n (

ψz
2

,
χ

2z
,−λ),

where K−λ
(ψz

2 , χ
2z

)
is the incomplete Bessel function with x =ψz/2, y= χ/(2z), and G̃(1)

n is the G̃(1)
n

transformation discussed in Chapter 2. Therefore when the quantiles fall into the tail area, i.e.

z → 0 or z →∞, either x or y of the incomplete Bessel function becomes extremely small.

For instance, let p = 0.3 for the GIG distribution with χ = 0.1, ψ = 0.1 and λ = −0.5. The

corresponding quantile obtained using Maple is therefore q = 0.08290312. The probability given

by the function pgig however is

> pgig (0.08290312 , param = c ( 0 . 1 , 0 .1 , −0.5))
[ 1 ] 1

The pgig function has the format as

pgig ( q , chi = 1 , psi = 1 , lambda = 1 ,
param = c ( chi , psi , lambda ) , lower . t a i l = TRUE,
ib fTo l = . Machine$double . eps ^(0 .85 ) , nmax = 200)

q

The quantiles of the probabilities that are required to be computed.

chi

χ is the shape parameter of the distribution.

psi

ψ is the shape parameter of the distribution.

lambda

λ is the shape parameter of the distribution.

param

Parameter vector taking the form c(chi, psi, lambda).

lower.tail

If TRUE, probabilities are P(X ≤ x), otherwise as P(X > x).

ibfTol

Value of tolerance to be passed to function incompleteBesselK.

nmax

Value of maximum order of the approximating series to be passed to incompleteBesselK.
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As illustrated in Section 2.4.3, the modified incomplete Bessel function calculation approach

proposed in Section 2.3 significantly increases the performance of the algorithm when either x or

y is extremely small. Recalling the discussion in Section 2.3, the incomplete Bessel function can

be approximated as

(3.6) Kν(x, y)= e−2
pxy G̃(1)∗

n (x, y,ν)

where G̃(1)∗
n (x, y,ν)= e2

pxy G̃(1)
n (x, y,ν).

Therefore the tail area of the GIG distribution can be approximated as

(3.7) P(X > x)= (ψ/χ)λ/2/(2
p
χψ )

Kλ(
p
χψ )

e−2
p
ψχ/4 G̃(1)∗

n (
ψz
2

,
χ

2z
,−λ)

However this modification is not sufficient to improve the bad performance when estimating

a probability near the median of the GIG distribution. [98] has proposed a new algorithm using

the G transformation which provides a remedy for the CDF approximation problem of the GIG

distribution. This algorithm starts applying the G transformation on the CDF of GIG distribution

instead of the incomplete Bessel function. The advantages of this algorithm are

• The overflow problem is avoided since the density function f (x) will always have integral

less than 1, i.e. F(x)= ∫ x
0 f (t)dt < 1.

• The underflow problem is not a concern given the algorithm is approximating the tail

probability.

In order to achieve these advantages, the algorithm first identifies the empirical median by

sampling, then decides the respective tails that the required quantiles fall into and at last approx-

imate the CDF in the correct tail. This algorithm is implemented in the function pgigRAccel

which was provided by David Scott.

3.1.1 Examples

[98] showed that the function pgigRAccel performs reasonably well in 875 cases for a range of

parameter values and integration limit x for both upper and lower tails of the GIG distribution.

In this section, we will examine the performance of the function pgigRAccel and compare it to

the pgig function. The pgigRAccel function computes upper/lower probabilities for 11 quantile

values of the reference probabilities p, i.e.

p ∈ {10−12,10−6,10−2,0.1,0.3,0.5,0.8,0.9,1−10−2,1−10−6,1−10−12}

over a more comprehensive range of parameters which contains 1100 sets of values for (χ,ψ,λ),

i.e. 12100 parameter and quantile combinations. For the 1100 sets of parameters, the values of χ

and ψ were chosen from

{0.1,0.2,0.5,1,2,5,10,20,50,100}
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and the value of λ was chosen from

{−2,−1,−0.5,0,0.1,0.2,0.5,1,2,5,10}.

Quantiles calculated by the black-box algorithm implemented in the Runuran package were

used as reference. To assess the performance, the absolute percentage error

(3.8) abs.tol= |Pr(X )RGIG −Pr(X )Reference|×100%

is used.

Of these 12100 cases, when tolerance was set at 10−4, the pgigRAccel function failed to

converge at quantiles for which probabilities are 10−12 and 1−10−12 for only 4 sets of parameters,

i.e. 8 cases.

Table 3.1 shows the maximum absolute percentage errors for each of the 11 quantiles con-

sidered for the remaining 12092 cases where convergence was achieved. The parameter set for

which the maximum was achieved is also shown. The table indicates that the performance of the

method is best in the tails of the distribution. Nonetheless even at the centre of the distribution,

for p = 0.5, the absolute percentage error is less than 1%.

Table 3.1: Maximum absolute percentage error in the CDF using pgigRAccel when tol= 10−4 for

reference probabilities of the GIG distribution

χ ψ λ Probability (p) Quantile (q) Max(abs.tol) (%)

20 0.2 -1 10−12 0.4000092 4.67991×10−9

0.1 0.5 -2 10−6 2.993899×10−3 2.993899×10−3

0.1 0.1 2 0.01 3.019218 7.797682×10−4

0.1 0.1 1 0.1 2.306777 1.479599×10−2

0.1 0.1 1 0.3 7.3732 8.305225×10−2

0.2 1 -2 0.5 5.802001×10−2 0.6446068

0.1 0.1 -1 0.8 0.213302 4.312542×10−2

0.1 0.1 -1 0.9 0.433505 1.4796×10−2

0.1 0.1 -2 0.99 0.331212 7.797694×10−4

0.1 0.1 -2 1−10−6 166.982 1.1262×10−5

0.1 0.1 -2 1−10−12 586.8214 4.552692×10−10

When the tolerance forpgigRAccel was set to 10−6, the function failed to converge for 32

cases which are the combination of 9 quantiles and 29 sets of parameters. Table 3.2 shows the

maximum percentage error for the remaining 12068 cases, for the different quantiles examined.

The pattern of results here is not as clear, with the maximum error occurring for p = 0.1. The

maximum error though does not exceed 0.2%.
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Table 3.2: Maximum absolute percentage error in the CDF using pgigRAccel when tol= 10−6 for

reference probabilities of the GIG distribution

χ ψ λ Probability (p) Quantile (q) Max(abs.tol) (%)

20 0.2 -1 10−12 0.4000092 4.67991×10−9

1 0.5 -2 10−6 2.976499×10−2 7.288361×10−6

0.1 0.2 -2 0.01 7.526397×10−3 0.171875

0.1 0.2 2 0.1 5.366639 2.933638×10−4

0.2 0.1 2 0.3 2.204487 1.232702×10−3

0.1 0.1 -2 0.5 6.047018×10−2 2.407494×10−2

5 5 -1 0.8 1.196581 1.560539×10−3

0.1 0.2 -2 0.9 9.316819×10−2 2.933754×10−4

0.5 0.1 2 0.99 133.0102 6.25×10−2

0.1 0.5 2 1−10−6 668.0242 4.632568×10−6

5 0.5 5 1−10−12 149.9604 4.659051×10−10

The results using pgig on the other hand are not so satisfactory. Although pgig converged

for all sets of parameters when the requested incomplete Bessel function tolerance was set to

10−4, the maximum absolute percentage error, is shown in Table 3.3, can be as large as 100%.

Table 3.3: Maximum absolute percentage error in the CDF using pgig when ibfTol = 10−4 for

reference probabilities of the GIG distribution

χ ψ λ Probability (p) Quantile (q) Max(abs.tol) (%)

0.1 0.1 10 10−12 7.02772405 100

0.1 50 10 10−6 0.05629494 99.9999

50 5 10 0.01 3.25999826 99.88508

50 50 10 0.1 1.01770786 97.07505

100 100 10 0.3 1.04835382 76.9508

100 100 10 0.5 1.10462577 38.39736

100 100 10 0.8 1.20107663 3.884678

100 100 10 0.9 1.25462441 0.8943765

100 100 10 0.99 1.39083186 1.822789×10−2

2 0.2 -2 1−10−6 43.77389765 4.199617×10−7

0.2 20 10 1−10−12 4.83144353 4.501954×10−10

When the tolerance of incomplete Bessel function was set to 10−6, the performance of pgig

decreased for the lower tail area, even though convergence was achieved for all parameter sets.

The maximum percentage error identified was 4.610571×10178% as shown in Table 3.4.
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Table 3.4: Maximum absolute percentage error in the CDF using pgig when ibfTol = 10−6 for

reference probabilities of the GIG distribution

χ ψ λ Probability (p) Quantile (q) Max(abs.tol) (%)

0.5 1 10 10−12 0.7294163 5.563319×10172

0.5 10 10 10−6 0.2814747 4.610571×10178

10 10 10 0.01 1.2293079 100.0956

50 50 10 0.1 1.01770786 97.07505

100 100 10 0.3 1.04835382 76.9508

0.1 0.1 0 0.5 1 50

0.1 0.1 -0.5 0.8 0.846621 20

100 100 10 0.9 1.25462441 0.8943765

100 100 10 0.99 1.39083186 1.822789×10−2

100 100 10 1−10−6 1.760015 1.324515×10−7

0.2 20 10 1−10−12 4.831445 4.501954×10−10

From the comparisons in this section, we can conclude that the new CDF approximation

approach for the GIG distribution provides a significant improvement in performance. In addition,

as pointed out in [38], the Runuran algorithm becomes numerically unstable in the tail area

whereas the algorithm behind the pgigRAccel function performs best in the tail.

3.2 The Generalized Hyperbolic Distribution

As mentioned in Chapter 1, the GHyp CDF and quantile function approximation algorithms

implemented in the pghyp and qghyp functions of the GeneralizedHyperbolic package version

0.2-0 respectively have several problems. These concerns are addressed and some solutions found

in my research. This section illustrates the methodology and test results of the updated pghyp

and qghyp functions.

Before the discussion of the improvements from my research, it is worthwhile to describe the

pghyp and qghyp functions of the GeneralizedHyperbolic package version 0.2-0.

Let x denote values for which the CDF F(x) is to be evaluated and f (x) denote the probability

density function. Then the CDF F(x) approximation algorithm is:

1. Break f (x) into 8 regions where the cut-off points are xTiny, xSmall, xLow, xMode, xHigh, xLarge

and xHuge. These cut-off points are found as follows:

a) xTiny and xHuge are calculated by solving f (xTiny)= f (xHuge)= 10−10.

b) xSmall and xLarge are calculated by solving f (xSmall)= f (xLarge)= 10−6.

c) xmode is the distribution mode found by maximizing log f (x).
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d) xLow is determined by the derivative of f (xLow), f ′(xLow)= c∗max[ f ′(xMode), f ′(xSmall)],

where c is a scaling factor with default value 0.3.

e) xHigh is determined by the derivative of f (xHigh), f ′(xHigh)= c∗max[ f ′(xLarge), f ′(xMode)],

where c is a scaling factor with default value 0.3.

2. F(x ≤ xTiny)= 0 and F(x ≥ xHuge)= 1.

3. Each region is numerically integrated using the integrate function to obtain the CDF.

The pghyp function has the format

pghyp ( q , mu = 0 , delta = 1 , alpha = 1 , beta = 0 , lambda = 1 ,
param = c (mu, delta , alpha , beta , lambda ) ,
small = 10^(−6) , t iny = 10^(−10) ,
deriv = 0.3 , subdivis ions = 100 , accuracy = FALSE, . . . )

q

The quantiles of the probabilities that are required to be computed.

mu

µ, the location parameter of the distribution.

delta

δ, the scale parameter of the distribution.

alpha

α, the tail parameter of the distribution.

beta

β, the skewness parameter of the distribution.

lambda

λ, the shape parameter of the distribution.

param

Parameter vector taking the form c(mu, delta, alpha, beta, lambda).

small

Size of a small difference between the density function and zero or one i.e. f (xSmall) and

f (xLarge).

tiny

Size of a tiny difference between the density function and zero or one i.e. f (xSmall) and

f (xLarge).
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deriv

Value of c ∈ [0,1]. It determines the point where the derivative becomes substantial, com-

pared to its maximum value.

accuracy

Uses the accuracy calculated by the integrate function to determine the accuracy of the

distribution function calculation.

subdivisions

The maximum number of subdivisions used to integrate the density returning the CDF.

. . .

Passes arguments to the one-dimensional root searching function uniroot.

The GHyp distribution quantile function approximation, implemented in qghyp, adopts a

similar approach to the CDF approximation algorithm in breaking the real line into eight regions.

Denote the probabilities for which quantiles are required by p and the quantile function by

F−1(x). The algorithm is

1. Break the real line into 8 regions where the cut-off points are xTiny, xSmall, xLow, xMode,

xHigh, xLarge and xHuge as for the CDF.

2. Sort the p values into appropriates region [0,F(xTiny)], (F(xTiny),F(xSmall)], (F(xSmall),F(xLow)],

(F(xLow),F(xMode)], (F(xMode),F(xHigh)], (F(xHigh),F(xLarge)], (F(xLarge),F(xHuge)], [F(xHuge),1]

3. Set F−1(p)=−∞ if p ∈ [0,F(xTiny)]

4. Set F−1(p)=∞ if p ∈ [F(xHuge),1]

5. In the 6 inner regions the splinefun function is used to perform cubic spline interpolation

of values of F(x) in each region. The quantiles are then found by solving the equation

splinefun(x)− p = 0 using the one dimensional root searching function uniroot.

The qghyp function has the format

qghyp ( p , mu = 0 , delta = 1 , alpha = 1 , beta = 0 , lambda = 1 ,
param = c (mu, delta , alpha , beta , lambda ) ,
small = 10^(−6) , t iny = 10^(−10) ,
deriv = 0.3 , nInterpol = 100 , subdivis ions = 100 , . . . )

p

The probabilities of the quantiles that are required to be computed.

mu

µ, the location parameter of the distribution.
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delta

δ, the scale parameter of the distribution.

alpha

α, the tail parameter of the distribution.

beta

β, the skewness parameter of the distribution.

lambda

λ, the shape parameter of the distribution.

param

Parameter vector taking the form c(mu, delta, alpha, beta, lambda).

small

Size of a small difference between the density function and zero or one i.e. f (xSmall) and

f (xLarge).

tiny

Size of a tiny difference between the density function and zero or one i.e. f (xSmall) and

f (xLarge).

deriv

Value of c ∈ [0,1]. It determines the point where the derivative becomes substantial, com-

pared to its maximum value.

nInterpol

The number of points used for cubic spline interpolation.

subdivisions

The maximum number of subdivisions used to integrate the density returning the CDF.

. . .

Passes arguments to the one-dimensional root searching function uniroot.

The CDF and quantile approximation approaches described above break the real line into

an unnecessarily large number of intervals without achieving great accuracy. For instance, let

p = 10−15, so that we should have F(F−1(p))= 10−15. However the result of using the pghyp and

qghyp functions is

> qghyp(10^{−15})
[ 1 ] −22.81846
> pghyp ( qghyp (10^{ −15}))
[ 1 ] 0
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> dghyp ( qghyp (10^{ −15}))
[ 1 ] 9.999973e−11

When f (F−1(p))< 10−10, pghyp(F−1(p)) is set equal to 0 without calculation. In addition, the

qghyp function approximation results are not reliable either:

> qghyp(10^{−16})
[ 1 ] −22.81846
> qghyp(10^{−17})
[ 1 ] −22.81846.

3.2.1 Methodology

3.2.1.1 The CDF Approximation Approach

The discussion of the approaches used for the approximate GHyp distribution CDF and quantile

functions is mainly concentrated on the quantile function. However the discussion of the CDF

approximation approach is still necessary as the quantile function approximation will not be

stable without a well-behaved CDF approximation.

Let X be a GHyp distributed random variate with density function f (x). The CDF F(x)

approximation approach is as follows.

1. Calculate the mode of the GHyp distribution xMode and divide the f (x) into 2 parts at xMode.

2. If x ≤ xMode, F(x) is numerically integrated over [−∞, x] using the integrate function.

3. If x > xMode, F(x) is numerically integrated over [x,∞] using the integrate function.

The improved pghyp function has the format

pghyp ( q , mu = 0 , delta = 1 , alpha = 1 , beta = 0 , lambda = 1 ,
param = c (mu, delta , alpha , beta , lambda ) ,
lower . t a i l = TRUE, subdivis ions = 100 ,
intTol = . Machine$double . eps ^0.25 , valueOnly = TRUE, . . . )

q

The quantiles of the probabilities required to be computed.

mu

µ, the location parameter of the distribution.

delta

δ, the scale parameter of the distribution.
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alpha

α, the tail parameter of the distribution.

beta

β, the skewness parameter of the distribution.

lambda

λ, the shape parameter of the distribution.

param

Parameter vector taking the form c(mu, delta, alpha, beta, lambda).

lower.tail

If TRUE, F(X ≤ x) otherwise F(X > x).

subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the CDF calculation.

intTol

The requested relative accuracy of integrate function.

valueOnly

If valueOnly = TRUE calls to pghyp only return the value obtained for the integral. If

valueOnly = FALSE an estimate of the accuracy of the numerical integration is also

returned.

. . .

Passes arguments to the one dimensional root searching function uniroot.

3.2.1.2 The Quantile Function Approximation Approach

Since the CDF of the GHyp distribution cannot be specified explicitly, efficient and accurate

approximatiion of the GHyp quantile function are issues for the qghyp function. In fact, there

are numerous situations where only efficiency or accuracy is required. For instance, the Q-Q

plot requires that the qghyp function efficiently generates a large number of quantiles but since

its purpose is for plotting only, it is not required to be extremely accurate. For this reason, the

improved GHyp distribution quantile function approximation consists of two approaches, the

Integrate approach and the Spline approach, for different situations.

The Integrate approach is accurate but time consuming with a large number of quantiles. Let

p denote the probabilities for which quantiles are required, F(x) denote the CDF, f (x) the density

function, and F−1(x) the quantile function. The algorithm is then as follows:

1. Compute the GHyp distribution mode xMode.
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2. Determine the searching interval for the one-dimensional root search function uniroot.

This is the time consuming part, as the pghyp function needs to be applied to each candidate

value i.e. numerical integration is carried out at each step.

a) If p ≤ F(xMode), the interval is [F(xLow),F(xMode)]. The lower bound xLow is obtained

by iteratively subtracting
p

Var(X ) from xMode until F(xLow)< p.

b) If p > F(xMode), the interval is [F(xMode),F(xHigh)]. The upper bound xHigh is obtained

by iteratively adding
p

Var(X ) from xMode until F(xHigh)> p.

3. Apply the uniroot function over the interval to search for the roots of FSpline(x)− p = 0 for

the different values of p, i.e. the required quantiles.

An alternative method to compute the GHyp quantile function is the Spline approach which

uses the splinefun function to interpolate the major part of the GHyp distribution. However one

feature of the GHyp distribution is the semi-heavy tails where the density is extremely sparse.

Within the extreme tails, the quantiles are always approximated by the Integrate approach as the

splinefun function does not work well when the distribution is very flat. The Spline approach

may not be as accurate as the Integrate approach, however the advantage of this approach is

the efficiency. Again, let p be the probabilities for which quantiles are required. The algorithm is

then as follows:

1. Compute the cut-off bounds xLow, xHigh for the splinefun function. Any quantiles falling

outside of the range are approximated by the Integrate approach. The criteria for xLow and

xHigh are that xLow (xHigh) is the largest (smallest) x for which f (xLow) ≤ 10−5 ( f (xHigh ≤
10−5).

2. Divide the interval [xLow, xHigh] into a predetermined number of sub-intervals by xi, i =
1, . . . ,n where x1 = xLow and xn = xHigh.

3. Compute the F(xi) using the pghyp function.

4. Perform cubic spline interpolation of the points (xi,F(xi)) using the splinefun function.

5. Apply the uniroot function over the interval to search for the roots of FSpline(x)− p = 0 for

the different values of p, i.e. the required quantiles.

The improved qghyp function has the format

qghyp ( p , mu = 0 , delta = 1 , alpha = 1 , beta = 0 , lambda = 1 ,
param = c (mu, delta , alpha , beta , lambda ) ,
lower . t a i l = TRUE, method = c ( “spl ine” ,“ integrate” ) ,
nInterpol = 501 , uniTol = . Machine$double . eps ^0.25 ,
subdivis ions = 100 , intTol = uniTol , . . . )
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p

The probabilities of the quantiles required to be computed.

mu

µ, the location parameter of the distribution.

delta

δ, the scale parameter of the distribution.

alpha

α, the tail parameter of the distribution.

beta

β, the skewness parameter of the distribution.

lambda

λ, the shape parameter of the distribution.

param

Parameter vector taking the form c(mu, delta, alpha, beta, lambda).

lower.tail

If TRUE, F(X ≤ x) otherwise F(X > x).

method

The character string to specify the quantile approximation approach.

nInterpol

Number of points used for cubic spline interpolation of the CDF.

uniTol

The convergence tolerance of uniroot function.

subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the CDF calculation.

intTol

The requested relative accuracy of integrate function.

. . .

Passes arguments to the one-dimensional root searching function uniroot.
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The improved CDF and quantile approximation approaches, implemented in the modified

pghyp and qghyp functions, can be shown to provide more accurate results. Recall the example

which illustrates the problem of existing approaches earlier in this section. The result of the

improved pghyp and qghyp functions is

> qghyp(10^{−15})
[ 1 ] −34.33912
> pghyp ( qghyp (10^{ −15}))
[ 1 ] 9.999916e−16
> dghyp ( qghyp (10^{ −15}))
[ 1 ] 9.996018e−16

> qghyp(10^{−16})
[ 1 ] −36.64257
> pghyp ( qghyp (10^{ −16}))
[ 1 ] 9.999985e−17

> qghyp(10^{−17})
[ 1 ] −38.94592
> pghyp ( qghyp (10^{ −17}))
[ 1 ] 9.999971e−18

The improved pghyp function is able to estimate the probabilities in the extreme tails of the

distribution, which were set to 0 or 1 in the previous approach. Moreover the improved quantile

approximation approach estimates the quantiles within the extreme tails fairly accurately. In the

next section, more extensive test results are presented to illustrate the accuracy and efficiency of

the improved approximation approach.

3.2.2 Result

3.2.2.1 Accuracy Tests

The basic idea of testing the accuracy is to compare the difference between given p and pghyp(qghyp(p)),

and the difference between given q and qghyp(pghyp(q)).

The test is designed to be as comprehensive as possible. Thus the comparisons use several sets

of distribution parameters and different values of tolerance of the integrate function. Moreover,

the given vector p comprises the probabilities {0,0.001,0.025,0.3,0.5,0.7,0.975,0.999,1} and the

given vector q comprises the quantiles {1,−∞,0,−1,+∞, qle, que, qmode}, where qle and que are

randomly generated extreme values in the lower tail and upper tail respectively.

For each given p or q, the test returns the maximum difference from testing the distribution

parameters sets under each tolerance. From Table 3.5, there is not a lot of difference between

the Spline method at default tolerance. However the accuracy gap increases as the tolerance for

integration increases. At 10−12 tolerance, the integration method can be as accurate as 10−16. On
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the other hand, the spline method can only be as accurate as 10−11. Overall, the accuracy of both

methods is satisfactory.

Table 3.5: Maximum Difference between Actual p (or q) and Approximate p (or q)

Default Tol 10−8 Tol 10−10 tol 10−12 Tol

Spline Integrate Spline Integrate Spline Integrate Spline Integrate

p = 0 0 0 0 0 0 0 0 0

p= 0.001 7.98×10−8 8.77×10−8 8.40×10−9 8.49×10−12 8.40×10−19 6.94×10−14 8.40×10−9 9.81×10−16

p= 0.025 3.02×10−6 2.14×10−6 2.89×10−8 1.27×10−10 2.89×10−8 1.16×10−12 2.89×10−8 1.25×10−14

p= 0.3 1.99×10−5 1.15×10−5 5.05×10−7 1.64×10−9 5.05×10−7 1.40×10−11 5.05×10−7 1.00×10−13

p= 0.5 1.47×10−5 1.26×10−5 1.34×10−7 1.11×10−9 1.35×10−7 8.20×10−12 1.35×10−7 9.81×10−14

p= 0.7 1.73×10−5 1.15×10−5 3.13×10−7 1.07×10−9 3.13×10−7 1.40×10−11 3.13×10−7 1.00×10−13

p= 0.975 1.37×10−6 1.44×10−6 2.45×10−9 8.29×10−11 2.45×10−9 5.40×10−13 2.45×10−9 1.05×10−14

p= 0.999 5.31×10−8 5.40×10−8 4.09×10−9 1.77×10−12 5.35×10−11 1.52×10−14 5.35×10−11 3.33×10−16

p= 1 0 0 0 0 0 0 0 0

q=−∞ 0 0 0 0 0 0 0 0

q=−1 3.05×10−5 3.02×10−5 2.14×10−6 2.45×10−9 2.14×10−6 2.35×10−11 2.14×10−6 2.44×10−13

q= 0 2.83×10−5 3.02×10−5 7.40×10−7 2.33×10−9 7.40×10−7 2.42×10−11 7.40×10−7 2.34×10−13

q= 1 2.94×10−5 3.05×10−5 7.06×10−7 2.49×10−9 7.06×10−7 2.39×10−11 7.06×10−7 2.39×10−13

q=+∞ 0 0 0 0 0 0 0 0

q= qle 2.98×10−5 3.04×10−5 1.39×10−6 2.49×10−9 1.39×10−6 2.49×10−11 1.39×10−6 1.79×10−13

q= que 3.01×10−5 3.04×10−5 8.23×10−8 2.40×10−9 8.39×10−8 3.35×10−10 8.39×10−8 3.11×10−10

q= qmode 2.83×10−5 0 6.3×10−7 0 6.3×10−7 0 6.3×10−7 0

3.2.2.2 Efficiency Tests

As mentioned in Section 3.2.1, efficiency is the major concern which promoted the use of the

spline function in the first place. Therefore the system.time function is used in the test program

to time how long it takes to evaluate the qghyp function with different quantile sizes.

Based on the algorithms, the Integrate method is expected to be more efficient for very small

quantile sizes since the Spline method simulates the probability function i.e. performs numeric

integration at least 501 times. However, once the probability function is approximated, the

Spline method becomes very efficient. As a matter of fact, it is more efficient than the Integrate

method for larger quantile sizes. The test results in Table 3.6 are as expected. The Spline method

apparently makes significant improvement in terms of efficiency when the sample size ≥ 500. In

addition, the existing code for the qghyp function is tested for comparison. Table 3.6 shows that

the existing method is slower than both the Spline and Integrate methods when the quantile size

is small. Although its evaluation becomes more rapid than the Integrate method as the number

of quantiles increases, it is still significantly slower than Spline method. The modification of the

qghyp function therefore is an improvement.
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Table 3.6: Comparison of Time Required to Calculate Various Numbers of Quantiles (in seconds)

Quantile Size Existing Method Spline Method Integrate Method

10 2.37 0.28 0.21

50 2.51 0.29 0.86

100 2.59 0.33 1.71

500 2.76 0.67 8.14

1000 3.04 1.11 15.94

3.3 The Skew Hyperbolic Student-t Distribution

The approximation of the CDF and quantile function of the skew hyperbolic Student-t distribution

has always been challenging due to the complexity of the density function and the special

behaviour of its tails. The second, third, and fourth central moments of the distribution, described

in [97], can be expressed as

(3.9) M̄2 = 2δ4β2

(ν−2)2(ν−4)
+ δ2

ν−2
when ν> 4,

(3.10) M̄3 = 16δ6β3

(ν−2)2(ν−4)(ν−6)
+ 6δ4β

(ν−2)2(ν−4)
when ν> 6,

(3.11) M̄4 = 12δ8β4(ν+10)
(ν−2)(ν−4)(ν−6)(ν−8)

+ 12δ6β2(ν+2)
(ν−2)3(ν−4)(ν−6)

+ 3δ4

(δ−2)(δ−4)
when ν> 8.

Therefore when ν≤ 4, the variance, skewness and kurtosis are undefined or infinite. However

it is worthwhile to investigate this distribution as those properties are useful for finance asset

returns, which have both heavy and semi-heavy tails, and often feature skewness.

As mentioned in Chapter 1, the current approaches to approximate the CDF and the quantile

function do not perform well when ν is small. A brief description of these approaches and functions

is helpful at this point.

The CDF and the quantile function of the skew hyperbolic Student-t distribution are approx-

imated by the same approaches as the GHyp distribution described in Section 3.2.1. The only

difference is the step-size when determining the search interval for the one-dimensional root

search function uniroot in the Integrate approach for quantile function approximation. Recall

that for the GHyp distribution quantile function approximation, the search interval is determined

by

1. If p ≤ F(xMode), the interval is [F(xLow),F(xMode)]. The lower bound xLow is obtained by

iteratively subtracting
p

Var(X ) from xMode until F(xLow)< p.
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2. If p > F(xMode), the interval is [F(xMode),F(xHigh)]. The upper bound xHigh is obtained by

iteratively adding
p

Var(X ) to xMode until F(xHigh)> p.

In this case the step-size is
p

Var(X ) . For the skew hyperbolic Student-t distribution, the step-size

is determined as follows:

δ, when in the exponential tail

δ|β|(νδ)−2/ν, when in the polynomial tail

eδ/ν, when β= 0

The pskewhyp function which implements the CDF function has the format

pskewhyp ( q , mu = 0 , delta = 1 , beta = 1 , nu = 1 ,
param = c (mu, delta , beta , nu ) , log . p = FALSE,
lower . t a i l = TRUE, subdivis ions = 100 ,
intTol = . Machine$double . eps ^0.25 ,
valueOnly = TRUE, . . . )

The arguments are

q

The quantiles of the probabilities required to be computed.

mu

The location parameter µ, of the distribution.

delta

The scale parameter δ, of the distribution.

beta

The skewness parameter β, of the distribution.

nu

The shape parameter ν, of the distribution.

param

The parameter vector taking the form c(mu, delta, alpha, beta, lambda).

log.p

If TRUE, the log probability is calculated

lower.tail

If TRUE, F(X ≤ x), otherwise F(X > x).
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subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the CDF calculation.

intTol

The requested relative accuracy of integrate function.

valueOnly

If valueOnly = TRUE calls to pghyp only return the value obtained for the integral. If

valueOnly = FALSE an estimate of the accuracy of the numerical integration is also

returned.

. . .

Passes arguments to the one-dimensional root searching function uniroot.

The qskewhyp function which implements the quantile function has the format

qskewhyp ( p , mu = 0 , delta = 1 , beta = 1 , nu = 1 ,
param = c (mu, delta , beta , nu ) ,
lower . t a i l = TRUE, log . p = FALSE,
method = c ( “spl ine” ,“ integrate” ) ,
nInterpol = 501 , uniTol = . Machine$double . eps ^0.25 ,
subdivis ions = 100 , intTol = uniTol , . . . )

The arguments are

p

The probabilities of the quantiles required to be computed.

mu

µ, the location parameter of the distribution.

delta

δ, the scale parameter of the distribution.

beta

β, the skewness parameter of the distribution.

nu

ν, the shape parameter of the distribution.

param

Parameter vector taking the form c(mu, delta, alpha, beta, lambda).

lower.tail

If TRUE, F(X ≤ x) otherwise F(X > x).
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log.p

If TRUE, p are treated as log(p).

method

The character string to specify the quantile approximation approach.

nInterpol

Number of points used for cubic spline interpolation of the CDF.

uniTol

The convergence tolerance of the uniroot function.

subdivisions

The maximum number of subdivisions used to integrate the density and determine the

accuracy of the CDF calculation.

intTol

The requested relative accuracy of integrate function.

. . .

Passes arguments to the one-dimensional root searching function uniroot.

Below is an example to illustrate the performance of these two functions when ν is small.

Recall the tail behavior from ??. When β> 0, the right hand tail (as x →∞) is the polynomially

decaying tail which is the heavy tail. However with ν small, the quantile function approximation

approach fails even for p = 0.9:

> qskewhyp ( 0 . 9 , param = c (0 , 1 , 2 , 0 . 5 ) )
Error in integrate ( dskewhypInt , q [ i ] , Inf ,

subdivis ions = subdivisions , :
the integra l i s probably divergent

As mentioned in Chapter 1, there is an alternative approach the so-called black-box approach,

proposed in [38], implemented in the Runuran package. Although this approach has the ability

to provide a reliable approximation result, as pointed out in Chapter 4, it requires rather

complicated machinery to at least store the fairly large table. Moreover, the approximation

procedure of this approach is relatively complex, i.e. prior to evaluation of the approximate CDF,

the UNU.RAN object which is the critical part of the algorithm is required to be created. Since

the black-box approach was primarily developed as a universal random number generater, the

algorithm and the functions which implement the algorithm are reviewed in detail in Chapter 4.

In this section, we will only introduce one function which evaluates the approximate CDF of the

UNU.RAN object for a continuous or discrete distribution. The function description is as follows.

up ( obj , x )
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The arguments are

obj

The UNU.RAN object for a continuous or discrete distribution.

x

The quantiles of the probabilities required to be computed.

In this section, we propose a new approach which transforms the density function by the split

t transformation, then integrates the transformed integrand numerically by the Gaussian quadra-

ture with Richardson extrapolation or the integrate function. This approach is straightforward,

relatively stable, and addresses some of the previous concerns.

3.3.1 The Split-t Transformation

The split-t transformation technique used in our approach was proposed by A. Genz and R. E.

Kass for integrands that have a dominant peak ([49]). The integration over an infinite interval is

transformed to a finite interval, and should be easier to compute. In this section, this technique

is modified to consider only one side of the distribution. This is because the skew hyperbolic

distribution possesses the property that the two sides of the distribution curve can be swapped

around by manipulating the β and x values. To prove this, consider x in the lower tail, i.e. x <µ.

Let x̂ = 2µ− x and β̂ = −β. Then x and x̂ are symmetrical around µ. Let C be the normalizing

constant in the density function, that is,

(3.12) C = 2(1−ν)/2δν|β̂|(ν+1)/2

γ(ν/2)
p
π

.

The density function is

f (x̂)= C
eβ̂(x̂−µ)K(ν+1)/2(

√
β̂2(δ2 + (x̂−µ)2) )

(
√
δ2 + (x̂−µ)2 )(ν+1)/2

= C
e−β(2µ−x−µ)K(ν+1)/2(

√
(−β)2(δ2 + (2µ− x−µ)2) )

(
√
δ2 + (2µ− x−µ)2 )(ν+1)/2

= C
e−β(µ−x)K(ν+1)/2(

√
(−β)2(δ2 + (µ− x)2) )

(
√
δ2 + (µ− x)2 )(ν+1)/2

= C
eβ(x−µ)K(ν+1)/2(

√
(β)2(δ2 + (x−µ)2) )

(
√
δ2 + (x−µ)2 )(ν+1)/2

= f (x)(3.13)

Therefore we will only implement the transformation for positive x. The algorithm is set out

as follows. Consider the skew hyperbolic distribution CDF of interest

(3.14) F(x)=
∫ x

−∞
f (t)dt,
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where f (t) is the density function as defined as f (t;µ,δ,β,ν) given by

(3.15) f (t)=
2(1−ν)/2δν|β|(ν+1)/2eβ(t−µ)K(ν+1)/2

(√
β2[δ2 + (t−µ)2]

)
γ(ν/2)

p
π

[√
δ2 + (t−µ)2

](ν+1)/2

Adjust t with location parameter µ and scale parameter δ as

t∗ = t−µ
δ

β∗ =βδ.(3.16)

The probability density function f (t) is therefore simplified as f ∗(t∗) by considering the location-

and scale-invariant parameters ν, β∗. The density function of f ∗(t∗;0,1,β∗,ν) is therefore

(3.17) f ∗(t∗)=
|β∗|(ν+1)/2eβ

∗ t∗K(ν+1)/2

(√
(β∗)2[1+ (t∗)2]

)
γ(ν/2)

p
π

[√
1+ (t∗)2

](ν+1)/2

The CDF can then be written as

(3.18) F(x)=
∫ (x−µ)/δ

−∞
f ∗(t∗)dt∗.

[49] proposed that f ∗(t∗) can be modelled by the scaled Student-t distribution density function

g(t∗) to take account of tail behavior, i.e.

(3.19) g(t∗)= K
[
1+ (t∗)2

ν̂δ̂2

]−(ν̂+1)/2

where K is the normalizing constant, ν̂> 0 is the degree of freedom of the Student-t distribution

and δ̂ is the scale parameter. Let G(t∗) be the CDF of the δ̂ scaled Student-t distribution with

degrees of freedom ν̂. Then the CDF of the skew hyperbolic distribution can be derived as

(3.20) F(x)= δ̂
∫ z0

0

f ∗(δ̂G−1(t∗))
g(G−1(t∗))

dt∗

where z0 =G
(

(x−µ)/δ
δ̂

)
. The determination of the values for δ̂ and ν̂ based on several evaluations

of g(t∗) is a nonlinear approximation problem that can be solved using a variety of methods. A.

Genz and R. E. Kass in [49] propose examining the value of f (t∗) at several points t∗ then fitting

values δ̂ and ν̂. The value of δ̂ is approximated by solving

(3.21) log

(
f ∗(αδ̂)
f ∗(0)

)
=−1.25

In practice, since we are only interested in the integral of one side, this is equivalent to minimizing

(3.22) |log( f ∗(αδ̂))− log( f ∗(0))+1.25|.
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The value of α is determined in [49] to be
p

2.5 . To see this, recall that f ∗(t∗) is proposed to

be modeled by g(t∗), thus log
(
f ∗(αδ̂)/ f ∗(0)

)
can be modeled by

(3.23) log

(
g(αδ̂)
g(0)

)
.

Substituting equation (3.19) into equation (3.23), we obtain

log

[
K

(
1+ (αδ̂)2

ν̂δ̂2

)−(ν̂+1)/2]
− log

[
K

(
1+ (0)2

ν̂δ̂2

)−(ν̂+1)/2]

= log(1+ (αδ̂)2

ν̂δ̂2
)−(ν̂+1)/2

=− (ν̂+1)
2

log(1+ α2

ν̂
)=−1.25.(3.24)

[49] pointed out that equation (3.24) when evaluated at y=p
2.5 δ, i.e. α=p

2.5 is

(3.25) − (ν̂+1)log(1+2.5/ν̂)=−1.25,

has less than 5% relative error for all ν̂> 0.6. Therefore a good value of δ̂ can be approximated

irrespective of ν̂ with α=p
2.5 .

At this stage, the value of δ̂ is claimed be able to enable g(t∗) to provide a good approximation

to f ∗(t∗) at t∗ =p
2.5 δ̂ for all ν̂> 0.6 and at t∗ = 0. The determination of the value of ν̂ enables

g(t∗) to provide a good approximation at other t∗ values. Likewise, the value of ν̂ is determined

by solving

log

(
f ∗(δ̂)
f ∗(0)

)
= log

(
g(δ̂)
g(0)

)

=−(ν̂+1)
log(1+1/ν̂)

2
,(3.26)

where δ̂ was found from equation (3.22). In practice, solution of equation (3.26) is accomplished

by minimizing

(3.27)
∣∣∣log

(
f ∗(δ̂)
f ∗(0)

)
− (ν̂+1)

log(1+1/ν̂)
2

∣∣∣
The approximation of the value of δ̂ and ν̂ completes the transformation of the skew hyperbolic

Student-t distribution density function.

This approach is implemented in the pskewhyp function which is given in the Appendix.

3.3.2 Examples

In this section, we will illustrate the approximation result of the proposed approach by examining

the CDF tail plots. Then the proposed approach is compared with the black-box approach
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mentioned in Section 1.1.3. As in described in Section 3.2, the skew hyperbolic distribution has 4

parameters where β is the skewness parameter and ν is the scale parameter. When β= 0, the

distribution is symmetric and when |β| increases, the skewness of the distribution increases.

When ν→ 0, the distribution tends to have one extremely heavy tail. Those are the cases when

the CDF approximation becomes extremely challenging. In the examples, the parameters δ= 1

and µ= 0 since these two parameters do not have an impact on the shape of the tails.

To illustrate the approach, we start with a CDF tail plot of a symmetric skew hyperbolic

Student-t distribution when ν= 2,5,10. The shape of the tails in Figure 3.1 are consistent with

expectation, i.e. two exponential decaying tails when β= 0, indicating that the approach works

well when the distribution of interest is symmetric.
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Figure 3.1: The tails of symmetric skew hyperbolic Student-t distribution CDF with different ν

values

As the approach satisfactorily approximates a symmetric CDF, we then demonstrate the

approach using some parameters which produce an extremely skewed distribution, β= 5 and

ν= 1 for instance. With these parameters the previous approach fails, even when F(x)= 0.9. We

first use the CDF tail plot to examine the performance.
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Figure 3.2: The tails of a non-symmetric skew hyperbolic Student-t distribution CDF with β=−2

and ν= 0.5
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Figure 3.3: The tails of a non-symmetric skew hyperbolic Student-t distribution CDF with β= 2

and ν= 0.5
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Figure 3.4: The tails of non-symmetric skew hyperbolic Student-t distribution CDF with β= 5

and ν= 1

Figures 3.2, 3.3 and 3.4 shows that the approximated tails are consistent with expectation, i.e.

exponential left tail and polynomial right tail when β> 0 or polynomial left tail and exponential

right tail when β< 0 , indicating that the approach works well when the distribution of interest

is extremely skewed.

After examining the performance of the proposed approach, it is then compared with the

black-box approach. We first use the rskewhyp function to generate 10000 random observations

from the skew hyperbolic Student-t distribution with µ= 0, δ= 1, β=−5, ν= 1.

n <− 10000
param <− c (0 , 1 , −5, 1)
x <− rskewhyp (n , param = param)

Then we approximate the CDF F(x) using the proposed approach and the black-box approach

respectively. The function pinv.new creates the UNU.RAN object as mentioned in Section 3.3.1.

pSplitT <− pskewhypGK( x , param = param , method = “integrate” )
gen <− pinv .new( pdf = skewhyppdf , lb = −Inf , ub = Inf )
pRunuran <− up ( gen , x )

The absolute difference is calculated as

(3.28) |Pr(X )Runuran −Pr(X )SplitT|
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and the absolute ratio is calculated as

(3.29)
∣∣∣∣Pr(X )Runuran

Pr(X )SplitT

∣∣∣∣

Table 3.7: The absolute difference between the proposed approach and the black-box approach

approximation of the skew hyperbolic Student-t distribution CDF when β=−5, ν= 1

Min. 1st Quantile Median Mean 3rd Quantile Max.

Abs. Diff. 0.000 2.7035×10−8 2.384×10−5 1.438×10−5 3.140×10−5 6.736×10−5

Abs. Ratio 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3.7 shows the summary statistics of absolute differences and the ratios of the probabili-

ties calculated by these two approaches. The absolute differences of the two approaches are fairly

small and the ratios are quite close to 1. It appears the split-t approach has improved the CDF

approximation for extreme parameter values.

After the comparison under the extreme parameter but not-so-extreme probabilities, we

will demonstrate the approach with more extreme probabilities i.e. Pr(X ) ≤ 0.1 when β < 0

and Pr(X ) ≥ 0.9 when β > 0, as the current approach performs poorly in this polynomial tail

area. We still use some parameters which produce skewed distributions, namely ν = (0.5,1)

and β= (−2,2,5). The quantiles used to approximate the CDF are calculated by the black-box

approach. Sample code illustrates the procedure for obtaining the quantiles.

p <− c ( 0 . 9 , 0.99 , 0.999 , 0 .1 , 0.01 , 0.001)
gen <− pinv .new( pdf = skewhyppdf , lb = −Inf , ub = Inf )
xRunuran <− uq ( gen , p )

We usse the absolute percentage error to measure the accuracy of the approach, calculated as

(3.30) 100×
∣∣∣Pr(X )ref −Pr(X )new

Pr(X )ref

∣∣∣
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Table 3.8: The absolute percentage error between the proposed approach and the black-box

approximation of the skew hyperbolic Student-t distribution CDF

β ν Pr(X )ref XRunuran Pr(X )SplitT Absolute Percentage Error (%)

2 0.5 0.9 14814.74 0.900000055 6.10×10−6

2 0.5 0.99 1.481548×108 0.99 5.13×10−10

-2 0.5 0.01 −1.481548×108 0.01 5.02×10−8

-2 0.5 0.1 −1.481474×104 0.09999995 4.97×10−5

5 1 0.99 3.182973×104 0.9904864 3.25×10−6

5 1 0.999 3.183097×106 0.9989999998 1.64×10−8

5 1 0.9999 3.183099×108 0.9999048 4.77×10−4

-5 1 0.001 −3183097.25 0.001 1.08×10−5

-5 1 0.01 3.1829.37 0.00999967 3.32×10−4

The absolute percentage errors in Table 3.8 are fairly small. The largest percentage error is

only 3.32×10−4% and the tail can be precisely estimated as far as x = 108. The result indicates

that this approach is fairly accurate and robust in extreme tail areas, which is a significant

improvement on the current approach.
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4
RANDOM NUMBER GENERATION OF GENERALIZED HYPERBOLIC

AND HYPERBOLIC DISTRIBUTION

The generation of pseudo-random variates which are distributed in accordance with a given

continuous distribution is critical for investigating any continuous distribution including the

GHyp distribution. In this chapter three major general methods for generation of univariate

continuous distribution random variates proposed in the literature are discussed, namely,

• Inversion Sampling

• Envelope Rejection Sampling

• Slice Sampling.

Inversion sampling is a basic and simple method for generating random variates from a given

distribution. Consider a distribution with strictly monotone CDF F(x). If

(4.1) X = F−1(U)= inf{x : F(x)≥U , 0< u < 1}

where U is on (0,1) and F−1(x) is the quantile function, then X is an observation from the

distribution given by the CDF F(x).

This would appear to solve the problem in general, however it is often difficult to calculate

the quantile function because the CDF either is not invertible or does not possesses a closed form.

Hence development of other methods is necessary.

As mentioned in Chapter 1, one of the attractions of the UNU.RAN project (discussed in a later

section) is to provide universal non-uniform random number generators using the numerical

inversion approach. Although the generators perform well, the approach does require rather

complicated machinery including creation and storage of a fairly large table. Therefore the search

for simple and reliable stand-alone algorithms remains important.
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The rejection sampling or so called acceptance-rejection algorithm is a Monte Carlo method

which relies on repeated sampling. Let f (x) be the density function of a continuous distribution

for which the CDF F(x) is difficult to invert. Assume f (x) is bounded and non-zero on a finite

interval [α,β] and M = max{ f (x) : α≤ x ≤ β}. To obtain V ∼U[α,β), simply set V = α+ (β−α)U

where U ∼U[0,1). Then the formal statement of the algorithm is

1. Generate V1 ∼U[α,β)

2. Generate V2 ∼U[0, M)

3. Accept X =V1 if V2 ≤ f (V1) otherwise return to step 1

The chief drawbacks of this algorithm are

• The sampling range of f (x) must be finite.

• The acceptance probability is 1/
[
M(β−α)

]
which can be very inefficient.

To overcome these deficiencies, the use of an envelope or instrumental density g(x) has been

introduced. For this method, g(x) must satisfy f (x)< M g(x) where M > 1. The algorithm becomes

more efficient as M → 1, thus the choice of g(x) is crucial for this algorithm. There is an extensive

literature proposing and discussing g(x) that are relatively easy to compute and close enough to

f (x) ∀x for distributions with different characteristics. Some examples are [50] for distributions

with a log-concave density function, [3] for the GIG and GHyp and hyperbolic distributions

(discussed in Section 4.1.1 and 4.2), [59] for T-concave density functions (discussed in Section

4.2.4), and [70] (discussed in Section 4.2.2) for continuous distributions.

The ratio-of-uniforms approach, proposed in [70], appears most useful for our work as the

algorithms which utilize this technique are often short and their performance is comparable with

more complicated algorithms. The approach is described as follows:

Definition 8. Let X be a random variable with density function f (x) with support (bl ,br) not

necessarily finite. If (U, V) is uniformly distributed in C f = {(u,v) : 0 ≤ u ≤ √
f (v/u+µ) ,bl <

v/u+µ< br}, then X =V /U +µ has the desired density function f (x).

To generate U , V uniformly over the region C f , one must use the rejection method to generate

U , V uniformly over the minimal enclosing rectangle D, defined as

(4.2) D = {(u,v) : 0≤ u ≤ u+,v− ≤ v ≤ v+}

where

u+ = sup
x

√
f (x)

v− = inf
x

(x−µ)
√

f (x)

v+ = sup
x

(x−µ)
√

f (x) .(4.3)

68



4.1. GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

It is shown in [104] that rejection from the minimal enclosing rectangle is equivalent to

rejection from the envelope distribution

(4.4) h(x)=


(v−/x)2 for x < v−/u+
(u+)2 for v−/u+ ≤ x ≤ v+/u+
(v+/x)2 for x > v+/u+.

Apart from the two random variate generation techniques described above, slice sampling

takes a simple form and can be applied to a wide variety of distributions. The fundamental idea of

the slice sampling approach is if you can sample uniformly from the two-dimensional region under

the probability density function f (x), the horizontal coordinates of sample points will then have

the desired density. However, it is often difficult to sample uniformly over the two-dimensional

region, consequently, the latent variable Y is introduced. Let f (x) be the probability density

function of the required distribution. Given an observation x of the random variable X with

density f (x), the latent variable Y has distribution Y |x ∼U(0, g(x)) where g(x)= c f (x). Set

f (x, y)=
{

f (x)/g(x) 0≤ y≤ g(x)

0 otherwise

=
{

1/c 0≤ y≤ g(x)

0 otherwise.
(4.5)

Since X and Y are uniformly distributed over the region {(x, y) : 0 ≤ y ≤ g(x)}, f (x|y) must also

be uniformly distributed. Then a sequence of (X i,Yi) is generated using the Gibb’s sampling

technique discussed in [35]. The ith iteration of the algorithm is

• Simulate Yi ∼ f (y|xi−1)=U (0, g(X i−1))

• Simulate X i ∼ f (x|yi)=U (S(yi)) where S(y)= {x : g(x)≥ y}.

The X i are discarded and Yi comprise a set of correlated variates from the desired distribution.

Adjustments, mentioned in Section 4.2.3 and discussed in [106], can then be applied to obtain

independent variates.

After this brief discussion of three general methods of random variate generation, in the later

sections, specific approaches to generate random variates from generalized inverse Gaussian dis-

tribution which are critical for the GHyp distribution random variate generation are investigated.

Thereafter approaches for the hyperbolic distribution, the sub-case of the GHyp distribution, are

reviewed and investigated. Finally the performance of the methods is compared to decide on the

best approach.

4.1 Generalized Inverse Gaussian Distribution

The generalized inverse Gaussian distribution GIG(λ,χ,ψ), defined in Section 3.2, possesses

an important property for generating random variates from GHyp distribution. The GHyp
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distribution, as mentioned in Section 3.2, is defined as a generalized inverse Gaussian distribution-

variance-mean mixture of the normal distribution ([86]). Let χ = δ2 and ψ = α2 −β2, if w ∼
GIG(λ,δ2,α2−β2), then the random variate with conditional normal distribution Y ∼ N(µ+βw,w)

is distributed as the GHyp distribution. The algorithms for normal distribution random variate

generation are well-established, such as [71], [26] and [2], and are widely implemented in

software. Besides the univariate GHyp distribution, the mixture property is valuable when

generating random variates from the multivariate GHyp distribution. It is shown in [86], that

the d-dimensional GHyp random variates Yi ∼GHypd(λ,α,β,δ,µ,∆) can be obtained as:

(4.6) yi =
√

Wj
(
Xd( j−1)+1, . . . , Xd j

)
D+µ+Wjβ∆,

where for {1 ≤ j ≤ n}, Wj ∼ GIG(λ,δ2,α2 − h′
0∆h0) and for {1 ≤ i ≤ dn}, X i are distributed as

standard normal. In addition, D is the Cholesky decomposition of the matrix ∆.

For these reasons we use the mixing property to first generate random variates W from the

GIG distribution, then generate random variates from the normal distribution with parameters

µ = µ+βW and σ = W to obtain random variates from the GHyp distribution. Therefore it is

critical to generate random variates with the GIG distribution efficiently.

4.1.1 Atkinson Rejection Sampling Method

A. C. Atkinson in [3] proposed using the rejection sampling technique to generate random

variates from the GIG distribution. The algorithm is named GIG and it is applicable for λ ∈R.

This algorithm is described in Richard Trendall’s honours project ([106]) in detail, and the brief

description below is drawn from that.

Let the GIG density function f (x)= ce(x;λ,χ,ψ), where

(4.7) e(x;λ,χ,ψ)= xλ−1exp
[
−1

2
(χx−1 +ψx)

]
The algorithm GIG uses rejection with two part-envelopes divided at the mode m, given by

(4.8) m(λ,χ,ψ)=
{

[(λ−1)+
√

(1−λ)2 +χψ ]/ψ ψ> 0

χ/[2(1−λ)] ψ= 0.

The envelope, shown in Figure 4.1 is

(4.9) g(x)=
{

k1d1(x) 0≤ x ≤ m

k2d2(x) x > m

where d1(x)= esx, d2(x)= e−px and g(x) is required to be a density function, that is∫ ∞

0
g(x)dx = k1

∫ t

0
d1(x)dx+k2

∫ ∞

t
d2(x)dx

= k1∆1 +k2∆2 = 1(4.10)
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Figure 4.1: The Atkinson Two Part Rejection Envelope when β=ω= 1, λ= 2

The rejection functions are proportional to the GIG density:

h1(x)= e(x;λ,χ,ψ)
d1(x)

= e−sxxλ−1e−
1
2 (χx−1+ψx)

= xλ−1e−
1
2 (χx−1+(ψ+2s)x)

= e(x;λ,χ,ψ+2s).(4.11)

Similarly h2(x)= e(x;λ,χ,ψ−2p). The values of k1 and k2 are calculated by letting the ratios

of the acceptance probability of any given x from both sides of the mode m proportional to the

density f (x) be the same, i.e.

k1(x)d1(x)
h1(x)

S1
= k2(x)d2(x)

h2(x)
S2

k1

S1
= k2

S2
= F(4.12)

where Si are the suprema of the rejection functions and F is the ratio of the acceptance probability

to the density f (x).

Let k = k1S1 = k2S2 then because g(x) is a density function
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(4.13) k = S1S2

S1∆1 +S2∆2

and the efficiency

E = F
c

= k1

cS1

= 1
c(S1∆1 +S2∆2)

.(4.14)

Therefore to achieve maximum efficiency, it is essential to minimize the denominator S1∆1 +
S2∆2. Although S1∆1 and S2∆2 can be minimized independently, Atkinson in ([3]) points out that

these two functions can not be solved analytically. For this reason, the approach is potentially

unstable when applied over an extensive parameter range.

The algorithm GIG is implemented in the function rgigAtkin which has the format

rgigAtkin (n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(chi, psi, lambda).

Table 4.1 shows the acceptance probabilities of the Atkinson rejection method for various λ

and β values. The acceptance probabilities are fairly reasonable apart from when λ and ω are

both extremely small. As λ→ 0 and ω→ 0 simultaneously, the acceptance probability declines

substantially.

Table 4.1: Acceptance Probabilities of the GIG Algorithm

λ

β=ω 0.01 0.1 1 10

0.01 0.0410 0.0455 1.0000 0.7634

0.1 0.2132 0.2114 0.9615 0.7299

1 0.6329 0.6369 0.9091 0.7042

10 0.8333 0.8264 0.8264 0.7874

72



4.1. GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

4.1.2 The Ratio-of-Uniforms with Shifted Mode Method

The default random number generation function rgig for the GIG distribution in the General-
izedHyperbolic package, as mentioned in Section 1.1.2, uses the ratio-of-uniforms with shifted

mode method. It is based on the algorithm GENINV proposed by J. S. Dagpunar ([33]). Dagpunar

first rewrites the probability density function of the scaled relocated variate z in the alternative

parameterization α= 1/η, β=ω as

(4.15) fz(z)= (m+ z)λ−1e−0.5β(z+m+1/(z+m))

2Kλ(β)

where λ≥ 0, β> 0, z = ηx−m and m is the mode of ηx which is given by

(4.16) m = λ−1+
√

(λ−1)2 +β2

β
.

The algorithm then works with the quasi-density function

(4.17) hz(z)= (m+ z)λ−1e−0.5β(z+m+1/(z+m)).

A random variate Z = z is generated by the ratio-of-uniforms method. Let y = ηx. The bounds

of minimal enclosing rectangle are proven to be u+ =p
h(0) , v− = min((y−m)

√
h(y−m) ) and

v+ = max((y− m)
√

h(y−m) ). The values of v+ and v− are found by setting the derivative of

(y−m)
√

h(y−m) with respect to y equal to 0. It was pointed out in [33] that this is equivalent to

solving the following equation in y:

(4.18)
1
2
βy3 − y2

(
1
2
βm+λ+1

)
+ x

(
|λ−1|m− 1

2
β

)
+ 1

2
βm = 0.

The real roots y− and y+ define v− and v+ according to

v− = (y−−m)
√

h(y−−m)

v+ = (y+−m)
√

h(y+−m) .(4.19)

To obtain y− and y+ the R function uniroot can be used.

To draw samples from the GIG distribution, we first generate two independent uniformly

distributed random variates R1 and R2 over [0,1], then set

V = R2(v+−v−)+v−

U = R1u+ .(4.20)
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Since Z =V /U , X can be generated as

X = U
V

+m

= R2(v+−v−)+v−
R1u+

.(4.21)

The prospective X is accepted if satisfies the condition:

(4.22) R1u+ ≤
√

h(Z) ,

and the acceptance probability is

(4.23) P = 0.5
∫ ∞

0 h(z)dz
u+(v+−v−)

.

The rgig function which implements this algorithm has the format

rgig (n , chi = 1 , psi = 1 , lambda = 1 ,
param = c ( chi , psi , lambda ) )

n

Number of random variates to be generated.

chi

χ, The parameter of GIG distribution that by default holds a value of 1.

psi

ψ, The parameter of GIG distribution that by default holds a value of 1.

lambda

λ, The parameter of GIG distribution that by default holds a value of 1.

param

Parameter vector taking the form c(chi, psi, lambda).

Table 4.2 shows acceptance probabilities of ratio of uniforms with shifted mode approach. The

acceptance probabilities are at satisfactory level apart from when λ and β are both extremely

small. Although not as extreme as for Atkinson’s approach, as λ→ 0 and β→ 0 simultaneously,

the acceptance probability declines fairly significantly.
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Table 4.2: Acceptance Probabilities of the GENINV Method

λ

β 0.01 0.1 1 10

0.01 0.3891 0.3049 0.6452 0.7407

0.1 0.5319 0.5263 0.7576 0.7634

1 0.6667 0.7092 0.7092 0.7752

10 0.7299 0.7194 0.7143 0.6757

4.1.3 Dagpunar Rejection Sampling Method

As mentioned in Section 4.1.2 and 4.1.1, the acceptance probability declines rapidly as λ→ 0 and

β→ 0 simultaneously. Dagpunar in 2007 proposed a rejection sampling method using a gamma

distributed hat function which provides a remedy for this issue. This algorithm is applied to the

scaled density function. Let X ∼GIG(α,β,λ) then define X2 =αX , the scaled pdf of x is

(4.24) h(x)= xλ−1e−β(x+1/x)/2.

The envelope is g(x)= Kr(x) as shown in Figure 4.2 when β= 0.8 and λ= 1.
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Figure 4.2: The Gamma Distributed Rejection Envelope when β= 0.8, λ= 1
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The function r(x) is given by ([34]) as

(4.25) r(x)= xλ−1e−
γx
2 ,

and

(4.26) K =max
(

h(x)
r(x)

)
= e−

p
β(β−γ) .

To maximize the acceptance probability

(4.27) γ=
2λ2(

√
1+ β2

λ2 −1)

β

giving the acceptance probability

(4.28)

∫ ∞
0 h(x)dx∫ ∞
0 g(x)dx

= e
p
β(β−γ) (γ/2)λ

∫ ∞
0 xλ−1e−β(x+1/x)/2dx
Γ(λ)

This algorithm is implemented in the function rgigGamma which has the format

rgigGamma(n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(chi, psi, lambda).

Figure 4.3 presents a histogram of random variates from the GIG distribution with β= 0.1,

λ= 0.5 generated by rgigGamma. The density curve is superimposed.

Table 4.3 shows acceptance probabilities for the Dagpunar rejection sampling approach. The

acceptance probabilities are fairly reasonable when λ≥ 1. However as λ→ 0 or (β−λ)→∞, the

acceptance probability declines substantially.

Table 4.3: Acceptance Probabilities of the Gamma Hat Function Method

λ

β 0.01 0.1 1 10

0.01 0.0530 0.3984 0.9853 1.0000

0.1 0.0340 0.2714 0.9372 1.0000

1 0.0200 0.1714 0.7599 0.9950

10 0.0128 0.1046 0.5155 0.9747
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Figure 4.3: Histogram of random variates from the GIG distribution generated by Dagpunar’s
envelope

4.1.4 Hörmann’s Rejection Sampling Method

Wolfgang Hörmann also addressed the concern mentioned in Section 4.1.2 in a conference talk

and proposed some remedies ([60]). One of these, presented in [79], is the use of a rejection method

with a universally bounded three-part hat function for 0≤λ< 1 and β≤min(1/2,2/(3
p

1−λ )).

Consider X ∼GIG(λ,δ2,α2−β2) which has the quasi-density function f (x). The envelope h(x),

shown in Figure 4.4, has the form ([79])

(4.29) h(x)=


f (m) if x ≤ x0

xλ−1e−β if x0 < x ≤ x∗
x∗λ−1e−xβ/2 if x > x∗

where x0 =β/(1−λ), x∗ =max(x0,2/β). Note that there is inconsistency of the envelope function

h(x) as proposed in [79] and in [60]. Our implementation uses h(x) as in [79].
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Figure 4.4: The Hörmann Rejection Envelope when β= 0.5, λ= 0.3

Areas under the three-part envelope are

∆1 =
∫ x0

0
f (m)dx

= f (m)
β

1−λ
∆2 =

∫ x∗

x0

xλ−1

λ
e−βdx

= x∗λ− ( β
1−λ )λ

λ
e−β

∆3 =
∫ −∞

x∗
x∗λ−1eβ/2x dx

= β

2
x∗λ−1e−β/2−x∗(4.30)

The suprema of the rejection functions are

s1 = f (x0)

s2 = xλ−1e−1−β2/4

s3 = f (x∗)e((λ−1)/x∗−β/2+β/2x2
∗)(x−x∗)(4.31)
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Therefore the rejection constants, claimed to be bounded by e, are

ρ1 = ∆1∫ x0
0 s1(x)dx

= f (m)x0

f (x0)(x0 −m)

= f (m)
f (x0)

1
1−m/x0

< 2.72604,

ρ2 = ∆2∫ 2/β
x0

s2(x)dx

= e−β

e−1−β2/4

= e1−β+β2/4

< e,

ρ3 = ∆3∫ ∞
x∗ s3(x)dx

= xλ−1∗ (2/β)e−βx∗/2

−[(λ−1)1/x∗−β/2+β/(2x2∗)]−1xλ−1∗ e−β/2(x∗+1/x∗)

=
[
(1−λ)

2
βx∗

− 1
x2∗

+1
]

eβ/(2x∗)

< 2e1/16

< 2.129(4.32)

This algorithm is implemented in the function rgigHoer which has the format

rgigHoer (n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(chi, psi, lambda).

Figure 4.5 presents a histogram of random variates from the GIG distribution with β= 0.1,

λ= 0.5 generated by rgigHoer. The density curve is superimposed.
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Figure 4.5: Histogram of random variates from the GIG distribution generated by the Hörmann

envelope

Table 4.4 shows the acceptance probabilities of Hörmann’s rejection sampling approach. The

acceptance probabilities are at a satisfactory level throughout the table.

Table 4.4: Acceptance Probabilities of Hörmann’s Rejection Sampling Method

λ

β 0.1 0.2 0.5 0.8

0.001 0.8264 0.7463 0.6897 0.7246

0.005 0.885 0.7813 0.7194 0.7692

0.01 0.7813 0.8621 0.6849 0.7937

0.05 0.8000 0.8475 0.8065 0.7299

4.1.5 Fast Inversion Method

As mentioned in Chapter 1 and earlier in this Chapter, the UNU.RAN project provides an approach

for fast numerical inversion and can therefore generate random variates using the approximated

quantile function. This ‘black-box’ algorithm, proposed in ([78]), is implemented in the R package

Runuran but the important code is written in the Ch language to achieve optimal performance.
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The algorithm consists of two steps, set-up and sampling. In the set-up step, F(X ) is evaluated

at several points xi then interpolation at the nodes (ui = F(xi), xi) is used to create a setup table

to approximate the quantile function F−1
a (u) for given u in the sampling part, by means of

polynomials. The error of the approximate quantile function F−1
a (u) is defined as |u−F(F−1

a (u))|
([38]). The criterion for the size of the approximation errors in this algorithm is aimed to be

(4.33) εu(u)≥ supu∈(0,1)|u−F(F−1
a (u))|.

Since the set-up is the core part of this algorithm, it is worthwhile to give a description of

methods used in this step. Given X with CDF F(x) and probability density function f (x), the

set-up procedure has the following four steps. For a detailed explanation and full proof refer to

[38].

1. Find the computationally relevant domain [bl ,br] of the distribution. The algorithm is only

applicable to bounded continuous distributions and it is claimed to be numerically unstable

if the quantile function is very steep. Therefore it is essential to find appropriate cut-off

points that are close enough to 0 and 1 but not too close to cause numerical problems. The

cut off points are chosen at probability of 0.05εu for both tails. The quantiles of those points

are approximated by a recursive method using formula as below ([38]):

(4.34) p∗ =

 p+ f (p)
c f ′(p)

[(
0.05εu| f ′(p)|(1+c)

f (p)2

)c/(1+c) −1
]

if c 6= 0

p+ f (p)
f ′(p) log ε| f ′(p)|

f (p)2 if c = 0,

where c = n if sgn(n) f (x)n is concave and c = 0 when f (x) is log concave ([59]).

2. Divide the relevant domain [bl ,br] into k intervals [ai−1,ai] where i = 1, . . .k. These inter-

vals are then further divided by n construction points for the interpolation in step 4. The

length of [ai−1,ai] is decided by computing the interpolating polynomial and estimating

the error on some tentative intervals, shortening if the error is larger than the required

error 0.9εu and extending if the error is smaller than the required error 0.9εu.

3. Compute
∫ x j

x j−1
f (x)dx for j = 1, . . . ,n on each interval [ai−1,ai] to approximate the CDF F(x)

using (adaptive) Gauss-Lobatto quadrature.

4. Interpolate the construction points (F(x j), x j) where ai−1 = x0 < x1 <, . . . ,< xn = ai to ap-

proximate the inverse CDF F−1 on each interval [F(ai −1),F(ai)] which is obtained from

step 2. This is accomplished by using Newton’s recursion for the interpolating polynomial

with a fixed number of points. This interpolation method is selected for its accuracy and

robustness.

After setting up the table of interpolation points, the sampling part is relatively straightforward.

Indexed search is chosen to find the correct interval together with evaluation of the interpolation
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polynomial ([38]). Rejection constant and acceptance probability are not relevant concepts for

this algorithm.

In the case of the GIG distribution, the implementation of the method in R uses three

functions, namely udgig, pinvd.new and ur. The purpose of these three functions is to create

a UNU.RAN object for the GIG distribution which approximates the inverse of the CDF of the

distribution by means of Newton interpolation, to allow the generation of random variates.

The function udgig has the format

udgig ( theta , psi , chi , lb = 0 , ub = Inf )

theta

θ The parameter of generalized inverse Gaussian distribution.

psi

ψ The parameter of generalized inverse Gaussian distribution.

chi

χ The parameter of generalized inverse Gaussian distribution.

lb

The lower bound of the (truncated) distribution.

ub

The upper bound of the (truncated) distribution.

The function pinvd.new has the format

pinv .new( pdf , cdf , lb , ub , i s l o g = FALSE, center = 0 ,
uresolution = 1. e−10, smooth = FALSE, . . . )

pdf

The probability density function of required distribution.

cdf

The CDF of the required distribution.

lb

The lower bound of the required distribution domain.

ub

The upper bound of the required distribution domain.

islog

If set to TRUE, the density function or CDF are given by their corresponding logarithms.
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center

Typical point of the required distribution.

uresolution

The maximal acceptable u-error.

smooth

If the inverse CDF is differentiable.

. . .

Optional arguments for pdf and cdf.

The function ur has the format

ur ( unr , n )

unr

The UNU.RAN object.

n

The required sample size.

Figure 4.6 presents a histogram of random variates from the GIG distribution with β= 0.1,

λ = 0.5 generated by the udgig, pinvd.new and ur functions together. The density curve is

superimposed.
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Figure 4.6: Histogram of random variates from the GIG distribution generated by the black-box

algorithm

4.1.6 Other Methods

Apart from the above successfully implemented algorithms, two other approaches were investi-

gated. The first approach is the slice sampler. The basic theory of this approach was described

earlier in this chapter, and it is applied to the hyperbolic distribution in Section ?? following.

However in order to apply the slice sampler to the GIG distribution, we need to compute

the bounds on the two uniform densities generating f (y|xi−1) and f (x|yi) where Y is the latent

variable with conditional distribution,

(4.35) Y |xi−1 ∼U
(
0, xλ−1e−

1
2 (χx−1+ψx)

)
,

where xλ−1e−
1
2 (χx−1+ψx) is the quasi-density of the GIG distribution.

The bounds on f (x|yi) are the two roots x that satisfy the equation:

yi = xλ−1e−
1
2 (χx−1+ψx)

⇒ log(yi)= (λ−1)log(x)− 1
2

(χx−1 +ψx).

(4.36)
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This equation can only be solved explicitly for λ = 1. Since efficiency is critical for random

number generation, the slice sampler is not appropriate for the entire parameter range of GIG

distribution.

The second approach investigated is the transformed density rejection method proposed in

[59]. This approach is also applied to the hyperbolic distribution in a later section.

A description of the method is given in Section 4.2.4. The transformed density rejection

approach requires the distribution to be T-concave i.e T( f (x)) is concave. However the GIG

distribution is not T-concave in the entire parameter domain. Consider X ∼GIG(λ,δ2,α2 −β2)

which has the quasi-density function

(4.37) f (x)= xλ−1e−β/2(x−1+x).

[59] has pointed out that f (x) is concave with transformation T( f (x)) = log( f (x)) if λ≥ 1,β> 0

and T( f (x))=√
f (x) if λ> 0,β≥ 0.5, i.e.

(4.38) T( f (x))=
{

−β/2(x−1 + x)+ (λ−1)log(x) (λ≥ 1,β> 0)√
xλ−1e−β/2(x−1+x) (λ> 0,β≥ 0.5),

The parameter domain that has not been covered by this approach is the area where the low

acceptance probability occurs, therefore this approach may not appropriate to use.

4.2 Hyperbolic Distribution

In 2004, Richard Trendall ([106]) investigated methods for random number generation from the

hyperbolic distribution. There were four approaches identified in his work. A brief description

is given in this section for each method and an alternative method proposed in [59] is also

investigated.

4.2.1 Atkinson Rejection Sampling Method

A. C. Atkinson ([3]) proposed the algorithm HYP which uses rejection sampling to generate

random variates from the hyperbolic distribution. This algorithm uses a three-part envelope with

the uniform distribution in the center and exponential distributions in the tails. The algorithm

does not require optimization. The cut points separating the regions are at t = −√
γ/φ and

w =√
φ/γ , and the envelope, shown in Figure 4.7, is

(4.39) g(x)=


keφx (x ≤ t)

keθ (t < x ≤ w)

ke−γx (x > w),

where θ = f (xmode) and f (x) is the quasi-density function of the hyperbolic distribution.
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Figure 4.7: The Atkinson Rejection Envelope for the Hyperbolic Distribution when α= 1, β= 0.5

The function g(x) must be a density function and

(4.40) ∆1 = eφt

φ
, ∆2 = (w− t)eθ, ∆3 = e−γw

γ
.

Therefore

1=
∫ ∞

−∞
g(x)

= k∆1 +k∆2 +k∆3

=⇒ k = 1
eθ(1/θ+w− t)+ (1/γ)e−γw .(4.41)

The algorithm is implemented in the function rhypAtkin which has the format

rhypAtkin (n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(mu, delta, alpha, beta).
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Table 4.5 shows the acceptance probabilities of the Atkinson rejection approach for various

α and β values. The probabilities are in general at a satisfactory level but as α increases, the

acceptance probability declines slightly.

Table 4.5: Acceptance Probabilities of the HYP Algorithm

α

β 0.5 1 2 5

0 0.9615 0.8850 0.6494 0.495

0.2α 0.9174 0.8475 0.6757 0.4651

0.8α 0.9524 0.8403 0.7463 0.5988

4.2.2 Ratio of Uniforms Method

The basic theory of the ratio of uniforms sampling technique was discussed earlier in this chapter.

To apply the theory to the hyperbolic distribution, suppose X ∼ hyp(µ,δ,α,β has the quasi-density

function when µ= 0 and δ= 1,

(4.42) g(x)= e−α
p

1+x2 +βx.

The bounds of the minimal enclosing rectangle are v− = 0, v+ =√
g(x+) , u± = y±

√
g(y±) where

x+ is the root of equation

(4.43) −αx/
√

1+ x2 +β= 0.

The y± are the roots of the equation

(4.44)
e−α

p
1+y2 +βy/2(2

p
1+ x2 +αx2 − xβ

p
1+ x2 )

2
p

1+ x2
= 0.

Figure 4.8 illustrates the equivalent envelope function of the minimal enclosing rectangle.
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Figure 4.8: The Ratio-of-Uniforms Equivalent Rejection Envelope for the Hyperbolic Distribution

when α= 1, β= 0.5

The algorithm is implemented in the function rhypRoU which has the format

rhypRoU(n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(mu, delta, alpha, beta).

Table 4.6 shows the acceptance probabilities for ratio of uniforms approach. The probabilities

are in general at a satisfactory level and there does not appear any substantial decline as α

increases.
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Table 4.6: Acceptance Probabilities of the Ratio of Uniforms Method

α

β 0.5 1 2 5

0 0.7463 0.7042 0.6944 0.7519

0.2α 0.7752 0.7634 0.7692 0.7752

0.8α 0.7463 0.7092 0.7353 0.6711

4.2.3 Slice Sampler Method

The slice sampler method is also described in Richard Trendall’s honours project. Therefore only

a brief description is given below and for a detailed discussion see [106].

Let f (x) be the probability density function of the hyperbolic distribution with the second

parameterization (µ,δ,ζ,π). Define the latent variable Y such that Y |x ∼U(0, g(x)) where g(x)=
c f (x) = e−ζ(

p
1+π2

p
1+x2 −π). The algorithm uses the Gibb’s sampling technique to recursively

simulate

(4.45) Yi ∼ f (y|X i = xi−1)=U(0, e−ζ
p

1+π2
√

1+x2
i−1 −πxi−1)

and

X i ∼ f (x|Yi = yi)

=U
(
− π

ζ
log(yi)− 1

2

√[
2π
ζ

log(yi)
]2

−4
[
1+π2 −

(
1
ζ

)2
log(yi)2

]
,

− π

ζ
log(yi)+ 1

2

√[
2π
ζ

log(yi)
]2

−4
[
1+π2 −

(
1
ζ

)2
log(yi)2

])
.(4.46)

The X i are then correlated variates from the density f (x). The start value for the X i can be any

arbitrary value. Although the approach appears to be relatively simple, a “burn-in” period is

required and in addition, only nth variates are taken to treat the serial correlation issue. These

two requirements increase the time to generate random variates.

The algorithm is implemented in the function rhypSS and has the format

rhypSS (n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(mu, delta, alpha, beta).
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4.2.4 Transformation Density Rejection Method

The transformed density rejection (TDR) method was proposed in [59]. The basic idea of the

TDR algorithm is fairly intuitive i.e., given a suitable transformation T(x) of the desired density

function f (x), if l(x) is a piecewise linear function where l(x)≥ T( f (x))∀x, then T−1(l(x)) must be

a dominating function for f (x). The approach can also incorporate a squeeze function s(x), which

is an easy-to-compute lower bound of f (x) used for a preliminary test of whether a proposed

point lies beneath f (x) when the computation of f (x) is complex. To illustrate the idea, Figure

4.9 compares the density function with envelope in T transformed scale and the original scale.

Figure 4.10 exhibits a similar comparison with a squeeze function added in. The transformation

T( f (x))= log( f (x)) provides an appropriate T transformation for the hyperbolic distribution as

log( f (x)) satisfies the four conditions required by this algorithm. The proof is provided later in

this section.
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Figure 4.9: The Transformation Density Rejection Envelope when µ= 0, δ= 1, α= 2, β= 1
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Figure 4.10: The Transformation Density Rejection Envelope with Squeeze Function when µ= 0,

δ= 1, α= 2, β= 1

Suppose h(x)= T( f (x)) is a transformed quasi-density function of the desired distribution, the

algorithm in [59] is as follows:

1. Prepare a function f (x) that returns values proportional to the density function of the

distribution and a function h′(x)

2. Set m ← mode of the distribution and

i l ← inf{x| f (x)> 0}

ir ← sup{x| f (x)> 0}

where i l and ir need not be finite.

3. Choose xl in the interval (i l ,m) and xr in the interval (m, ir)
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4. Set

br ← xr + −ζ−h(xr)
h′(xr)

bl ← xl +
−ζ−h(xl)

h′(xl)

vl ←
F(h(m))−F(h′(xl)(i l − xl)+h(xl))

h′(xl)

vc ← f (m)(br −bl)

vr ← F(h′(xr)(ir − xr)+h(xr))−F(h(m))
h′(xl)

5. If a squeeze function is to be used, then two squeeze functions are defined as

sl ←
h(m)−h(xl)

m− xl

sr ← h(m)−h(xr)
m− xr

6. Generate a uniform random number U and set

U ←U · (vl +vc +vr)

7. If U ≤ vl set

X ← F−1(−Uh′(xl)+F(h(m)))−h(xl)
h′(xl)

+ xl

lx ← T−1(h′(xl)(X − xl)+h(xl))

8. Generate a uniform random number V and set

V ←V · lx

9. If V ≤ f (X ) return X , else go to generate U step, If a squeeze function is added then there

is one more return condition: If X < m

a) If X > xl and

V ≤ T−1(h(m)− (m− x)∗ sl)

return X

b) Else if X < xr and

V ≤ T−1(h(m)− (m− x)∗ sr)

return X
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The algorithm works with the quasi-density function of the hyperbolic distribution

(4.47) f (x)= e−α
p

1+x2 +βx

As mentioned at the beginning of this section, the log transformation is a suitable T transfor-

mation. Then

(4.48) T( f (x))=−α
√

1+ x2 +βx

The log transformation is chosen since it satisfies the following prerequisite four conditions of

this algorithm,

1. limx→0T(x)=−∞

2. T(x) is differentiable and T ′(x)≥ 0

3.
∫ ∞

0 T−1(h(m)− x)dx <∞

4. h(x)= T( f (x)) is concave

The function log(x) for x ≥ 0 meets the above four conditions:

(4.49) limx→0 log(x)= log(0)=−∞,

T ′(x)= 1
x
> 0 ∀x ≥ 0,(4.50)

∫ ∞

0
T−1(h(m)− x)dx =

∫ ∞

0
e(h(m)−x)dx

= [−e(h(m)−x)]∞0
= eh(m) <∞,(4.51)

T( f (x))=−α
√

1+ x2 +βx

⇒ T ′( f (x))=−α xp
1+ x2

+β

⇒ T ′′( f (x))= −α(1+ x2)−αx2√
(1+ x2)3

=α −2x2 −1√
(1+ x2)3

.(4.52)

Since α> 0, −2x2 −1< 0 ∀x ∈R then T ′′( f (x))< 0. Therefore T( f (x)) is concave.

The algorithm is implemented in the functions rhypTDR and rhypTDRsq respectively with

and without the squeeze function, with the formats
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rhypTDR(n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(mu, delta, alpha, beta).

rhypTDRsq (n , param)

n

Number of random variates to be generated.

param

Parameter vector taking the form c(mu, delta, alpha, beta).

Figures 4.11 and 4.12 present histograms of random variates from the hyperbolic distribution

with µ= 0, δ= 1, α= 1, β= 0.5 generated by rhypTDR and rhypTDRsq respectively. The density

curves are superimposed.
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Figure 4.11: Histogram of random variates from the hyperbolic distribution generated by the

TDR algorithm
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Figure 4.12: Histogram of random variates from the hyperbolic distribution generated by the

TDR algorithm with squeeze function

Table 4.7 shows acceptance probabilities for the transformation density rejection approach.

The probabilities are in general at satisfactory level.

Table 4.7: Acceptance Probabilities of the TDR Method

α

β 0.5 1 2 5

0 0.9346 0.9346 0.9259 0.9346

0.2α 0.9709 0.9259 0.8772 0.8696

0.8α 0.9804 0.9346 0.9615 0.8772

Table 4.8 shows acceptance probabilities of the transformation density rejection approach

with squeeze function. The probabilities are at satisfactory level.
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Table 4.8: Acceptance Probabilities of the TDR Method with Squeeze Function

α

β 0.5 1 2 5

0 0.9524 0.9615 0.9091 0.8929

0.2α 0.9615 0.9259 0.9009 0.9259

0.8α 0.9804 0.9709 0.9346 0.9009

4.3 Analysis

The focus in this section is the comparison of the time taken to generate a single random variate

using the different the algorithms discussed previously for sampling from the GIG distribution

and the hyperbolic distribution.

4.3.1 Generalized Inverse Gaussian Distribution

For parameter values within the commonly used range the functions to compare for the GIG dis-

tribution are rgigAtkin, rgig, rgigGamma, and ur(pinv.new(ugig)). The function rgigHoer is

not included in this first comparison as it is only applicable when 0<λ< 1, β≤min(1/2,2/(3
p

1−λ )).

Table 4.9 shows the ratio of the average time taken to generate one random variate by

function rgigAtkin compared to the default function rgig. The ratio of uniforms with shifted

mode approach appears to be superior to the Atkinson rejection method. The time that rgigAtkin

function takes to generate one random variate is at least 1.71 times that of the rgig function.

Table 4.9: Ratio of rgigAtkin and rgig

λ

β 0.01 0.1 1 10

0.01 11.54 12.51 1.71 2.22

0.1 4.90 5.06 2.51 2.56

1 2.60 2.36 2.07 2.06

10 2.20 2.08 2.16 2.10

Table 4.10 shows the ratio of the average time taken to generate one random variates by

function rgigGamma compared to the default function rgig. Dagpunar’s rejection method appears

to faster when λ>= 1. However the method has variable performance. When λ→ 0, the efficiency

of this method declines and the rgig function becomes faster.
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Table 4.10: Ratio of rgigGamma and rgig

λ

β 0.01 0.1 1 10

0.01 2.23 0.55 0.52 0.51

0.1 8.74 1.25 0.56 0.66

1 16.45 2.23 0.68 0.51

10 28.59 3.61 0.93 0.53

Table 4.11 shows the ratio of the average time taken to generate one random variate by the

function ur(pinv.new(ugig)) compared to the default function rgig. The fast inversion method

appears to be superior to the ratio of uniforms with shifted mode method when either λ> 0.01

or β > 0.01 and performs very reliably. Note however that the comparison between these two

method is not strictly fair. As mentioned in Section 4.1.5, the function ur(pinv.new(ugig)) is

written in Ch, an embeddable C/C++ interpreter for cross-platform scripting, which is a much

more efficient language than R. In addition, the fast inversion method requires setting up a fairly

large table to store the interpolation points, therefore implementing the method using R would

not achieve the efficiency that the ur(pinv.new(ugig)) function has achieved at present.

Table 4.11: Ratio of ur(pinv.new(ugig)) and rgig

λ

β 0.01 0.1 1 10

0.01 1.07 0.145 0.24 0.19

0.1 0.19 0.22 0.24 0.24

1 0.25 0.25 0.25 0.21

10 0.26 0.22 0.25 0.24

From the comparisons above, the ratio of uniforms with shifted mode method appears to be

best method in terms of the combination of stability, efficiency and simplicity over the commonly

used range of parameter values. However, the method has a known problem when λ and β both

become extremely small, of order 10−7. Hence the following comparisons will focus on extremely

small parameter values in order to find the best complement to the rgig algorithm for this case.

The candidate algorithms are the fast inversion method, Dagpunar rejection sampling method

and Hörmann’s rejection sampling method. Table 4.12 shows the ratio of average time taken

to generate one random variate by the function ur(pinv.new(ugig)) compared to the function

rgigHoer. The Hörmann rejection sampling method approach appears to be superior to the fast

inversion method. The time that ur(pinv.new(ugig)) function takes to generate one random

variate is at least 4.39 times of the rgigHoer function. In addition, as mentioned earlier in this
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section, the function ur(pinv.new(ugig)) is mainly written in the Ch language which offers a

speed advantage compared to code written in R.

Table 4.12: Ratio of ur(pinv.new(ugig)) and rgigHoer

λ

β 0.01 0.1 0.5

10−14 10.16 11.57 4.39

10−12 6.39 10.63 5.00

10−10 7.50 7.09 8.88

Table 4.13 shows the ratio of the average time taken to generate one random variate by

the function rgigGamma compared to the function rgigHoer. The Dagpunar rejection sampling

method appears to be faster than the Hörmann rejection sampling method approach. However

the rgigGamma function appears to be unstable in that it has difficulty in generating random

variates at some parameter values.

Overall the rgigHoer function is the best method to complement the ratio of uniforms with

shifted mode method in terms of stability and efficiency.

Table 4.13: Ratio of ur(pinv.new(ugig)) and rgigHoer

λ

β 0.01 0.1 0.5

10−14 ∞ ∞ 0.26

10−12 0.57 ∞ 0.60

10−10 0.79 0.86 ∞

Figure 4.13 and 4.14 present a histogram of random variates from the GIG distribution

with β = 10−7, λ = 0.5 generated by rgigHoer. The density curve is superimposed. Since the

GIG distribution with β = 10−7 and λ = 0.5 is extremely skewed, the random variates of left

tail presented in Figure 4.13 visually appear to form a greater spike than the density curve.

However the zoomed-in left tail which is plotted in Figure 4.14 illustrates that the random

variates generated by rgigHoer follow the density curve reasonably well in the extreme tail area.
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Figure 4.13: Histogram of random variates from the GIG distribution generated by Hörmann

envelope
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Figure 4.14: The left tail of a histogram of random variates from the GIG distribution generated

by Hörmann envelope

4.3.2 Hyperbolic Distribution

The comparisons in this section are between the functions rhyperb, rhyperbTDR and rhyperbTDRsq.

As stated in Section 3.2, the hyperbolic distribution is the subclass of the GHyp distribution

with λ = 1, therefore random variates can be generated by using the GHyp distribution with

λ= 1. This is implemented in the function rhyperb which uses the mixture property of the GIG

distribution along with the ratio of uniforms with shifted mode method. This algorithm was

claimed to be superior to the ratio of uniforms method, the slice sampler and the Atkinson three

part envelope rejection method by Richard Trendall in his honours project.

Table 4.14 shows the ratio of the average time taken to generate one random variate by

function rhyperbTDR compared to the function rhyperb. Table 4.15 shows the same comparison

between the function rhyperbTDRsq and rhyperb. The ratio of uniforms with shifted mode

method appears to be more efficient than the transform density function method regardless of

the use of a squeeze function.
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Table 4.14: Ratio of rhyperbTDR and rhyperb

α

β 0.1 0.2 0.5 1 2 5

0 10.49 11.43 13.59 11.54 12.71 12.26

0.1α 11.77 12.20 13.13 15.52 12.29 11.77

0.2α 10.31 11.85 12.29 14.47 13.43 14.35

0.5α 9.93 9.35 11.53 12.84 13.37 14.87

0.8α 8.57 10.21 11.84 11.64 11.57 12.46

0.9α 9.71 10.01 10.70 10.42 13.60 11.89

Table 4.15: Ratio of rhyperbTDRsq and rhyperb

α

β 0.1 0.2 0.5 1 2 5

0 10.57 11.48 13.54 11.51 12.63 12.27

0.1α 11.72 12.29 13.25 15.54 12.35 11.86

0.2α 10.28 11.75 12.38 14.69 13.33 14.50

0.5α 9.97 9.51 11.56 12.98 13.34 14.81

0.8α 8.55 10.13 11.92 11.80 11.55 12.54

0.9α 9.65 10.96 10.88 10.53 13.62 11.85

4.3.3 Conclusion

From the comparison results in Section 4.3.1 the ratio of uniforms with shifted mode method for

the GIG distribution with λ≥ 1 or β>min[1/2,2/(3
p

1−λ )] and Hörmann’s rejection sampling

method for GIG distribution with 0<λ< 1 and β≤min[1/2,2/(3
p

1−λ )] forms the best solution

to generate random variates from the GIG distribution.

Recall from Section 4.1, random variates from the GHyp (α,β,δ,µ) distribution can be gener-

ated using the representation of the GHyp distribution as a mixture of the normal distribution

and the GIG distribution. Therefore the best solution for generating random variates from the

GHyp distribution is mixing a normally distributed random variate and a GIG distributed variate

with λ≥ 1 or β>min[1/2,2/(3
p

1−λ )] random variates from the ratio of uniforms with shifted

mode or the GIG distributed with 0<λ< 1 and β≤min[1/2,2/(3
p

1−λ )] from Hörmann’s rejection

sampling method.

From the comparison results in Section 4.3.2 the random variates of the GHyp distribution

with λ= 1 that are generated by mixing the normal distributed random variates and the GIG

distributed random variates that are generated by the ratio of uniforms with shifted mode method

101



CHAPTER 4. RANDOM NUMBER GENERATION OF GENERALIZED HYPERBOLIC AND
HYPERBOLIC DISTRIBUTION

provide the best performance for hyperbolic distribution random variate generation. The special

case of the GIG distribution with 0<λ< 1 and β≤min(1/2,2/(3
p

1−λ )) is not applicable to the

hyperbolic distribution because the value of λ for the hyperbolic distribution is 1.
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5
ROBUST LINEAR MODELING USING THE HYPERBOLIC

DISTRIBUTION

Linear regression is a very important statistical tool in many fields. However, when the data

violates the underlying assumptions, the results of the analysis can be misleading. One of the

major assumptions of linear regression is that the error terms are normally distributed.

There is considerable interest in the literature in regards to the robust procedures to model

non-normally distributed data, in particular data with longer than normal tails. Comprehensive

reviews of the robust inferences are given in [76], [62], [54], [63].

There are numbers of approaches to handling data with such characteristics. Applying a

transformation to the response variable appears to be the most common approach. There are a

number of potential transformations including but not limited, to the inverse hyperbolic sine

transformation discussed in [29], the well-known Box-Cox transform discussed in [25] and its

extensions discussed in [110] and [65]. However it has been pointed out in [46] that there are

three major drawbacks to this approach,

1. The resulting fitted regression coefficients can be difficult to interpret.

2. The transformation affects other aspects of the model, for instance heteroscedaticity.

3. Some scholars have negative views on optimizing on the transformed scale implicitly.

A different approach is the replacement of normal-theory estimators and/or their standard

errors by methods suitable for non-normal errors. [61] and [84] proposed the use of M-estimation,

a ‘maximum likelihood type’ estimation, as an alternative to least squares estimation. This

method is robust to outliers in the response variable, but turned out not to be resistant to

leverage points. Other proposals for robust estimators are the L-estimator, a linear combinations
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of order statistics and the R-estimator, an estimate derived from rank test discussed in [62]. Apart

from the use of alternative estimators, there is literature concerned with appropriate calculation

of the standard errors. [27], [99] and [108] discussed modified approaches for normal covariance-

structure tests under elliptically distributed errors, whilst [111] proposed the linear regression

model with least squares estimated explanatory variables which possess inflated standard errors.

The approach used in my research is a parametric approach which assumes the distribution

of the error terms follow other more flexible distributions. The advantage of this approach is

that the regression coefficients can be estimated by likelihood methods, and the examination of

residuals can act as part of assessing the appropriateness of the model. In the existing literature,

the t distribution appears to be the most popular alternative distribution for the error terms.

[76] proposed a robust statistical model based on maximum likelihood for a general model with

multivariate t errors from a frequentist perspective. They argued that the strategy combines

conceptual simplicity with generality. [48] also proposed the t distribution from a Bayesian

perspective. In [66], a tractable skew extension of the t distribution was proposed as a further

alternative for the normal and t distributions. The density function of this distribution is defined

as

(5.1) f (t;a,b)= C−1
a,b

{
1+ t

(a+b+ t2)1/2

}a+1/2 {
1− t

(a+b+ t2)1/2

}b+1/2
,

where a > 0, b > 0, Ca,b = 2a+b−1B(a,b)(A+b)1/2, and B is the beta function. There are two simple

examples presented in [66] to illustrate the apparent usefulness of this distribution.

Apart from the t distribution family, the skew-normal distribution family which is a superset

of the normal family has been introduced in [4]. [5], [6] and [7] discussed the distribution in detail

and proposed that it can serve as an alternative to normal distribution in statistical applications.

The density function of Azzalini’s version of the univariate skew-normal distribution is defined as

(5.2) φ(z;ξ,ω,α)= 2φ(z;ξ,ω)Φ(αz;ξ,ω),

where φ and Φ are the standard normal density function and CDF respectively, and α is the shape

parameter. When α= 0, the distribution reduces to the standard normal distribution N(ξ,ω2).

In this chapter, we focus on fitting the hyperbolic distribution to data which is heavier-tailed

than normal and skewed. In [107], Richard Trendall investigated fitting a linear regression

model to data assuming hyperbolically distributed errors, in the hope of providing a solution for

data that violates the assumption of the standard leasts square model. The basic code in R was

developed by him, however there remained some important matters requiring further research:

• The fitting function has problems finding the maximum values of the log likelihood function.

Although some attempts were made to solve the problem, none of those techniques proved

successful.

• Appropriate studies regarding fitting the hyperbolic linear model to datasets of different

sizes were lacking
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• Studies regarding the suitability of the hyperbolic regression model for modeling real data

were lacking

In this chapter an improved algorithm is proposed and investigated which provides a much more

reliable platform. Hyperbolic linear regression is demonstrated with some real data examples

and the results compared with linear regression models assuming errors from other distributions.

5.1 Methodology

5.1.1 Regression Algorithm

The hyperbolic regression model takes the form of ordinary leasts square regression but instead

of assuming normally distributed errors, it assumes the errors have a hyperbolic distribution.

Then the hyperbolic regression model has the form

(5.3) y= Xγ+ e

where e is a hyperbolic error term with mean 0 and distribution given by

(5.4) e ∼Hyp(µ,δ,α,β),

with

(5.5) E[e]=µ+β
√

δ2

α2 −β2
K2(δ

√
α2 −β2 )

K1(δ
√
α2 −β2 )

= 0.

E[Y ] is set equal to a linear predictor of the form

(5.6) E[Y ]= γ0 +γ1x1 +γ2x2, . . . ,+γnxn.

Since ψ and ζ are more convenient constraints than α and β, the log likelihood is maximized over

the alternative parameterization π=β/
√
α2 −β2 , ζ= δ

√
α2 −β2 .

The hyperbolic distribution has parameters and a fairly complex density function. Therefore

the optimization routine can be fragile without careful consideration. Some innovations were

introduced to stabilize the routine:

• reduce the number of parameters in the optimization routine;

• provide good starting values; and

• use multi-stage optimization.

As (5.5) shows, the mean of the hyperbolic distribution includes the location parameter µ.

Therefore µ is eliminated during the fitting process by first letting

(5.7) S =β
√

δ2

α2 −β2
K2(δ

√
α2 −β2 )

K1(δ
√
α2 −β2 )

.

105



CHAPTER 5. ROBUST LINEAR MODELING USING THE HYPERBOLIC DISTRIBUTION

Then when µ=−S, E(e)= 0.

The likelihood function of the error distribution has the form

L(γ0, . . . ,γn,δ,α,β)=
√
α2 −β2

2δαK1(δ
√
α2 −β2 )

· e−α
∑p

δ2+(yi−γ0−...−γn+S)2 +β∑
(yi−γ0−...−γn+S)(5.8)

so the optimization only involves α,β,δ,γ0, . . . ,γn.

By changing the regression intercept to γ∗0 = γ0 −S, the error distribution for the fitting

process is given by

(5.9) e∗ ∼Hyp(0,δ,α,β)

where E[e∗]= S. After the model has been fitted, the estimate µ̂ of the original error distribution

e is given by −E[e∗]. Also the estimate γ̂0 = γ̂∗0 +E[e∗].

5.1.2 Fitting the Hyperbolic Linear Model

The fitting process consists of two parts: finding the appropriate start values; and maximizing the

log likelihood function. As with most iterative optimizations, the quality of start values, especially

for distribution parameters, is crucial for the success of the optimization routine ([107]). We first

use the QR decomposition to obtain the values for the regression coefficients γ0, . . . ,γn, then the

residuals are fitted using the hyperbFitStand function ([96]) to obtain the start values for the

hyperbolic distribution. This function standardizes the residuals to mean = 0 and variance = 1.

Recall that the hyperbolic distribution is the subclass of the GHyp distribution with λ= 1. The

transformed residuals are then fitted by the standardized GHyp distribution sh(x,ζ,ρ) with λ= 1

as proposed in [96].

Definition 9. The standardized GHyp distribution is defined as

(5.10) sh(x,ζ,ρ)=GHyp(λ,α∗,β∗,δ∗,µ∗)

where (λ,α∗,β∗,δ∗,µ∗) is a fifth parameterization closely related to the second parameteriza-

tion (ζ,ρ) where

α∗ =
{

ζ2

1−ρ2 Kλ(ζ)(1+ ρ2ζ2

1−ρ2∆Kλ(ζ))
}1/2

(5.11)

β∗ =α∗ρ(5.12)

δ∗ = 1
α∗

ζ√
1−ρ2

(5.13)

µ∗ =− 1
α∗

ρζ2

1−ρ2 Kλ(ζ).(5.14)
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The fitting procedure for the start values of the error distribution parameters uses the

maximum likelihood technique. The standardization is beneficial because the standardized hy-

perbolic distribution has fewer parameters than the hyperbolic distribution, i.e. the optimization

dimension is reduced.

The fitted parameters (ζ,ρ) are then transformed back to the unstandardized scale. The start

value of γ∗0 can thus be found by simple calculation. The start values found by this approach

provide a reliable platform for the following optimization.

Once we have obtained the start values, the process proceeds to the second part. As mentioned

in Section 5.1.1, we use a two stage alternating optimization method to optimize the likelihood

function. This approach limits fitting the hyperbolic distribution to residuals only involving the

distribution parameters. This ensures that in cases where the model contains many explanatory

variables, the optimization is still stable. In the first stage, the log likelihood function is optimized

with respect to the regression coefficients given the values of distribution parameters. In the

second stage, the log likelihood function is optimized with respect to the distribution parameters

given the regression coefficient values from the first stage. These two stages alternate until

both reach convergence or the routine exceeds the maximum number of iterations allowed.

The maximum changing ratios rcoef, rparam are used to determine when the routine reaches

convergence. Let γ∗(k)
0 , . . . ,γ(k)

n be the regression coefficient estimates and δ(k),π(k),ζ(k) be the

distribution parameter estimates after the kth iteration. Then

(5.15) rcoef =max


∣∣∣γ∗(k)

0 −γ∗(k+1)
0

∣∣∣
γ∗(k)

0

, . . . ,

∣∣∣γ(k)
n −γ(k+1)

n

∣∣∣
γ(k)

n


and

(5.16) rparam =max

(∣∣δ(k) −δ(k+1)∣∣
δ(k) ,

∣∣π(k) −π(k+1)∣∣
π(k) ,

∣∣ζ(k) −ζ(k+1)∣∣
ζ(k)

)
If rcoef ≤ tolerance then the first stage converges. If rparam ≤ tolerance then the second stage

converges.

There are three optimization methods, using either the optim or the nlm function, imple-

mented in the first stage:

• “Nelder-Mead” An implementation of the Nelder-Mead simplex method which uses the

optim function.

• “BFGS’ A quasi-Newton method, which is also implemented using optim.

• “nlm” The nlm function which is an implementation of the method proposed by Schnabel,

Koontz and Weiss ([90]).

These three approaches were tested and compared with 290 artificial datasets. The datasets

were created by setting the coefficients arbitrarily i.e γ0 = 2000, γ1 =−25 with the error distribu-

tion over a designated parameter range. The tail parameter α and the skewness parameter β
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were determined by choosing values of ψ and χ which range over the shape triangle described for

instance in [85]. The maximum log likelihood values and the percentage error of the coefficient

estimates calculated as

(5.17) εi = γ̂i −γi

γi
×100, i = 0,1,

were compared for the three different optimization methods.
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Figure 5.1: Maximum Likelihood Estimate Differences

Figure 5.1 shows the differences of maximum log likelihood values between each pair of

optimization methods. The difference between maximum log likelihood values estimated by the

Nelder-Mead method and the nlm method are in general greater than zero, likewise the difference

between the Nelder-Mead method and the nlm method, whilst the difference between the BFGS

method and the nlm method is around zero. Thus these three methods estimate somewhat

different maximum log likelihood values for the same dataset.
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Table 5.1: Maximum Percentage Error

γ0 γ1

Nelder-Mead 0.57 0.14

BFGS 3.28 0.44

nlm 1.78 0.26

Table 5.1 shows the maximum percentage errors of 290 datasets. The performance of the

Nelder-Mead method is superior to the other two methods with maximum percentage errors of

only 0.57 and 0.14. Therefore the default method for the hyperblm function is the Nelder-Mead

method.

The second stage uses constrOptim to optimize the log likelihood with constraints δ> 0 and

ζ> 0. The constrOptim function minimizes the objective function subject to linear inequality

constraints using the barrier method with logarithmic barrier function ([75]).

5.1.3 Confidence Intervals of Parameters

Wald’s confidence intervals are implemented to construct the confidence intervals for our coeffi-

cient estimates γ̂i. Wald’s confidence interval for θi is obtained by

(5.18) θ̂i ± tα/2 ∗se(θ̂i)

There are two methods implemented to calculate the standard error se(θ̂i) of the regression

coefficients and the distribution parameters. The first one is by calculating the Hessian matrix
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which is given by ([107])

H11 = n
1−π2

1+π2 + ζ

(1+π2)3/2 t0,−1

H12 = H21 = ζ
[

πp
1+π2

t0,−1 − t1,0

]
H13 = H31 = ζ

[
t1,0 − πp

1+π2
t2,1

]
H14 = H41 = ζ

δ

[
n− πp

1+π2
t1,1

]
H22 = ζ

[
nζS(ζ)−2nR(ζ)+

√
1+π2 t0,−1 −πt1,0

]
H23 = H32 = ζ

[
πt1,0 −

√
1+π2 t2,1

]
H24 = H42 = ζ

δ

[
nπ−

√
1+π2 t1,1

]
H33 = ζ

[√
1+π2

(
2t2,3 + t4,3

)−πt1,0

]
H34 = H43 = ζ

δ

[√
1+π2

(
2t1,3 + t3,3

)−nπ
]

H44 = ζ

δ2

√
1+π2 t0,3

H1(4+ j) = H(4+ j)1

= ζ

δ

n∑
i=1

{
1− πp

1+π2

(yi −E[Y ])/δ[
1+ (yi −E[Y ])2/δ2

]1/2

}
X ji

H2(4+ j) = H(4+ j)2

= ζ

δ

n∑
i=1

{
π−

√
1+π2 (yi −E[Y ])/δ[

1+ (yi −E[Y ])2/δ2
]1/2

}
X ji

H3(4+ j) = H(4+ j)3

= ζ

δ

√
1+π2

n∑
i=1

{
2

(yi −E[Y ])/δ[
1+ (yi −E[Y ])2/δ2

]3/2 + (yi −E[Y ])3/δ3[
1+ (yi −E[Y ])2/δ)2

]3/2

}
X ji

H4(4+ j) = H(4+ j)4

= ζ

δ2

√
1+π2

n∑
i=1

X ji[
1+ (yi −E[Y ])2/δ2

]3/2

H(4+ j)(4+m) = H(4+m)(4+ j)

= ζ

δ2

√
1+π2

n∑
i=1

X ji Xmi[
1+ (yi −E[Y ])2/δ2

]3/2
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where

Rλ(ζ)= Kλ+1(ζ)
Kλ(ζ)

Sλ(ζ)= Kλ+2(ζ)Kλ(ζ)−K2
λ+1(ζ)

K2
λ
(ζ)

tr,k =
n∑

i=1

(yi −E[Y ])r/δr[
1+ (yi −E[Y ])2/δ2

]k/2 .

The Hessian matrix was obtained by Richard Trendall in his thesis ([107]) using the informa-

tion matrix of the hyperbolic distribution given by [13]. Although the Hessian matrix is given

here in analytical form, it has to be approximated numerically as it contains the unknown para-

meters. The function tsHessian from the DistributionUtils package is used in the numerical

approximaton. This estimated Hessian matrix however is not always guaranteed to be positive

definite which was pointed out in [13]. Two solutions are provided for this issue. Firstly, we

use make.positive.definite, an implementation of the EST algorithm proposed by [57] in

1988, from the corpor package, to compute the nearest symmetric positive semidefinite matrix.

Secondly, we implement the bootstrap approach to estimate se(θ̂i). The bootstrap, first proposed

by B. Efron in 1979, is a computer-based method for assigning measures of accuracy to statistical

estimates([42]). The parametric bootstrap method is set out as

1. Generate a random sample the same size y from the estimated hyperbolic error distribution

eB ∼Hyp(µ̂, δ̂, α̂, β̂)

2. Let yB = xiγ̂I + eB

3. Recalculate the maximum likelihood values which are considered to be the bootstrap

estimates (γ̂1B, . . . , γ̂nB, µ̂B, δ̂B, α̂B, β̂B)

4. Repeat the above three procedures until the bootstrap sample size for the maximum

likelihood estimates is reasonable.

The parametric bootstrap approach is inefficient but more reliable than the estimation of the

Hessian matrix. For this reason it is set as the default method for the summary function.

5.2 Applications

Three real data examples are provided here to demonstrate the regression with hyperbolic errors

functions. The first one is the classic stack loss data which is obtained from 21 days of operation

of a plant for the oxidation of ammonia (NH3) to nitric acid (HNO3). The nitric oxides produced

are absorbed in a countercurrent absorption tower (source [28]). The second one fits the linear

model with hyperbolic errors to data on 349 nursing facilities in the state of Wisconsin in the cost

report year 2001 (source [46]). The third one derives a capital asset pricing model (CAPM) for the

Apple daily closing share price from January 2004 to December 2010.

111



CHAPTER 5. ROBUST LINEAR MODELING USING THE HYPERBOLIC DISTRIBUTION

5.2.1 Stack-Loss Data

The stack loss data has 4 attributes as shown in Table 5.2.

Table 5.2: Stack-Loss Data

Variable Name Description

stack.loss Stack loss
airflow Flow of cooling air
temperature Cooling Water Inlet Temperature
acid Concentration of acid (per 1000, minus 500)
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Figure 5.2: Histogram of Stack-Loss

As Figure 5.2 indicates, the response variable stack.loss is fairly right skewed with some

notably large values. The sample size is small (n = 21), and the normal assumption is not

appropriate. The result of fitting the hyperbolic model is as below:

HModel1 <− hyperblm ( stack . l oss ∼ air f low + temperature + acid )
summary . hyperblm (HModel1 )

Call :
hyperblm ( formula = stack . l oss ∼ air f low + temperature + acid )

112



5.2. APPLICATIONS

Data : ( Intercept ) a ir f low temperature acid
Parameter estimates :

Estimate Std . Error t value Pr(>| t |)
( Intercept ) −36.979982 15.218735 −2.4299 0.029149 *
air f low 0.812946 0.083668 9.7163 1.333e−07 ***
temperature 0.764824 0.241937 3.1613 0.006935 **
acid −0.124650 0.154007 −0.8094 0.431838
−−−
Signi f . codes : 0 ’ *** ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Error d is t r ibut ion parameter estimates :
Estimate Std . Error

mu −1.07157 1.0802
delta 0.19049 0.0631
alpha 0.55297 0.1861
beta 0.17378 0.2182

Likelihood : −51.06739
Method : Nelder−Mead
Convergence code : 0
I terat ions : 6

The hyperbolic model indicates that airflow and temperature are significant explanatory

variables. [76] showed that fitting the t model with estimated parameter ν̂ = 1.1 to the data

significantly improves the fit (likelihood ratio chi-squared statistic 5.44 on 1 df) compared to the

normal model, even though the asymptotic theory can not be trusted due to the small sample

size.

We first examine the hyperbolic regression fit in Figure 5.3 and compare it with two other

commonly used robust linear regression models briefly discussed at the beginning of this chapter.

The result of fitting the skew-normal model is as below:

SNModel1 <− selm ( stack ∼ air f low + temperature + acid ,
family = “SN” , data = stackloss )

summary(SNModel1 )
Call : selm ( formula = stack ∼ air f low + temperature + acid ,

family = “SN” , data = stackloss )
Number of observations : 21
Family : SN
Estimation method : MLE
Log−l ike l ihood : −52.1665
Parameter type : CP

CP residuals :
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Min 1Q Median 3Q Max
−7.76985 −1.73646 −0.09243 2.52069 5.77425

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .CP) −43.2057 14.0553 −3.0740 0.002
air f low 0.7550 0.1316 5.7368 0.000
temperature 1.2446 0.3382 3.6797 0.000
acid −0.1293 0.1555 −0.8318 0.406

Parameters of the SEC random component
estimate std . err

s . d . 2.9292 0.480
gamma1 −0.3192 0.712

The result of fitting the skew-t model is as below:

STModel1 <− selm ( stack ∼ air f low + temperature + acid ,
family = “ST” , data = stackloss )

summary( STModel1 , param = “DP” )
Call : selm ( formula = stack ∼ air f low + temperature + acid ,

family = “ST” , data = stackloss )
Number of observations : 21
Family : ST
Estimation method : MLE
Log−l ike l ihood : −49.48134
Parameter type : DP

DP residuals :
Min 1Q Median 3Q Max

−9.3351 −0.7363 0.3578 0.9613 8.3121

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .DP) −38.05630 3.79218 −10.03546 0.000
air f low 0.85841 0.05779 14.85283 0.000
temperature 0.47576 0.14895 3.19399 0.001
acid −0.07926 0.05765 −1.37484 0.169

Parameters of the SEC random component
estimate std . err

omega 0.9824 0.446
alpha 0.2823 0.702
nu 1.1367 0.531
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Figure 5.4 illustrates the result of fitting the skew-normal model while Figure 5.5 illustrates

the result of fitting the skew-t model.
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Figure 5.3: Stack-Loss Residual Plot and Q-Q Plot of Hyperbolic Model

The residual plot of Figure 5.4 shows that the skew-normal model is not an appropriate model

for stack loss data as the skew-normal distribution density curve does not capture the spike in

the residuals. The residual plots of Figure 5.3 and Figure 5.5 reveal that the hyperbolic and

skew-t models provide much more satisfactory fitting results

The Q-Q plots of Figure 5.3 and 5.5 illustrate that the fitting results are fairly comparable

between the hyperbolic model and skew-t model, although the hyperbolic model appears to have

a slightly better fit.

We next compare the log-likelihood of the hyperbolic model with the t models in [76], i.e. the t

model with estimated ν̂= 1.1, as well as the skew-normal and skew-t model.
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Figure 5.4: Stack-Loss Residual Plot and Q-Q Plot of Skew-Normal Model

Table 5.3: Summary Log-Likelihood of Hyperbolic Model, Skew-Normal Model, Skew-t Model and

t Model

Hyperbolic Skew-Normal Skew-t t
Log-likelihood −51.1 −52.2 −49.5 −30.3

From the result in Table 5.3, we can conclude that the performances of the hyperbolic model,

the skew-normal model and the skew-t model are comparable, however the t model proposed in

[76] appears to obtain a significantly better result. It is possible that the t distribution fits better

here because it can have heavier tails than the hyperbolic.

5.2.2 Wisconsin Nursing Homes

The Wisconsin nursing facilities finance data has 10 attributes, shown in Table 5.4.

As Figure 5.6 indicates, the response variable TPY is fairly right skewed and exhibits a

long tail, therefore the normal distribution assumption is not appropriate. There are several

approaches for fitting a heavy tail regression model to this dataset that are discussed and
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Figure 5.5: Stack-Loss Residual Plot and Q-Q Plot of Skew-t Model

Table 5.4: Wisconsin Nursing House Finance Data

Variable Name Description
TPY Total patient years
SqrFoot Square footage of the nursing home
Urban 1 if urban, 0 if rural
Pro 1 if for profit, 0 for non-profit
TaxExempt 1 if tax-exempt
SelfIns 1 if self-funded for insurance
MCert 1 if Medicare certified
NumBed Number of beds

compared in [46]. Those approaches include fitting generalized linear models directly to the

data using the gamma distribution and the inverse Gaussian distribution. Both models use

the logarithmic link function. From the result of these fitted generalized linear models, the

variable ln(NumBed) is identified as an offset variable. [46] points out that the response variable

TPY can be rescaled by the offset variable as an alternative modeling strategy. In addition, the

modified accelerated failure time (AFT) model is proposed which is a log location-scale model.

The response variable y is scaled as ln(y) = µ+θ ln(y0) where y0 has a standard distribution,
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Histogram of Total Patients Year
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Figure 5.6: Histogram of total patient years

the Weibull, lognormal, and log-logistic distributions being commonly used. In [46], the gamma

distribution and the ratio of two gamma distributions have been used in attempting to fit y0. This

is equivalent to fitting y with the generalized gamma distribution and the generalized beta of

the second kind of distribution (GB2) respectively. This AFT model is applied to the transformed

response variable defined as

(5.19) Occupancy Rate= TPY
NumBed

×100

The annual occupancy rate, shown in Figure 5.7, is fairly left skewed and still exhibits a fairly

long tail.
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Histogram of Occupancy Rate
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Figure 5.7: Histogram of Annual Occupancy Rate

Table 5.5: Goodness-of-fit Statistics of Gamma Model, Inverse Gaussian Model, Generalized

Gamma Model and GB2 Model

Gamma Inverse Gaussian Generalized Gamma GB2

Log-likelihood −1131.24 −1218.15 −1148.135 −1098.723

AIC 2280.47 2454.31 2316.270 2219.446

BIC 2315.17 2489.00 2319.296 2223.822

GB2 is recommended to be the best fitting model from the goodness-of-fit test. However none

of the explanatory variables is significant and the Q-Q plot shows some discrepancies for smaller

values of nursing homes total patient years ([46]). These shortcomings motivate us to fit the

hyperbolic regression model to the data. We will only consider TPY as a response variable. This

is because we do not use the logarithm link function in our model as the expected value of TPY is

no longer proportional to NumBed. We then compare the result with not only the models in [46]

but also the other two commonly used robust linear regression models briefly discussed at the

beginning of this chapter. The first one assumes the residuals have a skew-t distribution and the

second one assumes the residuals have a skew-normal distribution. The results of the hyperbolic

regression fit are below.
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Hmodel2 <− hyperblm (TPY ∼ NumBed + SqrFoot +
Pro + TaxExempt + Sel fIns + MCert + Urban)

summary . hyperblm (HModel2 )

Call :
hyperblm ( formula = TPY ∼ NumBed + SqrFoot + Pro +
TaxExempt + Sel fIns + MCert + Urban)

Data : ( Intercept ) NumBed SqrFoot Pro TaxExempt Sel fIns
MCert Urban

Parameter estimates :
Estimate Std . Error t value Pr(>| t |)

( Intercept ) −4.1614496 1.3284844 −3.1325 0.0018844 **
NumBed 0.9505878 0.0053565 177.4631 < 2.2e−16 ***
SqrFoot 0.0283823 0.0079530 3.5687 0.0004104 ***
Pro 0.8147273 0.5506125 1.4797 0.1398888
TaxExempt 2.0240248 0.5867299 3.4497 0.0006321 ***
Sel f Ins −0.2384328 0.5730197 −0.4161 0.6776010
MCert −1.0940438 0.9683832 −1.1298 0.2593747
Urban −0.2276561 0.5385584 −0.4227 0.6727720
−−−
Signi f . codes : 0 ’ *** ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Error d is t r ibut ion parameter estimates :
Estimate Std . Error

mu 3.62913 0.6054
delta 0.43089 0.2013
alpha 0.25649 0.0208
beta −0.10922 0.0238

Likelihood : −1085.666
Method : Nelder−Mead
Convergence code : 0
I terat ions : 5

The explanatory variables NumBed, SqrFoot and TaxExempt are statistically significant. In

[46], the gamma model has variables NumBed and SqrFoot as statistically significant whereas

the inverse Gaussian model only has variable NumBed as significant. When the occupancy rate is

considered as a response variable, the generalized gamma model has two significant variables

and the GB2 has none. This is explained by Edward Frees as the occupancy rate being rescaled

by NumBed, a very important explanatory variable ([46]). Consequently, the hyperbolic regression

model appears to be more able to identify explanatory variables which are statistically significant.
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To further assess the fit of the model, we explore the residual plots. Figure 5.8 shows the residuals

from the hyperbolic regression model. The left-hand panel shows the histogram of residuals with

the fitted density curve overlaid. The right-panel shows the Q-Q plot of residuals. The density

curve captures the peaked-ness and skewness of the residual histogram which indicates that our

assumption the error has a hyperbolic distribution is fairly reasonable. The Q-Q plot shows that

the hyperbolic regression model fits reasonably well without any obvious discrepancies for the

smaller values of nursing home occupancy, as occurred in GB2 ([46]).

Histogram of residuals

residuals

pr
ob

ab
ili

ty
 d

en
si

ty

−60 −20 0 20 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

●
●

●

●
●
●
●
●●●

●●●
●
●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●

●●●
●

●

−40 −20 0 10 20

−6
0

−4
0

−2
0

0
20

Q−Q Plot

Hyperbolic quantiles

re
si

du
al

s 
qu

an
til

es

Figure 5.8: Total Patient Years Residual Plot and Q-Q Plot of Hyperbolic Model

As mentioned in the beginning of this Chapter, the alternative possible approaches are to

fit the data with a linear model using a skew-normal distribution or a skew-t distribution. We

apply the two approaches that are implemented in the sn package. Since neither of them use the

logarithm link function, we will only consider TPY as a response variable again.

The result of fitting the skew-normal model is as below.

SNModel2 <− selm ( tpy ∼ numbed + sqr foot + pro +
taxexempt + s e l f + mcert + urban ,
family = “SN” )

summary(SNModel2 )
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Call : selm ( formula = tpy ∼ numbed + sqr foot + pro +
taxexempt + s e l f + mcert + urban , family = “SN” )

Number of observations : 350
Family : SN
Estimation method : MLE
Log−l ike l ihood : −1155.291
Parameter type : CP

CP residuals :
Min 1Q Median 3Q Max

−63.108 −1.714 1.897 4.715 31.418

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .CP) −1.91901 1.65947 −1.15640 0.248
numbed 0.91403 0.01214 75.26918 0.000
sqr foot 0.07801 0.01882 4.14513 0.000
pro −0.99799 1.34738 −0.74069 0.459
taxexempt −0.41819 1.33994 −0.31209 0.755
s e l f 0.41757 0.69263 0.60288 0.547
mcert −0.92883 1.18338 −0.78489 0.433
urban −1.09292 0.69412 −1.57455 0.115

Parameters of the SEC random component
estimate std . err

s . d . 6.8356 0.273
gamma1 −0.6078 0.062

The result of fitting the skew-t model is as below.

STModel2 <− selm ( tpy ∼ numbed + sqr foot + pro +
taxexempt + s e l f + mcert + urban ,
family = “ST” )

summary( STModel2 , param = “DP” )
Call : selm ( formula = tpy ∼ numbed + sqr foot + pro +

taxexempt + s e l f + mcert + urban , family = “ST” )
Number of observations : 350
Family : ST
Estimation method : MLE
Log−l ike l ihood : −1066.539
Parameter type : DP

DP residuals :
Min 1Q Median 3Q Max
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−71.573 −7.575 −3.697 −1.308 30.733

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .DP) 0.632695 1.062947 0.595227 0.552
numbed 0.955995 0.009754 98.012556 0.000
sqr foot 0.020540 0.013998 1.467410 0.142
pro 0.761488 0.928861 0.819809 0.412
taxexempt 2.152746 0.884676 2.433373 0.015
s e l f −0.179110 0.418299 −0.428188 0.669
mcert −0.767969 0.689802 −1.113318 0.266
urban −0.221257 0.419326 −0.527648 0.598

Parameters of the SEC random component
estimate std . err

omega 4.991 0.524
alpha −2.431 0.647
nu 2.583 0.413

Figure 5.9 indicates that the skew-normal distribution assumption is not appropriate as the

fitted skew-normal distribution does not capture the spike in the histogram at all and there are

some discrepancies for larger values of nursing homes total patient years. The skew-t distribution,

Figure 5.10, on the other hand, offers a reasonable solution to TPY as a response variable.
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Figure 5.9: Total Patient Years Residual Plot and Q-Q Plot of Skew-Normal Model
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Figure 5.10: Total Patient Years Residual Plot and Q-Q Plot of Skew-t Model

To further compare the fit of the two models, Table 5.6 summarizes the goodness-of-fit

statistics, residual sum of square (RSS) and R2 = 1−RSS/TSS for each model.

Table 5.6: Summary Goodness-of-Fit Statistics of Hyperbolic Model, Skew-Normal Model and

Skew-t Model

Log-likelihood AIC BIC RSS R2

Hyperbolic Distribution −1085.666 2185.332 2212.318 20326.87 0.9759

Skew-Normal Distribution −1155.308 2324.616 2351.602 36763.77 0.9563

Skew-t Distribution −1066.539 2147.078 2174.064 30319.25 0.964

From Table 5.6, the skew-t distribution fits slightly better but is still comparable with the

hyperbolic regression from goodness-of-fit statistic perspective. However the RSS of the hyperbolic

regression model is significantly smaller than the RSS of the skew-t distribution. As a result,

the hyperbolic regression model explains slightly more variation in the data (97.6% > 96.4%).

For these reasons, we consider the hyperbolic regression as having comparable fit to skew-t

regression.
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5.2.3 Capital Asset Pricing Model

The CAPM, still widely used in applications such as estimating the cost of capital for firms and

evaluating the performance of managed portfolio, ([45]) is defined as

(5.20) E(Ri)= R f +βi[E(Rm)−R f ]

where E(Ri) is the expected return on the capital asset and R f is the risk-free rate of interest.

The coefficient βi, the so called market beta, is the sensitivity of the expected excess asset returns

to the expected market returns and can be found using the regression. In the example, we will

apply the CAPM to the Apple daily log returns, to estimate the market beta for Apple share

prices. We take the S&P 500 as the market price and use three-month T-bills rates as risk free

returns. The log returns are found by differencing the log closing prices, and the excess returns

are the log-returns minus the T-bill rates.
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Figure 5.11: Histogram of Apple Daily Log Return

As Figure 5.11 shows, the Apple daily log return is roughly symmetric with a fairly large

spike. This peaked-ness indicates our hyperbolic regression may be appropriate for this data. We

again will compare the fitting result with the skew-normal and skew-t distribution models. The

result of fitting the hyperbolic regression model is as below.
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APPLEdf <− log (APPLE[ 2 : length (APPLE) ] ) −
log (APPLE[ 1 : ( length (APPLE) −1) ] ) − T b i l l da i l y [−1]
SPdf <− log (SP[ 2 : length (SP ) ] ) − log (SP [ 1 : ( length (SP) −1) ] ) −
T b i l l da i l y [−1]
HModel3 <− hyperblm (APPLEdf ∼ SPdf )
summary . hyperblm (HModel3 )

Call :
hyperblm ( formula = APPLEdf ∼ SPdf )

Data : ( Intercept ) SPdf
Parameter estimates :

Estimate Std . Error t value Pr(>| t |)
( Intercept ) −0.00184758 0.00051229 −3.6065 0.000319 ***
SPdf 1.10749379 0.02739605 40.4253 < 2.2e−16 ***
−−−
Signi f . codes : 0 ’ *** ’ 0.001 ’ * * ’ 0.01 ’ * ’ 0.05 ’ . ’ 0 .1 ’ ’ 1

Error d is t r ibut ion parameter estimates :
Estimate Std . Error

mu 0.0017864 0.0015
delta 0.0014672 0.0002
alpha 68.1913991 1.9698
beta −2.1834686 5.5566

Likelihood : 4471.55
Method : Nelder−Mead
Convergence code : 0
I terat ions : 2

The intercept γ0 is significant which contrasts with CAPM’s assumption that γ0 = 0. This

indicates the Apple asset is mis-priced according to CAPM. The SPdf is significant as well, which

means the market beta β j is significant: it is less than the CAPM expectation. We next explore

residual plots to assess the model further. Although the Q-Q plot in Figure 5.12 shows some

discrepancies for small values of daily log returns, the fitted density curve closely follows the

residual histogram. The fitting result seems satisfactory.
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Figure 5.12: Apple Residual Plot and Q-Q Plot of Hyperbolic Model

After applying the skew-normal and skew-t distribution models to the data, we first present

the fitting result of both models. Firstly the skew-normal model:

SNModel3 <− selm (APPLEdf ∼ SPdf , family = “SN” )
summary(SNModel3 )
Call : selm ( formula = APPLEdf ∼ SPdf , family = “SN” )
Number of observations : 1762
Family : SN
Estimation method : MLE
Log−l ike l ihood : 4337.489
Parameter type : CP

CP residuals :
Min 1Q Median 3Q Max

−0.131376 −0.010082 0.001306 0.010893 0.137501

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .CP) −0.0020537 0.0004955 −4.1446933 0
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SPdf 1.0781871 0.0359158 30.0198271 0

Parameters of the SEC random component
estimate std . err

s . d . 0.02074 0.000
gamma1 −0.21968 0.037

Next, the result of fitting the skew-t model is as below.

STModel3 <− selm (APPLEdf ∼ SPdf , family = “SN” )
summary( STModel3 , param = “DP” )
Call : selm ( formula = APPLEdf ∼ SPdf , family = “ST” )
Number of observations : 1762
Family : ST
Estimation method : MLE
Log−l ike l ihood : 4472.004
Parameter type : DP

DP residuals :
Min 1Q Median 3Q Max

−0.136869 −0.015241 −0.004012 0.005600 0.132646

Regression c o e f f i c i e n t s
estimate std . err z−rat i o Pr{>|z |}

( Intercept .DP) 0.003246 0.001424 2.279974 0.023
SPdf 1.099107 0.033392 32.914823 0.000

Parameters of the SEC random component
estimate std . err

omega 0.01448 0.001
alpha −0.35597 0.121
nu 3.40117 0.319

We then plotted the residual plots for those two models. The residual plots of Figure 5.13

and 5.14 show that neither of two fitted density curves successfully captures the peaked-ness of

the data. The Q-Q plots of Figure 5.13 and 5.14 in addition show some obvious discrepancies for

larger values of Apple daily log return. For these reasons, the hyperbolic model seems to perform

better than the other two models.
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Figure 5.13: Apple Residual Plot and Q-Q Plot of Skew-Normal Model
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5.2. APPLICATIONS
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Figure 5.14: Apple Residuals Plot of and Q-Q Plot of Skew-t Distribution

To compare the fitting results further, goodness-of-fit statistics are summarized in the Ta-

ble 5.7. The skew-t distribution again obtains similar AIC and BIC values to the hyperbolic

regression. However the residual sum of square of the hyperbolic regression is smaller, therefore

the model explains more of the variation in the data. In summarizing all the findings from the

plots, we believe it is evidently seen that the hyperbolic regression model has the better fitting

result than skew-normal regression model and has the slightly better fitting result as skew-t

regression model.

Table 5.7: Summary Goodness-of-Fit Statistics of Hyperbolic Model, Skew-Normal Model and
Skew-t Model

Log-likelihood AIC BIC RSS R2

Hyperbolic 4471.55 −8941.1 −8935.626 0.7706 0.3182
Skew-Normal 4337.487 −8672.974 −8667.5 1.2456 −0.1021
Skew-t 4472.004 −8942.008 −8936.534 0.8160 0.278
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CHAPTER 5. ROBUST LINEAR MODELING USING THE HYPERBOLIC DISTRIBUTION

5.3 Conclusion

In this chapter, the hyperbolic regression model as an alternative approach for parametric robust

regression. The examples in Section 5.2 illustrate the hyperbolic model provides a better fitting

result to heavy tailed and skewed data than the skew-normal model and performs comparably

with the skew-t model.

Apart from the usefulness of the model itself, the approach of implementing hyperbolic model

can also be adapted for the NIG distribution as well. Recall that as discussed in Chapter 1,

the NIG distribution is also a subclass of the GHyp distribution with λ=−1/2 and it appears

more tractable than the hyperbolic distribution. However the approach may not suitable for the

skew hyperbolic Student-t and GHyp distribution. The former unsuitability is because the skew

hyperbolic Student-t distribution does not always have moments therefore the standardization

procedure will not work while the latter distribution has five parameters which may cause the

optimization procedure to be unstable.
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CONCLUSIONS AND FUTURE WORK

The main purpose of my research was to investigate potential solutions for computational prob-

lems arising in the use of the GHyp distribution, the hyperbolic distribution and the skew

hyperbolic Student-t distribution in statistical applications, in particular using R. The investiga-

tion includes a combination of reviewing/comparing the existing potential solutions and proposing

and investigating new approaches summarized as follows:

Chapter 2
In this chapter, I investigated algorithms for general routine tasks for any univariate uni-

modal continuous distribution by means of numerical calculation, and modifications to an

existing incomplete Bessel function approximation method to deal with overflow/underflow

concerns.

Chapter 3
New algorithms for approximating the CDF and quantile function of the GHyp distribution

and the CDF of the skew hyperbolic Student-t distribution were proposed and investigated

in this chapter.

Chapter 4
Chapter 4 was mainly devoted to reviewing and comparing existing proposed random

number generation approaches for the GIG distribution and the hyperbolic distribution.

Chapter 5
Although the basic idea of linear modeling with hyperbolic distribution errors is from [107],

I proposed and investigated a new approach in Chapter 5 for performing hyperbolic linear

regression that is superior to the approach used in [107]. In addition, hyperbolic linear

regression using the proposed approach was shown to perform satisfactorily for real data.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In the thesis, the problems that have been addressed are:

• The current methods of approximating the GHyp distribution CDF and quantile function

are inefficient, lack flexibility and are not particular accurate. To remedy these, I

– Improved the CDF approximation approach which breaks the distribution curve into

2 regions instead of 8 to perform the required numerical integration. The CDF is no

longer set to 1 or 0 for any density < 10−5 in the upper or lower tail. Instead, the new

and improved CDF approximation approach calculates the exact value.

– Proposed a quantile function approximation algorithm which consists of two ap-

proaches, numerical integration and spline interpolation, to increase accuracy, flex-

ibility and efficiency. Using the spline interpolation approach, the time taken to

approximate quantiles is significantly shortened compared to the numerical integra-

tion approach. However using the numerical integration approach, the approximation

result is more accurate.

• The existing approach to approximate the skew hyperbolic Student-t distribution CDF

fails badly when the quantiles are in the distribution’s polynomial tail. I proposed a new

approach which transforms the density function using the split-t transformation prior to

approximating it numerically. This new approach was shown to perform reasonably well

for most regions of the distribution including the polynomial tail, even if the required

distribution is extremely skewed, i.e. ν= 0.5.

• The performance of the ratio of uniforms with shifted mode approach to generate random

variates under the GIG distribution declines substantially when β→ 0 and λ→ 0. By

reviewing and implementing 6 other approaches, including 3 for all parameter spaces

and 3 for parameters with restricted domain, I concluded the best approach to generating

observations from the GIG distribution is to use the ratio of uniforms with shifted mode

approach when λ≥ 1 or β>min[1/2,2/(3
p

1−λ )] and Hörmann’s rejection sampling method

when 0<λ< 1 and β≤min[1/2,2/(3
p

1−λ )].

I then concluded mixing the GIG distributed random variate generated by this approach

and normally distributed random variates performs best for the GHyp distribution.

For the hyperbolic distribution, I compared mixing the GIG distributed random variates

generated by the ratio of uniforms with shifted mode approach and normally distributed

random variates and 2 other approaches, namely the TDR approach with or without

squeeze function. From the comparison, I concluded that mixing the GIG distributed

random variates generated by the ratio of uniforms with shifted mode approach and

normally distributed random variates to generate the hyperbolic distribution is superior to

the other methods.
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• Linear modeling with hyperbolic distribution errors provides an alternative solution to

robust regression for skewed, heavy tailed data. However the published fitting function

hyperbFit is not reliable when fitting models with more than two explanatory variables. I

proposed the use of a two stage alternating optimization method to optimize the likelihood

function. This approach stabilized the fitting process and the improved function hyperblm

can be applied to model real data as well as simulated data. By comparing hyperbolic

linear regression with other robust modeling approaches, I concluded that hyperbolic linear

regression is comparable to linear regression with skew-t distribution errors, and superior

to other approaches I examined.

Apart from the valuable results from my research, there are some areas that require further

investigation.

• The split-t transformation proposed to approximate the skew hyperbolic Student-t distribu-

tion CDF can compute a probability as small as 10−4. There still remains the problem of

tail probability calculation in the extreme tails of this distribution that requires further

research.

• Confidence intervals for the coefficients in linear hyperbolic regression are calculated by

either the bootstrap method or computing the nearest symmetric positive semidefinite

Hessian matrix as the Hessian matrix is not always positive definite. Further research,

such as profile log likelihood, is required to remedy this as the bootstrap method is not

efficient.

• As mentioned in Chapter 5, the approach used for implementing hyperbolic linear regres-

sion can also be adapted for the NIG distribution.
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APPENDIX: SOURCE FUNCTIONS

A.1 Utility Functions

A.1.1 moranTest Function

moranTest <− function ( x , densFn , alpha , param = NULL, . . . ) {

## Purpose : The function implements a goodness f i t tes t
## using Moran ’ s log spacings s t a t i s t i c .
##
## ======================================================
## Arguments : x , Vector o f random generated numbers under
## tested d is t r ibut ion
## densFn , The root name of the d is t r ibut ion
## to be tested
## alpha , Quantile o f the Chi−square d is t r ibut ion
## param , A vector giving the parameter values for the
## d is t r ibut ion spec i f i ed by \ t e x t t t { densFn } .
## I f no \ t e x t t t {param} values
## are spec i f ied , then the default
## parameter values of each
## d is t r ibut ion are used instead .
## . . . , Additional arguments to allow
## s p e c i f i c a t i o n of the
## parameters o f the d is t r ibut ion
## other than spec i f i ed by param .

i f ( missing ( densFn ) | ! ( is . function ( densFn ) | is . character ( densFn ) ) )
stop ( " ’ densFn ’ must be supplied as a function or name" )
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CALL <− match . call ( )

pfun <− match . fun ( paste ( "p" , densFn , sep = " " ) )

i f ( is . null (param) ) {
y <− sort ( pfun ( x , . . . ) )
l <− l i s t ( . . . )
k <− length ( l )

}
else {

y <− sort ( pfun ( x , param = param , . . . ) )
k <− length (param)

}

## Calculate M
M <− sum( log ( diff (unique ( y ) ) ) , na .rm=TRUE)
i f ( y [ length ( y ) ] == 1) {

M <− −(M + log ( y [ 1 ] ) )
}
i f ( y [ length ( y ) ] ! = 1) {

M <− −(M + log ( y [ 1 ] ) + log (1 − y [ length ( y ) ] ) )
}
i f (M == Inf ) {

M <− 0
}

## Calculate T
n <− length ( x )
m <− n + 1

ym <− m* ( log (m) − digamma( 1 ) ) − 1 / 2 − 1 / (12*m)
sm <− m* ( pi^2 / 6 − 1) − 1 / 2 − 1 / (6 *m)

C1 <− ym − sm^0.5* ( 0 .5 *n) ^0.5
C2 <− sm^0.5* (2 *n) ^−0.5

i f (M == 0) {
T <− 0

}
else {

T <− (M + k / 2 − C1) /C2
}
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## Goodness−of− f i t Test
tes t <− T > qchisq ( alpha , df=length ( x ) )
return ( t es t )

}

A.1.2 distStepSize Function

distStepSize <− function ( densFn , dist ,
param = NULL, side = c ( " r ight " , " l e f t " ) , . . . ) {

## Purpose : Determine step s ize for ca lcu lat ing the range
## of a unimodal d i s t r ibut ion
## =========================================================
## Arguments : densFn , The name of the density function for which
## the step s ize needs to be calculated .
## dist , Current distance value , f or skew hyperbolic
## d is t r ibut ion only .
## param , parameter vector o f the d is t r ibut ion
## side , " r ight " for a step to the right ,
## " l e f t " f or a step to the right .
## . . . , Passes arguments in part icular the
## parameters o f the d is t r ibut ion to
## random sample generation function .

set . seed (123)
rfun <− match . fun ( paste ( " r " , densFn , sep = " " ) )
s ide <− match . arg ( side )

# Generate a random sample
n <− 50
i f ( is . null (param) ) {

sample <− rfun (n , . . . )
} else {

sample <− rfun (n , param = param)
}

# Approximated the empirical median
mid <− median(sample )

# Special arrangement of skew hyperbolic
# Student ’ s t d i s t r ibut ion

i f ( densFn == "skewhyp" ) {
l <− l i s t ( . . . )
delta <− i felse ( is . null (param) , l $delta , param [ 2 ] )
nu <− i felse ( is . null (param) , l $nu , param [ 4 ] )
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beta <− i felse ( is . null (param) , l $beta , param [ 3 ] )
i f ( beta > 0) {
step <− i felse ( s ide == " l e f t " , delta ,

delta *abs ( beta ) * (nu* dis t ) ^(−2 / nu) )
}
i f ( beta < 0) {

step <− i felse ( s ide == " r ight " , delta ,
delta *abs ( beta ) * (nu* dis t ) ^(−2 / nu) )

}
i f ( isTRUE( all . equal ( beta , 0) ) ) {

step <− exp ( d i s t / nu)
}

step <− c ( step , mid )
} else {

quans <− as . vector ( quantile (sample , probs = c (0 .25 , 0 .75) ) )
step <− i felse ( s ide == " l e f t " , mid − quans [ 1 ] ,

quans [ 2 ] − mid )
step <− c ( step , mid )

}
return ( step )

}

A.1.3 distMode Function

distMode <− function ( densFn , param = NULL, . . . ) {

## Purpose : Approximate the mode of a unimodal d i s t r ibut ion
## =========================================================
## Arguments : densFn , The name of the density function
## for which the mode needs to be calculated .
## param , parameter vector o f the d is t r ibut ion
## . . . , Passes arguments to optimize function .

dfun <− match . fun ( paste ( "d" , densFn , sep = " " ) )
i f ( densFn == "skewhyp" ) {

l <− l i s t ( . . . )
delta <− i felse ( is . null (param) , l $delta , param [ 2 ] )

} else delta <− 0
median <− distStepSize ( densFn , param = param ,

d is t = delta , side = " l e f t " , . . . ) [ 2 ]
i f ( is . null (param) ) {

modefun <− function ( x ) {
log ( dfun ( x , . . . ) )

}
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} else {
modefun <− function ( x ) {

log ( dfun ( x , param = param) )
}

}
stepHigh <− distStepSize ( densFn , param = param ,

d is t = delta , side = " r ight " , . . . ) [ 1 ]
xHigh <− median + stepHigh
i f ( densFn == "skewhyp" ) {

i f ( is . null (param) ) {
while ( dfun ( xHigh , . . . ) > dfun (median , . . . ) ) {

xHigh <− xHigh +
distStepSize ( densFn , param = param ,

d is t = delta , side = " r ight " , . . . ) [ 1 ]
}

} else {
while ( dfun ( xHigh , param = param) > dfun (median , param = param) ) {

xHigh <− xHigh +
distStepSize ( densFn , param = param ,

d is t = delta , side = " r ight " , . . . ) [ 1 ]
}

}
} else {

i f ( is . null (param) ) {
while ( dfun ( xHigh , . . . ) > dfun (median , . . . ) ) {

xHigh <− xHigh + stepHigh
}

} else {
while ( dfun ( xHigh , param = param) > dfun (median , param = param) ) {

xHigh <− xHigh + stepHigh
}

}
}
stepLow <− distStepSize ( densFn , param = param ,

d is t = delta , side = " l e f t " , . . . ) [ 1 ]
xLow <− median − stepLow
i f ( densFn == "skewhyp" ) {

i f ( is . null (param) ) {
while ( dfun (xLow, . . . ) > dfun (median , . . . ) ) {

xLow <− xLow −
distStepSize ( densFn , param = param ,

d is t = delta , side = " l e f t " , . . . ) [ 1 ]
}

} else {
while ( dfun (xLow, param = param) > dfun (median , param = param) ) {

xLow <− xLow −
distStepSize ( densFn , param = param ,
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dis t = delta , side = " l e f t " , . . . ) [ 1 ]
}

}
} else {

i f ( is . null (param) ) {
while ( dfun (xLow, . . . ) > dfun (median , . . . ) ) {

xLow <− xLow − stepLow
}

} else {
while ( dfun (xLow, param = param) > dfun (median , param = param) ) {

xLow <− xLow − stepLow
}

}
}
range <− c (xLow, xHigh )
optResult <− optimize ( f = modefun , interval = range ,

maximum = TRUE)
mode <− optResult$maximum
mode

}

A.1.4 pDist Function

pDist <− function ( densFn = "norm" , q , param = NULL,
subdivis ions = 100 , lower . t a i l = TRUE,
log . p = FALSE,
intTol = .Machine$double . eps ^0.25 ,
valueOnly = TRUE, . . . ) {

## Purpose : Implement general d i s t r ibut ion function evaluating
## approach
## =========================================================
## Arguments : densFn , The root name of the d is t r ibut ion
## to be tested
## q , Vector o f quanti les
## param , parameter vector o f the d is t r ibut ion
## subdivision , The maximum number of subintervals
## of Integrate function
## lower . ta i l , I f lower . t a i l = TRUE, the cumulative
## density i s taken from the lower t a i l
## intTol , integrate function accuracy requested
## valueOnly , I f valueOnly = TRUE c a l l s to pDist
## only return the value obtained for the
## integra l . I f valueOnly = FALSE an
## estimate of the accuracy of the
## numerical integrat ion i s also
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## returned
## . . . , Passes addit ional arguments to integrate ,
## distMode or distCalcRange functions .
## In particular , the parameters o f
## the d is t r ibut ion

CALL <− match . call ( )
dfun <− match . fun ( paste ( "d" , densFn , sep = " " ) )
mode <− distMode ( densFn , param = param , . . . )
## match the density function for d i f f e r e n t d is t r ibut ion
qLess <− which ( ( q <= mode)&( is . f i n i t e (q ) ) )
## when q i s less than mode
qGreater <− which ( ( q > mode)&( is . f i n i t e (q ) ) )
## when q i s greater than mode
prob <− rep (NA, length (q ) )
err <− rep (NA, length (q ) )
prob [q == −Inf ] <− 0
prob [q == Inf ] <− 0
err [q %in% c(− Inf , Inf ) ] <− 0

## Integrate density from Inf / −Inf to the mode
for ( i in qLess ) {

i f ( is . null (param) ) {
intRes <− integrate ( dfun , −Inf , q [ i ] ,

subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

} else {
intRes <− integrate ( dfun , −Inf , q [ i ] , param = param ,

subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

}
prob [ i ] <− intRes$value
err [ i ] <− intRes$abs . error

}

for ( i in qGreater ) {
i f ( is . null (param) ) {

intRes <− integrate ( dfun , q [ i ] , Inf ,
subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

} else {
intRes <− integrate ( dfun , q [ i ] , Inf , param = param ,

subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

}
prob [ i ] <− intRes$value
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err [ i ] <− intRes$abs . error
}

i f ( lower . t a i l == TRUE)
{

prob [q > mode] <− 1 − prob [q > mode]
}
else
{

prob [q <= mode] <− 1 − prob [q <= mode]
}

i f ( log . p == TRUE)
{

prob = log ( prob )
}

# Return Value :
i felse ( valueOnly , return ( prob ) ,

return ( l i s t ( value = prob , error = err ) ) )

}

A.1.5 qDist Function

qDist <− function ( densFn = "norm" , p , param = NULL,
lower . t a i l = TRUE, log . p = FALSE,
method = " spl ine " , nInterpol = 501 ,
uniTol = .Machine$double . eps ^0.25 , subdivis ions = 100 ,
intTol = uniTol , . . . ) {

## Purpose : Implement general quantile function evaluating
## approach
## =========================================================
## Arguments : densFn , The root name of the d is t r ibut ion
## to be tested
## p , Vector o f probab l i t i es
## param , parameter vector o f the d is t r ibut ion
## lower . ta i l , I f lower . t a i l = TRUE, the cumulative
## density i s taken from the lower t a i l
## method , I f " spl ine " quanti les are found from a
## spl ine approximation to the d is t r ibut ion
## function . I f " integrate " , the
## d is t r ibut ion function used i s always
## obtained by integrat ion
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## nInterpol , Number of points used in qDist for
## cubic spl ine interpo lat ion of the
## d is t r ibut ion function
## uniTol , uniroot function accuracy requested
## valueOnly , I f valueOnly = TRUE c a l l s to pDist
## only return the value obtained for the
## integra l . I f valueOnly = FALSE an
## estimate of the accuracy of the
## numerical integrat ion i s also
## returned
## subdivision , The maximum number of subintervals
## of Integrate function
## intTol , integrate function accuracy requested
## . . . , Passes addit ional arguments to integrate ,
## distMode or distCalcRange Functions .
## In particular , the parameters o f
## the d is t r ibut ion

CALL <− match . call ( )
mode <− distMode ( densFn , param = param , . . . )
pMode <− pDist ( densFn , q = mode, param = param , intTol = intTol , . . . )
i f ( lower . t a i l == FALSE) {

p = 1 − p
}
i f ( log . p == TRUE) {

p = exp ( p )
}
quant <− rep (NA, length ( p ) )
inval id <− which ( ( p < 0) | ( p > 1) )
pFinite <− which ( ( p > 0) & ( p < 1) )
i f ( densFn == "skewhyp" ) {

l <− l i s t ( . . . )
delta <− i felse ( is . null (param) , l $delta , param [ 2 ] )

} else delta <− 0

xRange <− distCalcRange ( densFn , param = param , t o l = 10^(−5) , . . . )

i f ( method == " integrate " ) {
l ess <− which ( ( p <= pMode) & ( p >.Machine$double . eps ^7.5) )
quant <− i felse ( p <= .Machine$double . eps^5 , −Inf , quant )
i f ( length ( l e ss ) > 0) {

pLow <− min( p [ l ess ] )
step <− distStepSize ( densFn , param = param ,

d is t = delta , side = " l e f t " , . . . ) [ 1 ]
xLow <− mode − step
i f ( densFn == "skewhyp" ) {
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while ( pDist ( densFn , xLow,
param = param , intTol = intTol , . . . ) >= pLow)

{
xLow <− xLow −

distStepSize ( densFn , param = param ,
d is t = delta , side = " l e f t " , . . . ) [ 1 ]

}
} else {

while ( pDist ( densFn , xLow,
param = param , intTol = intTol , . . . ) >= pLow)

{
xLow <− xLow − step

}
}
xRange <− c (xLow, mode)
zeroFn <− function ( x , p ) {

return ( pDist ( densFn , x , param = param ,
intTol = intTol , . . . ) − p )

}
for ( i in less )
{

quant [ i ] <− uniroot ( zeroFn , p = p [ i ] ,
interval = xRange , t o l = uniTol ) $root

}
}

greater <− which ( ( p > pMode) & ( p < (1 − .Machine$double . eps ^7.5) ) )
p [ greater ] <− 1 − p [ greater ]
quant <− i felse ( p >= (1 − .Machine$double . eps ^5) , Inf , quant )
i f ( length ( greater ) > 0) {

pHigh <− min( p [ greater ] )
step <− distStepSize ( densFn , param = param ,

d is t = delta , side = " r ight " , . . . ) [ 1 ]
xHigh <− mode + step
i f ( densFn == "skewhyp" ) {

while ( pDist ( densFn , xHigh , param = param , intTol = intTol ,
lower . t a i l = FALSE, . . . ) >= pHigh )

{
xHigh <− xHigh +

distStepSize ( densFn , param = param ,
d is t = delta , side = " l e f t " , . . . ) [ 1 ]

}
} else {

while ( pDist ( densFn , xHigh , param = param , intTol = intTol ,
lower . t a i l = FALSE, . . . ) >= pHigh )

{
xHigh <− xHigh + step
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}
}
xRange <− c (mode, xHigh )
zeroFn <− function ( x , p ) {

return ( pDist ( densFn , x , param = param , intTol = intTol ,
lower . t a i l = FALSE, . . . ) − p )

}
for ( i in greater )
{

quant [ i ] <− uniroot ( zeroFn , p = p [ i ] ,
interval = xRange , t o l = uniTol ) $root

}
}

} else i f ( method == " spl ine " ) {
inRange <− which ( ( p > pDist ( densFn , xRange [ 1 ] ,

param = param , intTol = intTol , . . . ) ) &
( p < pDist ( densFn , xRange [ 2 ] ,

param = param , intTol = intTol , . . . ) ) )
small <− which ( ( p <= pDist ( densFn , xRange [ 1 ] ,

param = param , intTol = intTol , . . . ) ) & ( p >= 0) )
large <− which ( ( p >= pDist ( densFn , xRange [ 2 ] ,

param = param , intTol = intTol , . . . ) ) & ( p <= 1) )
extreme <− c ( small , large )
xVals <− seq ( xRange [ 1 ] , xRange [ 2 ] , length . out = nInterpol )
yVals <− pDist ( densFn , xVals , param = param ,

subdivis ions = subdivisions , intTol = intTol , . . . )
sp l ineFit <− splinefun ( xVals , yVals )
zeroFn <− function ( x , p ) {

return ( sp l ineFit ( x ) − p )
}

for ( i in inRange ) {
quant [ i ] <− uniroot ( zeroFn , p = p [ i ] ,

interval = xRange , t o l = uniTol ) $root
}

i f ( length ( extreme ) > 0) {
quant [ extreme ] <− qDist ( densFn , p [ extreme ] , param = param ,

log . p = log . p ,
lower . t a i l = lower . t a i l ,
method = " integrate " ,
nInterpol = nInterpol , uniTol = uniTol ,
subdivis ions = subdivisions ,
intTol = intTol , . . . )

}
}
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return ( quant )
}

A.1.6 momIntegrated Function

momIntegrated <− function ( densFn = "ghyp" , param = NULL,
order , about = 0 , absolute = FALSE, . . . ) {

## Purpose : Implement general d i s t r ibut ion function evaluating
## approach
## =========================================================
## Arguments : densFn , The root name of the d is t r ibut ion
## to be tested
## param , parameter vector for skew hyperbolic
## d is t r ibut ion
## order , The order of the moment or
## absolute moment to be calculated .
## about , The point about which the moment i s
## to be calculated
## absolute , Whether absolute moments or ordinary
## moments are to be calculated
## . . . , Passes addit ional arguments to integrate .
## In particular , the parameters of
## the d is t r ibut ion

i f ( missing ( densFn ) | ! ( is . function ( densFn ) | is . character ( densFn ) ) )
stop ( " ’ densFn ’ must be supplied as a function or name" )

## Set default integrat ion l imi ts
low <− −Inf
high <− Inf

i f ( is . character ( densFn ) ) {

i f ( is . null ( densFn ) )
stop ( " unsupported d is t r ibut ion " )

i f ( densFn == "ghyp" | densFn == " hyperb " |
densFn == " gig " | densFn == " vg " )

{
i f ( ! exists ( paste ( "d" ,densFn , sep = " " ) , mode = " function " ) )

stop ( " Relevant package must be loaded " )
}
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i f ( densFn == "invgamma" | densFn == " inverse gamma" ) {
l <− l i s t ( . . . )
shape <− l $shape
i f ( shape <= order )

stop ( " Order must be less than shape parameter for inverse gamma" )
low <− 0
dinvgamma <− function ( x , shape , rate = 1 , scale = 1 / rate ) {
dens <− i felse ( x <= 0 , 0 ,

( scale / x )^shape * exp(−scale / x ) / ( x * gamma( shape ) ) )
return ( dens )

}

i f ( ! absolute ) {
ddist <− function ( x , order , about , . . . ) {

( x − about )^order * dinvgamma( x , . . . )
}

} else {
ddist <− function ( x , order , about , . . . ) {

abs ( x − about )^order * dinvgamma( x , . . . )
}

}
} else {

dfun <− match . fun ( paste ( "d" , densFn , sep = " " ) )
i f ( densFn == "gamma" ) {

l <− l i s t ( . . . )
shape <− l $shape
i f ( order <= −(shape ) )

stop ( " Order must be greater than shape parameter for gamma" )
low <− 0

}
i f ( ! absolute ) {

i f ( is . null (param) ) {
ddist <− function ( x , order , about , . . . ) {

( x − about )^order * dfun ( x , . . . )
}

} else {
ddist <− function ( x , order , about , param) {

( x − about )^order * dfun ( x , param = param)
}

}
} else {

i f ( is . null (param) ) {
ddist <− function ( x , order , about , . . . ) {

abs ( x − about )^order * dfun ( x , . . . )
}
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} else {
ddist <− function ( x , order , about , param) {

abs ( x − about )^order * dfun ( x , param = param)
}

}
}

}
}
i f ( is . null (param) ) {

mom <− integrate ( ddist , low , high ,
order = order , about = about ,
subdivis ions = 1000 ,
re l . t o l = .Machine$double . eps ^0.5 , . . . ) [ [ 1 ] ]

} else {
mom <− integrate ( ddist , low , high , param = param ,

order = order , about = about ,
subdivis ions = 1000 ,
re l . t o l = .Machine$double . eps ^0.5) [ [ 1 ] ]

}

## Return Value :
return (mom)

}

A.1.7 incompleBesselKV Function

incompleteBesselKV <− function ( x , y , nu ,
t o l = ( . Machine$double . eps ) ^(0 .85) ,
nmax = 90) {

## Purpose : Calculates the incomplete Bessel K function using
## the modified algorithm which o r i g i n a l l y
## proposed by Slavinsky and Safouhi (2009)
## =========================================================
## Arguments : x , Value of the f i r s t argument of the
## incomplete Bessel K function
## y , Value of the f i r s t argument of the
## incomplete Bessel K function
## nu , The order of the incomplete Bessel K
## function
## to l , The tolerance for the d i f f e rence between
## successive approximations of the
## incomplete Bessel K function
## nmax, The maximum order allowed for the
## approximation of the incomplete
## Bessel K function
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KNu <− besselK (2 *sqrt ( x*y ) , nu)
m <− length ( x )
IBFOut <− . Fortran ( " incompleteBesselVK " ,

as . double ( x ) ,
as . double ( y ) ,
as . double (nu) ,
as . double ( t o l ) ,
as . integer (m) ,
as . integer (nmax) ,
as . double (KNu) ,
IBF = double (m) ,
resul t = integer (m)
)

Gp <− IBFOut$ resul t
IBF <− IBFOut$IBF
i f ( length (Gp) == m)

warning ( "Maximum G transformation order reached for a l l x and y" )
i f ( length (Gp) < m && length (Gp) > 0)

warning ( "Maximum G transformation order reached for some x and y" )
Unreliable = cbind (Gp, x [Gp] , y [Gp] )
colnames ( Unreliable ) = c ( " Index " , "x " , " y " )
return ( l i s t ( Value = IBF , Unreliable = Unreliable ) )

}

subroutine incompleteBesselVK ( x , y ,m, nu , eps ,nmax,KNu, ize ,
$ IBF , result )

integer nmax
integer m, k , n , i ze
double precision nu , eps
double precision x ( 1 :m) , y ( 1 :m) ,KNu( 1 :m) , IBF ( 1 :m)
integer result ( 1 :m)
double precision G( 1 :nmax, 1 :m)
double precision GM( 1 :nmax) ,GN( 0 :nmax)
double precision Am( 0 :nmax, 0 :nmax)
double precision An( 0 :nmax, 0 :nmax)
double precision Cnp ( 0 : ( nmax+1)*(nmax+2) /2 )

call combinatorial (nmax, Cnp)
call SSFcoef (nmax, nu−1D0,Am)
call SSFcoef (nmax,−nu−1D0,An)

do k=1 ,m
i f ( x (k ) . ge . y (k ) ) then

call GDENOM(0 , x (k ) , y (k ) , nu ,An,nmax,Cnp, ize ,GN)
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call GDENOM(1 , x (k ) , y (k ) , nu ,An,nmax,Cnp, ize ,GN)
call GNUM(1 , x (k ) , y (k ) , nu ,Am,nmax,Cnp, ize ,GN,GM)
G(1 ,k ) = x (k)**nu*GM( 1 ) / (GN(1)*( −x (1 )* y ( 1 ) ) )
do n=2 ,nmax

call GDENOM(n , x (k ) , y (k ) , nu ,An,nmax,Cnp, ize ,GN)
call GNUM(n , x (k ) , y (k ) , nu ,Am,nmax, Cnp, ize ,GN,GM)
G(n , k ) = x (k)**nu*GM(n ) / (GN(n)*(−x (k)* y (k ) ) * * n)
i f ( dabs ( (G(n , k)−G(n−1,k ) ) /G(n−1,k ) ) . l t . eps ) then

exit
end i f

end do
else i f ( y (k ) . gt . x (k ) ) then

call GDENOM(0 , y (k ) , x (k) ,−nu ,Am,nmax,Cnp, ize ,GN)
call GDENOM(1 , y (k ) , x (k) ,−nu ,Am,nmax,Cnp, ize ,GN)
call GNUM(1 , y (k ) , x (k) ,−nu ,An,nmax, Cnp, ize ,GN,GM)
G(1 ,k ) = y (k)**(−nu)*GM( 1 ) / (GN(1)*( −x (1 )* y ( 1 ) ) )
do n=2 ,nmax

call GDENOM(n , y (k ) , x (k) ,−nu ,Am,nmax,Cnp, ize ,GN)
call GNUM(n , y (k ) , x (k) ,−nu ,An,nmax,Cnp, ize ,GN,GM)
G(n , k ) = y (k)**(−nu)*GM(n ) / (GN(n)*(−x (k)* y (k ) ) * * n)
i f ( dabs ( (G(n , k)−G(n−1,k ) ) /G(n−1,k ) ) . l t . eps ) then

G(n , k ) = 2D0*( x (k ) / y (k ) ) * * ( nu/2D0)*KNu(k)−G(n , k )
exit

end i f
end do

end i f
result (k ) = n
IBF(k ) = G(n , k )
end do
return
end

subroutine SSFcoef (nmax, nu ,A)
implicit double precision ( a−h , o−z )
implicit integer ( i−n)
integer l , i ,nmax
double precision nu ,A( 0 :nmax, 0 :nmax)
A(0 ,0 ) = 1D0
do l =1 ,nmax

do i =1 , l−1
A( l , i ) = (−nu+ i+l−1D0)*A( l −1, i )+A( l −1, i −1)
end do
A( l , 0 ) = (−nu+l−1D0)*A( l −1 ,0)
A( l , l ) = 1D0

end do
return
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end

subroutine combinatorial (nu , Cnp)
implicit double precision ( a−h , o−z )
implicit integer ( i−n)

dimension Cnp ( 0 : * )

do n=0 , nu
Cnp(n*(n+1) /2 + 0) = 1.0d0
Cnp(n*(n+1) /2 + n) = 1.0d0
do np=1 , n−1

Cnp(n*(n+1)/2+np ) = Cnp(n*(n−1)/2+np−1)+Cnp(n*(n−1)/2+np )
end do

end do
return
end

subroutine GNUM(n , x , y , nu ,Am,nmax,Cnp, ize ,GN,GM)
implicit double precision ( a−h , o−z )
implicit integer ( i−n)
integer n ,nmax
double precision x , y , nu
double precision Am( 0 :nmax, 0 :nmax)
double precision Cnp( 0 : * ) ,GM( 1 :nmax) ,GN( 0 :nmax)
GM(n) = 0D0
do i r =1 ,n

terme=0D0
do i s =0 , ir −1

termepr = 0D0
do i =0 , i s

termepr = termepr+Am( is , i )*(−x )** i
end do

terme = terme + termepr*Cnp( i r * ( ir −1)/2+ i s ) * (1D0/ y )** i s
end do
GM(n) = GM(n) + Cnp(n*(n+1)/2+ i r )*(−1D0)** i r

$ * GN(n−i r )* terme
end do
i f ( i ze .EQ. 1) then

GM(n) = GM(n)*(−x*y )**n*dexp(−x−y ) / x**nu / y
else i f ( i ze .EQ. 2) then
GM(n) = GM(n)*(−x*y )**n*dexp(−x−y+2* sqrt ( x*y ) ) / x**nu / y

end i f
return
end

subroutine GDENOM(n , x , y , nu ,An,nmax,Cnp, ize ,GN)
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implicit double precision ( a−h , o−z )
implicit integer ( i−n)
integer n ,nmax
double precision x , y , nu
double precision An( 0 :nmax, 0 :nmax)
double precision Cnp( 0 : * ) ,GN( 0 :nmax)
GN(n) = 0D0
do i r =0 ,n

terme=0D0
do i =0 , i r
terme = terme+An( ir , i )* x** i
end do
GN(n) = GN(n) + Cnp(n*(n+1)/2+ i r )*(−1D0/ y )** i r *terme

end do
i f ( i ze .EQ. 1) then
GN(n) = GN(n)* x **(nu+1)*dexp ( x+y )
else i f ( i ze .EQ. 2) then
GN(n) = GN(n)* x **(nu+1)*dexp ( x+y−2*sqrt ( x*y ) )

end i f
return

end

A.2 Probability Function and Quantile Function Estimation

A.2.1 pghyp Function

pghyp <− function (q , mu = 0 , delta = 1 , alpha = 1 , beta = 0 ,
lambda = 1 ,param = c (mu, delta , alpha ,

beta , lambda ) ,
lower . t a i l = TRUE, subdivis ions = 100 ,
intTol = .Machine$double . eps ^0.25 ,
valueOnly = TRUE, . . . ) {

## Purpose : Implement GHyp dis t r ibut ion function evaluating
## approach
## =========================================================
## Arguments : q , Vector o f quanti les
## mu, Location parameter of the GHyp dis t r ibut ion
## delta , Scale parameter of the GHyp dis t r ibut ion
## alpha , Tail parameter of the GHyp dis t r ibut ion
## beta , Skewness parameter of the GHyp dis t r ibut ion
## lambda , Shape parameter of the GHyp dis t r ibut ion
## param , parameter vector o f the d is t r ibut ion
## lower . ta i l , I f lower . t a i l = TRUE, the cumulative
## density i s taken from the lower t a i l
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## subdivision , The maximum number of subintervals
## of Integrate function
## intTol , integrate function accuracy requested
## valueOnly , I f valueOnly = TRUE c a l l s to pDist
## only return the value obtained for the
## integra l . I f valueOnly = FALSE an
## estimate of the accuracy of the
## numerical integrat ion i s also
## returned
## . . . , Passes addit ional arguments to integrate
## function

parResult <− ghypCheckPars (param)
case <− parResult$case
errorMessage <− parResult$errMessage
i f ( case == " error " )

stop ( errMessage )
mu <− param [ 1 ]
delta <− param [ 2 ]
alpha <− param [ 3 ]
beta <− param [ 4 ]
lambda <− param [ 5 ]

modeDist <− ghypMode (param = param)
qLess <− which ( ( q <= modeDist )&( is . f i n i t e (q ) ) )
qGreater <− which ( ( q > modeDist )&( is . f i n i t e (q ) ) )
prob <− rep (NA, length (q ) )
err <− rep (NA, length (q ) )

prob [q == −Inf ] <− 0
prob [q == Inf ] <− 0
err [q %in% c(− Inf , Inf ) ] <− 0

dghypInt <− function (q )
{

dghyp (q , param = param)
}

for ( i in qLess )
{

intRes <− integrate ( dghypInt , −Inf , q [ i ] ,
subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

prob [ i ] <− intRes$value
err [ i ] <− intRes$abs . error

}
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for ( i in qGreater )
{

intRes <− integrate ( dghypInt , q [ i ] , Inf ,
subdivis ions = subdivisions ,
re l . t o l = intTol , . . . )

prob [ i ] <− intRes$value
err [ i ] <− intRes$abs . error

}

i f ( lower . t a i l == TRUE)
{

prob [q > modeDist ] <− 1 − prob [q > modeDist ]
}
else
{

prob [q <= modeDist ] <− 1 − prob [q <= modeDist ]
}

i felse ( valueOnly , return ( prob ) ,
return ( l i s t ( value = prob , error = err ) ) )

}

A.2.2 qghyp Function

qghyp <− function ( p , mu = 0 , delta = 1 , alpha = 1 , beta = 0 ,
lambda = 1 , param = c (mu, delta , alpha ,

beta , lambda ) ,
lower . t a i l = TRUE,
method = c ( " integrate " , " spl ine " ) ,
nInterpol = 501 ,
uniTol = .Machine$double . eps ^0.25 ,
subdivis ions = 100 , intTol = uniTol , . . . ) {

## Purpose : Implement GHyp quantile function evaluating
## approach
## =========================================================
## Arguments : p , Vector o f p r o b a b i l i t i e s
## mu, Location parameter of GHyp dis t r ibut ion
## delta , Scale parameter of GHyp dis t r ibut ion
## alpha , Tail parameter of GHyp dis t r ibut ion
## beta , Skewness parameter of GHyp dis t r ibut ion
## lambda , Shape parameter of GHyp dis t r ibut ion
## param , parameter vector o f the d is t r ibut ion
## lower . ta i l , I f lower . t a i l = TRUE, the cumulative
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## density i s taken from the lower t a i l
## method , I f " spl ine " quanti les are found from a
## spl ine approximation to the d is t r ibut ion
## function . I f " integrate " , the
## d is t r ibut ion function used i s always
## obtained by integrat ion
## nInterpol , Number of points used in qghyp for
## cubic spl ine interpo lat ion of
## the d is t r ibut ion function
## uniTol , uniroot function accuracy requested
## subdivision , The maximum number of subintervals
## of Integrate function
## intTol , integrate function accuracy requested
## . . . , Passes addit ional arguments to integrate
## function

parResult <− ghypCheckPars (param)
case <− parResult$case
errMessage <− parResult$errMessage
i f ( case == " error " )

stop ( errMessage )
i f ( ! lower . t a i l ) {

p <− 1 − p
lower . t a i l == TRUE

}
method <− match . arg ( method )
mu <− param [ 1 ]
delta <− param [ 2 ]
alpha <− param [ 3 ]
beta <− param [ 4 ]
lambda <− param [ 5 ]
modeDist <− ghypMode (param = param)
pModeDist <− pghyp ( modeDist , param = param , intTol = intTol )
xRange <− ghypCalcRange (param = param , t o l = 10^(−5) )
quant <− rep (NA, length ( p ) )
inval id <− which ( ( p < 0) | ( p > 1) )
pFinite <− which ( ( p > 0) & ( p < 1) )
i f ( method == " integrate " ) {

l ess <− which ( ( p <= pModeDist ) & ( p > .Machine$double . eps ^8) )
quant <− i felse ( p <= .Machine$double . eps^8 , −Inf , quant )
i f ( length ( l e ss ) > 0) {

pLow <− min( p [ l ess ] )
xLow <− modeDist − sqrt ( ghypVar (param = param) )
while ( pghyp (xLow, param = param , intTol = intTol ) >=

pLow) {
xLow <− xLow − sqrt ( ghypVar (param = param) )

}
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xRange <− c (xLow, modeDist )
zeroFn <− function ( x , param , p ) {

return ( pghyp ( x , param = param ,
subdivis ions = subdivisions ,
intTol = intTol ) − p )

}
for ( i in less ) {

quant [ i ] <− uniroot ( zeroFn , param = param ,
p = p [ i ] ,
interval = xRange ,
t o l = uniTol ) $root

}
}
greater <− which ( ( p > pModeDist ) &

( p < (1 − .Machine$double . eps ^8) ) )
p [ greater ] <− 1 − p [ greater ]
quant <− i felse ( p >= (1 − .Machine$double . eps ^8) , Inf ,

quant )
i f ( length ( greater ) > 0) {

pHigh <− min( p [ greater ] )
xHigh <− modeDist + sqrt ( ghypVar (param = param) )
while ( pghyp ( xHigh , param = param , intTol = intTol ,

lower . t a i l = FALSE) >= pHigh ) {
xHigh <− xHigh + sqrt ( ghypVar (param = param) )

}
xRange <− c ( modeDist , xHigh )
zeroFn <− function ( x , param , p ) {

return ( pghyp ( x , param = param ,
lower . t a i l = FALSE,
subdivis ions = subdivisions ,
intTol = intTol ) − p )

}
for ( i in greater ) {

quant [ i ] <− uniroot ( zeroFn , param = param ,
p = p [ i ] ,
interval = xRange ,
t o l = uniTol ) $root

}
}

}
else i f ( method == " spl ine " ) {

inRange <− which ( ( p > pghyp ( xRange [ 1 ] , param = param ,
intTol = intTol ) ) &

( p < pghyp ( xRange [ 2 ] , param = param ,
intTol = intTol ) ) )

small <− which ( ( p <= pghyp ( xRange [ 1 ] , param = param ,
intTol = intTol ) ) & ( p >= 0) )
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large <− which ( ( p >= pghyp ( xRange [ 2 ] , param = param ,
intTol = intTol ) ) & ( p <= 1) )

extreme <− c ( small , large )
xVals <− seq ( xRange [ 1 ] , xRange [ 2 ] , length . out = nInterpol )
yVals <− pghyp ( xVals , param = param ,

subdivis ions = subdivisions ,
intTol = intTol )

sp l ineFit <− splinefun ( xVals , yVals )
zeroFn <− function ( x , p ) {

return ( sp l ineFit ( x ) − p )
}
for ( i in inRange ) {

quant [ i ] <− uniroot ( zeroFn , p = p [ i ] ,
interval = xRange ,
t o l = uniTol ) $root

}
i f ( length ( extreme ) > 0) {

quant [ extreme ] <− qghyp ( p [ extreme ] , param = param ,
lower . t a i l = lower . t a i l ,
method = " integrate " ,
nInterpol = nInterpol ,
uniTol = uniTol ,
subdivis ions = subdivisions ,
intTol = intTol , . . . )

}
}
return ( quant )

}

A.2.3 pskewhyp Function

f indDelta <− function ( beta , nu , . . . )
{

## Purpose : Find the value of delta
## =====================================================
## Arguments : beta , skewness parameter o f skew hyperbolic
## nu , shape parameter o f the skew hyperbolic
## . . . , Additional arguments may passed to optim
##

alpha <− sqrt ( 2 . 5 )
optFn <− function ( delta ) {

abs ( dskewhyp ( alpha* delta ,
param = c (0 , 1 , beta , nu) , log = TRUE) −

dskewhyp (0 , param = c (0 , 1 , beta , nu) ,
log = TRUE) + 1.25)
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}

opt <− optim (1 , optFn , . . . )
opt

}

findNu <− function ( delta , beta , nu , nuMax = NULL, . . . )
{

## Purpose : Find the value of nu
## =====================================================
## Arguments : delta , value of delta found using findDelta
## beta , skewness parameter o f skew hyperbolic
## nu , shape parameter o f the skew hyperbolic
## nuMax, maximum range over which to search for nu
## . . . , Additional arguments may passed to optim

i f ( is . null (nuMax) ) nuMax <− nu + 100
optFn <− function (nu0 ) {

abs ( dskewhyp ( x = delta ,
param = c (0 , 1 , beta , nu) , log = TRUE) −

dskewhyp (0 , param = c (0 , 1 , beta , nu) ,
log = TRUE) −

(nu0 + 1) *log (1 + 1 / nu0 ) / 2)
}
opt <− optim (nu , optFn , method = " Brent " , lower = 0 , upper = nuMax, . . . )
opt

}

pskewhypGK <− function (q , param ,
method = c ( " Gaussian " , " integrate " ) ,
subdivis ions = 100 ,
intTol = .Machine$double . eps ^0.25) {

## Purpose : Implement sp l i t −t transformation for evaluating
## pskewhyp
## =========================================================
## Arguments : q , quantile
## param , parameter vector for skew hyperbolic
## d is t r ibut ion
## method , Integration method
## subdivision , The maximum number of subintervals
## of Integrate function
## intTol , integrate function accuracy requested
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mu <− param [ 1 ]
delta <− param [ 2 ]
beta <− param [ 3 ]
nu <− param [ 4 ]
p <− rep (NA, length (q ) )
z0 <− rep (NA, length (q ) )
p [q == −Inf ] <− 0
p [q == Inf ] <− 1

qLess <− which ( ( q <= mu)&( is . f i n i t e (q ) ) )
qGreater <− which ( ( q > mu)&( is . f i n i t e (q ) ) )
q [ qLess ] <− 2*mu − q [ qLess ]

## Adjust q and along with i t mu and delta
q <− (q − mu) / delta
beta <− delta *beta
mu <− 0

i f ( length ( qLess ) ! = 0) {
## Find G K delta
deltaLess <− f indDelta (−beta , nu ,

method = " Brent " ,
lower = 0 , upper = 100)$par

## Find G K nu
nu0Less <− findNu ( deltaLess , −beta , nu , nuMax = 8)$par
## Upper l imi t
z0 [ qLess ] <− pt (q [ qLess ] / deltaLess ,

nu0Less , lower . t a i l = FALSE)
}

i f ( length ( qGreater ) ! = 0) {
## Find G K delta

deltaGreater <− f indDelta ( beta , nu ,
method = " Brent " ,
lower = 0 , upper = 100)$par

## Find G K nu
nu0Greater <− findNu ( deltaGreater , beta , nu , nuMax = 8)$par
## Upper l imi t
z0 [ qGreater ] <− pt (q [ qGreater ] / deltaGreater ,

nu0Greater , lower . t a i l = FALSE)
}

for ( i in qLess ) {
f <− function ( z ) {
f z <− deltaLess *dskewhyp ( deltaLess *qt ( z , nu0Less ,

lower . t a i l = FALSE) ,
param = c (0 , 1 , −beta , nu) ) /
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dt ( qt ( z , nu0Less ,
lower . t a i l = FALSE) , nu0Less )

f z
}

i f ( method == " Gaussian " ) {
tryOpt <− try ( quadgr ( f , 0 , z0 [ i ] ) , s i l e n t = TRUE)
i f ( class ( tryOpt ) == " try−error " ) {

int <− NA
} else {

int <− tryOpt$value
}
}
else i f ( method == " integrate " ) {

tryOpt <− try ( integrate ( f , 0 , z0 [ i ] ,
subdivis ions = subdivisions ,
re l . t o l = intTol ) , s i l e n t = TRUE)

i f ( class ( tryOpt ) == " try−error " ) {
int <− NA

} else {
int <− tryOpt$value

}
}
p [ i ] = int

}

for ( i in qGreater ) {
f <− function ( z ) {

f z <− deltaGreater *
dskewhyp ( deltaGreater *qt ( z , nu0Greater ,

lower . t a i l = FALSE) ,
param = c (0 , 1 , beta , nu) ) /

dt ( qt ( z , nu0Greater ,
lower . t a i l = FALSE) , nu0Greater )

f z
}

i f ( method == " Gaussian " ) {
tryOpt <− try ( quadgr ( f , 0 , z0 [ i ] ) , s i l e n t = TRUE)
i f ( class ( tryOpt ) == " try−error " ) {

int <− NA
} else {

int <− tryOpt$value
}
}
else i f ( method == " integrate " ) {

tryOpt <− try ( integrate ( f , 0 , z0 [ i ] ,
subdivis ions = subdivisions ,
re l . t o l = intTol ) , s i l e n t = TRUE)
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i f ( class ( tryOpt ) == " try−error " ) {
int <− NA

} else {
int <− tryOpt$value

}
}
p [ i ] = 1 − int

}

return ( p )
}

A.3 Random Number Generation of Generalized Inverse
Gaussian and Hyperbolic Distribution

A.3.1 rgigGamma Function

rgigGamma <− function (n , param) {

## Purpose : Implement Dagpunar r e j e c t i o n sampling
## approach
## =========================================================
## Arguments : n , Number of random variates required
## param , parameter vector o f the GIG dis t r ibut ion

chi <− param [ 1 ]
psi <− param [ 2 ]
lambda <− param [ 3 ]
alpha <− sqrt ( psi / chi )
beta <− sqrt ( psi * chi )
i f ( lambda <= 0) stop ( " lambda must be pos i t i ve " )
i f ( beta <= 0) stop ( " beta must be pos i t i ve " )

#The parameter o f the Gamma distr ibuted hat
gam = 2*lambda^2* ( sqrt (1 + ( beta / lambda ) ^2) − 1) / beta
a1 = 0.5 * ( beta − gam)
a2 = 0.5 *beta
a3 = sqrt ( beta* ( beta − gam) )
a4 = gam / 2

# Reject ion Sampling
output <− numeric (n )
for ( i in 1 :n ) {

need . value <− TRUE
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while ( need . value == TRUE) {
# Generate R and X
r <− runif ( 1 )
x <− rgamma(1 , lambda , a4 )
i f (−log ( r ) > x*a1 + a2 / x − a3 ) {

need . value = FALSE
}

}
output [ i ] <− x

}

return ( output )
}

A.3.2 rgigHoer Function

rgigHoer <− function (n , param) {

## Purpose : Implement Hoermann r e j e c t i o n sampling
## approach
## =========================================================
## Arguments : n , Number of random variates required
## param , parameter vector o f the GIG dis t r ibut ion

chi <− param [ 1 ]
psi <− param [ 2 ]
lambda <− param [ 3 ]
alpha <− sqrt ( psi / chi )
beta <− sqrt ( psi * chi )
x0 <− beta / (1 − lambda )
a <− max( x0 , 2 / beta )

#Evaluate the mode of the d is t r ibut ion
m <− beta / ( ( 1 − lambda ) + sqrt ( ( 1 − lambda ) ^2 + beta^2) )

#The function e in f ( x )=ce ( x )
h <− function ( x , lambda , chi , psi ) {

x^(lambda − 1) *exp(−(1 / 2) * beta * ( x^(−1) + x ) )
}
k1 = h(m, lambda , chi , psi )
k2 = exp(−beta )
k3 = a^(lambda − 1)
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#The Envelope Function
ev2 <− function ( x , lambda , beta ) {

x^(lambda − 1) * k2
}

ev3 <− function ( x , a , lambda , beta ) {
k3 * exp(−(beta / 2 * x ) )

}

#Computing area
A1 <− k1*x0
A2 <− i felse ( lambda == 0 , k2*log (2 / beta^2) ,

k2* ( a^lambda − x0^lambda ) / lambda )
A3 <− 2*k3*exp(−beta*a / 2) / beta
A = A1 + A2 + A3

output <− numeric (n )

# Reject ion Sampling

for ( i in 1 :n ) {
need . value <− TRUE
while ( need . value == TRUE) {

# Generate U1 and U2
U1 <− runif (1 , min = 0 , max = A)
U2 <− runif ( 1 )
i f (U1 <= A1) {

x <− x0*U1 /A1
i f (U2*k1<=h( x , lambda , chi , psi ) ) {

need . value <− FALSE
}

}
else i f (U1<=(A1+A2) ) {

U1 = U1 − A1
x <− i felse ( lambda == 0 ,

beta*exp (V*exp ( beta ) ) ,
( x0^lambda +

U1*lambda / k2 ) ^(1 / lambda ) )
i f (U2*ev2 ( x , lambda , beta )<=h( x , lambda , chi , psi ) ) {

need . value <− FALSE
}

} else {
U1 = U1 − A1 − A2
x <− −2 / beta*log (exp(−a*beta / 2) − U1*beta / (2 *k3 ) )
i f (U2*ev3 ( x , a , lambda , beta )<=h( x , lambda , chi , psi ) ) {

need . value <− FALSE
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}
}

}
output [ i ] <− x

}
return ( output )

}

A.3.3 rhypTDR Function

rhypTDR <− function (n , param) {

## Purpose : Implement transformed density r e j e c t i o n sampling
## approach proposed by Hoermann
## =========================================================
## Arguments : n , Number of random variates required .
## param , parameter vector o f
## the hyperbolic d i s t r ibut ion .

mu <− param [ 1 ]
delta <− param [ 2 ]
alpha <− param [ 3 ]
beta <− param [ 4 ]
zeta <− delta * sqrt ( alpha^2 − beta^2)
hyperbPi <− beta / sqrt ( alpha^2 − beta^2)

i f ( abs ( alpha ) <= beta ) stop ( " beta must be smaller than
the absolute value of alpha " )

i f ( delta <= 0) stop ( " delta must be pos i t i ve " )

# r e s t r i c t to delta = 1 , mu = 0
alpha = alpha * delta
beta = beta * delta
lowerupper <− hyperbCalcRange (param = c (0 , 1 , alpha , beta ) )
lower <− lowerupper [ 1 ]
upper <− lowerupper [ 2 ]

# Quasi Density o f Hyperbolic Distr ibut ion
quasiDens <− function ( x , alpha , beta ) {

quasiDens <− exp(−alpha * sqrt (1 + x^2) + beta * x )
}

# T transformed quasi density function
h <− function ( x , alpha , beta ) {

h <− −alpha * sqrt (1 + x^2) + beta * x
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}

# The der ivat ive of h ( x )
dh <− function ( x , alpha , beta ) {

h <− −alpha * x / sqrt (1 + x^2) + beta
}

# Touch points o f l ( x ) and h( x )
xl <− uniroot ( function ( x ) {

−alpha * sqrt (1 + x^2) + beta * x + zeta + 1} ,
lower = lower , upper = hyperbPi ) $root

xr <− uniroot ( function ( x ) {
−alpha * sqrt (1 + x^2) + beta * x + zeta + 1} ,
lower = hyperbPi , upper = upper ) $root

hxl <− h( xl , alpha , beta )
hxr <− h( xr , alpha , beta )
dhxl <− dh ( xl , alpha , beta )
dhxr <− dh ( xr , alpha , beta )

#Two intersec t i on points o f the three parts o f l ( x )
bl <− xl + (−zeta − hxl ) / dhxl
br <− xr + (−zeta − hxr ) / dhxr

#F(h(m) )
Fhm <− exp(−zeta )
fm <− Fhm

#The areas between x−axis and T^(−1) ( l ( x ) ) f o r
#the three interva ls
vl <− Fhm/ dhxl
vc <− fm * ( br − bl )
vr <− −Fhm/ dhxr

# Reject ion Sampling
output <− numeric (n )
for ( i in 1 :n ) {

need . value <− TRUE
while ( need . value == TRUE) {

U <− ( v l + vc + vr ) *runif ( 1 )
i f (U <= vl ) {

X <− ( log(−U * dhxl + Fhm) − hxl ) / dhxl + xl
lx <− exp ( dhxl * (X − xl ) + hxl )

} else {
i f (U <= ( vl + vc ) ) {

X <− ( (U − vl ) / vc ) * ( br − bl ) + bl
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lx <− fm
} else {

X <− ( log ( ( (U − ( v l + vc ) ) ) *
dhxr + Fhm) − hxr ) / dhxr + xr

lx <− exp ( dhxr* (X−xr )+hxr )
}

}
V <− lx * runif ( 1 )
fX <− quasiDens (X, alpha , beta )
i f (V <= fX ) {

need . value <− FALSE
}

}
output [ i ] <− X

}
return ( delta * output + mu)

}

A.3.4 rhypTDRsq Function

rhypTDRsq <− function (n , param) {

## Purpose : Implement transformed density r e j e c t i o n with
## squeeze function sampling approach proposed by
## Hoermann
## =========================================================
## Arguments : n , Number of random variates required .
## param , parameter vector o f
## the hyperbolic d i s t r ibut ion .

mu <− param [ 1 ]
delta <− param [ 2 ]
alpha <− param [ 3 ]
beta <− param [ 4 ]
zeta <− delta * sqrt ( alpha^2 − beta^2)
hyperbPi <− beta / sqrt ( alpha^2 − beta^2)
count = numeric (n )

i f ( abs ( alpha ) <= beta ) stop ( " beta must be smaller than
the absolute value of alpha " )

i f ( delta <= 0) stop ( " delta must be pos i t i ve " )

# r e s t r i c t to delta = 1 , mu = 0
alpha = alpha* delta
beta = beta* delta
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lowerupper <− hyperbCalcRange (param = c (0 , 1 , alpha , beta ) )
lower <− lowerupper [ 1 ]
upper <− lowerupper [ 2 ]

# Quasi Density o f Hyperbolic Distr ibut ion
quasiDens <− function ( x , alpha , beta ) {

quasiDens <− exp(−alpha * sqrt (1 + x^2) + beta * x )
}

# T transformed quasi density function
h <− function ( x , alpha , beta ) {

h <− −alpha * sqrt (1 + x^2) + beta * x
}

# The der ivat ive of h ( x )
dh <− function ( x , alpha , beta ) {

h <− −alpha * x / sqrt (1 + x^2) + beta
}

# Touch points o f l ( x ) and h( x )
xl <− uniroot ( function ( x ) {

−alpha * sqrt (1 + x^2) + beta * x + zeta + 1} ,
lower = lower , upper = hyperbPi ) $root

xr <− uniroot ( function ( x ) {
−alpha * sqrt (1 + x^2) + beta * x + zeta + 1} ,
lower = hyperbPi , upper = upper ) $root

hxl <− h( xl , alpha , beta )
hxr <− h( xr , alpha , beta )
dhxl <− dh ( xl , alpha , beta )
dhxr <− dh ( xr , alpha , beta )

#Two intersec t i on points o f the three parts o f l ( x )
bl <− xl + (−zeta − hxl ) / dhxl
br <− xr + (−zeta − hxr ) / dhxr

#F(h(m) )
Fhm <− exp(−zeta )
fm <− Fhm

#The areas between x−axis and T^(−1) ( l ( x ) ) f o r
#the three interva ls
vl <− Fhm/ dhxl
vc <− fm * ( br − bl )
vr <− −Fhm/ dhxr
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#Define squeeze function
s l <− (−zeta − hxl ) / ( hyperbPi − xl )
sr <− (−zeta − hxr ) / ( hyperbPi − xr )

# Reject ion Sampling
output <− numeric (n )
for ( i in 1 :n ) {

need . value <− TRUE
while ( need . value == TRUE) {

U <− ( v l + vc + vr ) * runif ( 1 )
i f (U <= vl ) {

X <− ( log(−U * dhxl + Fhm) − hxl ) / dhxl + xl
lx <− exp ( dhxl * (X − xl ) + hxl )

} else {
i f (U <= ( vl + vc ) ) {

X <− ( (U − vl ) / vc ) * ( br − bl ) + bl
lx <− fm

} else {
X <− ( log ( ( (U − ( v l + vc ) ) ) * dhxr +

Fhm) − hxr ) / dhxr + xr
lx <− exp ( dhxr * (X − xr ) + hxr )

}
}
V <− lx * runif ( 1 )
fX <− quasiDens (X, alpha , beta )
i f (X < hyperbPi ) {

i f ( (X > xl ) &
(V <= exp(−zeta − ( hyperbPi − X) * s l ) ) ) {

need . value <− FALSE
} else {

i f (V <= fX ) {
need . value <− FALSE

}
}

} else {
i f ( (X < xr ) &

(V <= exp(−zeta − ( hyperbPi − X) * sr ) ) ) {
need . value <− FALSE

} else {
i f (V <= fX ) {

need . value <− FALSE
}

}
}

}
output [ i ] <− X
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}
return ( delta * output + mu)

}

A.4 Robust Linear Modeling using the Hyperbolic Distribution

A.4.1 hyperblm Function

hyperblm <− function ( formula , data , subset , weights , na . action ,
x = FALSE, y = FALSE, contrasts = NULL,
offset , method=" Nelder−Mead" ,
startMethod=" Nelder−Mead" , s tartStarts="BN" ,
paramStart=NULL,
maxiter = 100 , tolerance = 0.0001 ,
controlBFGS= l i s t ( maxit=1000) ,
controlNM= l i s t ( maxit=10000) ,
maxitNLM=10000,
controlCO = l i s t ( ) , s i l e n t = TRUE, . . . ) {

## Purpose : Fits l inear models with hyperbolic errors
##
## =========================================================
## Arguments : formula , A symbolic descr ipt ion of the model
## to be f i t t e d .
## data , An optional data frame , l i s t or environment
## containing the variables in the model .
## subset , An optional vector spec i fy ing a subset
## of observations to be used in the
## f i t t i n g process .
## weights , An optional vector o f weights to be used
## in the f i t t i n g process .
## na . action , A function which indicates what should
## happen when the data contain NAs.
## x , y , I f TRUE, the corresponding components o f
## the f i t ( the explanatory matrix and the
## response vector ) are returned .
## contrasts , A l i s t , whose entr ies are values
## ( numeric matrices or character str ings
## naming functions ) to be used as
## replacement values for the
## contrasts replacement function
## and whose names are the names of
## columns of data containing fac tors .
## o f f se t , A term to be added to a l inear predictor ,
## such as in a generalised l inear model ,
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## with known c o e f f i c i e n t 1 rather than
## an estimated c o e f f i c i e n t .
## method , Possible values are "BFGS" , " Nelder−Mead"
## and "nlm " .
## startMethod , Possible values are "BFGS"
## and " Nelder−Mead " .
## startStarts , Possible values are "BN" , "FN" ,
## "SL" , "US" and "MoM" .
## paramStart , A vector o f parameter start values
## for the optimization routine .
## maxiter , The maximum number of two−stage
## optimization alternating i t e ra t i ons .
## tolerance , The two−stage optimization convergence
## rat io .
## controlBFGS , A List o f contro l parameters for optim
## when using BFGS optimisation method in
## f i r s t stage .
## controlNM , A l i s t o f contro l parameters for optim
## when using NM optimisation method in
## f i r s t stage .
## maxitNLM, The maximum number of i t e ra t i ons for
## the NLM optimizer .
## controlCO , A l i s t o f contro l parameters for
## constrOptim in second stage .
## s i lent , I f TRUE, the error messgae of
## optimizer wi l l not be displayed .

ret . x <− x
ret . y <− y
c l <− match . call ( )
mf <− match . call (expand . dots = FALSE)
m <− match( c ( " formula " , " data " , " subset " , " weights " , "na . act ion " ,

" o f f s e t " ) , names(mf ) , 0)
mf <− mf[ c (1 ,m) ]
mf$drop . unused . levels <− TRUE
mf [ [ 1 ] ] <− as .name( " model . frame " )
mf <− eval (mf , parent . frame ( ) )
mt <− attr (mf , " terms " )
y <− model . response (mf , " numeric " )
w <− model . weights (mf )
offset <− model . offset (mf )
i f ( ! is . null ( offset ) && length ( offset ) ! = NROW( y ) )

stop ( "Number of o f f s e t s i s " , length ( offset ) ,
" , should equal " , nrow( y ) , " (number of observations ) " )

i f ( is . empty .model (mt) ) {
x <− NULL
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regressionResult <− l i s t ( coefficients = numeric ( 0 ) ,
distributionParams = numeric ( 0 ) ,
residuals=y , fitted . values=0 * y ,
weights=w, rank=0 ,
df . residual=length ( y ) )

i f ( ! is . null ( offset ) )
regressionResult$fitted . values <− offset

}
else {

x <− model . matrix (mt , mf , contrasts )
regressionResult <− hyperblmfit ( x , y , offset = offset ,

method = method ,
startMethod = startMethod ,
startStarts = startStarts ,
paramStart = paramStart ,
maxiter = maxiter ,
to lerance = tolerance ,
controlBFGS = controlBFGS ,
controlNM = controlNM ,
maxitNLM = maxitNLM,
controlCO = controlCO ,
s i l e n t = s i lent , . . . )

}
class ( regressionResult ) <− " hyperblm "
regressionResult$na . action <− attr (mf , "na . act ion " )
regressionResult$offset <− offset
regressionResult$contrasts <− attr ( x , " contrasts " )
regressionResult$ x leve ls <− . getXlevels (mt , mf )
regressionResult$call <− c l
regressionResult$terms <− mt
i f ( ret . x )

regressionResult$x <− x
i f ( ret . y )

regressionResult$y <− y
regressionResult

}

A.4.2 hyperblmfit Function

hyperblmfit <− function ( x , y , paramStart = NULL, offset = NULL,
method = c ( " Nelder−Mead" , "BFGS" , "nlm" ) ,
startMethod = c ( " Nelder−Mead" , "BFGS" ) ,
s tartStarts = c ( "BN" , "US" , "FN" , "SL" , "MoM" ) ,
maxiter = 100 , tolerance = 0.001 ,
controlBFGS = l i s t ( maxit = 1000) ,
controlNM = l i s t ( maxit = 1000) ,
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maxitNLM = 10000 ,
controlCO = l i s t ( ) , s i l e n t = TRUE,
breaks = NULL, . . . ) {

## Purpose : Fi t t ing function for l inear models with hyperbolic
## errors
##
## =========================================================
## Arguments : x , Explanatory variable ( s )
## y , Response variable ( s )
## paramStart , A vector o f parameter start values
## for the optimization routine .
## o f f se t , A term to be added to a l inear predictor ,
## such as in a generalised l inear model ,
## with known c o e f f i c i e n t 1 rather than
## an estimated c o e f f i c i e n t .
## method , Possible values are "BFGS" , " Nelder−Mead"
## and "nlm " .
## startMethod , Possible values are "BFGS"
## and " Nelder−Mead " .
## startStarts , Possible values are "BN" , "FN" ,
## "SL" , "US" and "MoM" .
## maxiter , The maximum number of two−stage
## optimization alternating i t e ra t i ons .
## tolerance , The two−stage optimization convergence
## rat io .
## controlBFGS , A List o f contro l parameters for optim
## when using BFGS optimisation method in
## f i r s t stage .
## controlNM , A l i s t o f contro l parameters for optim
## when using NM optimisation method in
## f i r s t stage .
## maxitNLM, The maximum number of i t e ra t i ons for
## the NLM optimizer .
## controlCO , A l i s t o f contro l parameters for
## constrOptim in second stage .
## s i lent , I f TRUE, the error messgae of
## optimizer wi l l not be displayed .
## breaks , Numbers of interva ls the density curve i s
## divided into

i f ( is . null (n <− nrow( x ) ) )
stop ( " ’ x ’ must be a matrix " )

i f (n == 0)
stop ( "0 ( non−NA) cases " )
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p <− ncol ( x )
i f ( p == 0) {

return ( l i s t ( coefficients = numeric ( 0 ) , residuals = y ,
fitted . values = 0*y , rank = 0 ,
df . residual = length ( y ) ) )

} else {
xNames <− colnames ( x )

}
ny <− NCOL( y )
i f ( is . matrix ( y ) && ny == 1)

y <− drop ( y )
i f ( ! is . null ( offset ) )

y <− y − offset
i f (NROW( y ) ! = n)

stop ( " incompatible dimensions " )
storage .mode( x ) <− " double "
storage .mode( y ) <− " double "
## set default error message
errMessage <− " "

i f ( is . null ( paramStart ) ) {
qrx <− qr ( x )
res ids <− qr . resid ( qrx , y )
Beta <− as . numeric ( qr . coef ( qrx , y ) )
s tar t In fo <− hyperbFitStand ( resids ,

startMethod = startMethod ,
method = " constrOptim " ,
startValues = startStarts ,
s i l e n t = TRUE, . . . )

residsParamStart <− as . numeric ( s tar t In fo $param)

## change residsParamStart to param set number 1
## (mu, delta , pi , zeta )
distparam <−

as . numeric ( hyperbChangePars (2 , 1 ,
param =

residsParamStart ) ) [−1]
coef <− c ( residsParamStart [ 1 ] + Beta [ 1 ] , Beta [ −1])
breaks <− s tar t In fo $breaks

} else {
i f ( length ( paramStart ) ! = (3 + p ) )

stop ( paste ( " Parameters start value should be of dimension " ,
3 + p , sep=" " ) )

i f ( paramStart [ 2 ] <= 0)
stop ( " zeta in paramStart must be greater than zero " )

i f ( paramStart [ 1 ] <= 0)
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stop ( " delta in paramStart must be greater than zero " )
distparam <− paramStart [ 1 : 3 ]
coef <− paramStart [ − (1 :3 ) ]

}

## Set some parameters to help with optimization
eps <− 1e−16
ratioCoef <− 1
rationParam <− 1
i t e r <− 0

## A a r t i f i c i a l i t e ra t i ons counter that equals to
## the number of i t e ra t i ons
## when the optimization does not converge and
## i s greater than maximum
## i te ra t i ons number when the optimization converges .
## This helps to break the loop .
hi ter <− 0

sOnellfunc <− function ( coef ) {
KNu <− besselK ( distparam [ 3 ] , nu = 1)
res ids <− y −

as . vector ( x * as . matrix ( coef ) )
hyperbDens <− (2 * distparam [ 1 ] *

sqrt (1 + distparam [2]^2) * KNu) ^(−1) *
exp(−distparam [ 3 ] * ( sqrt (1 + distparam [2]^2) *
sqrt (1 + ( ( res ids ) / distparam [ 1 ] ) ^2) −
distparam [ 2 ] * ( ( res ids ) / distparam [ 1 ] ) ) )

return(−sum( log ( hyperbDens ) ) )
}

sTwollfunc <− function ( distparam ) {
## Protect against attempts to make parameters < 0
i f ( distparam [ 3 ] <= eps ) return (1 e99 )
i f ( distparam [ 1 ] <= eps ) return (1 e99 )
KNu <− besselK ( distparam [ 3 ] , nu = 1)
res ids <−

y − as . vector ( x * as . matrix ( coef ) )
hyperbDens <− (2 * distparam [ 1 ] *

sqrt (1 + distparam [2]^2) * KNu) ^(−1) *
exp(−distparam [ 3 ] * ( sqrt (1 + distparam [2]^2) *
sqrt (1 + ( ( res ids ) / distparam [ 1 ] ) ^2) −
distparam [ 2 ] * ( ( res ids ) / distparam [ 1 ] ) ) )

return(−sum( log ( hyperbDens ) ) )
}

176



A.4. ROBUST LINEAR MODELING USING THE HYPERBOLIC DISTRIBUTION

while ( ! is . null ( coef ) &&
! is . null ( distparam ) && hiter < maxiter ) {

output <− numeric ( 7 )
ind <− 1:6

##Stage one f ind the c o e f f i c i e n t
##optimize method
i f ( ! is . null ( distparam ) ) {

coefOld <− coef
i f ( method == "BFGS" ) {

tryOpt <− try (optim ( coef , sOnellfunc ,
NULL, method = "BFGS" ,
control = controlBFGS , . . . ) ,

s i l e n t = s i l e n t )
i f ( class ( tryOpt ) == " try−error " ) {

errMessage <− unclass ( tryOpt )
} else {

optOutCoef <− tryOpt
}

}
i f ( method==" Nelder−Mead" ) {

tryOpt <− try (optim ( coef , sOnellfunc ,
NULL, method = " Nelder−Mead" ,
control = controlNM , . . . ) ,

s i l e n t = s i l e n t )
i f ( class ( tryOpt ) == " try−error " ) {

errMessage <− unclass ( tryOpt )
} else {

optOutCoef <− tryOpt
}

}

i f ( method=="nlm" ) {
ind <− c (2 , 1 , 5 , 4)
tryOpt <− try (nlm( sOnellfunc , coef ,

i t er l im = maxitNLM, . . . ) ,
s i l e n t = s i l e n t )

i f ( class ( tryOpt ) == " try−error " ) {
errMessage <− unclass ( tryOpt )

} else {
optOutCoef <− tryOpt

}
}

i f ( errMessage == " " ) {
coef <− as . numeric ( optOutCoef [ [ ind [ 1 ] ] ] )
rat ioCoef <− max( abs ( ( coefOld − coef ) / coefOld ) )
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}
else coef <− NULL
}

## Stage Two Optmization
i f ( ! is . null ( coef ) ) {
ind <− 1:6
distparamOld <− distparam
tryOpt <− try ( optOut<− constrOptim ( theta = distparam ,

sTwollfunc , NULL,
ui = diag ( c (1 , 0 , 1) ) ,
c i = c (0 , −1e+99 , 0) ,
control = controlCO , . . . ) ,

s i l e n t = s i l e n t )

i f ( class ( tryOpt ) == " try−error " ) {
errMessage <− unclass ( tryOpt )

} else {
optOut <− tryOpt

}
i f ( errMessage == " " ) {

distparam <− as . numeric ( optOut [ [ ind [ 1 ] ] ] )
ratioParam <− max( abs ( ( distparamOld − distparam ) / distparamOld ) )

} else {
distparam <− NULL

}
}
i t e r <− i t e r + 1
i f ( rat ioCoef <= tolerance && ratioParam <= tolerance )

hi ter <− maxiter + 1
else hiter <− i t e r

}

i f ( ! is . null ( distparam ) ) {
alpha <− distparam [ 3 ] * sqrt (1 + distparam [2]^2) / distparam [ 1 ]
beta <− distparam [ 3 ] * distparam [ 2 ] / distparam [ 1 ]

ordistparam <− c ( distparam [ 1 ] , alpha , beta )

KNu <− besselK ( distparam [ 3 ] , nu = 1)
res ids <− y − as . vector ( x * as . matrix ( coef ) )
hyperbDens <− (2 * distparam [ 1 ] *

sqrt (1 + distparam [2]^2) * KNu) ^(−1) *
exp(−distparam [ 3 ] * ( sqrt (1 + distparam [2]^2) *

sqrt (1 + ( res ids / distparam [ 1 ] ) ^2) −
distparam [ 2 ] * ( res ids / distparam [ 1 ] ) ) )
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## Calculate the MLE
maxLik <− sum( log ( hyperbDens ) )
i f ( rat ioCoef <= tolerance && ratioParam <= tolerance )

conv <− 0
else i f ( rat ioCoef > tolerance && ratioParam <= tolerance )
conv <− 1
else i f ( rat ioCoef <= tolerance && ratioParam > tolerance )
conv <− 2
else conv <− 3

i t e r <− i t e r
} else {

ordistparam <− NULL
maxLik <− NULL
conv <− 3
i t e r <− NULL

}

# Fitted value
f i t s <− x * as . matrix ( coef )

i f ( ! is . null ( offset ) ) {
f i t s <− f i t s + offset

}

res ids <− y − f i t s
m. r <− mean( res ids )

f i t s <− f i t s + m. r
res ids <− res ids − m. r

distributionParams <− c(−m. r , ordistparam )
coef [ 1 ] <− coef [ 1 ] + m. r

regressionResult <− l i s t ( coefficients = coef ,
distributionParams = distributionParams ,
MLE = maxLik , method = method ,
convergence = conv , i t e ra t i ons = i ter ,
fitted . values= f i t s ,
paramStart = paramStart ,
breaks = breaks ,
residsParamStart=residsParamStart ,
xNames=xNames,
residuals=resids ,
xMatrix = x , yVec = y )

return ( regressionResult )
}
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A.4.3 S3 Methods for hyperblm

A.4.3.1 print.hyperblm Function

print . hyperblm <− function ( object ,
d i g i t s = max(3 , getOption ( " d i g i t s " ) −3) , . . . ) {

## Purpose : Print function for hyperbolic modelling
## resul t
##
## =========================================================
## Arguments : object , The hyperblm f i t t e d model
## dig i ts , Desired number of d i g i t s when
## the ob jec t i s printed .
## . . . , Additional arguments may pass in the
## function .

cat ( "\nCall :\n" , deparse ( ob jec t $call ) , "\n" , sep = " " )
coefficients <− ob jec t $coefficients
distributionParams <− ob jec t $distributionParams
cat ( "\nData : " , ob jec t $obsName , "\n" )
i f ( length ( coefficients ) == 0) {

cat ( "\nNo c o e f f i c i e n t \n" )
} else {

cat ( " Regression c o e f f i c i e n t estimates :\n" )
print . default ( format ( coefficients , d i g i t s = d i g i t s ) ,

print . gap=2 ,quote=FALSE)
}
i f ( length ( distributionParams ) == 0) {

cat ( "\nNo parameter for hyperbol ic error d i s t r ibut ion\n" )
} else {

names( distributionParams ) <− c ( "mu" , " delta " , " alpha " , " beta " )
cat ( " Distr ibution Parameter estimates :\n" )
print . default ( format ( distributionParams , d i g i t s = d i g i t s ) ,

print . gap=2 ,quote=FALSE)
}
cat ( "Method : " , ob jec t $method , "\n" )
cat ( " Likelihood : " , ob jec t $MLE, "\n" )
cat ( " Convergence code : " , ob jec t $conv , "\n" )
cat ( " I terat ion : " , ob jec t $ i ter , "\n" )
invisible ( ob jec t )

}

A.4.3.2 coef.hyperblm Function
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coef . hyperblm <− function ( object , . . . ) {

## Purpose : Obtain the regression c o e f f i c i e n t s
## and error d i s t r ibut ion parameters
## of the f i t t e d model .
##
## =========================================================
## Arguments : object , The hyperblm f i t t e d model
## . . . , Additional arguments may pass in the
## function .

l i s t ( coefficients = ob jec t $ c o e f f i c i e n t ,
distributionParams = ob jec t $distributionParams )

}

A.4.3.3 plot.hyperblm Function

plot . hyperblm <− function ( object , breaks = "FD" ,
p l o t T i t l e s = c ( " Residuals vs Fitted Values " ,

" Histogram of residuals " ,
"Log−Histogram of residuals " ,
"Q−Q Plot " ) , . . . ) {

## Purpose : Obtain a residual vs f i t t e d value plot ,
## a histgram of residuals with error d i s t r ibut ion density
## curve superimposed ,
## a histgram of log residuals with error d i s t r ibut ion
## error density curve superimposed
## and a QQ plot .
##
## =========================================================
## Arguments : object , The hyperblm f i t t e d model
## breaks , Histogram breaks
## plo tT i t l es , A vector o f p lot t i t l e s .
## . . . , Additional arguments pass to in part icular
## plo t t ing functions .

i f ( ! " hyperblm " %in% class ( ob jec t ) )
stop ( " Object must belong to c lass hyperblm " )

i f ( is . null ( ob jec t $coef ) )
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stop ( " Object has Null output " )

par (mar = c (6 , 4 , 4 , 2) + 0 .1 )

x <− ob jec t $xMatrix
y <− as . numeric ( ob jec t $yVec )
fitted . values <− ob jec t $fitted . values
residuals <− ob jec t $residuals
xName <− ob jec t $xName
yName <− names( ob jec t $model ) [ 1 ]
distributionParams <− ob jec t $distributionParams
coefficients <− ob jec t $coefficients

hypDens <− function ( residuals )
dhyperb ( residuals , param = distributionParams )

logHypDens <− function ( residuals )
log ( dhyperb ( residuals , param = distributionParams ) )

par ( mfrow = c (2 , 2) , . . . )

plot ( fitted . values , residuals , xlab=" Fitted Values " ,
ylab=" Residuals " , main= p l o t T i t l e s [ 1 ] )

abline (h=0 , l t y =3)

histData <− hist ( residuals , breaks=breaks , r ight=FALSE,
plot=FALSE)

breaks = histData$breaks
empDens <− i felse ( ! is . f i n i t e ( log ( histData$density ) ) ,

NA, histData$density )
ymax <− 1.06 * max( hypDens ( seq (min( breaks ) , max( breaks ) , 0.001) ) ,

empDens , na .rm=TRUE)

hist ( residuals , r ight = FALSE, freq=FALSE, ylim = c (0 , ymax) ,
main = p l o t T i t l e s [ 2 ] , breaks = breaks ,
ylab = " probabi l i ty density " , xlab = " residuals " , . . . )

curve ( dhyperb ( x , param = distributionParams ) , add = TRUE,
ylab = NULL, col = 2 , lwd = 1 .5 )

logHist ( residuals , breaks = breaks , include . lowest = TRUE,
right = FALSE, main = p l o t T i t l e s [ 3 ] , . . . )

curve ( log ( dhyperb ( x , param = distributionParams ) ) ,
add = TRUE, ylab = NULL, xlab = NULL, col = 2)
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alphas <− ( 1 : length ( residuals ) − 0 .5 ) / length ( residuals )
quanti les <− qhyperb ( alphas , param = distributionParams )
qqplot ( quantiles , residuals ,

main = p l o t T i t l e s [ 4 ] ,
xlab = " Hyperbolic quanti les " ,
ylab = " residuals quanti les " , . . . )

abline (0 , 1)

}

A.4.3.4 summary.hyperblm Function

summary. hyperblm <− function ( object ,
hessian = FALSE,
nboots = 1000 , . . . ) {

## Purpose : Summary function for hyperbolic modelling
## resul t
##
## =========================================================
## Arguments : object , The hyperblm f i t t e d model
## hessian , Whether to use Hessian matrix
## to compute standard error .
## nboots , Number of i t e ra t i ons to approximate
## standard error
## . . . , Additional arguments may pass in the
## function .

i f ( ! " hyperblm " %in% class ( ob jec t ) )
stop ( " Object must belongs to c lass hyperblm " )

x <− ob jec t $xMatrix
y <− as . numeric ( ob jec t $yVec )
distparam <− as . numeric ( ob jec t $distributionParams )
coef <− as . numeric ( ob jec t $coef )
param <− c ( distparam , coef )
hs <− NULL

i f ( hessian == FALSE) {
n = ncol ( x )
bParam = matrix ( ncol = 4 , nrow = nboots )
bCoef = matrix ( ncol = n , nrow = nboots )

for ( i in 1 : nboots ) {
w = apply ( x , 2 , sample , replace = TRUE)
z = as . vector (w*as . matrix ( coef ) ) +
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rhyperb ( length ( y ) , param = distparam )
tryOpt <− try ( f i t t e d r e s u l t <−

hyperblmfit ( x = w,
y = z ,
method = ob jec t $method ,
startMethod = ob jec t $startMethod ,
startStarts = ob jec t $startStarts ,
paramStart = ob jec t $paramStart ) ,

s i l e n t = TRUE)
i f ( class ( tryOpt ) == " try−error " ) {

bParam[ i , ] <− rep (NA, 4)
bCoef [ i , ] <− rep (NA, n)

} else {
bParam[ i , ] <− as . numeric ( f i t t e d r e s u l t $distributionParams )
bCoef [ i , ] <− as . numeric ( f i t t e d r e s u l t $coef )
}

}
ses = c ( sqrt ( apply (bParam , 2 , var , na .rm = TRUE) ) ,

sqrt ( apply ( bCoef , 2 , var , na .rm = TRUE) ) )
} else {
param <− c ( distparam , coef )
l l func <− function (param) {

res ids <− y − as . vector ( x * as . matrix (param[ − (1 :4 ) ] ) )
hyperbDens <− dhyperb ( resids , param = param [ 1 : 4 ] )
return (sum( log ( hyperbDens ) ) )

}
hs <− tsHessian (param , l l func )
varcov <− make. pos i t i ve . d e f i n i t e ( solve ( hs ) )
variance <− diag ( varcov )
ses <− sqrt ( variance )

}

ob jec t $ tval <− coef / ses [ − (1 :4 ) ]
ob jec t $rdf <− nrow( ob jec t $xMatrix ) − ncol ( ob jec t $xMatrix )−3
ob jec t $pval <− 2*pt ( abs ( ob jec t $ tval ) ,

ob jec t $rdf , lower . t a i l =FALSE)
ob jec t $hessian <− hs
ob jec t $Coefsds <− ses [ − (1 :4 ) ]
ob jec t $Paramsds <− ses [ 1 : 4 ]

class ( ob jec t ) <− "summary . hyperblm "
return ( ob jec t )

}

A.4.3.5 print.summary.hyperblm Function
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print .summary. hyperblm <− function ( object ,
d i g i t s = max(3 , getOption ( " d i g i t s " ) − 3) ,
. . . ) {

## Purpose : Print function for hyperbolic modelling
## summary resul t
##
## =========================================================
## Arguments : object , The hyperblm f i t t e d model
## dig i ts , Desired number of d i g i t s when
## the ob jec t i s printed .
## . . . , Additional arguments may pass in the
## function .

i f ( class ( ob jec t ) ! = "summary . hyperblm " )
stop ( " Object must belong to c lass summary . hyperblm " )

cat ( "\nCall :\n" , deparse ( ob jec t $call ) , "\n" , sep = " " )

cat ( "\nData : " , ob jec t $xNames, "\n" )

i f ( ! is . null ( ob jec t $hessian ) ) {
cat ( " Hessian : (mu, delta , pi , zeta ) parameter\n" )
print . default ( ob jec t $hessian )

}
cat ( " Parameter estimates :\n" )
i f ( is . null ( ob jec t $Coefsds ) ) {

coefficients <− ob jec t $coef
names( coefficients ) <− ob jec t $xNames
print . default ( format ( coefficients , d i g i t s = d i g i t s ) ,

print . gap=2 , quote=FALSE, r ight=TRUE)
} else {

coefficients <− cbind ( ob jec t $coef , ob jec t $Coefsds ,
ob jec t $tval , ob jec t $pval )

dimnames( coefficients ) <− l i s t ( ob jec t $xNames,
c ( " Estimate " , " Std . Error " ,

" t value " , "Pr(>| t |) " ) )
printCoefmat ( coefficients )

}

cat ( "\nError d is t r ibut ion parameter estimates :\n" )
i f ( is . null ( ob jec t $Paramsds ) ) {

distparam <− ob jec t $distributionParams
names( distparam ) <− c ( "mu" , " delta " , " alpha " , " beta " )
print . default ( format ( distparam , d i g i t s = d i g i t s ) ,

print . gap=2 , quote=FALSE, r ight=TRUE)
} else {
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distparam <− cbind ( ob jec t $distributionParams , ob jec t $Paramsds )
dimnames( distparam ) <− l i s t ( c ( "mu" , " delta " , " alpha " , " beta " ) ,

c ( " Estimate " , " Std . Error " ) )
printCoefmat ( distparam )

}

cat ( "\nLikelihood : " , ob jec t $MLE, "\n" )
cat ( "Method : " , ob jec t $method , "\n" )
cat ( " Convergence code : " , ob jec t $conv , "\n" )
cat ( " I terat ions : " , ob jec t $ i ter , "\n" )
invisible ( ob jec t )

}
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