

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the publisher’s version. This version is defined in the NISO recommended
practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Atalag, K., Yang, H. Y., & Warren, J. (2012). Assessment of Software
Maintainability of openEHR Based Health Information Systems – A Case Study In
Endoscopy. Electronic Journal of Health Informatics, 7(1), e5.

Copyright

This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike License.

The article title is amended in the publication.

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

http://www.ejhi.net/ojs/index.php/ejhi/about/submissions

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/
http://www.ejhi.net/ojs/index.php/ejhi/about/submissions
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

electronic Journal of Health Informatics
www.eJHI.net
2012; Vol 7(1):e5

Maintainability of openEHR Based Health
Information Systems – a Case Study in

Endoscopy

Koray Atalag1,2, Hong Yul Yang3, and Jim Warren1,2

1Department of Computer Science, The University of Auckland, New Zealand
2National Institute for Health Innovation, The University of Auckland, New Zealand

3Ocean Informatics Pty. Ltd.

Abstract
Maintaining health information systems over time requires significant effort and time. This is especially
marked in clinical information systems where most, if not all, functional software requirements are
dependent on healthcare concepts and processes which are prone to high rate of change. Software
engineering literature indicates that maintenance tasks alone may constitute 70-80% of the total
development cost. It has been suggested that openEHR based systems will effectively tackle this
by separating domain knowledge from software code. The objective of this paper is to assess the
maintainability of an openEHR based clinical application with comparison to another application
based on the same functional requirements but implemented using traditional development methods.
An endoscopy reporting application (GastrOS) driven by openEHR archetypes has been implemented
using .Net/C#. It has the same functionality and appearance as an existing application which has been
developed using Object/Procedural approach with relational data modelling. Afterwards a number
of change requests have been implemented in both systems while assessing maintainability using
metrics defined in the ISO/IEC 9216 and 25000 software quality standards. This paper presents the
implementation methodology and preliminary results of the larger evaluation study using a more
comprehensive set of change requests. These results indicate that, on average, the openEHR based
application took approximately nine times less time to implement the change requests and were seven
times less complex compared to the other application. While essentially a quantitative study it equally
presents qualitative findings about opportunities and limitations of taking a model driven approach in
development.

Keywords: Electronic Health Records; Health Information Systems; Endoscopy; Software Maintain-
ability; Standards; openEHR

1 Introduction

Modifications in software become inevitable after the
product has been deployed which may include correc-
tions, improvements or adaptation to changes in en-
vironment, requirements and functional specifications.
Maintenance comprises activities needed to carry out
these tasks and is a major part of the software lifecycle.
Software maintainability, on the other hand, is a soft-

ware quality attribute which is defined as the capability
of the software product to be modified [1].

ISO/IEC 9126 and 25000 standards present a compre-
hensive quality model which comprises three distinct
facades of quality: internal, external and in-use. In-
ternal quality refers to the characteristics of software
from an internal view and is attributable to requirements,
design artefacts and code. This is closely related with
maintainability prediction because the assessment is

The electronic Journal of Health Informatics (ISSN:1446-4381) is dedicated to the advancement of Health Informatics and information technology in health
care. eJHI is an international Open Access journal committed to scholarly excellence and has a global readership in all health professions and at all levels.
c© Copyright of articles originally published in www.eJHI.net under the Creative Commons Attribution 3.0 License is retained by the authors.

www.eJHI.net
www.eJHI.net

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

often performed before building software for the pur-
pose of estimating time and effort required – hence the
cost. External quality refers to the characteristics from
an external view when software is executed, which is
typically measured and evaluated while testing in a sim-
ulated environment. This is a direct measurement of
maintainability performed by observing maintenance
activities. Quality in use is the user’s view of the quality
of software when deployed in a real world setting. This
study assesses maintainability as an external quality
characteristic by using external maintainability metrics.

A typical software development project starts with the
requirements collection phase where developers interact
with domain experts and users to identify and document
them. Then comes the design phase where the blueprint
of software is laid out based on the elicited requirements.
There is a handover in traditional development method-
ologies where domain knowledge is extracted from the
problem domain and then transferred to the solution
domain by means of formal models and programming
constructs. Both technical and domain knowledge ex-
pressed as software requirements are hard-coded into
the program code, database schema and user interfaces.
Development then continues with coding, testing, ver-
ification and validation, deployment followed by the
maintenance phase. The essential difficulty in mainte-
nance arises from the fact that if requirements change or
new requirements are introduced then the whole devel-
opment cycle has to be repeated again – from redesign
to redeployment. It is a well known fact that mainte-
nance usually exceeds initial development costs (up to
70-80% of total cost) [2].

Mainstream software development approaches, typi-
cally the Object Oriented (OO) formalism together with
relational databases with complex data models, work
well in domains where domain concepts are stable and
that most of the requirements can be elicited at the out-
set [3]. However, healthcare is a “wicked” domain –
that is the size and complexity of Medicine negatively
affects this process [4]. Moreover, the rapidly changing
body of knowledge plus the non-deterministic nature
of Medicine, that is the Art of Medicine, adds more to
the problem. Not only is the body of knowledge highly
variable but also medical conduct changes from time to
time and place to place across different organisations
and jurisdictions [5-7]. In a typical development project
clinicians, without much idea about the technological
limitations or possibilities, express their needs. IT pro-
fessionals on the other hand, without much background
in biomedical and clinical sciences, try to comprehend
these requirements. This has fundamentally two conse-
quences: 1) Not all requirements can be elicited in the
first place or they may be wrong resulting from the cog-

nitive limitations of the handover between healthcare
and technical professionals, 2) Elicited requirements
then frequently need to be altered or more likely new
ones come into play. Thus is it only natural to expect
more effort and cost associated with maintenance, espe-
cially in clinical applications. Solid evidence is scarce
in literature but Girosi et al. reports that most long
term costs associated with electronic medical record
(EMR) systems are due to maintenance [8]. This obvi-
ously creates a very large room for improvement and
that tackling this will certainly impact on how we will
develop systems in future. This is the main motivation
of this study.

There is no doubt that software maintenance, together
with other quality characteristics, are highly dependent
on the architecture. In order to tackle the difficulties
in software maintenance a set of software development
methodologies and best-practices have emerged which
include multi-tiering (e.g. dividing presentation, busi-
ness and persistence into different tiers), following good
OO design and development practices (such as loose
coupling etc.), model-driven architecture/development,
Model-View-Controller (MVC) approach for GUI gen-
eration and parameterising software. The openEHR
formalism includes elements of these approaches and
it is essentially a typical example of Model Driven Ar-
chitecture where domain knowledge is captured using
a domain specific language (Archetype Definition Lan-
guage – ADL) and software are driven by these models.
This has been shown to improve software maintainabil-
ity [9].

Moreover there are additional benefits of openEHR
which have led to its selection in the study. These are:

1. openEHR is a world-wide recognised de-facto stan-
dard which has led to the development of the de-
jure CEN EN13606 and ISO 13606 suite of health
informatics standards. This is critical for enabling
semantic interoperability among health informa-
tion systems.

2. openEHR provides an intuitive way of capturing
clinical requirements which in effect helps engage
clinicians, enables domain knowledge governance
and sharing of reusable artefacts.

3. Through Archetype specialisations and formal ver-
sioning it is possible to achieve a high level of
backward data compatibility.

4. openEHR also provides the means to write seman-
tic queries which enable querying of data inde-
pendent of the underlying data model (Archetype
Query Language – AQL).

2

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

5. There is good tooling support which are mostly
free and open source; such as Archetype Editor,
Archetype Workbench, Template Designer, Clin-
ical Knowledge Manager which are all available
from the openEHR Website (http://www.openEHR.
org).

A clinical reporting and analysis application in the
field of gastrointestinal endoscopy (called as GST from
now on) has formerly been developed by the first author
for use in a real clinical setting circa 1999. Most of the
functional specifications were defined by the Minimal
Standard Terminology for Digestive Endoscopy (MST)
which formally describes the structure, well defined
terms and rich semantics in this domain [10]. During
development, this domain knowledge has been embed-
ded into the software by means of program code and
database schema. Object-Procedural programming has
been employed using Microsoft Visual Basic 6 together
with Microsoft Access for data modelling and persis-
tence. After deployment it became apparent that mod-
ifying the application to meet new requirements was
quite cumbersome. This has been the starting point of
the quest for finding a better means to build future-proof
clinical applications. In an earlier study GST has served
as a research prototype where the objective was to val-
idate whether the openEHR formalism can faithfully
represent the problem domain [11].

Existence of a working and clinically validated appli-
cation with which we could compare the new openEHR
based application (called as GastrOS from now on) gave
us the ability to conduct a comparative study. We believe
that such comparative results provide more meaningful
and convincing evidence than absolute maintainability
measures alone. The aim of this paper is to present the
initial results of the larger evaluation study, and also
to unravel a generic implementation methodology for
building desktop clinical applications using openEHR
and .Net/C#.

2 The openEHR Formalism

openEHR refers to the publicly accessible engineer-
ing specifications to build complete EHR systems and
also to the governing body – the openEHR Founda-
tion [12]. openEHR have developed a methodology
which here we will denote ‘Multi-level Modelling and
Development Methodology (MLM/D)’. This can po-
tentially minimise, if not totally eliminate, the handover
paradigm (hence tackling with incomplete or wrong
requirements). It does this by separating domain con-
cepts from software code using domain specific models

Figure 1: Schematic representation of the openEHR Multi-
Level Modelling and Development Approach

called Archetypes which formally constrain a set of sta-
ble technical reference model (RM) entities. Archetypes
represent clinically meaningful concepts such as blood
pressure measurement or APGAR score. Another layer
of modelling is the Templates which bring together
a number of related archetypes and further constrain
them for local use. In the runtime software is driven by
these models for dynamic graphical user interface (GUI)
creation, data binding and validation [13]. openEHR
also defines the means to model care processes and
behaviour via INSTRUCTION type Archetypes which
allows for modelling of state and workflow steps of
care processes. As a result altering software after de-
ployment mostly involves remodelling done by domain
experts. Thus there is hardly any need for redesign,
coding, testing and deployment.

A good analogy to understand how RM, archetypes
and terminologies relate to each other is using a lim-
ited set of standard LEGO R© blocks to assemble many
different structures (Figure 1).

RM consists of a small set of object oriented classes
which depict the generic characteristics of health records
(e.g. data structures and types) and the means to define
context information to meet ethical, medico-legal and
provenance requirements. Thus a blood pressure mea-
surement will be represented as an instance of RM OB-
SERVATION class, which is a sub-class of the generic
ENTRY type of class used for introducing all types
of contributions to the health record. These carefully
engineered classes can faithfully capture results of all
medical entries together with necessary contextual in-
formation such as cuff size (of a sphygmomanometer)
and position (i.e. sitting, lying) in order for correct
medical interpretation. The stable and well-defined RM
entities usually correspond to individual GUI widgets;

3

http://www.openEHR.org
http://www.openEHR.org

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

such as a CLUSTER container data structure can be rep-
resented as a frame around its children elements or the
DV_TEXT data type corresponds to a text box control
or a drop down list.

Archetypes provide the full semantics and structure
of domain concepts by constraining relevant classes
from RM and then use them as building-blocks to form
a computer processable clinical model. Practically they
specify particular record entry names, data structures,
data types, prescribed value ranges and values for some
of the context attributes. They also make possible to
leverage the vast amount of standardised terms and
semantics by linking to biomedical terminologies by
means of terminology bindings.

On the top level Templates further constrain a group
of Archetypes; such as changing names of certain data
elements or omitting some altogether. During imple-
mentation operational templates provide the means
to automatically create GUI and persistence methods
which contain the whole set of information contained in
the contained archetypes and terminology bindings as
well as language translations.

An often overlooked feature of openEHR is the pro-
vision of a mechanism for evolving and maintaining
domain models. Here the Archetypes can be modified
safely without breaking original semantics and data-
level compatibility by a formal method called Archetype
Specialisation [13]. New data elements or values can be
added as well new constraints can be introduced which
are narrower than existing constraints if any. Figure 2
shows how we have created two specialised versions of
the MST Findings for Stomach Archetype to meet inter-
national and then local needs. In first specialisation new
terms were added where ‘Rectal exam’ has been defined
as free text. In second specialisation not only new exten-
sions were added but also the ‘Rectal exam’ data type
has been further constrained to be coded text which im-
poses a tighter constraint than the previous. Any coded
text entered using the most specialised archetype will
still conform to the original and can be persisted and
queried alike.

The high quality openEHR specifications have re-
cently been adopted by both CEN and ISO, and released
as 13606 suite of de jure health informatics standards
[14,15].

3 Methods

The study comprises: 1) defining software requirements
for GastrOS with reference to GST by means of prepar-
ing a formal Software Requirements Specification doc-
ument (SRS); 2) archetype modelling based on MST; 3)

Figure 2: Archetype specialisation example from GastrOS

design, implementation and testing of GastrOS; 4) intro-
ducing change requests (CR) and implementing them;
5) measuring maintainability using external metrics, and
evaluation.

3.1 Architecture of GST and its Evolution

It is worth mentioning about the old application being
compared to – the GST. It had started as a commercial
project in 1999 and later became the first author’s Ph.D.
research prototype which has been used to clinically val-
idate MST [11]. Developed by MS Visual Basic 6 using
a mix of procedural and object oriented programming
techniques, MS Access (version 97 first and then 2000)
has been used for data modelling and persistence. After
deployment in a live clinical setting it has been used as
the only means for endoscopy reporting until August
2003 (later the users preferred to use it for two more
years but no data have been collected during this period).
Feedback from the users (physicians and nurses) has
been collected and the application development contin-
ued iteratively. This provided us with valuable insight
into the domain and gave the chance to further refine
requirements and observe change requests over time.

Considerable part of MST items and other extra infor-
mation (e.g. patient demographics, encounter informa-
tion, infection markers and etc.) were incorporated into
the program code, database schema and GUI. For exam-
ple the endoscopic findings for each organ, which form
the majority of MST content, have been represented
as separate database tables with each data item corre-
sponding to a database column. As the requirements
frequently changed due to altered domain concepts, it
took very long time and serious effort to modify the
software and redeploy. This clearly showed that the
system was not feasible to maintain and indicated what
shouldn’t be done when developing such systems from a
technical point of view (e.g. embedding highly complex
clinical model into software).

4

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

3.2 Modelling and Development

The open source openEHR Archetype Editor was used
to model archetypes based on MST. Then an openEHR
template representing the full endoscopy report was
modelled using Ocean Template Designer. This is the
sink of all domain knowledge bringing together all MST
archetypes. Then three operational templates were au-
tomatically generated representing each examination
type. To explicitly define the scope and functionality of
GastrOS the SRS document was prepared. We have ex-
cluded detailed clinical search functions from the study
which include searching by findings or procedures at
data item level. The rationale for doing so was two-fold:
1) these functions were seldom used by clinicians over
the course of GST’s lifecycle; 2) we had to limit our
scope due to time and resource constraints.

GastrOS consists of two distinct sub-systems: 1)
openEHR based Structured Data Entry Component
(SDE) which provides all data entry and validation
functionality driven by underlying MST Archetypes;
2) a Wrapper Application (Wrapper) to provide a mini-
mum level of functionality to drive the SDE component
(performing functions like patient and visit data entry,
searching and sign-off/reporting). Both components are
designated to be free and open source, and hosted at:
http://gastros.codeplex.com

The SDE is a programming library that takes in an
operational template in XML form as input and dynami-
cally constructs an appropriate graphical data entry form.
It has the capability to store and validate user-entered
data. Thus if a clinician wanted modifications in the
form, he or she needs only to change the model and then
SDE would automatically generate an updated form that
reflects these changes. This component is also targeted
to be reusable across clinical domains – in applications
that require hierarchical data entry and validation.

To make this work, SDE first parses the input opera-
tional template into a tree-like data structure, called
archetype objects. Each archetype object acts as a
blueprint for a specific part of the data to be entered
and stored, as well as the GUI widget to represent the
data (Figure 3). It can be as atomic as a single textual
entry or as complex as an entire group of findings. SDE
defines a set of mapping rules to determine what kind
of GUI widget to create for what kinds of data elements.
For example it would create a text field for a textual
entry (e.g. name of a drug), a drop-down list for a re-
stricted range of values (e.g. organ types), or a panel
for a cluster value that further contains sub-values (e.g.
a diagnosis entry). These rules are fairly generic so
as to accommodate as wide a range of usage domains
as possible. The consequence of this is that without

any external customisation, the aesthetics and visual
behaviour of the GUI generated by SDE would be uni-
form across different usage domains. For this reason
we introduced what we call ’GUI Directives’, which
allows the user to encode additional instructions to cus-
tomise the appearance and behaviour of the generated
GUI widgets. An example of a simple directive would
be to put a border around a panel representing a specific
cluster; a complex example would be adding the option
of dynamically showing and hiding a group of values.
Because the Archetypes are not designed to hold pre-
sentation related information, we have chosen to embed
the GUI directives as template annotations to feed into
the GUI generator. Interestingly, all the directives we
used turned out to be generic enough to be applicable
to any other clinical domain.

3.3 Measurement and Evaluation

The change requests used in this study for evaluation
comprise real cases which caused GST to be modified
in past. These are mostly due to errors detected in MST
and local extensions (Table 1). Each CR has been as-
signed as a maintenance task to both GST and GastrOS.
Then the first author performed necessary programming
and testing tasks on GST who is the original developer,
and similarly the second author performed these tasks
on GastrOS while the primary author, who is also a
domain expert, made necessary changes in the mod-
els. An issue tracking system (Atlassian Jira) and two
Subversion repositories have been set up to capture and
document changes in code, models and databases for
both applications. A different branch has been created
for each CR and there were multiple commits for each
CR. The data which forms the basis for software size
change have been obtained from the start and end of
each CR branch in corresponding Subversion reposito-
ries. For determining software size we have counted the
total lines of code (LOC) for program code, ADL LOC
for models and any added database column or row num-
bers and added them up. Similarly we have obtained
the time lapsed for implementing each CR by record-
ing start and end time and date of each CR. Any break
between coding sessions has been noted carefully and
excluded; thus the measured times reflect net program-
ming time. This data also include specific comments
for implementation, difficulty levels and type of pro-
gramming task such as requirements, coding, database
changes and debugging which will be used in the larger
study. At the end of each CR implementation each pro-
grammer tested the other application using detailed CR
descriptions as the reference and then debugging was
made when necessary. Then the data collected on soft-

5

http://gastros.codeplex.com

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

No Type Description Time (min) Changed LOC
GST GastrOS GST GastrOS

1 Fix MST: Anatomic site (colon): add site anal
canal

3 10 1 83

2 Ext MST: Findings (stomach): add term rapid ure-
ase test | add attribute result | add attribute
values positive and negative

30 5 45 37

3 Fix MST: Findings (stomach and
colon>protruding lesions>tumor/mass):
add attribute: Diameter | change attribute
value diameter in mm. -> in mm.

50 13 92 2

4 Ext MST: Findings (colon>protruding le-
sions>hemorrhoids): add new attribute type
and add attribute values Internal and External

30 7 46 23

5 Fix MST: Therapeutic procedures (Sphinctero-
tomy>Precut): add attribute value No

6 5 1 4

6 Ext MST: Therapeutic procedures (Thermal ther-
apy>Device): add attribute value Heat-probe

11 5 1 4

7 Ext MST: Diagnoses (stomach): add main di-
agnoses Antral superficial, Pangastritis, At-
rophic, Alkaline reflux and Somatitis

6 8 4 20

8 Ext MST: Diagnoses: Add free text description for
each organ

50 10 60 20

9 New Other: Split lower gastrointestinal examina-
tion type into colonoscopy and rectoscopy.
Bind both types to Findings for colon

30 10 6 2

10 New Other: Localise MST Findings for Stomach
form to English

1116 70 722 499

TOTAL 1332 143 978 694

Table 1: The change requests (CR) used in the study and the results.

6

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

Figure 3: Endoscopy findings GUI from GastrOS with examples of used GUI Directives

7

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

Metric GST GastrOS
CCE 133.20 14.30
MC 0.14 0.02

Table 2: Comparison of changeability metric values

ware size change and time elapsed for each CR have
been fed into the following metrics to obtain results.

The following ISO 9126 maintainability external
quality metrics related with changeability have been
selected:

Change cycle efficiency (CCE) is used to answer the
question: Can the user’s problem be solved to his satis-
faction within an acceptable time scale? It is computed
by measuring the time from initial request to resolution
of the problem.

Modification complexity (MC) is used to answer
the question: Can the maintainer easily change the soft-
ware to resolve problem? It gives a ratio that is com-
puted by sum of time spent on each change per size of
software change divided by total number of changes.

4 Results

The CRs used in the study are presented in Table 1,
along with the measurements for the elapsed time (in
minutes) to complete each CR as well as the total size
of software changed – in lines of code (LOC) for both
software source code and archetype model expressed as
Archetype Definition Language (ADL) statements. The
‘Type’ column depicts whether this caused a correction
or extension of clinical concepts described in MST or
addition of a new feature. The short-hand notations in
the ‘Description’ column point out to their location in
MST. The CCE and MC metric values computed from
the time and change measures are shown in Table 2.

GastrOS showed lower values for both CCE and MC
than GST – by factors of approximately 9 and 7 re-
spectively, the former indicating nine times less effort
overall to modify GastrOS, and the latter indicating the
changes were on average seven times less complex.

In addition to these quantitative results which applies
to this specific case study we would like to emphasise
the qualitative results including our design decisions and
implementation methodology using openEHR; most no-
tably the novel GUI Directives coupled with openEHR
models which we have defined when generated Gas-
trOS’ user interfaces.

5 Discussion

GastrOS is one of the first openEHR implementations
of a desktop clinical information system using .Net plat-
form and C#. Having a clinically validated clinical
application at our disposal was the distinguishing fea-
ture of this study which gave us the capability to design
a comparative study. The paper presents the high level
implementation methodology; however all documents,
design artefacts and source code are available on Gas-
trOS Project Website (http://gastros.codeplex.com).

We used a combination of time and size to reflect
maintenance effort, as evident in the metrics descrip-
tion. As with any software measurement exercise, we
cannot discount the possibility of errors. One way in
which the accuracy of effort measures could be com-
promised is if there was significant disparity between
the two implementers (in terms of expertise, familiarity
and productivity). This threat must be recognised, and
although it would be ideal for the effort measurements
to be normalised in some way to cancel out any bias,
we believe such bias was already minimised due to the
implementers having similar levels of expertise with
their respective programs.

Notwithstanding the above threat, there is still suffi-
cient reason to believe the results, which indicate that
the openEHR based application is more maintainable,
due to a number of factors inherent in the application
and in the study design. First the CRs were mostly re-
lated with the domain knowledge which was taken out
of GastrOS code and put into the model. There was
almost no need for redevelopment when implementing
these changes. Second, much less handover was needed
between the clinical and technical roles due to the clear
separation model vs. software. Third the modelling for-
malism itself was quite intuitive and that the high level
graphical modelling tools proved to be very efficient
when making necessary changes.

This study has not been conducted in-vivo – that is
the resulting changes were not tested by real clinical
users. However these CR have been raised by real users
over the course of live clinical usage and also validated
by senior experts in the field.

There are studies similar to ours that evaluate the ef-
fects of differing software designs on maintainability.
For example Arisholm et al. [16] have compared two
different programming approaches by measuring the
effort that it takes to implement the same application
(a “coffee machine” application, which is not a real-life
system despite its non-trivial complexity) using each.
The main advantage of our study is that in contrast to
such studies based on what are arguably “toy” systems,
an application with clinically validated requirements

8

http://gastros.codeplex.com

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

has been implemented and extended using real-life CRs.
These results, when supported by further work and other
independent studies, may have a large impact on soft-
ware cost in health IT. Work is still underway to expand
and validate these preliminary results within the context
of the larger evaluation study where we are investigat-
ing how internal quality reflects on external quality and
further justify our results.

We did not include functions related with dynamic
behaviour in the study simply because the source of
domain knowledge used, MST, defines only static in-
formation requirements. It was, however, possible to
model clinical workflow and state of processes using
openEHR.

We have excluded detailed clinical search functions
from the study due to the fact that: 1) they were seldom
used by clinicians; 2) we had to limit our scope due to
time and resource constraints. It is worth stating that
if we had chosen to implement this functionality we
would expect this actually favouring openEHR based
GastrOS and not the old application. openEHR pro-
vides a semantic querying language, Archetype Query
Language (AQL), which allows for designing queries
independent of the physical data model but rather uses
the archetype paths which have been used to collect data.
Thus if the archetypes are backward compatible there
is no need to make major changes to existing queries
as the system evolves. On the other hand since the data
model of GST is based on relational model this means
all queries need to be redesigned as the application is
modified which affects the data model. This inevitably
will cause significant maintenance effort. In summary
we believe if we could have included detailed clinical
search functions the quantifiable maintainability differ-
ence between GastrOS and GST would be considerably
higher in favour of GastrOS.

Finally it should be noted that using some other well-
known software development techniques and best prac-
tices (such as good OO design, multi-tiering, parameter-
ising software and MDA in general) could have caused
similar effects on maintainability in this particular case
study. However, as stated, openEHR has not been se-
lected on the basis of better maintainability alone but
due to many other aforementioned benefits – especially
being a relevant standard. We believe a very important
finding of this study is that our results indicate imple-
menting standards based software can actually lower
the development cost while this is commonly presented
as a barrier to their adoption in the Sector.

6 Conclusion

We have discussed how the maintainability of health in-
formation systems has a major impact on their cost and
argued that this is mainly due to the essential difficulties
in healthcare domain. Constantly changing knowledge
translates into changing requirements. In order to evalu-
ate the implications of openEHR formalism on software
maintainability an openEHR based endoscopy report-
ing application has been developed using .Net/C#. It
is based on the same requirements of an existing appli-
cation developed with a traditional approach. Then the
maintainability of both systems has been assessed using
standard metrics. Our results indicate that the openEHR
based application on average took nine times less ef-
fort and were seven times less complex to implement;
thereby making it significantly more maintainable. This
indicates that, which applies to our case study (but with
the potential for generalisation in similar clinical do-
mains), the implementation methodology we set forth
using openEHR provided better maintainability over a
traditionally developed software in addition to its other
benefits mentioned in the paper.

Acknowledgements

This work was supported by a research grant from the
University of Auckland (Project No: 3624469/9843).
Special thanks to Dr. Heather Leslie and Dr. Louis
Korman for their help during modelling. We also ac-
knowledge Dr. Ewan Tempero for providing us with
rigour in software engineering aspects. Our deepest grat-
itude goes to the Bedogni family who established the
Clinton Bedogni Fellowship in Open Systems which en-
abled this research. Training, support and C# openEHR
Reference Model library have been provided by Ocean
Informatics Pty. Ltd.

References

1. ISO/IEC 9126-1 [standard]. Software engineering
- Product quality - Part 1: Quality model. Inter-
national Standard ISO 9126: 2001, International
Organization for Standardization (ISO), Geneva,
Switzerland.

2. Sommerville I. 2000. Software Engineering. 6th
ed. Addison Wesley.

3. Booch G, Maksimchuk R, Engle M, Young B,
Conallen J, and Houston K. 2007. Object-Oriented
Analysis and Design with Applications, Third Edi-
tion (Third ed.). Addison-Wesley Professional.

9

Atalag et al. | electronic Journal of Health Informatics 2012; Vol 7(1):e5

4. Wicked Problem (n.d.). Retrieved April 29,
2010, from Wikipedia: http://en.wikipedia.org/
wiki/Wicked_problem

5. Rector AL. 1999. Clinical terminology: why
is it so hard? Methods of Information in
Medicine 38, no. 4-5 (December): 239-252.
doi:10.1267/METH99040239.

6. Beale T. 2005. The Health Record: why is it so
hard? In IMIA Yearbook of Medical Informatics
2005: Ubiquitous Health Care Systems, eds. Haux
R and Kulikowski C, 301-304. Stuttgart: Schat-
tauer.

7. Paech B, Wetter T. 2008. Rational quality require-
ments for medical software. In Proceedings of the
30th international conference on Software engi-
neering, 633–638.

8. Girosi F, Meili R, Scoville R. 2005. Extrapolat-
ing Evidence of Health Information Technology
Savings and Costs. RAND Corporation.

9. Cao L, Ramesh B, Matti R. 2009. Are Domain-
Specific Models Easier to Maintain Than UML
Models? IEEE Softw. 26, no. 4: 19-21.

10. Delvaux, M. 2000. Minimal standard terminology
in digestive endoscopy. Endoscopy , 32(2), 162-
88.

11. Atalag K. 2009. Archetype Based Domain Mod-
eling for Health Information Systems GastrOS:
Case Study on Digestive Endoscopy and Valida-
tion of the Minimal Standard Terminology (MST
2). VDM Verlag.

12. Kalra D, Beale T, Heard S. The openEHR Founda-
tion. Stud Health Technol Inform. 2005;115:153-
73.

13. Beale T. 2002. Archetypes: Constraint-based do-
main models for future-proof information systems.
In Eleventh OOPSLA Workshop on Behavioral
Semantics: Serving the Customer, 16-32. Seattle,
Washington, USA: Northeastern University.

14. CEN EN 13606 [standard]. Medical informat-
ics—Electronic healthcare record communication.
European Standard EN 13606: 2007,2008, Euro-
pean Committee for Standardization (CEN), Brus-
sels, Belgium.

15. ISO 13606 [standard]. Health informatics – Elec-
tronic health record communication. International
Standard ISO 13606: 2008-2010, International

Organization for Standardization (ISO), Geneva,
Switzerland.

16. Arisholm E, Sjøberg DIK, Jørgensen M. 2001. As-
sessing the Changeability of two Object-Oriented
Design Alternatives–a Controlled Experiment. Em-
pirical Software Engineering; 6(3):231-277.

Correspondence

Dr. Koray Atalag
M.D., Ph.D., FACHI
Clinton Bedogni Research Fellow
Department of Computer Science
National Institute for Health Innovation
The University of Auckland
Auckland, New Zealand

Phone: +64 (9) 373 7599 ext 87199
Fax: +64 (9) 308 2377
http://koray.asklepion.org
k.atalag@auckland.ac.nz

Dr. Hong Yul Yang
Ph.D.
Research Fellow
National Institute for Health Innovation
Research Programmer
Department of Computer Science
The University of Auckland
Auckland, New Zealand

Phone: +64 (9) 373 7599 ext 88237
Fax: +64 (9) 308 2377
http://www.cs.auckland.ac.nz/~hongyul/
hongyul@cs.auckland.ac.nz

Dr. Jim Warren
Professor of Health Informatics
Department of Computer Science
National Institute for Health Innovation
The University of Auckland
Auckland, New Zealand

Phone: +64 (9) 373 7599 ext 86422
Fax: +64 (9) 308 2377
http://www.cs.auckland.ac.nz/~jim/
jim@cs.auckland.ac.nz

10

http://en.wikipedia.org/wiki/Wicked_problem
http://en.wikipedia.org/wiki/Wicked_problem
http://koray.asklepion.org
mailto:k.atalag@auckland.ac.nz
http://www.cs.auckland.ac.nz/~hongyul/
mailto:hongyul@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~jim/
mailto:jim@cs.auckland.ac.nz

