3 | LIBRARY
Te Tumu Herenga RESEARCHSPACE@AUC KLAND

THE UMIVERSITY OF AUCKLANMD

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand). This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

e Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

e Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

e You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital
copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form




Passive Myocardial Mechanics

Constitutive Laws
and

Material Parameter Estimation

by Holger Schmid
Supervised by Prof Peter J. Hunter & Dr Martyn P. Nash

A thesis submitted in partial fulfilment of the requirements for

the degree of PhD at the University of Auckland

I/‘,@

Q'
g

The
University
of Auckland

Bioengineering Institute,
University of Auckland,
New Zealand
August 16, 2006






Abstract

This study investigated the performance of orthotropic constitutive laws de-
scribing the passive mechanical behaviour of the myocardium. The perfor-
mance was validated against simple shear experiments of pig hearts which
were available from earlier studies.

First, a homogeneous deformation model was developed which captured
the main features of the deformation process. This served as the basis for a
comparative study between three phenomenological material laws that had
been published in the literature. Two of these laws exhibited certain limita-
tions and two further constitutive laws were therefore developed that removed
these limitations. Thus, five material laws were investigated in terms of their
performance to fit the given experimental data by reducing a least-square
objective function between the experimental and model data. Furthermore
the consistency of the material parameters amongst experiments was inves-
tigated. As part of this study, a modified least-squares objective function
was developed that decreased the computational time involved by about two
orders of magnitude with comparable error.

Second, the assumption of a homogeneous deformation of simple shear
was removed and the parameters were estimated using a finite element en-
vironment using an inverse estimation technique and therefore fulfilling the

equations of motion that underpin continuum mechanics. It was found that
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the material parameters of all laws were in the same range compared to those
obtained from the homogeneous study. Relaxing the homogeneous assump-
tions slightly reduced the objective function error although the computational
time increased by three orders of magnitude.

Third, the experimental protocol of six simple shear modes was supple-
mented with three uniaxial deformations modes. The material parameters
for the same constitutive relations were estimated. It was possible to show
that the material parameters that were associated with shear strain were very
similar to those obtained from the simple shear study. The axial material
parameters, however, were considerably different.

Finally, since it is recognised that phenomenological material laws do
not provide insight into the underlying micro-structural mechanisms, the
framework for a multi—scale constitutive relation was developed. This is

based on multi—scale images of rat myocardium.
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Dedication

O, never say that I was false of heart,
Though absence seem’d my flame to qualify.
As easy might I from myself depart
As from my soul, which in thy breast doth lie:
That is my home of love: if I have ranged,
Like him that travels I return again,

Just to the time, not with the time exchanged,
So that myself bring water for my stain.
Never believe, though in my nature reign’d
All frailties that besiege all kinds of blood,
That it could so preposterously be stain’d,
To leave for nothing all thy sum of good;
For nothing this wide universe I call,

Save thou, my rose; in it thou art my all.

William Shakespeare: Sonnet 109



