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Abstract

This study investigated the performance of orthotropic constitutive laws de-
scribing the passive mechanical behaviour of the myocardium. The perfor-
mance was validated against simple shear experiments of pig hearts which
were available from earlier studies.

First, a homogeneous deformation model was developed which captured
the main features of the deformation process. This served as the basis for a
comparative study between three phenomenological material laws that had
been published in the literature. Two of these laws exhibited certain limita-
tions and two further constitutive laws were therefore developed that removed
these limitations. Thus, five material laws were investigated in terms of their
performance to fit the given experimental data by reducing a least-square
objective function between the experimental and model data. Furthermore
the consistency of the material parameters amongst experiments was inves-
tigated. As part of this study, a modified least-squares objective function
was developed that decreased the computational time involved by about two
orders of magnitude with comparable error.

Second, the assumption of a homogeneous deformation of simple shear
was removed and the parameters were estimated using a finite element en-
vironment using an inverse estimation technique and therefore fulfilling the

equations of motion that underpin continuum mechanics. It was found that
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the material parameters of all laws were in the same range compared to those
obtained from the homogeneous study. Relaxing the homogeneous assump-
tions slightly reduced the objective function error although the computational
time increased by three orders of magnitude.

Third, the experimental protocol of six simple shear modes was supple-
mented with three uniaxial deformations modes. The material parameters
for the same constitutive relations were estimated. It was possible to show
that the material parameters that were associated with shear strain were very
similar to those obtained from the simple shear study. The axial material
parameters, however, were considerably different.

Finally, since it is recognised that phenomenological material laws do
not provide insight into the underlying micro-structural mechanisms, the
framework for a multi—scale constitutive relation was developed. This is

based on multi—scale images of rat myocardium.
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Dedication

O, never say that I was false of heart,
Though absence seem’d my flame to qualify.
As easy might I from myself depart
As from my soul, which in thy breast doth lie:
That is my home of love: if I have ranged,
Like him that travels I return again,

Just to the time, not with the time exchanged,
So that myself bring water for my stain.
Never believe, though in my nature reign’d
All frailties that besiege all kinds of blood,
That it could so preposterously be stain’d,
To leave for nothing all thy sum of good;
For nothing this wide universe I call,

Save thou, my rose; in it thou art my all.

William Shakespeare: Sonnet 109






Chapter 1

Introduction

Although it is well understood that taking preventative measures to main-
tain a healthy lifestyle are amongst the major means to decrease the risk of
heart failure, a better understanding of the heart’s mechanical and electri-
cal properties is crucial in supporting treatment of occurring cardiovascular
diseases.

At a simplified level the heart can be described as a source of blood
flow or pressure and its mechanical behaviour can be understood in terms of
the time-varying relationship between ventricular blood pressure and cavity
volume. For many years this relationship has been used by clinicians as a
measure of cardiac function [115, 59]. More recently, it has become apparent
that an understanding of the regional variation of myocardial material prop-
erties is important to understand the fundamental mechanisms underlying
ventricular mechanics. Moreover, in order to estimate the energy consump-
tion of various portions of the myocardium, the distribution of mechanical
stress throughout the cardiac muscle is important [101, 57]. More recent ev-
idence has shown that changes in wall stress due to altered haemodynamic

load contribute to the remodelling of myocardial tissue with respect to its
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cellular and connective tissue composition [34]. In addition, it may also in-
fluence tissue changes due to ischaemia and hypertrophy [77].

Myocardial stress can be distinguished into active and passive stress. Ac-
tive stress is developed through calcium activated contraction of the muscle
filaments and passive stress arises from the collageneous network that main-
tains the structural integrity of the muscle.

Among the first calculations of myocardial stress were formulated by
Woods [122] based on a simple thin walled sphere with uniform internal
pressure. A similar idea was employed by Sandler and Dodge [98] to model
the left ventricle using an axisymmetric ellipsoid.

The last decades have shown tremendous improvement in the description
of myocardial stress via the use of computational techniques such as the
Finite Element Method (FEM) and improved experimental observations. For
example, Guccione et al. [39] modelled the equatorial region of the canine left
ventricle as a thick—walled cylinder consisting of an incompressible Fung—type
hyperelastic material with homogeneous properties. The tissue was assumed
to be locally transversely isotropic with respect to the fiber axis. Nielsen et
al. [88] developed a anatomically realistic tri-cubic Hermite finite element
model that captured the detailed transmural fibre distribution.

Based on histological studies from LeGrice and coworkers [66] and ex-
perimental investigation from Dokos and coworkers [30] it is now accepted
that the most suitable way of describing the myocardial material symmetry
is via an orthotropic constitutive relation. Menzel and Steinmann [80] have
recently compared two strategies to formulate orthotropic hyperelasticity, i.e.
the classical approach based on the incorporation of an enriched sets of in-
variants in the free energy function and on fictitious isotropic configurations

via an appropriate tangent map. This study, however, was mainly of theoret-
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ical character and did not apply the findings to available experimental data
for the myocardium. It therefore remains to compare existing orthotropic
constitutive relations and determine their suitability to model myocardial

mechanics.

1.1 Objective

The aim of this research was to determine the most suitable constitutive re-

lation for describing passive mechanical behaviour of the myocardium.

1.2 Thesis Summary

Chapter 1 provides a motivation for the study of myocardial constitutive

relations and outlines the objective of this study.

Chapter 2 provides background on the myocardial anatomy on several scales.
It introduces the gross structure, the laminar arrangement of the mus-

cle, the micro—structural constituents and their respective arrangement.

Furthermore it describes simple shear experiments, upon which the ma-
jor part of this study is based, as well as uniaxial extension experiments,

which served to further the investigations.

Chapter 3 introduces the necessary background of continuum mechanics.
In particular, it derives the kinematic relationships, the balance equa-

tions and the constitutive theory.

Chapter 4 presents a short overview of the finite element method, a brief
introduction to standard optimisation techniques as well as some funda-

mental statistical measures. Furthermore it introduces a newly devel-
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oped optimisation technique for inverse material parameter estimation

based on Gaussian quadrature.

Chapter 5 provides a background of literature of myocardial constitutive

relations and the details of those investigated in this study.

Chapter 6 introduces a homogeneous simple shear deformation model and

the results of the estimation process.

Chapter 7 introduces a finite element simple shear deformation model and

the results of the estimation process.

Chapter 8 introduces a finite element simple shear deformation model as

well as uniaxial extension and the results of the estimation process.
Chapter 9 gives a summary and presents the conclusion of the study.

Chapter 10 shows initial results for investigating the connection between
the macro-—structural material parameters and the micro—structural

constituents and its topology.

1.3 Publications Resulting from this Thesis

Some of the work described in this thesis was published in the following

papers and can be found in the related chapters.:

Chapter 6: H. Schmid, M.P. Nash, A.A. Young and P.J. Hunter, Myocar-
dial Material Parameter Estimation — A comparative Study for Simple

Shear, Journal of Biomechanical Engineering, 2006, accepted.

Chapter 6: H. Schmid, M.P. Nash, A.A. Young, O. Rohrle and P.J. Hunter,

A computationally efficient optimization kernel for material parameter



1.3. PUBLICATIONS RESULTING FROM THIS THESIS 5

estimation procedures, Journal of Biomechanical Engineering, 2006, at

review.

Chapter 7 H. Schmid, M.P. Nash and A.A. Young and P.J. Hunter, My-
ocardial Material Parameter Estimation from Simple Shear Tests —
A Non-homogeneous Finite Element Study, Journal of Biomechanical

Engineering, 2006, at review.

Chapter 10 H. Schmid, M.P. Nash, C. Walker, G.B. Sands, A. Pope,
I.J. LeGrice, A.A. Young, P. Nielsen and P.J. Hunter, A framework
for multi-scale modeling of the heart, IFMBE Proceedings, Prague:
IFMBE, ISSN 1727-1983. Eds: Jiri Hozman, Peter Kneppo (Proceed-
ings of the 3rd European Medical & Biological Engineering Conference
- EMBEC 05. Prague, Czech Republic, 20-25.11.2005), Id. 2535, 11,
2005, 4201-4205.
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Part 1

Background






SYnopsis

This part presents the required background for the models built in this re-
search.

Chapter 2 presents the anatomy of the heart as well as the experimental
protocol of simple shear and uniaxial tests. Chapter 3 introduces the basics
of continuum mechanics and Chapter 4 gives a summary of the required

numerical tools.
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Chapter 2

The Heart

The human heart can be considered a pump, which sustains the whole body
with required nutrients through a network of blood vessels of varying size.
The heart consists of four chambers, the left ventricle (LV), the right ventricle
(RV), the left atria (LA) and the right atria (RA). For a detailed description
of the individual functionality of these chambers please refer to [61]. The left
ventricle plays a key role, as it has the largest volume of all four chambers
and is responsible for distributing blood throughout the body.

Myocardial tissue consists of discrete layers of muscle cells whose three—
dimensional structure is arranged in a complex hierarchy of extracellular
connective tissue, largely collagen. For modelling purposes the myocardium
is usually modelled as an orthotropic material (having three mutually or-
thogonal directions of distinct material response). This assumption is based
on microstructural observations at each point within the myocardium [66].

Mathematical models of total heart function have ranged from axissym-
metric shapes with isotropic, homogeneous myocardium [121] to accurate
geometries [88] with detailed descriptions of the fibrous micro—structure of

myocardium.

11
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This chapter presents the macro—structure (2.1) and micro—structure (2.2)

of the myocardium in more detail as required for this study.

2.1 Gross Structure

The primary function of the heart is to pump blood throughout the body, de-
livering nutrients and removing waste from each organ. The thinner—walled
atria act as large-volume low—pressure blood reservoirs for the ventricles,
which are responsible for the predominant pumping function. Two atrioven-
tricular valves connect each atria to its respective ventricle. The remaining
two semilunar valves join the outflow tracts of each ventricle with the great

arteries into which the ventricles eject blood.

2.1.1 Ventricles

The LV is a thick—walled muscular chamber that pumps blood at physiolog-
ically high pressures (up to approximately 15 kPa or 120 mmHg during the
normal heart cycle) to distal locations throughout the body. The cavity of
the LV resembles a truncated ellipsoid in which both the inflow and outflow
tracts are adjacent. In contrast, the RV pumps blood at comparatively low
pressures (about one seventh the pressure of the LV) and wraps around the
LV in a crescent—like fashion, so that its cavity forms a shallow U-shape.
The ventricles are separated by the interventricular septum, which normally
functions as part of the LV, and moves toward the LV free wall during systole.

See picture 2.1 for an illustration.
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Figure 2.1: Longitudinal cross—section of the heart, from [61].

2.1.2 Connective Tissue Network

The endocardial surfaces of the atria and ventricles are covered with con-
nective tissue which also extends over the valves. In addition, ventricular
endocardial surfaces include a complex network of cardiac cells that are ar-
ranged in discrete bundles called trabeculae. The trabeculae are arranged in
such a manner as to form small invaginations which are filled by blood from
the cavities during systole. The systolic phase closes these invaginations,
forcing the blood back into the main cavity. The pericardium is a fibrous
sac that encompasses the entire heart to resist rapid increases in cardiac size.
The inner wall of this sac is called parietal pericardium and is continuous

with the epicardium or visceral pericardium (the layer of connective tissue
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on the outer surface) at the base of the heart, where the great vessels en-
ter and leave. A small amount of fluid within the pericardial sac provides

lubrication for the continuous movement of the heart.

2.2 Microstructural architecture of the heart

Cardiac muscle cells or myocytes are typically brick-shaped with lengths
that range from 80 to 100um and diameters ranging from 10 to 20um. The
fundamental contractile unit within each myocyte is the sarcomere, which is
about 2um long at rest. The sarcomere spans between adjacent Z—lines along
the longitudinal axis of the cell, and contains the contractile apparatus. The
contractile apparatus consist of myofibrils that consists of 40-50 sarcomeres
in series, with the cells branching and interconnecting end—to—end through
intercalated discs junctions. The branching angle is usually acute, so that
adjacent cells run almost parallel with one another. In this way the con-
tractile apparatus between cells is aligned for efficient mechanical function.
Intercalated discs contain gap junctions, which provide electrical continuity
between cells. Consequently, the electrical impulses propagate more rapidly
along rather than across the axis of the constituent fibres.

Studies of myocardial architecture date back to the turn of last century
when MacCallum [70] and Mall [72] viewed the heart as an assembly of
discrete fibre bundles originating at the base of the ventricles and spiraling
towards the ventricular apices. More recent studies [114, 4] found a smooth
transmural variation of fibre orientation, which led to the predominant view
that myocardium is a single muscle mass that is more appropriately describes
as a continuum than as discrete muscle bundles. These studies, however, were

restricted to measurements at not more than eight sites on a single heart.
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It was not until Nielsen et al. [87] and McLean and Prothero [78] that a
systematic approach was adopted to characterise the muscle fibre orientation
in all regions of the ventricular myocardium.

To date, the most thorough study of cardiac muscle fibre orientation is
that of LeGrice [65], who progressively removed fine layers of myocardium
from a mounted intact preparation. Muscle fibre orientation was measured
together with the absolute coordinates at a large number of sites over succes-
sive myocardial surfaces (see [88] for further details). Using this procedure,
spatial registration is implicitly preserved and local muscle fibre orientation
may be determined with reference to the surrounding myocardium. Mea-
surements from this study confirm the selective findings reported by Streeter
et al. [114].

Streeter [113] was one of the researchers who found extensive extracel-
lular gaps within the myocardium, particularly in the midwall. These gaps
are called cleavage planes. He also acknowledged that there was substantial
discontinuity in the muscular architecture of the ventricles at both the mi-
croscopic and macroscopic level. These findings were essentially qualitative
until recent anatomical studies of LeGrice and coworkers [66], who report that
the ventricular myocardium should not be viewed as a uniformly continuous
structure. Their detailed studies reveal that cardiac tissue is a composite
of discrete layers of myocardial muscle fibres tightly bound by endomysial
collagen, as illustrated in Figure 2.2. These myocardial laminae are loosely
coupled by perimysial collagen and have the ability to slide over each other
with relative ease. Laminae are on average four to six cells thick and contin-
uously branch in each direction throughout the ventricular walls. As for the
muscle fibre study of LeGrice [65], sheet orientation was accurately quan-

tified with respect to ventricular geometry, so that the three-dimensional
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orthotropic structure of the ventricles could be completely characterised.

Figure 2.2: Schematic of cardiac micro—structure showing fibre orientation and branching

sheet structures, from [66].

For modelling purposes, it is convenient to define a natural set of material
directions to characterise the structure of myocardial tissue at an arbitrary
point in the heart wall. The first of these directions is referred to as the fibre
aris and it coincides with the muscle fibre orientation at each point. The
sheet axis is defined to lie in the plane of the muscle layer and is perpendicular
to the fibre direction. The third axis is defined to be orthogonal to the first
two and is referred to as the normal azis as it is perpendicular to the muscle
layer, see Fig.(2.3). This set of micro—structural axes is utilised throughout
this study in the formulation of orthotropic material laws. This is described

in detail in Chapter 5.
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Figure 2.3: Schematic illustrating the three micro-structural axes, from [30].

2.3 Tissue Experiments

Knowledge of the myocardial morphology can be very useful in determining
the gross features of the mechanical behaviour, i.e. elasticity, viscoelastic-
ity, homogeneity, heterogeneity, isotropy, anisotropy. As discussed in the
previous section it is clear that the myocardial microstructure suggests an
orthotropic material response differing in varying location of the heart wall,
therefore being heterogeneous. To determine whether the response is elastic
or viscoelastic, experiments which enable characterisation of these features

need to be performed, for further details see also [47, 47].

2.3.1 Pressure—Volume Measurements

Quantifying the global mechanical behaviour of whole ventricles, atria, or
hearts via simultaneous measurements of cavity pressure and volume has
been an extremely useful tool in cardiac physiology and mechanics for many

years.
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Although appropriate for determining global behaviour and certain fea-
tures of the characteristic tissue behaviour, pressure—volume studies are not
as useful in studying local phenomena such as regional behaviour or a consti-
tutive relation (which are local relations between field quantities). Moriarty
[82] and Vogel [119] give further insight into this.

However, recently the determination of transmural strain distribution of
in vivo behaviour has become available, through the use of Magnetic Reso-
nance Imaging in connection with finite element models. This opens a new

field of characterising myocardial material properties [9, 83, 8].

2.3.2 Uniaxial Tests

By far the most commonly performed experiment on isolated, excised cardiac
tissue is the uniaxial test. More recently tests have been performed on papil-
lary muscles and trabeculae carnae rather than uniaxial strips of myocardium
[62]. Uniaxial data have been extremely useful in determining general char-
acteristics of the tissue behaviour, including both the nonlinear quasistatic
material behaviour of quiescent muscle and the Frank-Starling behaviour of
contracting muscle. The review article by Mirsky [81] can be consulted for
details in uniaxial data. Uniaxial tests, however, are insufficient to determine

a more complete three—dimensional constitutive relation.

2.3.3 Biaxial Tests

Biaxial tests of excised slabs of myocardium can be more useful in identifying
three-dimensional mechanical characteristics. Demer and Yin [29] were the
first to do so. Also Humprey and coworkers [48] and Smaill and Hunter [107]

have reported on data collected from biaxial tests under various protocols.
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In particular, the fact that stress—extension relations for uniaxial loading
closely resemble those obtained under equibiaxial load indicates that there
was little mechanical coupling between the fibre and cross—fibre directions in

midmyocardial specimen [107].

2.3.4 Triaxial Tests

Biaxial tests are useful in studying the anisotropic material response of my-
ocardium. There are, however, some inherent disadvantages. For example
the samples usually need to be very thin to be a membrane for the attach-
ment points. Therefore biaxial tests that quantify the material response in
the normal direction continue to elude invetigators, since the collagen struts
between cleavage planes are easily destroyed in in vitro conditions.

Therefore triaxial tests of myocardium without the limitation of a specific
thickness would be beneficial in determining the full three—dimensional ma-
terial response. Furthermore, various studies have proven the importance of
shear deformation in myocardial mechanics [5, 67| since certain shear modes
provide a mechanism to explain endocardial wall thickening.

Dokos et al. [30] combined these findings in a series of simple shear ex-

periments, which will be described in some detail in the following section.

2.3.5 Multiaxial Simple Shear Experiments

The passive shear properties of six pig hearts were determined. Samples
(~ 3 x 3 x 3mm) were cut from adjacent regions of the lateral left ventric-
ular midwall, with sides aligned with the principal material axes (f,n,s;
fiber, normal, sheet). This position in the midwall ensured a more consis-
tent distribution of fibre and sheet angles. Cycles of sinusoidal shear (shear

displacement range [-50%, 50%]|) were applied separately to each specimen
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in two orthogonal directions. Three specimens from each heart were tested
in two directions, giving all six possible shear modes. Data for the fitting
were taken from cycles after strain softening had diminished. The six pos-

sible shear modes are presented in Fig.(2.4). Maximum displacement was
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Figure 2.4: A sketch of all six possible shear modes for myocardium. The first letter
indicates the normal vector of the face that is shifted, and the second letter indicates the
direction in which it is shifted. Narrow lines represent fibres in a sheet. Picture from

Dokos et al. [30]

prescribed to be half of the height of the cube, therefore all strain tensors
have the same magnitudes. The forces on the top face of the cube were mea-
sured and taken as the data for the material parameter optimization. This
is described in further detail in Sec.(6).

A typical force displacement curve is presented in Fig.(2.5). Note the
typical S- and U—-shaped curves.

2.3.6 Simple Shear & Uniaxial Extension

The rig used in the study by Dokos and coworkers [30] was only capable of

applying simple shear deformations. Since this was thought to be potentially
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Figure 2.5: The figure shows the force in the N—direction for the NS—mode throughout

the complete experimental loading protocol.

restrictive for the material parameter estimation process, the rig was modified
such that it was also possible to apply uniaxial extension.

Samples as in Sec.(2.3.5) underwent firstly simple shear deformation and
subsequently uniaxial extension and compression protocols with an extension,
compression ratio of 20% of the height of the cube. This ensured that the
axial strain components had a comparable magnitude to the shear strains in
the simple shear deformation.

A typical extension—compression curve is given in Fig.(2.6), while the
simple shear deformation curves remained equivalent to those in Sec.(2.3.5).
Note that myocardial tissue exhibits a markedly stiffer behaviour under com-

pression than in extension.
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Figure 2.6: The figure shows the force in the F-direction for uniaxial extension and

compression throughout the complete experimental loading protocol.

2.4 Summary

This chapter presented the background of the heart anatomy as well as an
overview of experimental techniques that allow for a characterisation of the
mechanical response of the myocardium. In particular, the simple shear
experiments from Dokos et al. [30] were utilised to estimate material param-
eters for various constitutive equations as outlined in the following chapters.
This allowed to determine the three—-dimensional mechanical response of the
orthotropic myocardium.

Furthermore the uniaxial extension served as additional data to determine
the effects of different experimental protocols on the material parameter es-

timation process. This is presented in Chapter 8.



Chapter 3

Continuum Mechanics

This chapter presents a formal description of the mechanical behaviour of a
continuous body. This outline is restricted to the case of elastic solids. For
a thorough and general treatment, see [13, 44, 75]. First, the geometrical
description of body is presented in Sec.(3.1), then in Sec.(3.2) the concept
of force and stress as well as the balance concepts are introduced and finally
Sec.(3.3) links these three together by introducing the notion of a hyperelastic

material.

3.1 Kinematics

This section is concerned with describing the deformation or motion of a body
from an initial setting, the so—called reference configuration, to a deformed
configuration. The movement itself is due to external forces and it fulfills

certain balance equation and is described in the subsequent sections.

23
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3.1.1 Body & Motion

A body B is a set of points X with the property that each point X can be

uniquely identified with a vector in Euclidean 3-space R? for each time t.

:B—R3
X (3.1)
X = x=x(X)
x is called a configuration of B if x~! exists and if x and x~! are twice

continuously differentiable.
The motion of a body B is a set of configurations parametrised by the
time ¢.

x = xi(X) = x(X, 1) (3.2)

describes the location of point X’ at time t.

3.1.2 Configurations

Two special configurations are explicitly defined in this section due to their
importance in the subsequent considerations.

The reference configuration of a body B is defined as the motion at time
t =0, i.e. By. There is no need to define the reference configuration in this
manner, however, it is chosen due to its convenience and practicality. A point
X in By is denoted as X = x(X,0).

The current configuration is defined as the motion of B at time ¢, i.e. B,

and a point X' in B; is denoted as x = x(X, t).

3.1.3 Representation of Functions

Let a be a time—dependent field quantity on B. Then « can be expressed in

three different ways.
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e Material Description

The independent variables are X', t and « is expressed as follows:

a = a(X,1) (3.3)

e Reference or Lagrangian Description

The independent variables are X, ¢ and « is expressed as follows:

a=a(X,1) (3.4)

e Spatial or Eulerian Description

The independent variables are x,t and « is expressed as follows:

a = a(x,t) (3.5)

According to Truesdell and Noll [118] there is a fourth description of motion,
the so-called relative description.

The material description is usually not utilised since the quantities X do
not belong to R?* but an abstract space of material particles. The Lagrangian
description is used in the subsequent sections and a motion is therefore ex-
pressed with respect to X: x = x(X, t).

The Eulerian representation, on the other hand, is usually used in the
context of fluid mechanics. It can, however, be also useful in in solid me-
chanics, indeed this is the most common form in analytical solutions. Also,
in finite element solutions, this approach can be very useful in biomechanics
[71] because the stress free reference configuration is usually not available

clinically.
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3.1.4 Deformation Gradient Tensor

To characterise the deformation of a body B time ¢ is fixed and the refer-
ence and current configuration of B are compared. Let X,Y and x,y be the
vectors of the points X', ) in the reference and current configuration, respec-
tively. Since x = x(X,t) and y = x(Y,t), the difference between x and y

can be written as:

ox(X,t
yox= XX v XY - X) (3.6)
0X
where
) r(X,Y — X)
lim ——————==0. 3.7
y-Xj-o [[Y = X]| &0
Therefore the deformation gradient tensor
Ox (X, 1)
F=-—~>——- 3.8
5K (3-8)

represents a measure to describe the deformation within the vicinity of a
body point X'. It has a few properties that demonstrate how F characterises

the deformation. These are described below.

3.1.4.1 Transformation of Line Elements

Let C(A) be a material line in By parametrised by A € I, I C R. (A material
line is a line which consists of the same particles throughout the deformation.)
Due to the deformation process C(\) deforms into a line ¢()) in the current

configuration:
c(A) = x(C(),1). (3.9)

Let X = C(\g), Ao € I be the vector of a body point in the reference config-
uration, then x = c()) is the vector of the same body point in the current

configuration. Let us now define material line elements with the help of the
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tangent vectors on C and c, respectively:

dX = C'(\o)d\; C’()\O):a(;ig\)\)
dx :=c'(Ag)dX; (M) = x|
Considering
ax = 2N
O =y,
X xcpg L O i, (3.11)
=F —ixX

— dx = FdX,

one can conclude that F transforms material line elements of the reference
configuration into material line elements in the current configuration. This
holds for any arbitrary material line and therefore F characterises deforma-
tion process, since e.g. a rigid body rotation would imply that dx is only
rotated with respect to dX. In total F describes the change in direction and
magnitude of dX. It is important to note here that FF is a so—called two point
tensor, i.e.: F projects tangent vectors at the point X to tangent vectors at

the point x.

3.1.4.2 Transformation of normal vectors of material surfaces

Let
®(X) = ¢ = const (3.12)

a material surface in the reference configuration. (A material surface is a
surface that consists of the same particles throughout the deformation.) With

the help of X = x7!(x,t), ® can be transformed according to:

c=®(x H(x,1) = d(x,1). (3.13)
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$(x, t) describes the same material surface in the current configuration. When

fixing ¢ one can deduce the following:

de = X gy 00 4
9o0% ) X o(x. 1) (3.14)
- 2 Fax = FT Y gx
0x 0x
or
(Grad® — F'grade) - dX = 0. (3.15)

This equation has to hold for all dX, hence the expression within the brackets
has to hold by itself,

Grad® = F'grad¢ <= gradp =F ' Gradd. (3.16)

The deformation gradient or more precisely the inverse transposed of the
deformation gradient F~T therefore transforms normal vectors on material
surfaces in the reference configuration to normal vectors at the same point
in the current configuration. Since this property holds for every material
surface, F~T can also be utilised as a measure for deformation. A rigid body

rotation for example would not alter the magnitude of the normal vector.

3.1.4.3 Transformation of Area and Volume Elements

This section will derive the relations between area and volume elements of
the reference and current configuration. Firstly, the relation between volume
elements is derived from which the area element relation follows immediately.

Let dX,dY,dZ be non—coplanar material line elements at a point X in
the reference configuration with a positive orientation. This can be ensured

by the following relation of the triple product:

dV = (dX x dY)-dZ > 0. (3.17)
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Then dV is called the volume element spanned by dX,dY,dZ. The three

line elements transform into:
dx =FdX, dy =FdY, dz="FdZ (3.18)

in the current configuration. There they span the volume element

dv = (dx xdy)-dz>0
— (FdX x FdY) -FdZ.

(3.19)

From a well-known relation in linear algebra, [112], this can be rewritten as:
dv = (detF)(dX x dY) - dZ = (detF)dV . (3.20)

If one requires dv > 0 to physical reasoning then detF > 0, which will always
be assumed in the following.

Recalling that the cross—product between two vectors gives the normal
of the spanned plane one can utilize Eq.(3.20) to derive the relation between

area elements da and dA in the current and reference configuration, respec-

tively.
dv = (dx x dy)-dz =da-FdZ =F"da-dZ (321)
= (detF)(dX x dY) - dZ = (detF)dA - dZ .
or
(F'da — (detF)dA) - dZ = 0. (3.22)

Since this equation has to hold for all dX with dA - dX > 0 we can conclude
that:
da = (detF)FTdA . (3.23)

This is relation is also called Nanson’s formula.
Note that if a deformation is isochoric (incompressible) that dv = dV
and therefore detF = 1. Please refer to section 3.3.5 for further details and

consequences of incompressibility.
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3.1.4.4 Polar Decomposition

Any second order tensor F with detF > 0 can be decomposed in the following

way, see also [44, 75] for proofs of existence and uniqueness:
F=RU = VR. (3.24)

R is a proper orthogonal second order tensor and describes the rotational
part between the reference and current configuration, whereas U and V are
symmetric positive definite second order tensors and are called the right and
left stretch tensor, respectively. U “lives” in the reference configuration and
describes the stretching part of the deformation, i.e. it takes material line el-
ements of the reference configuration and stretches them within the reference
configuration. R then takes these stretched line elements and rotates them
into the current configuration. Equivalent consideration hold for V which
lives in the current configuration. It is noteworthy that R is a two point

tensor.

3.1.5 Deformation Measures

The polar decomposition clarifies the structure of the deformation gradient
tensor. Sensible deformation measures are therefore independent of the ro-
tational tensor R, but can be related to either U or V solely. The next two

sections deal with these measures.

3.1.5.1 Right & Left Cauchy—Green Deformation Tensor

Although these two measures are not explicitly utilized in our later studies,

it is helpful to discuss these in a bit more detail. The right and left Cauchy—



3.1. KINEMATICS 31

Green tensors are defined as follows:

C:=F'F=T1? right Cauchy-Green tensor

) (3.25)
B:=FF' =V? left Cauchy-Green tensor.

One can show that the eigenvalues of C and B have the same numerical value
which is equivalent to the fact that the invariants have the same numerical
values. Furthermore, if u is an eigenvector of U, then v = Ru is an eigen-
vector of B with the same eigenvalue as u. The three invariants are defined

as follows:
I, = tr(C) = tr(B)

L = (tr(0)? — tr(C?)) = L(tr(B)? — tr(B?)) (3.26)

I3 = det(C) = det(B).
These three invariants form a so—called integrity basis. They are not unique,
rather there exist infinitely many possible integrity bases. The ones pre-

sented, however, are the most commonly used ones.

3.1.5.2 Green & Almansi Strain Tensor

A common way to measure the strain between the current and the reference
configuration is to investigate the following difference A from which the Green

strain tensor is derived:

bl — o) o
s(dx - dx — dX - dX).

With the help of dx = FdX that gives:

A = J(FdX -FdX —dX - dX)
= 1(dX-F'FdX — dX - dX) (3.28)
= dX - {i(F"F—-1I)}dX.
The tensor

1 o !
E=3FF-T)=(C-1) (3.29)
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is called the Green strain tensor. One can see from Eq.(3.28) that it is a
tensor field in the reference configuration. This is sometimes denoted as a
Lagrangian tensor field.

One could also utilize the relation dX = F~'dx in Eq.(3.27) which leads

to the following expression:

A = J(dx-dx—F 'dx-F 'dx)
= i(dx-dx—dx-F TF'dx) (3.30)
= dx-{3(I-F"F')}dx.
The tensor
1

Tty L —1
A=SI-FTF')=(I-B" (3.31)

is called the Almansi strain tensor and from Eq.(3.30) it follows that A is a
tensor field in the current configuration or as sometimes called in the Eulerian
setting.

A and E obey the following transformation rule:
E =F AF. (3.32)

One can also utilise normal vectors on material surfaces rather than ma-
terial line elements to define strain measures. This results in the so-called

Piola strain tensor and the Finger strain tensor.

3.2 Stress & Balance Equations

During the movement of a material body B the interaction between its various

parts and between B and its environment is described by means of forces.

3.2.1 Forces

There exist three different kinds of forces:
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e Contact Forces t between various parts of B
e Contact Forces t on the surface of the body 0B

e Volume Forces b in the interior of B, generated by its environment

3.2.2 Cauchy’s Hypothesis

In the context of contact forces the Cauchy hypothesis is assumed, i.e. there
exists a surface—force—density relationship which is called the stress vector t

and it is defined as follows:

AF
t(n,x,t) = Alciglo v (3.33)

Here n defines the normal vector on the infinitesimal surface Aa, AF is the
bulk force on Aa, x is the point within B, and ¢ is the time at which the
stress vector is evaluated. An equivalent assumption holds for the volume
forces b = b(x,t). The pair (t, b) is called the force system acting on a body
B or on a part of B, i.e. AB. The resulting force K(AB,t) on a part AB at
time ¢ is then calculated by:

K(AB,1) = /tda+/bdv. (3.34)

dAB AB
The resulting angular momentum My, with respect to a point x; can be

calculated by:

M,, (AB,t) := / (x — %) X t da + /(X —Xg) X bdv. (3.35)
OAB AB

These two quantities now serve as a basis to derive the balance of linear and

angular momentum.
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3.2.3 Balance of Linear & Angular Momentum

Let x = x(X,t) be a motion of B and x, the vector to an arbitrary fixed

point in space. Then

I=I(AB,t) := /x dm = / oox dV = / ox dv (3.36)

AB ABy AB;

is called the linear momentum of AB in the motion x = x(X,¢) and

Dy, = Dy, (AB,t) := /(X —Xp) X X dm

AB
ABo

= /g(x—xo)xkdv
AB;

is called the angular momentum of AB with respect to xq in the motion
x = x(X,t). p is the mass density and dm is a mass increment. The
actual balance principles are axioms or assumptions and are the equivalent

of Newton’s second law of motion.

3.2.3.1 Global Form

There exists a reference system, such that the following equations hold rela-

tive to it:
d
%I(AB, t) = K(AB,t) BLM: balance of linear momentum
d
%DXO(AB, t) = My, (AB,t) BAM: balance of angular momentum .

(3.38)
The balance of linear and angular momentum can be rewritten in the follow-

ing comprehensive form with respect to the current configuration:

/tda+/(b—g>’t)dv:0, (3.39)

OAB AB;
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and

/(x—xo)xtda—l—/(x—xg)x(b—gj&)dv:U (3.40)

OAB; AB¢
3.2.4 Cauchy Stress Tensor

The BLM and BAM have two major consequences. Firstly the BLM guar-
antees that for each point x within B and each normal vector n(||n|| = 1)
there exists a second order tensor called the Cauchy stress tensor T fulfilling

the relation:

t(n,x,t) = T(x,t)n. (3.41)
Secondly the BAM guarantees that the Cauchy stress tensor T is symmetric:
T=T". (3.42)

Eq.(3.42) represents the “local” form of the BAM. The local form is obtained
by applying the divergence theorem for integrals and imposing that the in-
tegrand has to hold for arbitrary parts AB. The same can be applied to the
BLM, which then reads like this:

divT + b = px. (3.43)

The operator “div” is defined as the derivative with respect to the coordinates

of the current configuration.

3.2.5 1% Piola—Kirchhoff Stress Tensor

By defining the first Piola—Kirchhoff stress tensor
P := (detF)TF T, (3.44)

which is a two point tensor, and the body force in the reference configuration

by = (detF)b, one can deduce the local form of the BLM in the reference
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configuration:

The operator “Div” is defined as the derivative with respect to the coordi-
nates of the reference configuration.

Note that P is not a symmetrical tensor. P acts on a normal vector of the
reference configuration N and yields the stress vector ty, which is defined as
to = dF/dA. dA is denoting the area in the reference configuration. ty only
equals t = dF/da if the area element da in the current configuration is the

same as dA. This relationship can be expressed as:

to = PN. (3.46)

3.2.6 2" Piola—Kirchhoff Stress Tensor

Since the first Piola—Kirchoff stress tensor is not symmetric the second Piola—

Kirchoff stress tensor S is introduced:
S := (detF)F'TF~". (3.47)

S is symmetric and will find use in the formulation of constitutive laws in
Sec.(3.3).

Each strain tensor introduced in Sec.(3.1) has its associated stress tensor.
The stress tensors are associated to the strain tensors by means of the strain
energy density W function which describes the work done by a certain strain

and stress field. This is the topic of the next section.

3.3 Constitutive Theory

At this stage three equations of the BLM (3) we have been introduced whereas

nine unknowns x (3) and T (6) remain to be properly constrained. There
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are therefore 6 equations missing to have a fully defined system which can
be solved. The missing equations are introduced in the subsequent sections
in form of a relationship between E and S. The main objective is to formu-
late them in a way that they fulfill properties as observed in experiments.

Furthermore they have to obey general physical principles.

3.3.1 Hyperelasticity

In a very general sense the functional relationship between E and S can be
formulated as: S = f(E). This type of material would be called a Cauchy—
elastic material. If one assumes that for an elastic material all deformation
is recoverable, then one can postulate the existence of a so—called strain en-
ergy density function W = W(F) which depends on the deformation gradient
tensor and serves as a potential. The relationship between the first Piola—
Kirchoff stress tensor and the deformation gradient is presented in various

equivalent notations. It can be derived from the second law of thermody-

namics [75].
_OW(F) B oW
P= GT = D]FW(IF) = Pmn(Fzy) en ®e, = oF,. (E]) en ®e,. (348)

3.3.2 Objectivity

The principle of material objectivity states that W must remain the same
viewed from different observers which only differ by a rigid body rotation.
Let (x,t) be an event relative to an observer and let (X, ) be the same event

from an observer with:
x=Q) +c(t) and t=t—1, (3.49)

where Q denoted any arbitrary proper orthogonal tensor, ¢ a displacement

and ¢ a fixed time. Then the form of the material equations and therefore
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also W must be invariant.
W(F) = W(F) (3.50)
By keeping in mind that F = QF and starting with

W(F) = W(F)=W(QF)
— W(QRU)

(3.51)

we can conclude that

W (F) = W (U), (3.52)

since Eq.(3.51) has to hold for an arbitrary Q and therefore also for Q = RT.
W can now also equivalently expressed as being a function of either C or E,

since these also do not depend on the rotational part of F.

3.3.3 Stress—Strain Relationship

Eq.(3.48) gives the starting point for the derivation of relation between S and
E which is utilised in this work. The reader is referred to Appendix(A) for
the detailed derivation of the stress—strain relationship and the requirements
imposed for formulating the strain energy density function with respect to the
components of the Green strain tensor. Here we just state the relationship
for S and C:

S(C) = F 'P(C) = 2 sym[DcW(C)]. (3.53)

or for S and E:
S(E) = sym[DegW (E)]. (3.54)

These equations form the correct definition of the stress—strain relationship
in symbolic notation. It is, however, necessary to restate it in index notation

since Eq.(3.54) will be extensively used in the next chapter. It then reads:

ow

Sij = EYoR

(3.55)
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when complying to the condition

W(Ella E227 E337 El?a E217 E137 E317 E237 E32)

(3.56)
= W(E\1, Ea2, Es3, E91, E12, E31, Ei3, E3a, Ea3)

for the strain energy density function.

3.3.4 Isotropy & Anisotropy

If a body exhibits the same material response within each direction it is said
to be isotropic. The strain energy density can therefore only depend on the

three invariants of C, see Eq.(3.26).

W(C) = W(ly, I, I) (3.57)

3.3.4.1 Neo—Hookean and Mooney—Rivlin

The simplest strain energy function that can be formulated using these in-
variants is the so—called Neo-Hookean strain energy function. A material

obeying this strain energy function is called a Neo-Hookean material.
W(C) =c¢; - (I — 3) (3.58)

Although of high importance for theoretical considerations, this formulation
does not prove useful in practical applications.
An extension of this formulation is the so—called Mooney-Rivlin material

with the following strain energy density function:
W(C) =C - (11 — 3) +co - (IQ - 3) . (359)

Peng & Chang [94] give an excellent review of these and more general isotropic

laws.
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3.3.4.2 Considerations for myocardium

As pointed out in Secs.(2.2 & 2.3) the myocardium exhibits a clear or-
thotropic behaviour, both in terms of its microstructure and its macroscopic
response. Orthotropy is defined as having three orthogonal directions in
which the material exhibits a distinct behaviour. The strain energy density
must then incorporate these three directions. Two general approaches are
possible to describe this kind of anisotropy.

Firstly one can introduce so—called structural tensors which represent the
preferred direction. Depending on the kind of anisotropy a certain number
of these structural tensors must be introduced which then form a set of new
invariants on which the strain energy density will depend.

The literature existing about the myocardium, however, uses material
laws which are formulated with respect to the components of the Green strain
tensor. A thorough treatment of the material investigated in this study are
presented in the next chapter. Before this presentation, however, a special
class of materials is considered and in particular the effect of this class on

the stress—strain relationship.

3.3.5 Incompressibility

Since the myocardium predominantly consists of water, and since water al-
most does not change its volume, the myocardium is modelled as being in-
compressible. This assumption can be justified in the experimental situation
where the myocardial cubes are bathed in a physiological solution. Yet it has
to be noted that this is only likely to be true after a few loading cycles so
that the tissue has equilibriated its state. This assumption might not hold

true in vivo where there is blood flow (perfusion) in the heart during the
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heart cycle, which will change the volume regionally [43, 19].

As stated in Eq.(3.20) incompressibility can be described by requiring
detF = 1. This condition is enforced by means of the hydrostatic pressure
p = —3tr(T). To account for this a Lagrange multiplier is introduced in the

stress—strain relation in Eq.(3.54):
S(E) = —AC ! + sym[DgW (E)], (3.60)

where ) is the Lagrange multiplier and C~! is the eqivalent of the identity
tensor in the reference configuration, or in other words the “push-back”
transformation of the identity tensor in the current configuration into the
reference configuration [13]. A will equal the hydrostatic pressure if the strain

energy density is restricted to depend on the deviatoric part of E, E only:
v 1 9
E = i(det]F sC-1). (3.61)

The numerical implementation of this requirement is discussed in Sec.(4.1.1.1).
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Chapter 4

Numerical Tools

This chapter briefly summarises the finite element method in Sec.(4.1) as
well as some standard optimisation techniques in Sec.(4.2) and statistical
measures in Sec.(4.4). Furthermore it introduces a novel objective function

in Sec.(4.3) which was utilised throughout this study.

4.1 Finite Element Method

To analyse stress in a body undergoing large elastic deformations the equa-
tions that govern finite deformation elasticity, developed in chapter 3, must
be solved. For materials with regular geometries this may be done analyt-
ically, as is presented in section 6.1. However, a more realistic deformation
can be modelled by discretising the domain of interest into a number of
finite elements (cuboidal hexahedral elements). Thereby the partial differen-
tial equation is broken down into a set of algebraic equations. The type of
interpolating functions used to interpolate the independent and dependent
variables (in this thesis) are tri-linear Lagrange basis functions. See Bathe

[11] or Zienkiewiecz & Taylor [129] for details of the concept of the finite

43
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element method.

For each element, the equations governing finite elasticity are expressed
in terms of known material properties and the unknown displacements of
the element vertices or nodes. These equations are formulated as integral
equations which are evaluated via Gaussian quadrature.

Element contributions are assembled into a global system of algebraic
equations to ensure that the solution is compatible across element boundaries.
The system of nonlinear equations are then solved, subject to boundary con-
straints, to yield a set of deformed nodal coordinates from which deformation

patterns are approximated using the specified interpolating functions.

4.1.1 Galerkin Finite Element Equations

Here we sketch the Galerkin weighted residual technique which is derived
from integral form of the balance equation Eq.(3.45). We neglect body and
inertia forces. Therefore Eq.(3.45) reads:

DivP = 0. (4.1)

When the displacement variables are approximated by an interpolating func-

tion, the equation will not be fulfilled identically and a residual will remain:
DivP=¢ <= R=DiP—e, (4.2)

where are e denotes the error, P the approximated first Piola—Kirchhoff stress
tensor field and R the residual.

To minimise this residual it is firstly multiplied by Ny linear indepen-
dent weighting functions w; and then integrated over the domain volume.
Furthermore it is required that all these integrals vanish:

/ijdséo forall j =1,..., Ng. (4.3)
B
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These conditions may then be used to determine the unknown parameters
of the approximating function. If the functions w; are chosen to be the basis
functions (the tri-linear basis functions in our case), then it is called the

Galerkin method.

4.1.1.1 Incompressibility

The myocardium is typically modelled to be incompressible. There are two
main ways of modelling this behaviour: (i) by introducing a Lagrange mul-
tiplier that can then be identified with the hydrostatic pressure; or (ii) by
modelling the material as being nearly incompressible, and splitting the strain
energy density function into volumetric and deviatoric parts. The volumetric
part then serves to mimic the nearly incompressible behaviour. Dell & Mc-
Culloch [28] reported that this may improve numerical stability for forward
solutions using the finite element method.

The finite element code CMISS [124] which was used in this study has a
Galerkin incompressibility constraint implemented which is briefly sketched
here.

The incompressibility constraint introduces another free variable, the hy-
drostatic pressure field. The extra constraint necessary to determine the
parameters of the hydrostatic pressure field arise from the requirement that
I3 = 0 (see Eq.(3.26) for the definition of I3). This constraint is realised in
an element based sense rather than pointwise and modified to reflect volume
change: /I3 — 1 = 0.

To be consistent when calculating stress components and to avoid nu-
merical ill-conditioning, Oden ([90], p.239) suggests that the interpolation
scheme chosen to describe the deformed geometric coordinates should be of a

higher order than that chosen to approximate the hydrostatic pressure field.
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This arises because the strain energy contribution to stress components is
related to the first derivatives of the geometric displacement fields, whereas
the hydrostatic pressure directly contributes to the stress components. In our
case the hydrostatic pressure field is approximated by a element—wise piece-
wise constant scalar field to satisfy this condition, since the displacement
variables are approximated with tri-linear basis functions. Nash & Hunter
[84] describe the implementation of this technique into the finite element
environment in detail.

The resulting system of nonlinear algebraic equations is then solved us-
ing standard solvong techniques like the Newton method. It is explained in
Sec.(4.2.2), however, it will be explained in the context of material parame-
ter estimation rather in the context of minimising the residual of the finite
element equations. The technique itself can be applied equivalently in both

cases.

4.2 Optimisation Techniques for Parameter
Estimation

This section describes the utilisation of experimental y and model f(4) data
for the use of parameter estimation techniques. Here 19 denotes the model
parameters, in our case material parameters. A specific estimator will be
presented now which is most commonly used, i.e. the least—square objective

function. Firstly though, the error e is defined as:
e =y—f(9) <<= en="yn—ful9). (4.4)

From here one can move to the specific estimator.
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4.2.1 Least—Squares Objective Function

The objective function, which is to be minimised later on, can then be defined
as:
1

Q) = je'e = Q(ﬁ):%Zefn. (4.5)

This squares the error and for sufficiently smooth data will represent a convex
shaped valley, in which parameter estimation can be performed. However,
due to the non-linearity of the model the initial guess of the optimisation
plays a crucial role. This is addressed in more detail in Chapter 6.
Furthermore a weighted least—square objective function can be defined

as:

1 r 1
Q0) = Se'We = Q)= 5;;%%"6"’ (4.6)

where W & W, is the matrix of weights.

Both inner products of the residual vector utilise all existing data points in
the region being modelled. In Sec.(4.3) a novel objective function is presented
that is based on the idea of a weighted objective function, which reduces the
number of data points required by two magnitudes.

Also other objective functions can be defined with various metrics. For
the purpose of this study, however, the modified objective function will be
applied for all models. The actual optimisation steps are explained in the

subsequent sections.

4.2.2 Newton Method

To find the minimum of 2 we have to find a sequence of steps €, in the

parameter space which successively decreases (2

Q(’ﬁ]ﬁ.l) < Q(’lgk) with ’l9k+1 = ’19k + €. (47)
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It can be shown [10] that this is guaranteed if g is chosen to be:
Er = -R VﬂQ, (48)

where V(2 is the gradient of €2 and if R is a positive definite matrix.

If the valley was parabolic, it would be a natural choice to chose R as
being the inverse of the Hessian of 2. However, in practical applications this
cannot be assumed to be true, especially since the initial guess may lie far
outside a convex region. Therefore the Hessian might not be positive definite.

This also highlights the need to find good initial guesses with our method

for FEM inverse estimations.

4.2.3 Levenberg—Marquardt Method

Levenberg [69] proposed to utilize a modified R, namely R = (H + AI)"!,
which allows one to adapt A in a way that R becomes positive definite. In
particular, if A = 0, it is the Newton—Raphson method and if A = oo, it is
the steepest descent method.

As stopping criteria we chose the difference of two successive steps for the
objective function |AQ| and of the length of the material parameter vector

|A®9] to be smaller than 1077.

4.3 A Novel Optimisation Technique

The conventional least squares objective function, Eq.(4.5), would sum over
all data points, about ~5000 data points for the experiments performed by
Dokos et al. [30]. By adding a“weight” to each addend in Eq.(4.6), namely the
width Az of each interval of two successive data points, the objective function

approximates the following integral, assuming that the data points imply a
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piecewise linear function and that the data stems from a one—dimensional

recording.
Qo) = %Ze;(ﬂ)mm ~ 1 / (e(9,2))’ dz (4.9)

This weighting was chosen because the integral forms a L?-norm in the func-
tional space of squared integrable functions, and can therefore serve as a
measure of the length of the error. The same holds for the piecewise linear
approximating functions and this measure can be interpreted as a ”pseudo—
energy content” (pseudo, because the dimensions of the integrals in this ap-
plication are Joule? /metre) and serves as a reference for the minimized ob-
jective function to obtain a relative error.

The above formulation suggests that it would be numerically more ef-
ficient to approximate the integral via a Gaussian quadrature integration
method, see for example [96]. This would then read:

Tmax

/ (e(9,2)) da ~ ij (e(q?,xj)2 : (4.10)

where M is the number of Gauss quadrature points for over the data range
and 2/ are the associated evaluation points. The objective function then

reads:

Q9) = %ij (e(9,27)* (4.11)

If f in Eq.(4.4) is set to zero, Eq.(4.11) gives the energy content Qpc.
Naturally the question arises whether this modified least square method
converges to Eq.(4.9). The convergence analysis is presented in Sec.(6.1.4).

For further details the reader is referred to [105].
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4.4 Statistical Tools

In this section, measures to compare the material laws against each other
and amongst experiments are investigated. These measures as well as the
least—squares method in the previous section are based on the assumption
that the data follows a Gaussian distribution. Yin and coworkers have also
investigated the possibility of non—parametric bootstrapping methods rather
than simple Gaussian (parametric) statistics [127].

These measures were investigated to see how well they fit to the data for
different experimental sets (goodness of fit) and how well they are defined
for a given set of experimental data in terms of numerical determinability.

These measures are described below.

4.4.1 Normalised Standard Deviation

The quantity commonly referred to as “the” mean of a set of values is the

arithmetic mean:
| N

where N is number of data samples. This measure is also called the (un-

2 is the second sample central

weighted) average. The sample variance o
moment and is defined by:

o2 = T > (@i — ) (4.13)

i=1
The square root of the sample variance of a set of N values is the sample

standard deviation:

oy = | —— S = 2. (4.14)
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The coefficient of variation C'oV is defined as:

CoV, = 22, (4.15)

[

and therefore gives a relative measure of deviation from the mean. The

standard error is defined as:

Se = —O0 - (4.16)

4.4.2 Goodness of Fit

The measure of the objective function value at the optimum () when
normalised by the energy content gives the “relative objective function value”

Qrer = Q(P9)/Qpc. We can then calculate the mean values uqg and pgq, ,, the

rel?

standard deviation o and oq__, over all experiments for each material law
. .. oq 0Q,q

and thus the coefficient of variation CoVy = — and CoVy, , = —= can be

ILLQ lLLQrel
formed .

4.4.3 Akaike Information Criterion (AIC)

The relative objective function has limited use as a “goodness of fit” criterion
to compare the five models, since it does not take into account the number of
parameters of each model. This challenge is usually overcome by introducing
an information criterion that reflects both the objective function value and
the model complexity via a common measure, see also Nelles [86].

The idea of an information criterion was derived from a similar question.
The challenge was to select an approximating model from a set of models.
This was overcome by defining a “distance” between two models (similar
to the distance between to functions over a given interval), the so—called
Kullback-Leibler “distance”. In the mid-1970s Akaike introduced his “en-

tropy mazimisation principle”’ in a series of papers [1, 2, 3] as a theoretical
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basis for model selection. This principle is a simple relationship between the
Kullback-Leibler distance and Fisher’s maximised log-likelihood function.
From this Akaike derived an information criterion (AIC)which is named af-
ter him:

ATC = Nln(%ﬂ(ﬂ)) 42K (4.17)

The “best” model is defined as the model with the lowest information crite-
rion. K denotes the number of material parameters and N the number of
data points.

Starting from different statistical assumptions, a number of proposals for
the complexity have been made. All of them monotonically increase with the
number of parameters in the model. Since it is not clear which information
criterion is the best, the Akaike information criterion (AIC) as suggested by
Burnham et.al. [16] was chosen. The information criterion yields a relative
measure and can therefore only act to select the best model within a set of
models. However, if all the models were very poor, the criterion would still
select, the one with the best estimate, but that model may be poor in an

absolute sense. This is why the goodness of fit criterion was also utilised.

4.4.4 M- & D—Optimality

The above criteria form a basis for comparing the goodness of fit for the ma-
terial laws, but it is also important to ask the question whether the material
parameters are sensitive to disturbances in the data values, or in other words,
how the objective function varies in the neighbourhood of the optimum. For
a detailed and thorough discussion of this issue see [64, 85, 10]. Here the
basic ideas are described.

Given the optimal point in the parameter space 1y, various criteria to

measure different aspects of the behaviour of the material in consideration



4.4. STATISTICAL TOOLS 23

can be formed. If one considers a small deviation §9 around the optimum

1Yy then the following equation:
69 TH( 69 < 2¢ (4.18)

implies an K—dimensional hyperellipsoid, where K is the number of material
parameters for the material law in consideration and Hj is the Hessian at the
optimum. This region is sometimes also called the “e—indifference region”.
The determinant det(Hj) at the optimal point represents the volume of the
indifference region and is also referred to as the D-optimality criterion. The
higher this number, the lower the variance of the material parameters.

The condition number of the Hessian at the optimum, cond(Hy), de-
scribes the ratio between the highest and the lowest eigenvalue of H, and
can be shown to be the square of the eccentricity of the hyperellipsoid. This
eccentricity is important to charcterise the numerical stability of the opti-
misation process. It is desirable to have a low eccentricity ([96], p.54 and
references above) since it ensures that errors are not overly magnified.

The so—called M—optimality criterion relates the interaction between ma-

terial parameters. It is defined as:

N N H;,
det(HO) where HZ] = ﬁ
ARV

and describes the alignment of the hyperellipsoid with the material param-

(no sum), (4.19)

eter axes. (H;; = d;; for perfect alignment, corresponding to no correlation

between the material parameters.)

4.4.5 Material Parameter Variability amongst Exper-

iments

The statistical analysis of the objective function gives insight into the over-

all ability of the material law to fit a certain set of experimental data. It
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is, however, also important to consider the variability of each individual pa-
rameter as well as the overall variability. Therefore calculated the mean .,
and standard deviation o, of each individual parameter was calculated over
all experiments for each material law and thus the coefficient of variation

O~
_
CoV,, =

was formed.
Yi

4.4.6 Material Parameter Variability amongst Models

In the comparison of the values between the homogeneous simulations and
the FEM simulations or between several refinements of the finite element
study for the convergence analysis, it is important to account for the varying
magnitudes of the individual parameters. Therefore the following measure
Aﬁm“\mﬂ was utilised to compare a specific quantity « between two different
models « and f:

K — K|

A2V — BT (4.20)

for example, if & is the material parameter a, then AL™\'F*M would denote
the comparison of the material parameter a of the homogeneous model with
the one obtained from the finite element solution, whereas A?ZZZ\%S denotes
the difference in the objective function between two differently refined cubes,
i.e. one with 8 = 2 x 2 x 2 elements (two elements in each direction) and one
with 27 = 3 x 3 x 3 elements (three elements in each direction).
Furthermore it is helpful to employ an overall measure that compares all

material parameters:
K
a\B o
i=1

where K denotes the number of material parameters for the given constitutive

relation and 7; a material parameter.
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SYnopsis

This part presents the independent research undertaken during this project.
Chapter 5 presents the five material laws that were investigated in this study.
The Costa Law (CL), Pole-zero law (PZL) and the Langevin eight chain
law (LECL) were chosen as published laws. The separated FUng-type law
(SFL) and the Tangent law (TL) were chosen to investigate whether certain
restrictions of the CL and PZL, respectively, could be enhanced.

Chapters 6-8 present the development of the three models. Firstly, the
homogeneous simple shear deformation model is derived and the respective
results are presented as well as a modified objective function. Secondly,
a finite element simple shear model is presented to attain a more realisitc
description of the deformation process. Furthermore its respective results
are also presented. Thirdly, a uniaxial extension model and its results are
presented to investigate the effects of a varying experimental protocol on the
material parameter estimation. Lastly, Chapter 9 presents the conclusion of

this study.
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Chapter 5

Myocardial Material Laws

The mechanical behaviour of the heart has been modelled over the last 30
years with different material law (ML) concepts, (elastic +— viscoelastic,
phenomenological +— microstructurally based). A brief summary of the at-

tempts to model the passive elastic behaviour of myocardium is given below.

5.1 Historical Introduction

Fung [33] was amongst the first to suggest a constitutive relation for the pas-
sive myocardial behaviour. The strain energy proposed within there was a
combination of a linear and an exponential term. Various modified versions
of this original strain energy density function have been used to model the
myocardium as being transversely isotropic [39]. Costa et al. [25] extended
this to an orthotropic formulation by leaving out the linear term and mod-
ifying the exponential term. This law is presented in Sec.(5.2.1). Another
micro—structurally motivated yet phenomenological law was introduced by
Nash & Hunter [84] and is described in further detail in Sec.(5.2.2). The fact

that the myocardium exhibits a “strain—limit” was taken into account into

29
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the formulation of the functional form. These two laws seem to be amongst
those most frequently used in the literature to describe the orthotropic pas-
sive mechanical response for the myocardium. A constitutive law based on
microstructure was introduced by Bischoff et al. [12] which is based on micro—
structural modelling of macromolecules. It has the advantage of considerably
reducing the number of material parameters. This orthotropic law is pre-
sented in Sec.(5.2.3). However, other functional forms have been proposed
which are described below.

Humphrey et al. [48] introduced a transversely isotropic strain energy
based on both theory and experiment in terms of two coordinate invariant
measures with five material parameters. This was extended by Holzapfel &
Gasser [45] for the orthotropic case applied to arterial walls, but would be ap-
plicable for the description of orthotropic myocardium as well. However, the
invariant formulation may make inverse material parameter estimation more
difficult, since it might be hard to perform experiments that separate the
kinematic tensors of the invariants [27]. Criscione [27] proposed a constitu-
tive framework based on the laminar structure of the myocardium. This law
was based on the idea to decouple the the kinematic tensors and introduced
a series of strain attributes. Finally, it is worth mentioning that Hartmann
& Neff [41] introduced the concept of polyconvexity for hyperelastic strain
energy functions which guarantees a global optimiser for the finite element
equations. This was then extended by Itskov & Aksel [56] for the orthotropic
case. Additionally, these polyconvex formulations are based on a different
set of invariants which might enhance their suitability for inverse parameter
estimations.

Lanir [63] published a micro-structurally based constitutive relation for

fibrous connective tissues which extended by Horowitz et al. [46] who took
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up this idea and developed a constitutive relation for passive myocardium.
Caillerie et al. [18] proposed a constitutive law for the myocardium based
on a cell to muscle homogenisation technique. It was based on to the repet-
itive arrangement of myocytes and did not include the sheet structure and
was therefore limited to capture transversely isotropic behaviour. It is to be
noted that the concept within this publication could be extended to account

for the orthotropic response of myocardium.

5.2 Published Laws

The next section will present in detail the strain energy density function for
the Costa law (CL) [25], the Pole~Zero law (PZL) [84] and the Langevin eight
chain law (LECL) [12]. The CL and PZL were chosen, since they depend on
the components of the Green—strain tensor which have physical meaning and
therefore enable an interpretation of the material parameters with respect
to the underlying micro-structure. The LECL was chosen since it is based
on an assumption of micro—structural arrangement and therefore ensured a
coverage of different constitutive laws.

Although the theoretically desirable polyconvexity cannot be established
under large strain conditions for the following constitutive relations, they do
prove in practice to provide very useful parametrisation of experimental data

and the material properties. See also Sec.5.3.4.

5.2.1 Costa Law

Costa et al. [25] published the following strain energy density function. The

polynomial form of the exponent () can be considered as the first order terms
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of a series expansion of the Green strain components.

\Ill(Effa Efna Efsa Enfa Ema Ens; Esfa Ema Ess) = %a(eQ - ]-)
where (5.1)

Q:bff Ef2f +2bfn ( % (Efn +Enf ))2 +2bfs (% (Efs +Esf ))2 +brn Eyzm +2bps (%(Ens +Esn))2 +bss Ei

Note that the functional form was adapted such that the shear terms are
now formulated as the symmetric part of the strain tensor rather than uti-
lizing a product between shear strain terms as proposed by Costa et al. [25].
The meaning of the off-diagonal material parameters, however, remains un-
changed.

The material law is based on a general exponential Fung type law, the
details of which can be found in [35]. The 1 in the term (% —1) is subtracted
to ensure that the strain energy density function is zero in the reference
configuration, where Q = 0.

The multiplicative parameter a couples the other six parameters b,gs.
Initial simulations indicated that this coupling might decrease the fitting
capabilities. Therefore a separated exponential formulation was developed,
see Sec.(5.3.1).

Smaill & Hunter [107] found that there was little mechanical coupling
between the fiber and sheet direction in midmyocardial specimen in biaxial
tests. Since the CL exhibits inherent coupling of all strain components hence
also for a biaxial deformation mode, it was believed that this might reduce the
capability of the CL to fit a multiaxial set of experimental data. Sec.(5.3.1)
therefore presents another exponential Fung-type material law in which this
inherent coupling is released and therefore the theoretical capability to fit

multiaxial data is enhanced.
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5.2.2 Pole—Zero Law

A rather different functional form was initially proposed by Hunter [53] (see
also Nash & Hunter [84]), called the Pole—zero law (PZL), which is based
on the idea that the tissue has a strain or extensibility limit a;; in each
direction, a strength k;; and parameter b;; that accounts for the nonlinearity
of the stress-—strain curve. The parameters b;; were all set to 2, since this

ensured a stable optimization:

Us(Eyt, Epn, Efs, Eng, By Ens, Egp, By, E) =

ki Ef k(5 (Em + Eny))? ks (5(Efs + Egp))?
lagr — 1Ege|[% Jag — 15(Ep + Enp)|P  lag — [5(Eps + Egf)| [
ko B2, kns (5 (Ens + Esn))? ks E2

+ )
|Gy — | B | [P |G — |%(En9 + Egp) || | — [ E||b=
(5.2)

5.2.3 Langevin Eight—Chain Law

Another law was proposed by Bischoft and coworkers [12]. This constitu-
tive law differs from the two before mentioned in that it is based on micro—
structural modelling of macromolecules. Although the macro-molecular model
underlying this approach may not reflect the myocardial micro-structure, it
may describe orthotropic mechanical behaviour on a macroscopic level.

For the in—depth derivation of the material law please refer to the original
paper [12]. Here, we simply restate the major quantities of the law and
the strain energy density function. The dimensions a, b, ¢ were redefined as
af,an, as for orthotropic unit cell in the fiber, normal and sheet direction,
ar,a,,a, are the unit vectors in the direction of the unit cell axes and n is
the density of chain molecules, see Fig.(5.1). The constant k is the Boltzman

constant, @ the absolute temperature, N number of freely jointed links'of

IPlease note that the number N is also used later on for the number of data points.
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Figure 5.1: Eight-chain, three—dimensional orthotropic unit cell. The eight curved lines
in the unit cell represent the constituent macromolecules and the straight lines represent
the boundaries of the unit cell. The cell has dimensions a x b x ¢ along the material axes
a, b, c, respectively, oriented with respect to the reference coordinate system X;. Picture

from [12]

length [ in the macromolecule, and ¥, is a constant to ensure zero strain
energy at zero strain. The four vectors P1), P?) PG P® defined in Eq.(5.3)
follows and represent the direction of the start to end point vectors of the

macromolecules:
P =%Ya, 4 g, + Sa
P® = %a, 4 g, — %a,
P® = Ya;— %a, + La, (5.3)
PW =a; — 2a, — La,.

The deformed length of the individual chains are:
oW = VPO .C. PO, (5.4)

where C = 2E+1T is the right Cauchy—Green stretch tensor and with E being

However, N with the current meaning is only used in this paragraph for simplicity to

adapt the notation from [12].
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the Green strain tensor. Let ﬁ,(,i) = L7'(p)/N) be the normalised deformed

1
chain length, P = 21 [a} + a? + a? the normalised undeformed chain length,
Bp =L (P/N) and L(z) = coth(z) — 1/x the so—called Langevin function.
Finally the strain energy density reads like:

\IJS(Effa Efna Efs; ETL ) Ema Ens; Esf; Esn; Ess) —

(4)
T nko NS Bp | Bp
TR o)
—i—% (cosh[a(J —1)] = 1) .

@i .
P i
N ﬁg) + In

1n[AfA’ffAff]>

(5.5)
The inverse Langevin function is used during the computation of the stress—
strain relationship. Since no closed form of the inverse function exists we

utilise the so—called Padé approximant function, see [23]:

L7 (x) . +0(z°) (5.6)
- . .
The symbol O(z®) is the Landau symbol, indicating that the error is re-
Efl
stricted in the following way: 0 < limsup,_,, # < 00
x

5.3 Modified Laws

As mentioned in the above section, the CL. and the PZL have theoretical
disadvantages due to the coupling and the infinite slope, respectively. In
particular preliminary studies had shown that the CL was not able to fit cer-
tain modes which was believed to be due to the coupling effect of the term Q.
The pole a;; of the PZL introduces a limited strain, which is physiologically
sensible, however, the infinite slope at the strain limit is not. Furthermore
the numerical implementation of such a functional form makes it likely that

unreasonably high values might occur during computation.
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The following two subsections present the modifications of these laws

which were developed to release these limitations.

5.3.1 Separated Fung Law

The Q-term in (e? — 1) in the CL was decoupled in the following way, such

that no inherent coupling would exist:

\112(Eff’ Efn’ Efs’ Enf, Ema Ema Esf, Esna Ess) =
Laggr (7 — 1) + Jag (e GERTEw)” — 1) 4 Lap, (et GER+E)* — 1)

+%am(e”mE3m — 1)+ %am(ebm(%(EerEsn))z —1)+ %ass(ebssEgs —1).
(5.7)

This law was termed the separated Fung law (SFL). It is similar to an idea

by Choi and Vito [20] for canine pericardium.

5.3.2 Tangent Law

The idea of a strain limit was adapted from the PZL. The tangent func-
tion f(x) = tan(x) also has an infinite slope at 7/2. When scaling with two
parameters a, b to f(x;a,b) = atan(bz) the pole can be shifted along the ab-
scissa with the parameter b and scaled along the ordinate with a. The infinite
slope, however, still exists, which is why the tan—function was approximated
by its series expansion. Since the stress—strain relationship is the derivative
of the strain energy function with respect to the strain we chose the function
IntTan(x), the indefinite integral of tan(z), and truncated after the fifth
term of its Taylor series. This had the effect of removing the infinite slope
at the pole — instead the curve monotonically increases. The IntTan(z) was

chosen to comply to the convexity requirements of W. The functional form
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then reads:

\Il4(Eff7 Efna Efs; Enf; Em; ETLS; Esf; Esn; Ess) =
sagrIntTan(byr Efy) + 5am IntTan(bp, (5(Ep + Eng))?)
+3agIntTan(by(5(Efs + Egf))?) + 3amIntTan (b, EZ)
+ 2 It Tan (bns (3 (Eps + Esp))?) + SasIntTan(bs E2) .

(5.8)

Since the tangent function was chosen as the basis for the formulation of this
law, it was termed Tangent law (TL).

It is worth noting that the number of addends after which the TL is
truncated only plays a minor role. The material parameter estimation was
performed for various numbers of addends ranging from 3-20 and they altered

the objective function value by less than 0.01%.

5.3.3 Theoretical Considerations

There exist a variety of mathematical conditions on the functional form of
a given strain energy density function which enhance the numerical perfor-
mance especially in the context of finite element simulations. For example,
the requirement of local convexity [45] of the strain energy density function
ensures the quadratic convergence of certain iterative solution techniques
that arise when using finite-element methods to solve linearised versions of
the equilibrium equations in their weak form (see [44], Sec.(6.6)).

Important consequences also follow from other local convexity properties
of the strain energy density function. One can use certain conditions like
strong ellipticy as well as the Legendre-Hadamard condition [120] to prove a
number of classical results on the local uniqueness and stability of solutions
to nonlinear boundary—value problems as well as on the existence, unique-
ness, and stability of solutions to the corresponding linearisations of these

problems. See for example [40, 91, ?]. For hyperelastic materials, however,
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global convexity of the strain energy density function is incompatible, in a
certain sense, with frame indifference ([22], Sec(4.8)).

Once having chosen the functional form, it is possible to restrict the range
of material parameters even further. Some of these restrictions stem from
the strong—ellipticity or the Legendre-Hadamard conditions, [120], Sec.(5).
There are also other kinds of restrictions like the Baker—Erickson inequalities
[75], p.16, which stem from certain physical considerations. These, however,
only hold for isotropic materials. Similar conditions were investigated by
Humphrey [49] for a number of transversely isotropic Fung-type laws.

Each of the constitutive relations investigated in this study is convex in
each of its components. This ensures some very basic shape requirements
of the stress—strain curves. Yet, they do not fulfil the Legendre-Hadamard
conditions, see Sec.(5), [120]. Further investigations into the mathematical
properties of the constitutive relations presented in this chapter need to be
investigated in the future.

In particular, it would be desirable to investigate the restrictions on the
material parameters of the e.g. CL, which have negative values for some of
the estimates. These investigations would shed more light on the discussions
in Sec.(6.2), i.e. whether the material parameters are a result of the experi-
mental data, the deformation model assumptions or the lack of assumptions

for the material parameter range.

5.3.4 Practical Considerations

It has been recognised only lately that the myocardial microstructure suggest
an orthotropic material response. The questions arises whether all compo-
nents of the functional form are necessary to describe the set of experimental

data available.
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Therefore a test was performed by leaving out components of the func-
tional form in the homogeneous model as described in Sec.(6.2). For example,
the dependence of the CL on the Green strain component Eyy was left out
by setting the material parameter by = 0. This was done for all material
parameters separately. The increase in the relative objective function error
ranged from 11.1% (for setting b,, = 0) to 34.8% (for setting b;; = 0), indicat-
ing that all material parameters were necessary to describe the experimental

data. Similar values were obtained for the other material laws.

5.4 Summary

This chapter presented the five material laws that were investigated in this
study. The CL, PZL and LECL were chosen as published laws. The SFL
and TL were chosen to investigate whether certain restrictions of the CL and

PZL, respectively, could be enhanced.
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Chapter 6

Homogeneous Deformation

Model

The last chapter introduced the constitutive laws necessary to develop the
three models which build on each other.

Firstly, the material parameters for the six simple shear modes of Dokos et
al. [30] as described in Sec.(2.3.5) are modelled. A homogeneous deformation
as depicted in Fig.(2.4) is assumed. From this assumption the objective
function is constructed.

Secondly, parameters for the same data were estimated by releasing the
assumption of a homogeneous deformation and by modelling the deformation
in the finite element environment, such that Eq.(3.45) were fulfilled. The
details of the finite element method is described in Sec.(4.1).

Thirdly, the simple shear experiments were extended to include uniaxial
extension data as described in Sec.(2.3.6). This was done to ensure that
the material parameters would be validated against another experimental
protocol. It is to be noted, however, that the data available with this set of

experimental protocol was limited to one experiment, which does not allow

71
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for a statistical analysis, but rather only provides insight into issues that

have to be considered for further examinations.

6.1 Homogeneous Analytical Deformation

Model for Simple Shear

Given the constitutive relations and the homogeneous model assumptions,
an analytical form of the top face force in terms of any given displacement
was derived. This is presented for one material law (CL) and one shear
deformation mode (NS—-mode) as an example. A global coordinate system
(x,y, z) is introduced where the direction of shear was aligned with the x—
axis and the normal of the top face with the z—axis. This serves to obtain
an easier expression for the objective function and was also used in Chap.(7)

for the finite element model.

6.1.1 Derivation of Analytical Model

Assuming material dimensions «, # and + in the x, y, z—directions or f,n, s—

directions, respectively, the following deformation gradient is obtained:

1 0 k 1 0 0
F=|01 o0 =010 , (6.1)
0 0 1 0 k£ 1
(z,y,2) (fim,s)

where now k ranges between —%7 and %7. From that the Green strain tensor

in both coordinate systems can be derived:

00 & 0 0 0
E=]|00 0 =10 kK k . (6.2)
k0 k2 0 k 0

(z,y,2) (fim,s)
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The stress strain relationship reads S = —pl + %. Since deformation was
constrained to be homogeneous simple shear and was therefore isochoric, the
hydrostatic pressure term vanishes as it would only come into play to enforce
the volume constraint (J = 1). The stress—strain relationship then becomes

S = ‘Z—E. From this the second Piola—Kirchhoff stress tensor can be derived:

1 4,1 2
0 0 Laibyskeatmt Habnk
S = 0 0 0
Lp pdyly 12 1y pdglp g2
%albmk€4bmk +2bmk 0 %albmk2e4bmk +2bmk
; ; ; (z.y,2) (6.3)
1 1 ‘ 1 1
= | 0 laybykPertmktatek® Ly p peibmkttsbuk?
1 4,1
0 Llaybyheibmb'tsbuk? 0
(f)n7s)

From this the analytic force on the top face can be derived by means of

Nanson’s formula Eq.(3.23) :

1 4,1 1 4,1 3

tana = FS N = 0

1 4,1 2

saBay by, k?exbmt Tabmk

(7,9,2)
0
1 4,1 2
= saBa by, k2 exbmF otk )
1 4,1 1 4,1 3
Lo, (bmkezbmk bk, L2 bkt bk )
(fom,5)
(6.4)

where N = (0,0, @f)(2,,2) = (0,a03,0)(sn,s) is the normal vector in the refer-
ence configuration multiplied with the area of the top face.

There is an analogue of t,,, from the experiment, i.e. tey, the measured
force on the top face from the experiment. The number of data points ob-
tained from the experiment are approximately 250 data points over the range

of deformations from —1v to 1v for each mode.
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The usual approach of a least squares objective function is adopted, but
modified to account for the expensive numerical computations which arise in

inverse parameter estimations as described in Sec.(4.3).

6.1.2 Derivation of Objective Function

The conventional least squares objective function would sum over all six
modes, all three directions of the top face force and all data points of each
mode and force direction, resulting in approximately 6 x 3 x 250 = 4500 data

points:

Q(’ﬂ) = % Z Z Z |tana('l9) - texp|za (65)

modes
X,¥,2z- data

force  points
where 9 is the vector of all material parameters. By adding a“weight” to
each addend, namely the width Ax of each interval of two successive data
points, the objective function approximates the following integral, assuming
that the data points imply a piecewise linear function.

9(19):%2 S Y [bana(®) — tew As

modes

X,¥,2Z- data
force points
3% (6.6)
1
2532 Y [ @)t o

modes 1
X,Y,27 —57i

force

This weighting was chosen because the integral forms a L?>-norm in the func-
tional space of squared integrable functions, and can therefore serve as a
measure of the [ength of the error. The same holds for the piecewise linear
approximating functions and this measure can be interpreted as a ”pseudo—

energy content” (pseudo, because the dimensions of the integrals are J?/m)
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and serves as a reference for the minimized objective function to obtain a
relative error.

The above formulation suggests that it would be numerically more ef-
ficient to approximate the integral via a Gaussian quadrature integration

method, see for example [96]. This would then read:

M

i

~—

Vi

G
[tana (9, 2) — teep(@)[*dz =Y 0 [tana(9,27) — texp(a?)|*, (6.7
j=1

N =

where G is the number of Gauss quadrature points for each of the twelve
displacement—force curves. The objective function then reads:

Q(’ﬂ) = % Z Z ;wj ‘tana('ﬁal‘j) - texp(xj)‘2

modes (6.8)
If we choose for example G = 12, the number of total function evaluations
required has been reduced to 144 compared to ~4500 in the full model,
corresponding to 97% saving.

The change to the Gaussian least squares objective function also has
a significant change in meaning, i.e. one now also has a way to obtain a
physically meaningful objective measure for each experiment. To be more
precise, setting tau. (9, 27) = 0 in Eq.(6.8) gives the “energy content (EC)”,
0OS,. Most importantly this can be used as a way to scale the value of the
objective function at the optimal solution ¥y to Q&, = Q%(94) /8, which

could then serve as a relative measure to compare amongst experiments [105].

6.1.3 Convergence Analysis of Optimisation Technique

Naturally the question arises whether this modified least—squares method
converges to Eq.(6.6);, which is examined in this section. For this pur-

pose Eq.(6.6) is denoted as the Weighted Least Square Objective Function
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Figure 6.1: Convergence analysis of the objective function

AG\fu1l

ok plotted against the number of Gauss points G.

(WLSOF) and Eq.(6.8) as the Gaussian Least Square Objective Function
(GLSOF). Furthermore the optimal solution of the WLSOF is defined as
Yhsor and the corresponding value of the objective function as Qyrsor.

A convergence analysis was performed by plotting (Fig.(6.1)) the number
of Gauss points G used, against the relative error of the GLSOF Q¢ () with
respect to Qursor Of the WLSOF of Eq.(4.6), i.e. AS\WLSDF = W.
The left graph of Fig.(6.1) shows that 12 Gauss points suffice to give less
than 0.01% error compared with the full model approach. The right graph of
Fig.(6.1) shows that the relative error in the length of the difference vector of
the parameters is below 0.4% when scaled by the absolute length of ¥y.gor,
A = Potusnl < .4%

Since the material parameters have different scales it is important to

compare the behaviour of each parameter. Therefore the error was computed

G\WLSOF 9k, —gk
\ — ‘ G WLSDF‘, and then

“point-wise” for each individual parameter A

‘19VI§LSCIF
the mean amongst all of them which resulted in 0.6%, which again confirms
the convergence.

The computational time involved for the 12 Gauss point model was 9.6

sec, whereas the full model took 415.6 sec. It was therefore possible to

reduce the time by 98% which coincides with the functional evaluation count
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in Sec.(6.1.2).

6.1.4 Applicability of Optimisation Technique

A novel optimization kernel has been investigated in order to improve high
computational expense typically present in material parameter optimization
problems. The kernel was able to reduce the computational time by 98% and
maintain accuracy to within 1%.

This saving is critical for inverse material parameter estimation proce-
dures for which the computational time could be reduced to the order of
days, which otherwise would easily run into months if all available data were
taken into account [54, 104]. Furthermore, this kernel also provides a sound
error analysis.

It should be noted that by choosing the number of integration points
and its respective integration method, one can easily incorporate any kind
of nonlinear behaviour and key features of the curve. Moreover, instead of
a Gaussian integration formula, as presented in Eq.(6.7), one could also use
other standard integration techniques based on other integration points, e.g.
Lagrange or Chebychev polynomials. The big advantage here is that we can
make us of a large class of standard numerical integration techniques (e.g.
[7]) with well established error analysis. This takes the guess work out of
handpicking key points that could represent the nonlinear behaviour and
therefore gives control over the smoothing error. Furthermore, error analysis
of Gaussian integration shows that G integration points are the minimal
number of integration points to exactly integrate polynomials up to degree
2G — 1. No other choice of integration points would deliver the same result.

Furthermore, it is important to note that problems with larger data sets

would lead to even further reduction, since the evaluation time is only de-
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pendent on the amount of Gauss points necessary to evaluate the integral
and not the number of data points. In other words, as a data set would get
larger the evaluation of the integral stays more or less constant.

The data of a single force—displacement curve fulfilled two conditions.
Firstly, there were numerous data points (>250) and secondly, the mean
width between two successive data points was below 1% of the total width.
This enabled an approximation of the data set by a piecewise linear function.
Further theoretical investigations into the precise requirements for the data

set would shed more light onto the applicability of this kernel.

6.1.5 Determination of Initial Guesses

This section describes the strategy that was employed to find reasonable

initial guesses for the estimation process examplified for the CL.

6.1.5.1 Paired Mode Optimisation

The experimental data was grouped into three pairs of modes (NS,NF),
(FN,FS) and (SF,SN) according to Fig.(2.4). The result of this grouping
was that only four out of the seven material parameters needed to be esti-
mated, e.g. (a, b, by, bys) for the pair (NS,NF). This reduction of material
parameters combined with the visual aid of plotting the four relevant curves
against the experimental curves ensured that these four material parame-
ters could easily be pre-guessed. It was started with values (1,1,1,1) for
these four material parameters and adjusted by hand until the four curves
appeared to be in the right range. From there the Levenberg—Marquardt
Sec.(4.2.3) method was employed and yielded results for this pair of modes.

The same was repeated for the other two pairs, resulting in the following



6.2. HOMOGENEOUS RESULTS 79
three sets of material parameters:

(@, b, b, bs) = (0.427,1.373,2.712,0.957)
(a,bff,bfn,bfs) = (0.739,3.203,1.115,1.421) (69)
(a,bys, bus, bss) = (0.102,3.657,2.732, 3.088)

6.1.5.2 Averaging of Paired Estimates

These results were averaged and used as an initial guess for the full optimi-
sation including all six simple shear modes. This strategy usually yielded
very good first estimates for all four material laws from which the optimisa-
tion converged. For some rare cases this was not the case and the averaged
results and to be adjusted by hand until the visual aid of plotting all twelve
force—displacement curves suggested that it was more likely to happen.

It can therefore be concluded that this strategy was helpful in finding
good initial guesses for the estimation process. However, it was sometimes

necessary to employ adjustment by hand.

6.2 Results for the Homogeneous Deforma-

tion Model

The homogeneous model was solved starting from varying sets of initial val-
ues, which yielded identical results for those cases when it converged. To
ensure a stable optimisation the Levenberg-Marquardt Sec.(4.2.3) method
was employed. The detailed numerical results are given in Tables (6.1)-

(6.6). All material parameter values are listed and for each of these entries
T

the mean, standard deviation and coefficient of variation (CoV,, = —*) are
Vi

presented across the experiments. The total pseudo energy content (Sr) is

also listed for each experiment in the last column of Table (6.1).
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Comparing the mean of the relative goodness of fit amongst all four mate-
rial laws, the CL obtained the best relative goodness of fit (2.50%), whereas
the coefficient of variation for the CL is 54.9%. Comparing the AIC confirms
this result.

The condition number for all material laws show that the SFL had the
highest eccentricity with 3.2 - 10", whereas LECL was lowest 5.3 - 103. Con-
sidering the correlation or M-optimality, the CL was best with 2.8 - 1073,
In contrast the result for the TL was dramatically distorted in experiment 2
where the programme suggested that significant numerical errors might occur
during the computation of the M—optimality due to a bad condition number.
Comparing the variability in terms of the coefficients of variation for each
material law over all material parameters shows that LECL has the lowest
CoVirar (40.0%) and SFL has the highest (-246%). The same holds for the
pcov where LECL has the lowest (19.4%) and SFL the highest (79.0%).

It is important to note that experiments 2 and 4 yielded comparably poor
results for all material laws. These can be seen in all material laws for the
parameters that describe the axial response in the normal direction, which
was likely to be the case since the normal modes usually had the smallest
partial energy content. In particular, b, for the CL, a,,, for the SFL and the
TL and £, for the PZL have negative values. Note that these values might
not be physically sensible. A theoretical way of investigating this would be to
extend the Baker-Erickson inequalities to the orthotropic case ([75], p.16 and
Sec.(5.3.4)). It is important to point out that the other material parameters
seemed to be well within the confidence intervals with respect to the other
experiments. The effect of these negative material parameters can also be
seen in the graphs in App.(B). Leaving out experiments 2 and 4 would

therefore yield a much closer material parameter set for all material laws.
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These poor results may be due to heterogeneous variations in the micro—
structural fiber orientation across the sample. Inverse finite element studies
that include this aspect may shed some more light on the possible reasons.

Fig.(6.2) shows all twelve force displacement curves using the CL for
experiment 3. The graphs show excellent agreement of the analytical curves
(solid) with the experimental data (dotted). Similar results were obtained for
all other material laws including LECL which exhibited the highest relative
error, Fig.(6.3). A summary of all graphs for all experiments and all laws is
given in App.(B.2).

From these results we can see that the CL had both the best fit proper-
ties and the best determinability properties of the five laws tested in simple
shear, whereas the LECL exhibits the least variance while having worse fit-

ting properties.



CL Q QRrel | AIC | Rank | det(H) | cond(H) | det(H) a bsr b by, bnn brs bss Qp
Expl 1023 2.57% | 136.6 1 1.1E+4+13 | 1.6E405 | 3.1E-03 0.383 40.6 9.19 10.6 11.3 7.10 12.3 39747
Exp2 1359 5.18% | 154.4 1 1.0E+4+12 | 6.5E405 | 2.1E-03 0.182 31.1 14.8 13.3 -3.23 13.6 33.9 26217
Exzp3 128 1.59% 6.55 1 1.8E409 | 7.8E+405 | 3.1E-03 0.171 34.0 11.1 12.6 19.3 9.01 13.0 8021
Exzp4 183 2.17% 29.0 1 1.9E409 | 3.6E405 | 3.5E-03 0.226 39.6 9.93 9.23 -0.18 9.21 10.1 8456
Expb 558 1.97% 98.7 1 1.1E412 | 6.1E405 | 2.9E-03 0.212 38.3 9.68 9.45 10.0 6.39 16.8 28332
Exp6 204 1.50% 35.9 1 2.4E+10 | 1.8E+06 | 2.1E-03 0.154 71.4 10.7 10.7 9.56 8.33 25.7 13612
In 576 2.50% 2.1E+12 | 7.3E+05 | 2.8E-03 0.221 42.5 10.9 11.0 7.78 8.95 18.6 20731
o 511 1.37% 4.2E+12 | 5.7E+05 | 5.9E-04 0.084 14.6 2.02 1.65 8.22 2.54 9.27 12746
CoV 88.8% | 54.9% 197% 78.0% 21.1% 37.8% | 34.3% | 18.6% | 15.0% | 106% | 28.4% | 49.7% 61.5%
Table 6.1: Comparison of material parameter estimates for CL across all experiments
SFL Q QRrel | AIC | Rank | det(H) | cond(H) | det(H) aff byr afn bn afs bys Ann bnn ans bns Qass bss
Expl 989 2.49% | 144.5 3 3.6E+28 | 4.TE4+08 | 1.9E-11 0.693 54.8 0.0380 25.1 0.0411 26.3 0.0378 93.0 0.0408 20.0 0.0505 94.8
Exzp2 1545 5.89% | 172.4 3 7.3E4+27 | 1.9E+12 | 9.5E-12 0.073 116 0.0494 24.5 0.0706 21.6 -0.0005 234.2 0.0843 19.0 0.2863 66.2
Exzp3 127 1.58% 16.0 2 2.9E+23 | 1.1E409 | 2.3E-11 0.279 56.7 0.0514 19.6 0.0382 24.2 0.0761 70.9 0.0458 17.1 0.0132 127
Exp4d 165 1.95% 32.6 3 2.9E+420 | 2.2E+10 | 1.4E-11 0.257 70.1 0.0507 20.2 0.0615 17.8 -51.86 0.0366 | 0.0709 16.3 0.0137 118
Expb 569 2.01% | 110.0 3 1.4E428 | 8.7TE408 | 2.7TE-11 0.269 63.2 0.0328 22.7 0.0326 22.6 0.0232 90.3 0.0358 16.6 0.0376 86.9
Exzp6 316 2.32% 73.1 3 6.4E+23 | 5.0E4+08 | 2.1E-11 0.254 102 0.0446 18.7 0.0465 19.9 0.0928 34.9 0.0421 16.4 0.0738 78.9
In 618 2.71% 9.6E+27 | 3.2E+11 | 1.9E-11 0.304 77.0 0.0445 21.8 0.0484 22.1 -8.60 87.2 0.0533 17.5 0.0792 95.3
o 554 1.59% 1.4E428 | 7.8E+4+11 | 6.3E-12 0.205 25.5 0.0076 2.68 0.0147 3.01 21.2 80.3 0.0196 1.54 0.1040 23.3
CoV 89.7% | 58.8% 147% 241% 33.3% 67.6% | 33.0% | 17.1% | 12.3% | 30.3% | 13.6% -246% 92.1% | 36.8% | 8.75% 131% 24.4%

Table 6.2: Comparison of material parameter estimates for SFL across all experiments
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PZL Q QRel | AIC | Rank | det(H) |cond(H) | det(H) || kys agr k afn ks afs knn Gnn kns ans | kss ass
Exzpl 944 2.37% | 141.6 2 1.3E+453 | 8.3E404 | 1.1E-11 2.14 0.393 | 0.0760 | 0.357 | 0.0867 | 0.351 0.0845 0.271 0.0728 | 0.392 | 0.109 | 0.266
Exzp2 1529 5.83% | 171.7 2 1.9E+454 | 4.5E4-04 | 1.3E-11 0.146 0.236 | 0.0985 | 0.361 0.133 0.380 -0.0013 0.173 0.153 0.404 | 0.771 | 0.341
Ezp3 142 1.95% | 23.3 4 3.1E+47 | 1.1E404 | 8.8E-12 0.670 0.361 | 0.0859 | 0.391 | 0.0769 | 0.371 0.194 0.325 0.0728 [ 0.416 | 0.027 | 0.224
Ezp4 162 1.91% | 31.3 2 2.5E+24 | 1.2E+18 | 1.5E-12 0.669 0.328 | 0.0906 | 0.390 | 0.109 0.414 | -2.5E+05 513.8 0.128 0.434 | 0.026 | 0.231
Exzpb 548 1.93% | 107.5 2 1.3E+452 | 8.7TE403 | 8.1E-12 0.759 0.354 | 0.0606 | 0.370 | 0.0596 | 0.370 0.0525 0.276 0.0644 | 0.431 | 0.085 | 0.282
Exzp6 308 2.26% | 71.5 2 5.7E+45 | 1.0E406 | 3.1E-12 0.520 0.253 | 0.0808 | 0.407 | 0.0854 | 0.394 0.414 0.565 0.0771 | 0.435 | 0.175 | 0.300
605 2.71% 3.5E+53 | 1.9E+417 | 7.7E-12 0.817 0.321 | 0.0821 | 0.379 | 0.0917 | 0.380 | -4.2E+04 85.9 0.0947 [ 0.419 | 0.199 | 0.274
o 542 1.54% 7.9E+53 | 4.7TE+4+17 | 4.6E-12 0.684 0.063 | 0.0131 | 0.020 | 0.0256 | 0.0218 | 1.0E+405 209.6 0.0366 [ 0.018 | 0.286 | 0.044
CoV 89.6% | 56.8% 225% 245% 59.7% 83.7% | 19.6% | 15.9% | 5.2% | 28.0% 5.8% -244.9% 244.0% | 38.7% | 4.27% | 144% | 16.0%
Table 6.3: Comparison of material parameter estimates for PZL across all experiments
TL Q Qrel | AIC | Rank | det(H) | cond(H) | det(H) afp bf afn b in afs by, ann bnn ans bns ass bss
Exzpl 1034 2.60% | 147.3 4 4.7TE+430 | 2.9E405 7.1E-10 3.17 15.5 0.1155 13.1 0.123 13.5 0.269 18.7 0.114 11.6 0.362 18.9
Exp2 1577 6.01% | 173.7 4 -5.0E4-27 | 2.6E404 | -7.6E+442 0.620 20.4 0.1606 12.7 0.201 12.1 -3.1E-13 | 3.1E-13 | 0.227 11.3 1.51 16.7
Ezp3 133 1.65% 18.8 3 1.1E+426 | 4.4E405 2.6E-09 1.30 15.8 0.1407 11.5 0.119 12.7 0.425 17.1 0.112 10.9 0.124 21.0
Exzp4 172 2.03% | 35.1 4 4.6E+422 [ 8.9E406 1.1E-09 1.40 17.1 0.1443 11.7 0.156 11.1 -5.34 0.410 0.169 10.7 0.123 20.4
Exzpb 597 2.11% | 112.9 4 5.7TE+4+30 | 5.3E405 3.2E-09 1.36 16.4 0.0994 12.3 0.100 12.3 0.162 18.5 0.085 10.8 0.249 18.4
Ezp6 333 2.45% 76.4 4 4.8E+26 1.4E406 4.1E-09 1.90 19.5 0.1160 11.3 0.127 11.7 0.311 12.9 0.097 10.8 0.451 17.7
I 641 2.81% 1.7E4-30 1.9E406 | -1.3E+442 1.62 17.5 0.1294 12.1 0.138 12.2 -0.695 11.3 0.134 11.0 0.471 18.8
o 567 1.60% 2.7E430 | 3.5E406 | 3.1E+442 0.859 2.04 0.0228 | 0.702 | 0.0358 0.83 2.28 8.82 0.054 0.374 | 0.528 1.64
CoV 88.4% | 57.1% 156% 178% -245% 52.9% | 11.7% | 17.6% | 5.80% | 26.0% | 6.76% -328% 78.2% 40.1% | 3.40% | 112% | 8.71%

Table 6.4: Comparison of material parameter estimates for TL across all experiments
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LECL Q QRel AIC | Rank | det(H) | cond(H) | det(H) ay an as n
Expl 1807 4.55% 166.2 5 2.8E+4+18 | 9.7TE4+03 | 1.4E-04 1.98 1.06 1.12 2.34-1020
Exp2 2859 10.90% | 194.9 5 9.1E+19 | 4.9E+403 | 7.4E-04 1.44 1.34 1.42 1.26-1020
Ezp3 283 3.88% 50.3 5 1.0E418 | 1.9E4-03 | 5.9E-04 1.58 1.32 1.33 0.881-1020
Exp4 530 6.27% 89.5 5 1.5E+16 | 3.2E4-03 | 1.7TE-04 2.01 1.07 1.06 1.28-1020
Expb 1147 4.05% 137.8 5 1.4E+418 | 2.8E4-03 | 1.1E-04 2.02 1.07 1.06 1.21-1020
Exp6 1211 8.90% 141.2 5 2.7E+4+19 | 9.6E403 | 1.3E-04 1.75 1.21 1.22 0.949-10%0
n 1306 6.42% 2.1E+419 | 5.3E403 | 3.1E-04 1.80 1.18 1.20 1.32.1020
o 932 2.89% 3.6E+19 | 3.5E+4+03 | 2.8E-04 0.250 0.131 0.151 | 0.528-1020
CoV 71.4% | 45.0% 175% 65.0% 89.0% 13.9% | 11.1% | 12.6% 40.0%

Table 6.5: Comparison of material parameter estimates for LECL across all experiments

QRel det(H) | cond(H) | det(H) CoVpraz | HCoV

CL 2.50% | 2.1E+412 | 7.3E+05 2.8E-03 106% 41.4%

SFL 2.71% | 9.6E427 | 3.2E+11 1.9E-11 -246% 79.0%

PZL 3.35% | 8.2E+453 | 2.7TE+08 | 9.4E-10 -94.7% 47.0%

TL 2.81% | 1.7TE+430 | 1.9E+06 | -1.3E+42 -328% 57.6%

LECL || 6.42% | 2.1E419 | 5.3E+4+03 | -3.1E-04 40.0% 19.4%

Table 6.6: Comparison of all material laws
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Figure 6.2: The table depicts the experimental (dotted) and fitted force—displacement
curves (solid) of the Costa—law for all six modes for experiment 3. It is grouped according
to Fig.2.4, whereas groups of two pictures show the x— and z—force, respectively. The y—
force is left out due its negligible energy content. The overall relative error is 1.59%. Note
the different scales on each graph. The abscissa shows the displacement in mm, whereas
the ordinate shows the top face force in mN, where e.g. Fng, indicates the x—force for the

NS-mode.
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Figure 6.3: The table depicts the experimental (dotted) and fitted force-displacement

curves (solid) of the Langevin Eight—Chain-law for all six modes for experiment 3. It is

grouped according to Fig.2.4, whereas groups of two pictures show the x— and z—force,

respectively. The y—force is left out due its negligible energy content. The overall rel-

ative error is 3.88%. Note the different scales on each graph. The abscissa shows the

displacement in mm, whereas the ordinate shows the top face force in mN, where e.g.

Fns, indicates the x—force for the NS—-mode.
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6.3 Discussion

The optimisation for CL, SFL. and TL could be started from a wide variety
of initial guesses, whereas for the PZL and LECL a more elaborate strategy
had to be applied.

For the PZL and LECL the optimisation was initially setup for so—called
paired—mode optimisation was carried out, where the material parameters
were fitted to only two out of the six modes. The analytical equation of
the PZL for the top—face force indicated that it would be advantageous to
estimate for the NS & NF, FS & FN or SN & SF modes together, since in
these pairs similar parameters would be “active”. For example, first estimates
could be obtained for the material parameters ass, ktf, apn, kn, aps and kg
for PZL when fitting for the FS & FN mode only. When done for all paired
modes the mean of the parameters was computed and used as the initial guess
for the full optimisation. This typically proved to be a successful technique
to obtain globally minimising material parameters.

A similiar technique was applied for the LECL although all material pa-
rameters were “active” in all paired modes. Nevertheless the procedure gave
reliably good first estimates to find the global optimum. The optimum,
however, did not provide a good fit to all twelve force-displacement curves,

Fig.(6.3), see also App.(B.2).

6.4 Summary

This chapter develops the homogeneous model to estimate myocardial ma-
terial parameters. It is clear from Sec.(6.2) that the CL is the most suitable
constitutive law to model passive myocardial mechanics in homogeneous sim-

ple shear.
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The major limitation of this model was that in a real experiment the edges
of the cubes do not remain straight, rather they bulge and the overall defor-
mation is non-homogeneous. The next chapter relaxes this and introduces a

finite element model for inverse material parameter estimation.



Chapter 7

Non—Homogeneous Finite
Element Deformation Model

for Simple Shear

The last chapter presented the homogeneous deformation model. The very
assumption of a homogeneous deformation, however, does account for bulging
(Poynting) effects that are observed in simple shear experiments [95]. To
allow for this, a finite element model for each of the 3 separate tissue blocks
in each of the 6 sets of experiments was created to account for the non—
homogeneous deformation. Fach block was given a cuboid geometry with
the recorded dimensions. Two shear modes were applied in each block in

order to cover the 6 different shear modes for each experiment.

7.1 Development of FE Model

The forward solution of the finite elasticity equations of the mathematical

representations of the ventricular myocardium were solved using the Galerkin

89
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finite element method incorporating tri-linear 8-node elements. Fig.(7.1)
shows a sample finite element model used in this study. The simple shear
deformation was modelled as a xz-shear, i.e. the top face with a normal in
the z—direction was displaced in the z—direction. The mesh incorporated the
fibre and the sheet orientation of the tissue equivalent to the experimental
tests by assigning a globally homogeneous fibre, sheet, normal distribution
throughout the cube for each mode. A variety of mesh resolutions were anal-
ysed and the results of the convergence analysis are presented in Sec(7.1.3).

The incompressibility constraint was implemented via the backend of CMISS

Figure 7.1: This graph shows the undeformed and deformed finite element mesh. The
mesh has five elements in each direction. The boundary conditions are imposed on the
bottom and top surface. The bottom surface is fixed and the top surface is displace into

the positive xz—direction by half the height of the cube.
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as explained in [84], see also Sec.(4.1.1.1).

7.1.1 Validation of constitutive laws

The constitutive relations were implemented by means of an XML based
markup language called CellML [123], which is compatible with the finite
element environment. All laws were validated against the same functional
form of the stress—strain relationship using the mathematical computational

tool Matlab [125].

7.1.2 Optimisation Kernel

A sequential quadratic programming (SQP) algorithm was used to optimise
the material parameters for each constitutive law. SQP involves the solution
of a quadratic problem at each step in the optimisation process with linear
constraints for each material parameter. This has an analytic solution that
can be solved directly. In addition, the algorithm performs a line search to
find an improved position. The Hessian was approximated using the local
gradient, as is common for sums of squares problems. The derivatives of the
objective function with respect to the optimisation variables (the material
parameters) was performed using one—sided differences. Initial estimates of
the material parameters were taken from the homogeneous solutions [103]
and tables (7.1-7.4). Constraints in terms of interval bounds on the mate-
rial parameters were imposed to ensure a valid forward solution. For each
optimisation iteration, a series of finite elasticity problems was solved. One
for the current solution, and one for each finite difference derivative approxi-
mation. In each of these finite element solutions the solver was started from

the previous mechanics solution.
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7.1.3 Convergence Analysis

Tri-linear cubes were used with an equal number of elements in each direction
from an eight element cube (222cube) (two elements in each direction) up
to an 888cube (512 elements). Convergence was checked with respect to two
criteria: the objective function value and Aﬁ‘ﬁmﬂ, see Sec.(4.4.6).

The sequence was repeated with differing starting values and limits, until
a minimum least—squares error between the predicted and observed reac-
tion forces was obtained. The initial estimates from the homogeneous study
proved to be very close to the optimum for almost all cases.

The detailed tables of the convergence analysis are shown in App.(C.2)
and suggest that a 555cube was sufficient to capture the main criteria of the
deformation.

The LECL did not converge for any of the experiments when starting from
the homogeneous values. Even considerable tests from varying initial param-
eters did not result in a successful optimisation. The LECL was therefore

not studied using the FEM model.

7.2 Results for the Non—-Homogeneous Finite
Element Model during Simple Shear

The detailed numerical results for all material laws are given in Tables (7.1-
7.4). All material parameter values are listed and for each of these entries
the mean, standard deviation, and coefficient of variation (CoV= 7) across
the experiments are presented. We also list the total pseudo energy content

(Q7) for each experiment is also listed in the last column of Table (7.1).



[ oo | o [ ora ] 410 [Rank]| det(r) [cona®) ] dee) | « brr | b | b | ban | bna | bee | | 20 ||
Exzpl 982.4 2.5% 134.1 3 2.2E+4+22 | 4.1E408 1.4E-14 0.41 36.3 10.7 12.7 12.3 7.96 11.4 39748
Exzp2 1798 6.9% 171.9 3 -2.4E+4+18 | 5.4E408 | -1.6E-09 0.33 20.7 14.4 11.3 0.00 17.0 33.8 26217
Exzp3 123.9 1.5% 4.6 4 2.6E+420 2.1E4-09 4.0E-11 0.19 30.5 12.1 13.9 17.8 9.86 13.6 8021
Exp4d 222.8 2.6% 41.3 3 6.6E+18 3.4E+408 2.3E-11 0.23 38.0 11.3 11.5 4.43 11.2 9.60 8457
Exzpb 432.4 1.5% 82.8 4 -1.3E+4+22 | 1.1E+4+10 | -2.0E-12 0.20 35.7 11.4 10.5 13.0 8.35 18.9 28332
Exzp6 175.2 1.3% 26.3 1 -1.4E+421 | 1.2E409 | -2.4E-12 0.18 62.3 12.0 12.3 7.06 10.9 26.3 13613
I 622.4 2.7% 76.8 1.2E+421 2.6E409 | -2.5E-10 0.26 37.2 12.0 12.0 9.11 10.9 18.9 20731
o 656.5 2.1% 65.4 1.1E+422 | 4.3E409 | 6.4E-10 0.091 13.8 1.30 1.21 6.49 3.28 9.46 12746
CoV 105.5% | 77.2% | 85.1% 904.8% 161.1% -256.6% 35.8% | 37.0% | 10.9% | 10.1% | 71.2% | 30.1% | 50.0% 61.5%
Table 7.1: Comparison of material parameter estimates for CL across all experiments
[srL [ @ [ opa | A1 [Rank ] det(®) [cond®) | det(D) || ayy | by | am | bm | @z | bge | ann | ban | ans | bus | ass | bes ||

Exzpl 742.4 1.9% 126.6 1 4.2E+61 | 4.0E4+07 | 2.8E-35 0.85 42.2 0.024 58.4 0.014 75.2 0.0087 157.9 0.040 35.8 1.02 11.7

Exp2 1499 5.7% 170.5 2 2.1E+456 | 1.2E+11 4.3E-20 0.12 66.6 0.012 75.7 0.059 45.4 2.95 0.38 0.082 52.0 0.78 34.2

Exp3 94.2 1.2% -2.5 1 5.9E+54 | 2.4E+12 4.7E-10 0.28 50.3 0.017 51.6 0.022 55.0 0.18 36.4 0.015 46.1 0.045 56.8

Exzp4 188.7 2.2% 40.9 2 1.5E447 | 3.3E4+13 | 6.0E401 0.22 73.7 0.051 37.9 0.025 48.8 0.00 100.0 0.058 33.0 0.011 89.1

Exzpb 301.2 1.1% 70.2 2 9.7E+61 | 9.0E+12 6.6E-15 0.27 57.6 0.016 54.1 0.018 47.5 0.10 39.6 0.0066 57.0 0.017 123.2

Exp6 175.7 1.3% 36.4 2 5.9E+57 | 7.2E+10 | 2.5E-22 0.25 98.4 0.0061 70.3 0.021 51.3 1.49 2.61 0.0090 59.3 0.15 53.8

500.2 2.2% 73.7 2.3E+61 | 7.4E+12 | 9.9E400 0.33 64.8 0.021 58.0 0.026 53.9 0.79 56.1 0.035 47.2 0.34 61.5

540.9 1.8% 64.0 4.0E+61 | 1.3E+13 | 2.4E+401 0.26 19.9 0.016 13.6 0.016 11.0 1.20 61.5 0.030 10.9 0.44 39.7

CoV 108.1% | 79.5% | 86.8% 171.8% 174.6% 244.9% 78.0% | 30.7% | 76.5% | 23.5% | 62.0% | 20.4% | 152.6% | 109.6% | 87.2% | 23.2% | 131.9% | 64.6%

Table 7.2: Comparison of material parameter estimates for SFL across all experiments
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[pee | o [ ara | aic [Rank]| detr) [cond@) [ det) [ kyr | agr | kg | ag | ks afe | kan | ann | kns | ans | ks | ass ||
Expl 804.4 2.0% 131.6 2 -3.E4107 | 9.5E410 | -5.E-61 2.46 0.43 0.049 0.34 0.038 0.31 0.050 0.24 0.032 0.37 10.9 1.37
Exp2 1698 6.5% 178.3 4 6.E+4+101 | 5.2E4+06 1.E-86 0.098 0.24 0.040 0.32 0.189 0.43 0.000 0.58 0.51 0.49 0.80 0.34
Exzp3 96.8 1.2% -0.8 2 2.E+113 | 9.5E4+04 6.E-97 0.79 0.39 0.037 0.36 0.039 0.34 0.35 0.39 0.031 0.38 0.16 0.36
Exzp4 183.2 2.2% 39.0 1 1.E+4117 | 1.2E407 | 3.E-107 0.59 0.32 0.080 0.40 0.040 0.35 0.000 0.24 0.106 0.44 0.031 0.28
Expb 283.3 1.0% 66.3 1 7.E+4+123 | 2.3E+06 | 3.E-109 0.83 0.38 0.029 0.34 0.031 0.36 0.30 0.46 0.011 0.33 0.037 0.23
Exzp6 178.9 1.3% 37.6 3 7.E+4115 | 1.4E407 2.E-91 0.55 0.26 0.015 0.31 0.037 0.35 0.34 0.60 0.021 0.34 0.43 0.38

540.8 | 2.4% | 75.3 1.E+123 | 1.6E4+10 | -9.E-62 || 0.89 | 0.34 | 0.04 | 0.35 | 0.06 0.36 0.17 0.42 0.12 0.39 2.05 0.49

621.4 2.1% 66.9 3.E+123 | 3.9E+10 2.E-61 0.81 0.08 0.02 0.03 0.06 0.04 0.17 0.16 0.20 0.06 4.32 0.43

CoV 114.9% | 87.4% | 88.8% 244.9% 244.8% -244.9% || 91.8% | 22.7% | 52.7% | 8.7% | 100.1% | 10.7% | 100.0% | 38.1% | 164.5% | 15.9% | 210.7% | 87.8%
Table 7.3: Comparison of material parameter estimates for PZL across all experiments

I oo [ o | ora | 410 [Rank ]| det) [cond) | dett) || agr | bgr [ aga | 550 | ape [ b | @nn | bun | ans | bus | ass | bes ||
Expl 1034 2.6% 147.3 4 1.4E+462 1.2E4-08 | 2.4E-36 3.32 14.6 0.16 13.7 0.11 14.8 0.31 18.7 0.092 12.9 1.08 11.2
Exzp2 1470 5.6% 169.3 1 -8.4E468 | 1.3E411 | -1.3E-40 0.53 18.1 0.043 17.5 0.21 14.1 0.00 18.1 0.49 13.4 3.62 9.91
Exzp3 102.6 1.3% 2.8 3 1.9E465 | 1.1E409 | 2.4E-34 1.25 14.6 0.11 13.1 0.15 13.5 0.71 12.3 0.078 12.7 0.23 14.8
Exp4d 193.8 2.3% 42.6 4 -2.8E465 | 2.1E409 | -1.0E-30 1.26 17.4 0.26 11.4 0.15 12.8 | 0.0087 19.2 0.23 11.2 0.11 16.9
Expb 323.9 1.1% 4.7 3 5.6E4+69 | 1.1E4+09 [ 8.6E-38 1.30 15.7 0.10 13.5 0.11 12.7 0.36 13.4 0.049 13.6 0.16 20.7
Exzp6 250.2 1.8% 58.6 4 8.9E+60 | 1.1E408 | 3.1E-34 1.84 19.7 0.039 14.6 0.17 12.0 0.69 6.44 0.089 12.7 0.62 17.4

I 562.5 2.5% 82.5 8.0E+68 | 2.2E+10 | -1.7E-31 1.58 16.7 0.12 14.0 0.15 13.3 0.35 14.7 0.17 12.7 0.97 15.2
o 556.5 1.6% 63.7 2.4E+69 | 5.1E+10 | 4.3E-31 0.95 2.06 0.084 2.00 0.038 1.03 0.31 4.96 0.17 0.84 1.35 4.05
CoV 98.9% | 66.7% | 77.2% 299.2% 234.5% -245.1% 59.9% | 12.4% | 70.5% | 14.3% | 25.2% | 7.7% | 90.0% | 33.8% | 98.5% | 6.6% | 138.9% | 26.7%

Table 7.4: Comparison of material parameter estimates for TL across all experiments
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Before making any comparison, it is important to note that experiments 2
and 4 yielded comparably poor results for all material laws. Leaving out these
experiments would therefore yield a much closer material parameter set for
all material laws. These poor results may be due to heterogeneous variations
in the micro—structural fiber orientation across the sample. Inverse finite
element studies that include this aspect may shed some more light on the
possible reasons. However, the Dokos experimental studies did not measure
this so assumptions of straight fibres were necessary.

Comparing the mean of the relative goodness of fit of the finite element
study amongst all four material laws, the SFL obtained the best relative
goodness of fit (2.2%), whereas the coefficient of variation of the objective
function was lowest for the TL (66.7%). The AIC confirms the result for the
SFL.

Comparing the CoV of material parameters for all laws we find that the
CL has the lowest (71.2%) for the parameter b,,, whereas PZL has the highest
(210%) for apy,.

The CL converged without any complications and took the shortest time
(~8hrs) on an IBM 1.9GHz Power 5 Processor when starting from the homo-
geneous values. Varying the initital starting point of 9 had no effect on the
final outcome and we could therefore conclude that the CL was very stable
for the estimation process. The SFL was rather unstable and needed con-
siderable additional strategies to converge. It was necessary to start at the
222cube while fixing the axial parameters and only optimising for the shear
parameters. Subsequently, the shear parameters were fixed and the model
was optimised by varying the axial parameters. Then a converged solution
for the 222cube was obtained when optimising for all material parameters.

Furthermore it was necessary to do that for all intermediate meshes as well to
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finally obtain a fully converged 555cube. A similar procedure was necessary
for the PZL. The TL also converged after choosing the homogeneous values
as initial values. However, the step size in the parameter space needed to be
decreased for a stable optimisation which resulted in an optimisation time of
between 4-8 days.

The D-optimality for all laws reflects the stability of the optimisation
process. The higher the numbers, the worse the convergence. The condition
number for all material laws showed that the SFL had the highest eccentricity
with 7.4 - 10'2 whereas CL was lowest 2.6 - 10°. The M-optimality showed
that the CL had the lowest material parameter correlation whereas the PZL
had the highest.

One of the advantages of the homogeneous model were thought to be
that it gives good first estimates for more realistic finite element studies. It is
therefore also useful to comment on the performance of the material laws with
respect to the convergence behaviour and the computational time involved
when compared to the homogeneous model. This is done in Sec.(7.4).

Guccione and coworkers [39] published a transversely isotropic material
which we also fitted to all six experiments. It exhibited very poor behaviour
since it was only able to fit three out of the six modes, those with the highest
partial energy content. It can therefore be concluded that a transversely
isotropic material is not suitable to model the passive myocardial behaviour

in simple shear.
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Figure 7.2: The graphs depict the experimental (dotted) and fitted force—displacement
curves (solid) of the SFL for all six modes for experiment 3. They are grouped according
to Fig.2.4, where groups of two pictures show the x— and z—force, respectively. The overall
error is 1.2%. Note the different scales on each graph. The abscissa shows the displacement
in mm, whereas the ordinate shows the top face force in m/N, where e.g. NSy indicates

the x—force for the NS—mode.
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Figure 7.3: The graphs depict the experimental (dotted) and fitted force—displacement
curves (solid) of the CL for all six modes for experiment 3. They grouped according to
Fig.2.4, where groups of two pictures show the x— and z—force, respectively. The overall
error is 1.5%. Note the different scales on each graph. The abscissa shows the displacement
in mm, whereas the ordinate shows the top face force in m/N, where e.g. NSy indicates

the x—force for the NS—mode.
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7.3 Discussion

The results show that the CL performed best for both homogeneous simu-
lations and inverse finite element material parameter estimations. This is
clear from the fact that although the goodness of fit and AIC of the SFL is
slightly better than that for the CL in the FEM study (see Figs.(7.2 & 7.3)),
the CL has by far the highest material parameter consistency, see Fig.(7.4)
and the lowest computational time involved when compared to the other
laws. For the grpahs of the other laws and experiments the reader is referred
to App.(C.3).

There are some comments to be made about the CL. It exhibits a the-
oretical cross—coupling of strain terms for each stress component, whereas
that is not the case for the other three laws. In the homogeneous simulation
(which has a sparsely populated strain tensor), this cross—coupling did not
occur in the analytic expression of the top face force. Therefore caution was
paid to the fact that this might differentiate the CL from the other three
laws when using FEM inverse parameter estimations, especially with more
complex deformation modes. The results of the finite element study indi-
cate that the cross—coupling does not play a major role for the finite element
simulations. Smaill & Hunter [107] found that there was little mechanical
coupling between the fiber and sheet direction in midmyocardial specimen in
biaxial tests. It therefore remains an open question whether results for the
constitutive relations of inverse material parameter estimation procedures

would differ in biaxial extension tests.
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7.4 Comparison of FE and Homogeneous

Model

When we compare the homogeneous study with the FEM study we find that
the difference in information by adding the finite element study in terms of
the mean of the goodness of fit criterion AgomO\FEM was lowest for the CL
(8.19%) and highest for the SFL (21.7%). The same holds for the mean
increase in the A"V where CL has the lowest value (0.05%) and the
SFL the highest (24.1%). These numbers are obtained by comparison of the
tables listing the results of the homogeneous model in [103].

When comparing the individual Ag?mO\FEM the SFL, PZL and TL have
one outlier in the order of 10° and higher for a,,, knn, an, for the fourth

experiment, respectively. The CL also has the highest AB?mO\FEM for by,

for
the fourth experiment (104.1%). However, the confidence intervals for both
studies were very similar. They are presented in Fig.(7.4).

The results of the other laws are pointing towards the poorer material
parameter estimation capability of the homogeneous simulations, since it
usually reached large negative values for experiments 2 and 4, as well as
towards the fact that the optimisation package of the finite element envi-
ronment reached the lower bound imposed on the material parameter. (The
lower bound was zero for all material parameters of the CL, SFL and TL as
well as for ks for the PZL. The lower bound for the parameters ks of the
PZL was chosen to be 0.125, since this was the lowest entry of the Green—
strain tensor for the homogeneous case.) Furthermore this points towards
the fact that the parameters of the normal direction are those being most

difficult to estimate due to the lowest partial energy content of the NF—mode

(4.0%) vs (44.9%) in the FN—mode.
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The comparison of A?ZO::;O\FEM and A"OVFEM ay be interpreted the

following way. Firstly it means that the SFL is ideally used in the finite
element environment where it performs best. The CL, however, seems to
perform almost identically in the homogeneous simulations and in the finite
element simulations, while performing almost as well as the SFL in terms of
the goodness of fit criteria.

When comparing the material parameter consistency by looking at the
mean of all AZ™\'FM then CL performs best with 15.3%. If one disregards
the second and fourth experiment, then A\ for the TL (27.1%) and

it therefore also performs well. The PZL and SFL, however, have values of

67.7% and 138.0%, respectively.

7.5 Summary

This chapter introduced the finite element model to estimate myocardial
material parameters. It is clear from Sec.(7.2) that the CL is the most
suitable constitutive law to model passive myocardial mechanics in non—
homogeneous simple shear.

The experimental protocol in this study consisted of six simple shear
modes. As a consequence the maximal axial entries in the Green—strain
tensor were limited to 0.125 compared to 0.25 for the shear entries. To
obtain similar magnitudes for both axial and shear entries, the experimental
protocol was extended to include uniaxial extension modes with axial entries
of 0.22. This promised to result in more realistic estimates for the material

parameters.
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Figure 7.4: Modified box whisker plots of all material parameters of the CL. Each graph
compares the homogeneous data set (left, dark grey) and the FE data set (right, light grey).
The dashed line indicates the mean of the material parameter. The box encapsulates all
values between the lower and upper quartile and the “whiskers” indicate the lowest and
highest value. The graphs indicate the good agreement between homogeneous and finite

element values.



Chapter 8

Non—Homogeneous Finite
Element Deformation Model
for Simple Shear & Uniaxial

Extension

The previous chapter introduced the finite element model for the estima-
tion of material parameters of all material laws. The estimation procedure,
however, was limited to the set of simple shear experiments.

An extension of the experimental protocol analysing from six simple shear
modes to six shear modes plus three uniaxial extension modes along the three
preferred directions of material response was presented in Sec.(2.3.6). The
additional uniaxial extension modes were included to provide extension data
uncoupled from shear, since simple shear modes result in both shear and axial
extension. The axial extension modes contributed to the objective function
with axial strain values (0.22) very close to the shear strain values of the

shear modes (0.25), rather than one half of the shear strain as in simple

103
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shear (0.125).
Although data from only one animal was obtained with all axial and all
shear modes, the result from the FE model may indicate whether data from

axial modes effect the resulting material parameters.

8.1 Development of FE Model

To estimate material parameters for all these modes the same model as in
Chap.(7) was used. However, the boundary conditions for the three uniaxial
extension were adapted and the modified objective functions for these modes
were added to Eq.(6.8).

Fig.(8.1) depicts the deformed model under a finite element mesh for uni-
axial extension. Material parameters obtained from the homogeneous model
as described in Chap.(6) were chosen as initial values for the optimisation

process. This is described in detail in the following sections.

8.2 Estimation Strategy

This section describes the elaborate estimation strategy that was necessary
for obtaining an optimal set of material parameters. This strategy was ap-
plied for all four material laws (CL, SFL, PZL, TL). It is explained in detail
for the CL. The same strategy was applied for all other laws and the results
for all material laws are presented in Sec.(8.3).

Initially it was attempted to start off with estimating the material param-
eters (MP’s) with the homogeneous model and then fit all material parame-
ters to all fifteen curves (6 shear modes x z, z—forces & 3 uniaxial extension

modes, z—forces) within the finite element environment. This, however, did
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Figure 8.1: The deformed finite element mesh under uniaxial extension. The mesh has
five elements in each direction. The boundary conditions are imposed on the bottom and
top surface. The bottom surface was fixed and the top surface was displaced in the positive

z—directions 20% of the height of the cube.

not prove to be successful. In particular the three uniaxial extension modes
were exhibiting high errors.

It was found that the following estimation strategy was successful in find-
ing good material parameter fits for the CL, SFL and TL, whereas it was not
possible to obtain a converged solution for the PZL in the last optimisation

step.
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8.2.1 All Parameters to Shear Modes

For the sake of clarity, a notation is introduced to indicate three factors

involved in each step.

MPpsiatiend (8.1)

so that
MP‘I:\I;):IO\SHEAR , (8 2)

indicates that in the initial step all (ALL) MP’s were fitted to all shear
(SHEAR) modes starting from the homogeneous (HoMO) set of MP’s.

After each estimation step the residual for the shear modes and for the
axial modes was computed as well as the total residual. The complete tables

for all material laws are presented in Sec.(8.3).

CL Modes| EC Q Qpel

Shear |4378.7| 101.54 | 2.32%
MPffLm\SHm Axial |2494.3|4338.87|173.95%
Full |6872.9|4440.41| 64.61%

Table 8.1: Results of the first material parameter estimation step. The relative residual
Q¢ of the axial modes is 173.95% indicating that the axial parameters are overestimated,

or that the estimation space is not properly constraining the axial parameters.

It is clear from Tab.(8.1) that the estimation yields very good results for
the shear modes with a relative error of 2.32% indicating that the result lies
in the range of those from the previous chapter. The second row, however,
with an relative error of 173.95% indicates that the the axial parameters are
clearly overestimated in this step (see also (Fig.(8.3)(a)) or in other words

that the shear modes are not properly constraining the axial parameters.
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The total relative error for all fifteen modes of 64.61% was not an acceptable

error and further estimations had to be undertaken.
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Figure 8.2: These graphs show the force-displacement curves for the shear modes after
the first optimisation step. The relative error is 2.32%. Experimental data: (dotted);
Model data: (solid).

8.2.2 Axial Parameters to Uniaxial Extension Modes

The next step used the MP’s from the previous section and fitted just the
axial parameters to the axial modes whereas the shear parameters remained

fixed. Using the notation above, this is denoted:

1 (8.3)
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As can be seen from the axial residual of 173.95% after the first step in
Tab.(8.1) and also from Fig.(8.3)(a), the axial model force was substantially
different from the experimental measurement. To ensure a stable optimisa-
tion, the axial parameters were adjusted by hand to an extent that eyeballing
the data would ensure a noticable similarity between model and experimental
data. After this adjustment by hand the optimisation was stable and yielded
the results as listed in Table(8.2), see also Fig.(8.4).

CL Modes| EC Q Qper

Shear | 4378.7 | 667.56 | 15.25%
MPIEARMASIAL | A vial | 2494.3| 69.02 | 2.77%
Full |6872.9|736.59|10.72%

Table 8.2: Results of the second material parameter estimation step. The relative
residual Q,.; of the shear modes is 15.25% indicating that the estimation step yielded axial
parameters which did not optimally fit the shear modes. The axial relative error 2.77%,
however, indicates that the new set of MP’s fits the axial modes very well. Additionally

the total relative error was reduced down to 10.72%.

Results of the first material parameter estimation step show that the rela-
tive residual €2,.; of the shear modes is 15.25%, indicating that the estimation
step yielded axial parameters which did not optimally fit the shear modes.
The axial relative error 2.77%, however, indicates that the new set of MP’s
fits the axial modes very well. Interestingly, the total relative error could be

reduced down to 10.72% from 64.61% of the previous step.
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8.2.3 All Parameters to All Modes

The last step used the MP’s from Sec.(8.2.2) and fitted all parameters to the
full set of all fifteen modes. This was denoted:

MP e (8.4)

This estimation step resulted in the set of residuals as listed in Table(8.3):

CL Modes| EC Q Qe

Shear |4378.7(209.77|4.79%
MPYFe | Axial 12494.3| 93.68 |3.76%
Full |6872.9(303.45 |4.42%

Table 8.3: Results of the last material parameter estimation step. The relative residual
Q1 of the shear modes is 4.79% indicating that the estimation step yielded MP’s fitthat
the shear modes considerably better than the previous step. The axial relative error 3.76%
indicates that the new set of MP’s still fit the axial modes very well. Additionally the

total relative error was reduced down to 4.42%.

Results of the last material parameter estimation step show that the rel-
ative residual Q,.; of the shear modes is 4.79% indicating that the estimation
step yielded MP’s fit the shear modes considerably better than the previous
step. The axial relative error 3.76% indicates that the new set of MP’s still
fit the axial modes very well. Additionally the total relative error could be

reduced down to 4.42%.
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(b) Axial Graphs Second Step
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(c) Axial Graphs Last Step

Figure 8.3: (a) Axial force displacement curves for the CL with MP’s fitted to just the
shear modes has been done in the previous chapters. The relative error of these modes is
173.95%. The overestimated axial parameters can be clearly seen. (b) The same curves
after the axial parameters have been fitted to the axial modes. The relative error for these
modes is now 2.77%. (c) The curves after all MP’s have been fitted to all fifteen modes.
The relative error of the axial modes is now 3.76%. Note the significant change in the
N-modes due to the altered parameter b,,. This is due to the higher energy content of

the N-extension mode. Experimental data: (dotted); Model data: (solid).
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Figure 8.4: Force—displacement curves for the shear modes after the second optimisation

step. The relative error is 15.25%. Experimental data: (dotted); Model data: (solid).
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Figure 8.5: Force-displacement curves for the shear modes after the second optimisation
step. The relative error is 4.79%. Note that the N-modes are yet the ones worst fitted.
Experimental data: (dotted); Model data: (solid)
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In summary this 3-step estimation strategy was found to be suitable for

obtaining a set of globally optimal MP’s.

8.3 Results Full FE Model

The previous sections detailed the 3-step estimation strategy for obtaining
a material parameter set for fitting all fifteen force-displacement curves and
demonstrated the process for the CL. The same strategy was applied to all
material laws and the full set of tables including the relative errors and the
set of material parameters is presented in Tables (8.4)—(8.7).

It was found for all material laws that the shear parameters remained
in the same range whereas the axial parameters considerably changed of the
three steps. The final set of shear parameters of the CL stayed within 13% of
their original values. The axial parameters, however, all decreased by 25% or
more. The axial parameters by, by, bss of the SFL and the TL all decreased
by ~50%. For the PZL both axial parameters kg, af changed by more than
50% whereas the parameters k,, a,, did not change as significantly. The
parameters k,,,, a,,, however, both changed substantially and k,,, reached its
upper bound of 5 imposed by the optimisation package. It was not possible
for the PZL to obtain a fully converged set of material parameters, which is
also reflected by the increased relative objective function value of 43.04%.

Note also the tradeoff between the pair of material parameters for the
SFL, PZL and the TL. For example, while the parameter as of the SFL
almost doubled from 0.130 to 0.206, the parameter bs more than halved
from 59.0 to 27.3.



I oL [vodes] B¢ [ @ [ @ [ @ [bss [brm ] brs | bun | bus | bas ||
Shear | 4378.7 | 101.54 | 2.32%
MPE\ISSIO\SHEAR Axial | 2494.3 | 4338.87 | 173.95% || 0.101 | 32.8 | 10.8 | 12.7 | 31.6 | 10.5 | 22.8

Full 6872.9 | 4440.41 | 64.61%

Shear | 4378.7 | 667.56 | 15.25%
MPIEANAYAL Aol [ 2404.3 | 69.02 | 2.77% || 0.101 | 27.8 | 10.8 | 12.7 | 9.4 | 10.5 | 23.7
Full |6872.9 | 736.59 | 10.72%

Shear | 4378.7 | 209.77 | 4.79%
MP‘::;AL\FULL Axial | 2494.3 | 93.68 3.76% || 0.102 | 24.8 | 12.4 | 14.0 | 22.2 | 11.9 | 16.8
Full | 6872.9 | 303.45 | 4.42%

Table 8.4: Results of all material parameter estimation steps for the CL. The total relative error decreases from 64.61% to 10.72% in
the second and 4.42% in the last step.

I SFL [Modes| BC | @ [ 9 [[ags [brr | asn [bsn] are [brs | ann |bun | ans | bas | ass | bas ||
Shear | 4378.7 | 84.45 1.93%
Mpii’ﬁ'o\s'“‘“" Axial | 2494.3 | 163100 | 6539% || 0.130 | 59.0 | 0.0146 | 41.2 | 0.00913 | 53.2 | 0.0685 | 78.6 | 0.0202 | 36.1 | 0.0222 | 108.7
Full | 6872.9 | 163185 | 2374%
Shear | 4378.7 | 969.8 22.15%
MPAR AN Axial |2494.3 | 197.4 | 7.91% || 0.123 | 29.4 | 0.0146 | 41.2 | 0.00913 | 53.2 | 0.0379 | 28.4 | 0.0202 | 36.1 | 0.0095 | 61.5
Full |6872.9 | 1167.2 | 16.98%
Shear | 4378.7 | 530.2 | 12.11%
”MP;\‘L‘E*L\FULL” Axial | 2494.3 | 109.3 | 4.38% || 0.206 | 27.3 | 0.0221 | 38.7 | 0.01073 | 53.4 | 0.1281 | 29.4 | 0.0201 | 40.2 | 0.0159 | 55.8
Full | 6872.9 | 639.54 | 9.31%

Table 8.5: Results of all material parameter estimation steps for the SFL. The total relative error decreases from 2374% in the first

step to 16.98% in the second and 9.31% in the last step.
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I PZL Modes | B¢ | @ | @i [[hrs | ass | brn | an | kso | ags | kun | @nn | kns | ans | kss | aas |

Shear | 4378.7 | 78.36 | 1.79%
MPiEﬁ[O\S"L‘\R Axial | 2494.3 | 799962 | 32072% || 0.41 | 0.381 | 0.0263 | 0.386 | 0.019 | 0.347 | 0.167 | 0.304 | 0.0374 | 0.415 | 0.0430 | 0.243
Full | 6872.9 | 800041 | 11640%

Shear | 4378.7 | 828.8 | 18.93%
MPi’;‘;;‘E\AX"\" Axial | 2494.3 | 53.9 2.16% || 0.48 | 0.507 | 0.0263 | 0.386 | 0.019 | 0.347 | 0.822 | 1.01 | 0.0374 | 0.415 | 0.0868 | 0.393
Full | 6872.9 | 882.7 | 12.84%

Shear | 4378.7 | 2822.7 | 64.47%
Axial | 2494.3 135.6 5.44% 1.85 | 0.733 | 0.0162 | 0.350 | 0.015 | 0.332 | 5.00 1.39 | 0.0147 | 0.346 | 0.0637 | 0.381
Full 6872.9 | 2958.3 | 43.04%

AxiaL\FuLL

MPALL

Table 8.6: Results of all material parameter estimation steps for the PZL. The total relative error decreases from ~ 10°% in the first

step to 12.84% in the second and increases to 43.04% in the last step.

[ L [Modes [ B0 [ o et | ags [ brs [ agn [0pu] are [0se [onn [ bun [ans [ons [[ass [ b0 ]
Shear | 4378.7 239.89 5.48%

mpHoMONSIE A sial | 2494.3 | 11250574 | 451415% || 0.220 | 14.76 | 0.121 | 7.43 | 0.368 | 6.43 | 0.370 | 12.33 | 0.116 | 7.44 | 0.151 | 14.2077
Full | 6872.9 | 11259814 | 163828%
Shear | 4378.7 | 709.8 16.21%

MPi'_"E‘::ﬁ\A“'\L Axial | 2494.3 40.8 1.64% 1.31 | 6.09 | 0.121 | 7.43 | 0.368 | 6.43 | 0.532 | 4.92 | 0.116 | 7.44 | 0.400 | 7.37013
Full |6872.9 | 750.6 10.92%
Shear | 4378.7 390.4 8.92%

MP:?'L‘FL\FULL Axial | 2494.3 77.0 3.09% 1.68 | 5.61 | 0.0620 | 8.62 | 0.0481 | 9.35 | 0.800 | 5.69 | 0.052 | 8.82 | 0.239 | 7.86137
Full |6872.9 | 467.4 6.80%

Table 8.7: Results of all material parameter estimation steps for the TL. The total relative error decreases from ~ 108% in the first

step to 10.92% in the second and 6.80% in the last step.
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8.4 Discussion

After applying the estimation strategy the results show that the CL is most
suitable for estimating myocardial material properties for a combined ex-
perimental protocol of simple shear and uniaxial deformation. This becomes
clear from analysing Tables(8.4)—(8.7), which shows that the CL has the low-
est total relative error of 4.42%. Note that the axial material parameters for
the CL in Tab.(8.4) demonstrate very clearly that they are overestimated in
the simple shear finite element model.

The SFL and the TL seemed to be able to produce acceptable fits for the
full FE model that but they are worse than those of the CL. It is possible
that the decoupling of the SFL and the TL decrease the suitability fit inverse
material parameter estimation for the full model.

For the PZL it was not possible to obtain a converged solution for the
full FE model. This might be due to the highly non-linear nature of the
overall estimation process. More specifically, Table(7.3) shows for a mean
of 0.17 the MP k,,. For this experiment this value is very close, 0.167 for
the first estimation step, see Table(8.6). For the subsequent steps, however,
it increases dramatically and reaches its upper bound in the last step. As
can be seen in Fig.(8.3)(c) for the CL as well, the energy content of the N—
shear modes and the N—axial mode seemed to be incompatible, which is a
possible reason that the material parameters k,, and a,, drifted off in the
last estimation step.

Overall, caution must be paid to these observations since they are only
based on one experimental data set. Further studies will be necessary to
obtain statistically sound results. However, it appears that both uniaxial
extension and simple shear data are needed to characterise all material pa-

rameters.
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8.5 Summary

This chapter presented the finite element model to estimate myocardial ma-
terial parameters under simple shear and uniaxial extension. It is clear from
Sec.(8.3) that the CL is the most suitable constitutive law to model pas-
sive myocardial mechanics in non-homogeneous simple shear and uniaxial
extension.

Future improvements for comparative studies would involve the measure-

ment of the non-homogeneous fibre distribution.
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Chapter 9

Conclusion

This study investigated the suitability of a number constitutive laws in the
context of material parameter estimation. Three models were examined and
compared. Firstly, a homogeneous deformation model that fitted material
parameters to a set of six simple shear modes. Secondly, the deformation was
modelled more accurately with a finite element model to the same experi-
mental protocol. Lastly, the same finite element model was used to estimate
material parameters for a combined experimental protocol of simple shear
and uniaxial extension modes.

The homogeneous and the FE shear models showed that the CL is the
most suitable law for inverse material parameter estimations. In particular
the set of material parameters was very close and it could be concluded that
the homogeneous model serves very well to obtain computationally cheap
initial estimates, which is a crucial advantage in inverse material parame-
ter estimation. The CL was very stable for the forward solution and only
required a minimal number of load steps to converge to the final solutions.
This appeared to be almost independent of the choice of material parame-

ters. Similarly, for inverse material parameter estimation the CL converged
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for seemingly any possible starting point to the same solution. This is a
markedly important feature which cannot be overstressed in light of the dif-
ficulties experienced with the other constitutive relations.

Most findings could also be supported by the study which included both
the simple shear deformations and the uniaxial extension data. The only
marked difference is that the axial material parameters changed due to the
different energy content of the axial modes.

Initial concerns that the theoretical cross—coupling of the CL might con-
strain the fitting abilities could not be confirmed. Rather the opposite seems
to hold, i.e. the coupling constrains the MP’s in a reasonable way such that
it seems to stabilise both the forward solution and the estimation procedure
for all three models.

The SFL and TL exhibited very good fitting properties especially for the
finite element shear model. However, it was obvious from the full finite ele-
ment model that the axial material parameters were markedly overestimated.
It is therefore important to supply these material laws with a complete set
of experimental protocols which ensures that the strain values for all entries
of the Green strain have similar magnitudes.

The PZL had excellent fitting properties for the homogeneous model. For
the finite element models, however, it was clear that this behaviour could not
be reproduced. Even with considerable extra effort in the choice of initial
parameters and estimation parameters (such as step size) in the parameter
space could not ensure a stable optimisation. Moreover, the material param-
eters exhibited a great variance.

The LECL had the worst fitting properties for the homogeneous model
and it was not possible to fit it to any of the other two models. It is possible

that the underlying micro—structural assumption underpinning the construc-
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tion of this model is not valid for the simulation of myocardial mechanics.
The transversely isotropic material law from Guccione et al. [39] exhibited
very poor behaviour in the FE shear model since it was only capable of fitting
three out of the six modes, those with the highest partial energy content.
It can therefore be concluded that a transversely isotropic material is not

suitable to model the passive myocardial behaviour in simple shear.

Future work will include the investigation of two other kinds of material
laws. The fibre splay model as introduced by Lanir [63] and the polyconvex
formulations by Itskov & Aksel [56].

Novak et al. [89] investigated regional differences in the passive canine
myocardial behaviour in four regions, interventricular septum and the inner,
middle and outer layers of the lateral left ventricular free wall. An existing
(transversely isotropic) three-dimensional constitutive relation described the
nonlinear and anisotropic behaviour exhibited in the four regions equally well.
The anisotropy was similar in each region. There were, however, regional
differences in the strain energy stored by specimens during identical finite
deformations. In particular, specimen from subendocardial and subepicardial
regions tended to be stiffer than those from the midwall and septum.

It remains to quantify these regional differences for an orthotropic con-
stitutive relation. This quantification will be impeded by the fact that the
change in fiber, sheet and normal direction are varying to a larger extent in
the subendo- and subepicardial regions, such that extractions of small cubes
aligned with these directions will be almost impossible.

New experimental techniques are needed to extract these regional differ-
ences. Also improved imaging techniques would enhance the model building

process, ideally enabling one to include the variations of the orthotropic vari-
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ations within a specimen.
Lastly, it remains to determine these material parameters in vivo. Again,
improved experimental as well as imaging techniques are necessary for this.
Furthermore, all these laws are phenomenological formulations and it
is desirable to investigate the relation between these material parameters
and the underlying microstructural constituents like collagen and elastin. A
framework for the determination of such a relation and initial investigations

of the microstructural topoplogy are presented in the next chapter.
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Outlook: Microstructural

Models
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SYnopsis

This part presents a multi—scale framework that associates macrostructural
material parameters with underlying microstructural topology and constituents.
In particular, a system identification process is presented and an algorithm

that quantifies the topology of cardiac myocytes.
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Chapter 10

Multi—Scale Modeling

Framework

Part II examined suitability of several constitutive relations for describing
and quantifying the macroscopic mechanical response in relation to the my-
ocardial laminar structure [66].

Ideally, spatially varying material properties should be taken into account
as occurs, for example, with transmural changes in the collagen content [66,
128]. Measuring the spatially varying material properties in a quantifiable
way is not yet feasible. However, it is possible to observe structure on various
length scales, and therefore establish a relationship between the mechanical
behaviour and structure.

Sands et al. [99], were able to image extended volumes of myocardial
microstructure which enabled them to utilize an anatomically realistic rep-
resentation of the cleavage planes to simulate wave propagation throughout
a myocardial block [100, 116]. These advances in imaging make it possible
to firstly take spatial variation of mechanical properties into account and

secondly attribute physiological meaning to the macro-scale parameters. A
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common approach is to consider compartments on the micro—scale and use
homogenization techniques to relate the micro parameters to those on the
macro—scale. This, however, requires a certain repeatability of this com-
partment and is therefore not a feasible approach for the myocardium which

exhibits marked heterogeneities on several scales (see Figs.(10.1),(10.2)).

Figure 10.1: A transmural block of rat myocardium

For the mechanical constitutive relations it remains to characterise the
connection between the material parameters at the macro—scale and the mi-
crostructural constituents. The next section proposes a multi-scale frame-
work in the context of mechanical behaviour that allows one to identify such
connections, [102]. These ideas are also applicable for modelling electrical
properties of myocardium [108, 111].

Firstly, the underlying experimental data from Sands and coworkers [99]
is briefly summarised and a broad concept of a system identification process
is presented. This is followed by the results of a digitisation process of the
image data, the subsequent statistical analysis, and finally by an algorithm

that accurately captures the myocardial topology.
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Figure 10.2: These images show magnified samples of cross—sectional areas of rat my-
ocardium orthogonal to the fiber direction. The dimension are 200 x 200um. Individual
myocytes and sheets can easily be recognised. These fluorescent images were stained with

picrosirius red to highlight perimysial collagen bundles (white).
10.1 Topology of Myocardial Microstructure
and its Role in Mechanical Function

Fig.(10.1) shows a transmural block of rat myocardium and the heterogeneity
can easily be discerned. Furthermore Fig.(10.3) depicts the transmural colla-
gen distribution of the same sample. It is clear that the mechanical response
will dramatically change between subepicardial, midwall and subendocar-
dial regions. For this purpose it is helpful to consider microstructural col-
lageneous components and their respective mechanical function. Figs.(10.2)
show highly magnified cross—sectional samples of rat myocardium in the mid-
wall which are orthogonal to the fibre direction. The myocardial connective
tissue, like that in skeletal muscle, is generally considered to be organised

in three levels. Epimysium is the sheath that surrounds the entire muscle,
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Figure 10.3: Transmural collagen distribution

endomysium is the fine connective tissue that surrounds and interconnects
individual cells, and perimysium is associated with groups or bundles of cells
[97].

A digitisation of these levels of collagen will enable one to determine a
functional connection between these levels and macro—structural constitutive
parameters. It is critical to understand the topology of myocyte and sheet
branching since the collagen matrix and the topology interact geometrically.

Furthermore, it has been reported that an increase in interstitial collagen
concentration, secondary to pressure overload, results in an increase of stiff-
ness in myocardium [58]. In contrast, a reduction in collagen concentration
characterised by a disruption and disappearance of fibrillar collagen leads to
a markedly dilated left ventricle that is significantly more compliant. With
a model that connects the microstructural constituents and the macrostruc-
tural material parameters, it will be possible to model these effects as well

as growth phenomena in general.
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10.2 System Identification Model

The digitisation of the myocardial topology and the collageneous constituents
are necessary to connect the micro— and macro—scales. The topology and the
collagen distribution have been described in terms of algorithms which are
parametrised by two sets of parameters: 7 for the topology and s for the
collagen distribution. These algorithms are based on the digitised statistical
data and need to be replicable. Such an algorithm would be the base to
easily generate numerous models with varying parameters.

It is assumed that the mechanical behaviour on the macro-level is de-

scribed by, see Eq.(3.48):

oW (F), &
oF

where £ are the material parameters, e.g. the material parameters of the CL,

Sec.(5.2.1).

P(F, ) = (10.1)

The relationship g between the macro-material parameters & and the

micro—parameters for the topology 7 and the collagen distribution x,

E=g(t,K) (10.2)
can be determined by a “black box” system identification process as outlined
in detail by Sj6berg et al. [106], and Ghoniem et al. [36].

The nonlinear black box situation, as is the case here, is hard to compute
as a very rich spectrum of model descriptions must be handled. The area is
quite diverse and covers topics from mathematical approximation theory, via
estimation theory and regression analysis to neural networks, wavelets and
fuzzy logic models. If the principle of parsimony is applied in the sense of sim-
plicity then one can start the identification process by setting up polynomial
relationships between the micro— and macro—parameters determining the pa-

rameters via a nonlinear least square minimization method. If this approach
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is either too restricted or requires too many parameters, techniques such as
radial basis functions or genetic algorithms remain as other possibilities [15].
It is important to note that other descriptions for the macro-scale need
to be considered. This is the case, since one of the major assumptions of
continuum mechanics is that the body consists of the same material particles
throughout the deformation process. Several factors like development, aging,
healing, growth, atrophy and remodelling [93, 17], however, influence the
makeup of the tissue in consideration. Theories that are capable of dealing
with these kind of continuously altering composition on the micro-scale are
therefore crucial in modelling the above mentioned mechanisms. One of the
possible candidates to describe these, mixture theory, were introduced in the
context of biomechanics by Humphrey and Rajagopal [51, 52]. This theory
allows for a number of constituents with changing densities at each point in
the mathematical space. It is therefore suitable to model their homeostatic
tendency to adapt in response to changes in their mechanical environment.
Furthermore, other theories need to be developed to describe competing

hypothesis on the various spatial and temporal scales.

10.3 Digitisation of Myocardial Topology

The last section sketched the process of quantifying the relation between the
micro— and macro—parameters. The myocardial microstructure is believed to
be comprised of three parts forming a sensible structural hierarchy. These
are the cleavage planes, the myocytes and the collageneous network. Trew
and coworkers [116] were able to digitise the cleavage planes. It remains,
however, to perform a statistical analysis of these planes.

This section presents a geometrical digitisation process of a tissue block



10.3. DIGITISATION OF MYOCARDIAL TOPOLOGY 133
200x200x 200pm, which is used to create an algorithm capable of replicating

the major features of the myocyte topology.

10.3.1 Digitisation of Myocyte Topology

Fig.(10.4) depicts the specimen that was digitised. The left shows a 3D

rendered volume image and the right one of its collageneous networks. The

Figure 10.4: Left, shows a 3D rendered volume image of the block that was digitized;

right, one of its corresponding collagenous branching networks.

image data consisted of 492 two-dimensional images aligned with the fibre
direction. The resolution of these images was 0.4um/voxel. Fig.(10.5) depicts
the digitisation process for these images. This was done manually using the

tool Labview [126].
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Figure 10.5: Left: a cross sectional image showing myocyte areas and the sheet structure;

right: the digitised image, including cell boundaries, centroids and cell numbers.
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The images were digitised to extract information about the connectivity
pattern, the mean length of myocyte segments, their direction and cross—
sectional area. Myocytes form a complex network and branch and connect
with each other. This braching and connecting pattern was termed “split-
ting” and “merging”. Note that this is an arbitrary terminology depending
on the direction one views the network from. A split or merge was defined
when the endomysial collagen changed from one contour into two contours
from one image to the subsequent one, or vice versa. The straight line be-
tween the centroids of the start and end contour is denoted as a fibre or
myocyte segment. These segments do not coincide with actual myocardial
cells, since the images were stained for collagen. Other staining techniques
would allow to identify the intercalated disks and therefore for myocardial
cells. The whole block yielded a total number of 287 segments which gave a
solid basis for a statistical analysis of directional data [74]. Furthermore the
mean laminae orientation was extracted.

The statistical analysis yielded a number of distributions. For example,
Fig.(10.6)(a) shows the length distribution of the fibre segments. This dis-
tribution is displayed as a histogram as well as a continuous distribution
which was found to be the optimal distribution by the Statistical Toolbox
from Matlab [125]. This distribution quantifies the geometrical arrangement
within the mean fibre direction. For a complete description of the topology it
is also important to obtain information about the geometrical arrangement
within the sheet—normal plane. This is described in Sec.(10.3.2).

The direction of the segments and sheets were averaged and the images
were rotated so that they were precisely aligned with the microstructural
f,n, s coordinate system. This enabled a precise computation of the cross—

sectional area and angles between centroids.



136 CHAPTER 10. MULTI-SCALE MODELING FRAMEWORK

T T T
Binned Length Distributiol — Binned Density Distribution

T
0.045 Exponential Fit i 35r Inverse Gaussian Fit
0.04- E e
sl

Probability Density
o
Q
N
¥ @ ¢
Probability Density

L . . 1 . .
0 20 40 60 80 100 120 140 0.9 1 11 12 13 14
Length (pm) Normalised Density

(a) (b)

Figure 10.6: Left: length distribution of the fibre segments with mean p; = 21.4um;
right: normalised area distribution of the Voronoi cells across all images with mean p4 =

600um>.

10.3.2 Voronoi Cells

As mentioned above it is important to obtain information about the arrange-
ment of the centroids in the sheet—normal plane. Voronoi cells are a standard
tool for such a two dimensional analysis [92].

The sheet boundaries and the centroids as displayed in Fig.(10.7)(a) were
utilised to create Voronoi meshes [14] as can be seen in Fig.(10.7)(b). Even
though the boundaries of the Voronoi cells do not exactly match the digitised
boundaries, they do resemble the gross density pattern of the distribution of
cross—sectional areas within a sheet. With these data it was possible to per-
form a statistical analysis on a number of variables like area and orientation of
the cells that characterise the in—plane topology of the myocardial segments.
Fig.(10.6)(b) shows the Voronoi cell area distribution across all images with

2

a mean of puy = 600pum”. The mean is calculated by the area of the sheet

divided by the number of cells in the sheet.
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Figure 10.7: Left: shows a rotated image with just centroids; right shows the Voronoi

cells of this image.

The detailed list of variables and the regression analysis based on these

are presented in the subsequent sections.

10.4 Algorithm of Myocyte Topology

This section presents the regression model used to decide which microstruc-
tural variables best explain the branching pattern of myocardial segments.
Furthermore an algorithm is presented for generating a sequence of two—
dimensional Voronoi meshes. This algorithm is calibrated to our image data
and run repeatedly to verify its validity and the accuracy of the regression
model.

The branching pattern of the segments can be viewed as either a split or
a merge depending on the orientation of the coordinate system. For this case

the orientation was fixed and the resulting number of splits and merges was
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almost equal, indicating that the other viewing direction should have yielded
very similar results.

For the merging regression model every possible merge combination in all
519 rotated images was included. A merge was deemed possible for any two
adjacent cells i and j within a sheet. This yielded a total of ~ 5-10% possible
merge combinations out of which 110 merges occurred. The response variable

for this model was M;;, a boolean variable (true/false) indicating whether

E

the combination merged. The following explanatory variables (A}, R}, v},

M) were considered for the regression model:

Al AN, = —k ~ 0% normalised area of the two Voronoi cells 7, j in image
HA

A
RM.: RY, = A—Zk, ratio of area small/large in image .
ik
Yik ~ Yik

) , alignment of line connecting centroids with
Tk — Tik

Voik: Vije = arctan (
respect to sheet direction (z-axis), («}, yf), (¢}, y}) are the coordinates
in the image plane of the points ¢ and 7 in image k, respectively.

V@ =2 + (o — ok |
= , measure whether centroids

(@t —af )2+ (! =yt

move towards each other in two successive images k and k + 1.

For the splitting regression model a total of ~ 2.5-10* individual segments
over all images were considered out which 123 splits occurred. The response
variable for this model was S;, a boolean variable (true/false) indicating
whether the segment split. Below is a list of the response variables (A9, R?,
37) that were considered as possible factors explaining the response of a split

(S;) of a segment:

A,
A A5 = —* normalised area of the Voronoi cell i in image k.
HA
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d..
S . S o min . . . . .
Ry Ry = . ratio of minor dy,;, and major dp,j axes of Voronoi cell ¢
mayj
in image k.

S B = A(dmaj, 5), angle between direction of major axis dp,; of the cell

with respect to sheet direction § in image k.

The area was considered to be an important explanatory variable, since
it was believed that a high density of cells would would increase the chance
of merging and that an large cross—sectional area of a cell would increase the
chance of splitting.

The variables presented in these lists were used in the regression models

that are presented in the next section.

10.4.1 Regression Analysis

A logistical regression model was fit to the data using a combination of
forward and backward regression [79] as implemented in the program R [26].
The initial model in forward regression contains the response variable but
no explanatory variables (referred to as the null model). All explanatory
variables are iteratively included in the model in a greedy manner, so as
to improve some measure of fit (such as the Akaike Information Criterion).
The algorithm terminates when the inclusion of no remaining explanatory
variable will improve the fit by a predefined minimum tolerance, or when
all explanatory variables are included into the model (referred to as the full
model). In backward regression one starts with the full model and iteratively
removes explanatory variables so as to reduce the measure of the fit by as
little as possible. The algorithm terminates when no variable can be removed
without reducing the measure of the fit by some predetermined maximum

tolerance, or when the null model is reached.
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From these models, the probability w{‘f that two adjacent segments 7 and

J will merge is given by [31]:

M__ "
= (10.3)
where
kij = —4.70—1.34A}M + 1.00R}Y
j i g (10.4)

—0.1827} +3.617}" .
The probability 77 that segment i will split in the next image is given by:
S et

D= 10.5
71'1/ 1 _|_ eki ) ( )

where

ki = —5.96—0.52A7 . (10.6)

The values in Eqs.(10.4)&(10.6) are the coefficients of the explanatory vari-
ables determined by the corresponding logistical regression. There was strong
evidence that Af-‘]/-[ ,TZ-]]\-/[ explained the merging of two cells, with p—values of
3.8-107",4.9 - 107", Furthermore there was weak evidence that R},
explained the merging of two cells with p—values of 0.11 and 0.12, respec-
tively. For the splitting only the variable A7 seemed to explain the split of

any given cell with a p—value of 0.049.

10.4.2 Algorithm for Segment Topology

Utilising the results of the regression analysis, a model was built to replicate
the arrangement of myocytes within a sheet. Since the data set created from
the images produced by Sands et al. [99] is based on two dimensional slices
through the ventricular wall, the model was designed to replicate these two

dimensional slices.
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Starting with a defined sheet boundary an initial grid of seed points within
the sheet boundary was generated that corresponds to the centroids of the
myocyte segments. This was achieved by first generating an initial field of
randomly generated points. To create the required area distribution Matern’s
hard core process with a parameter p = 0.2 was used [42]. The statistics of
fibre deviation from mean fibre direction were used to attribute a random
degree of deviation from the mean fibre direction and direction in the sheet
normal plane for each segment.

This initial sheet slice served to generate a Voronoi mesh of the points
within the sheet using the sheet boundary as the external boundary for all
Voronoi cells with an external edge as above. The mean area of this initial
grid was very stable with 596.6 4= 37.6m? compared to 600.0 & 61.9um? of
the experimental mean area. Using the equation from the regression model
the probability that a segment cell within the mesh would split or merge
was calculated. These probabilities were used in combination with a random
number generator to decide whether splitting or merging would occur for the
next image.

The algorithm stepped forward in space along the mean fibre direction
and positions of cell centroids were updated based on their allocated direc-
tions. If a cell or cell pair had been designated to split or merge a new segment
centroid was generated accordingly. Its direction was assigned according to
the distribution of the fibre direction.

Two pictures of a typical run of the model can be seen in Fig.(10.8).

10.4.3 Preliminary Results

The model was run ten times with the probabilities from the regression

model. The same statistical analysis as for the original image set was per-
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Figure 10.8: Two consecutive images in a typical model run. Left: a sheet sample with
two highlighted Voronoi cells that are about to merge; right: the same sheet with these

two Voronoi cells having merged into one.

formed, i.e. the mean, the standard deviation, as well as the standard error
were computed for the length and density distributions.

Fig.(10.9) shows a typical set of fitted distributions and the similarity
between these can easily be recognised. For an easier visual comparison it is
helpful to fit continuous distributions to both the discrete sample and model
distribution for length and density. It is clear that the length distribution
of the model is very close to this of the sample distribution. The area dis-
tribution of the model, however, exhibits a lower standard deviation from
the mean and seems to be related to the area distribution of the initial grid.
Therefore, further investigations are necessary to obtain a closer resemblance

between sample and model.
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Figure 10.9: Left: the fitted sample (dotted) and model (solid) length distributions;
right: the fitted sample (dotted) and model (solid) density distributions

10.5 Discussion

The algorithm in the previous chapter presented a critical milestone towards
a multi—scale model of myocardial mechanics that allows one to mutually
identify micro—constituents and macro—material parameters.

Further steps involve the digitisation of more samples and a cross-sample
statistical analysis. This will be done for samples of the same region of other
animals of the same health and compared with distributions from diseased
samples. This will enable the identification of the dependence of the algo-
rithm parameters on pathological conditions and therefore the influence of

disease on the mechanical performance at the different scales.
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10.6 Summary

This chapter presented the multi-scale modelling framework that allows one
to identify macro-structural material parameters as those of the CL with
micro-structural constituents and their topological arrangement. This was
done by presenting a system identification process as well as a first step
towards an anatomically realistic algorithm to create artificial myocardial
blocks.

Further steps will involve the development of algorithms for the sheet
structure as well as the collagenous network. Finally, a finite element model

will be created that combines these three algorithms.
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SYnopsis

This part presents additional research that was undertaken during this study
as well as additional data and sample files for the three models presented Part
IT: Application.

Appendix A presents the detailed derivation of the stress—strain relation-
ship (Eq.(3.54)) depending on the formulation of the functional form of the
strain energy density function. Appendix B lists a sample file for the homoge-
neous model as well as all graphs for all laws and all experiments. Appendix
C lists a sample file for the FE model as well as all graphs for all laws and

all experiments.
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Appendix A

Ambiguities in Hyperelastic

Constitutive Law Formulations

Within the framework of continuum mechanics materials are said to be hy-
perelastic or Green—elastic, when work done on the boundaries and by body
forces can be fully recovered from a stored strain energy density function.
There is, however, ambiguity in the literature on how the strain energy
density function should be formulated with respect to the components of
the strain measure when using certain stress strain relationships. This sec-
tion clarifies the requirements that yield consistent formulations, refer to

Sec.(3.3.3).

A.1 Introduction

Among the first authors to introduce the concept of the strain energy density
function (SEDF) and the corresponding stress—strain relationship (SSR) are
Green & Zerna, 1954, [38]. Since 1954 numerous books and articles have been

published on these so—called “hyperelastic” or “Green—elastic” materials, but
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frequently with different ways of expressing the dependence on the shear
strain components. The underlying risks of using a inconsistent pairing of
SEDF and related SSR can lead to errors of a factor two for the shear strain
components. The last years in the biomechanical treatise of material laws
have shown that it is crucial to formulate ever new constitutive laws to cover
the wide range of biological tissue; this is especially the case for formulating
them in terms of the actual components rather than the usual invariants, see
[39, 84, 25], and that is where potential errors occur.

In Fung, [35], we can find two different requirements for the SEDF al-
though the same SSR is used. This can lead to erroneous results for the
shear strain components.

On page 269 he writes:

Example A:“If a material is elastic and has a strain enerqy function W,
which is a function of the strain components ey, e, €33, €19, €23, €31, then

the stress can be obtained from the strain energy function by differentiation:

A
N 8%‘
Whereas on page 300 he writes:

O'ij

Example B:“Let U be expressed in terms of the nine strain components
Ei1, Ei9, Ei3, Fo1, Foo, Fo3, E31, E3s, E33, and be written in a form that is
symmetric in the symmetric components Eio and Eyy, Fos and Ess, Ei3 and
Es5i. The nine strain components are treated as independent variables when
partial derivatives of W are formed.” Here the same SSR is used.

Let us now consider a simple example of a linear elastic material described
by the following SEDF and let them be expressed according to both examples
above:

Example A:

Ua(Eij) = anE}) + a0 Ey + a3 B3y + a12FYy + a3 Eyy + a5 B3, (A1)
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Example B:

Up(Eij) = anEY + anE3, + a33E3;+

X ) . ) ) , (A2)
a12 (§(E12 + E21)) + Qg3 (§(E23 + E32)) + as; (§(E31 + E13))

Note that both SEDF’s would now have the same value if being evaluated
at the same strain state, for all possible E . If we now apply the derivative
formula without scrutinizing the underlying mathematical implications of the

symmetry of E we obtain the following results.

v
Example A: Using the SSR S;; = 887 then, for Sis, we obtain:
tj
Sg = 2&12E12 (A3)

Example B: Using the same SSR, we obtain for Sy,
SlB; = a12E12 (A4)

Clearly we get a different result for Si5 even though the SEDF’s are numer-
ically equal for all E. In actuality, we must change the SSR for the SEDF
in example A. The authors believe that it is therefore necessary to present

a detailed derivation of existing SSR’s and the related requirements for the

SEDF’s.

A.2 Derivation of Stress—Strain Relations

Here we derive the two existing forms of the SSR and corresponding require-
ments for the functional form of the SEDF. This derivation is based on the
generalized version of the directional derivative, see also [13, 24]. It was cho-
sen because it clarifies the connections between the various stress and strain
measures, where they are all considered as 3 X 3—matrices; initially, we chose

to derive the relationship between the first Piola—Kirchhoff stress tensor P
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and the right Cauchy-Green stretch tensor C, based on the relationship be-
tween the first Piola—Kirchhoff stress tensor P and the deformation gradient
tensor F. Then the SSR between S and C is obtained and eventually the
relation between S and E is then easily obtained in the end by a factor of 2.

We start with the first Piola—Kirchhoff stress tensor P, which can be
identified as the first part of a Taylor series expansion of the SEDF ¥ = U(FF).

U(F +H) = U(F) + (DpU(F), H) + higher order terms (A.5)

(A, B) = tr(A"B) describes the inner product of two 3 X 3—matrices. There-
fore

P(F) = Dy¥(F), (A.6)

which reads as follows in index notation:

\
aF—(Fij) em ® en, (A.7)

P(F) = Prn(Fij) € ® €, =
where ® defines the dyadic product and e, are the base vectors of Eu-
clidean 3—space. The above relationship, in particular the Taylor expansion
can be found in e.g. [75], pp.180 and is also connected to a consideration of
the Clausius—Duhem inequality, which we leave out here, since it suffices to
consider the relationship between P and F. The differential operator Dp(+)
cannot be misinterpreted since F in general is a non—-symmetric fully pop-
ulated matrix and could therefore equally well be expressed in component

. oL ov
form where the components are formed as partial derivatives P;; = ——— as

oF;;
given in Eq.(A.7).
If we now want to deduce the relationship between the second Piola—
Kirchhoff stress tensor and say the right Cauchy-Green stretch tensor C =
FTF then we start with the inner product of the above series expansion and

gradually perform changes which eventually lead to the desired relationship.
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If we recall the principle of material objectivity, see [75], p.152, then the

SEDF, ¥ can be rewritten as ¥ = U(F'F) = ¥(C). Before we proceed let

A+ AT :
us first define the symmetry operator syml[A] = 7 Then the inner

product, which is the directional derivative then reads:

(Dp¥(F'F),H) = (Dc¥(C),F"H+ H'F)
Dei(0), T EE)

= 2(
(D (C), sym[F"H)) (A.8)
<
<

= 2
= 2sym[Dc¥(C)], FTH)
= 2 IFsym[D@ (O)], H).

Again identifying the first Piola—Kirchhoff stress tensor leads to
P(F) = Dp¥(F'F) = 2Fsym[Dc¥(C)] = P(C) (A.9)

and finally to the second Piola—Kirchhoff stress tensor reads:

S(C) = F'P(C) = 2 sym[Dc¥(C)]. (A.10)

We will now discuss the component formulation since this is where poten-

tial errors occur. The principle of material objectivity gives as stated above

that ¥ = U(F'F) = ¥(C) and therefore if ¥ is expressed in terms of C that
¥(C) = ¥(CT), which in component form e.g. reads:

\ij(olla 0227 0337 0127 0217 0137 0317 0237 032)

) (A11)
= U(Cy1,Ca, Cs3,Co1, Cha, C31, Ci3, Csa, Ca3).

The order of the components can of course be chosen arbitrarily; we chose
this specific one, so that the transposition operation can be easily identified,
since ¥ can now be understood as a scalar function of nine components,

rather than a matrix.
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Eq.(A.10) implies that the second Piola—Kirchhoff stress tensor can be
expressed in the following component form:

ov ol
Sij = (WZ] + @) (Cij) (A.12)

but since Eq.(A.11) holds this can be simplified to the following formula,
which is prevalent in the current continuum mechanics literature:
o o
S=2—(C = Sii =2——(C;5). A.13

Note that the symmetric nature of the differential operator still holds al-
though it cannot be seen anymore and that a symmetric stress is generated
independent of the conservation of angular momentum.

Of course, the SEDF can be expressed in terms of only six independent
components of C like in example A of the introduction. This can be expressed
in the following way (There are others as well and none is correct or wrong,

just different.):

\:A[](Clla 0227 0337 0127 0217 C1137 0317 0237 032)
— \il(clla 022; 0337 2012; 07 20137 0) 20237 0) (A14)
- i’(cla 02; 037 047 05; Cﬁ)

Here we chose to rename the components to avoid ambiguity. But then
Eq.(A.11) does not hold anymore or in other words there are only six com-

ponents left:

¥(C) #¥(CT), (A.15)

and we cannot perform the above simplification of the differential operator

anymore and therefore the SSR. for ¥ = ¥(C) reads:

S(C) = 2 sym[De¥(C)]. (A.16)
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or in index notation

or oV
Sij = (E + @) (Ci)- (A.17)

We complete the discussion by introducing the SSR between S and E

when the SEDF is expressed in terms of E with \if(]E) #+ \if(]ET) Then
1
Eqgs.(A.16&A.17) only differ by a factor 2 since E = 5(@ =1).

S(E) = sym[Dg¥(E)], (A.18)
or in index notation
1 {00 ov

The above equation is exactly the SSR, as introduced by Green & Zerna,
1954, [38]. It is important to note that no mistake is introduced when the
SSR Eq.(A.18&A.19) are used even if the SEDF is not changed down to six
components.

To finish the discussion it is helpful to apply Eq.(A.19) to example A of
the introduction to show that it works. We therefore remind ourselves about
the form of the SEDF of example A.

Example A:

\IIA(EZ ) = CL11E121 + 022E222 + CL33E§3 + algE%Q + CL23E223 + 031E§1 (A20)

And now we can apply the SSR Eq.(A.19), then, for S;5, we obtain:

AL (00 00y
12 —
2 8E12 8E21

) (E12) = % (2&12E12 + 0) (E12) = a12E12 (A21)

which now coincides with the result from example B.
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A.3 Conclusion

We have shown that the erroneous use of SEDF’s and SSR’s may lead to a
false result by a factor of two. It is straightforward, though not trivial, which
SSR to use depending on the functional form of the SEDF. As a summary we
give a table of consistent, inconsistent and potentially ambiguous formula in

the literature, see Table A.1.

A.4 Nomenclature for this Section

C right Cauchy—Green stretch tensor

E Green strain tensor

P 1% Piola—Kirchhoff stress tensor

S 2" Piola-Kirchhoff stress tensor

U strain energy density function in its general sense

¥ strain energy density function dependent on nine independent tensor com-
ponents

U strain energy function dependent on six independent components of C

U strain energy function dependent on six independent components of E
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Table A.1: A non—exhaustive summary of consistent, inconsistent and po-

tentially ambiguous formula

1.) Consistent formulae

Atkin & Fox, 1980, [6], pp.62, 63

Chung, 1996, [21], p.102

Fung, 1965, [32], p.449

Fung, 1993, [35], pp.300, 301

Green & Adkins, 1960, [37], pp.5-28

Green & Zerna, 1954, [38], p.71

Lemaitre & Chaboche, 1990, [68], pp. 122, 123

Malvern, 1969, [73], pp.283, 284

Marsden & Hughes, 1983, [75], pp.197-217

Spencer, 1980, [110], pp.138, 139

Truesdell, 1966, [117], pp.54, 55

2.) Inconsistent formulae

Fung, 1993, [35], p.269

Holzapfel, 2000, [44], pp.209, 210

3.) Potentially ambiguous formulse

Humphrey, 2002, [50], pp.91-92

Hunter, 1976, [55], pp.152-154

Jaunzemis, 1967, [60], p.299

Mase, 1970, [76], p.141

Sokolnikoff, 1964, [109], p.339
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Appendix B

Additional Data for

Homogeneous Model

This chapter gives additional data for the homogeneous model, i.e. Sec.(B.1)
shows a sample file of the homogeneous model for experiment 3 in Mathemat-
ica format (comments are in capital letters), version 5.1, whereas Sec.(B.2)

shows all graphs for all laws and all experiments.

B.1 Example File for Homogeneous Model

ZX SHEAR, "Z” INDICATES THE NORMAL OF THE TOP FACE, AND "X" INDICATES THE DIRECTION IN WHICH THIS FACE IS SHEARED. ALL IS
DESCRIBED IN THE FNS (MNS) SYSTEM

0ff[General::spelli]
0ff[General: :spell]
< <LinearAlgebra‘MatrixManipulation’

DEFORMATION GRADIENT AND GREEN STRAIN

FNS =1, 0, 0, 0, 1, 0, 0, k, 1;
FNF = 1, k, 0, 0, 1, 0, 0, 0, 1;
FFN = 1, 0, 0, k, 1, 0, 0, 0, 1;
FFS =1, 0, 0, 0, 1, 0, k, 0, 1;
FSF =1, 0, k, 0, 1, 0, 0, O, 1;
FSN = 1, 0, 0, 0, 1, k, 0, O, 1;
EENS = (1/2)*(Transpose[FNS] . FNS - IdentityMatrix[3]);
EENF = (1/2)*(Transpose[FNF] . FNF - IdentityMatrix[3]);
EEFN = (1/2)*(Transpose[FFN] . FFN - IdentityMatrix[3]);
EEFS = (1/2)*(Transpose[FFS] . FFS - IdentityMatrix[3]);
EESF = (1/2)*(Transpose[FSF] . FSF - IdentityMatrix[3]);
EESN = (1/2)*(Transpose[FSN] . FSN - IdentityMatrix[3]);

GENERAL STRAIN ENERGY FUNCTION COSTA LAW

159
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W[Emm_, Emn_, Ems_, Enm_, Enn_, Ens_, Esm_, Esn_, Ess.]:=

(1/2) xc1xExp[
cmm*Emm® + cnn*Ennd + cssxEss® + 2%cmn*((1/2)*(Emn + Enm))3 +
2¢cms*((1/2)*(Ems + Esm))2 + 2%cns*((1/2)*(Ens + Esn))2

1

STRESS STRAIN RELATIONSHIP

SS[{{Emm_, Emn_, Ems_}, {Enm_, Enn., Ens_}, {Esm_, Esn_, Ess_}}] :=
{{D[W(Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Emm],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Emn],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Emsl},
{D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Emm],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Enn],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Ensl},
{D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Esm],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Esn],
D[W[Emm, Emn, Ems, Enm, Enn, Ens, Esm, Esn, Ess], Essl}}

SSEval[{{Emm_, Emn_, Ems_}, {Emnm_, Enn_, Ens_}, {Esm_, Esn_, Ess_}}] :=
Evaluate [SS[{{Emm, Emn, Ems}, {Enm, Enn, Ens}, {Esm, Esn, Ess}}1]

SSEvalNS = SSEval[EENS];
SSEvallNF = SSEval[EENF];
SSEvalFN = SSEval[EEFN];
SSEvalFS = SSEval[EEFS];
SSEvalSF = SSEval[EESF];
SSEvalSN = SSEval[EESN];

CALCULATION OF FIRST PK

PPNS = FNS . SSEvallS;
PPNF = FNF . SSEvallF;
PPFN = FFN . SSEvalFN;
PPFS = FFS . SSEvalFS§;
PPSF = FSF . SSEvalSF;
PPSN = FSN . SSEvalSN;

FORCE CALCULATION ON TOP FACE, AREA TO BE DEFINED LATER ON

NormalVectorNS = 0, ArealNS, O
NormalVectorNF = 0, ArealF, 0;
NormalVectorFN = AreaFN, 0, O
NormalVectorFS = AreaFS, 0, 0;
NormalVectorSF = 0, 0, AreaSF;
NormalVectorSN = 0, 0, AreaSN;

tNS = PPNS . NormalVectorNS;
tNF = PPNF . NormalVectorlNF;
tFN = PPFN . NormalVectorFN;
tFS = PPFS . NormalVectorFS;
tSF = PPSF . NormalVectorSF;
tSN = PPSN . NormalVectorSN;

tNSFunct [khelp_] := Evaluate[tNS /. {k -> khelp}];
tNSFunctX [k_] Evaluate [tNSFunct [khelp] /. {khelp -> k}1[[31];
tNSFunctZ[k_] := Evaluate[tNSFunct[khelp]l /. {khelp -> k}1[[2]];
tNFFunct [khelp_] := Evaluate[tNF /. {k -> khelp}];
tNFFunctX [k_] Evaluate [tNFFunct [khelp] /. {khelp -> k}1[[1]1];
tNFFunctZ[k_] := Evaluate[tNFFunct[khelp]l /. {khelp -> k}1[[2]];
Model0utcomeForceNS[{~y1_, wnn_, wns_.}, k] :=

Evaluate[tNS /. {ci -> 41, cnn -> 4mn, cns -> ~yns}]
Model0utcomeForceNF[{~y1_, ymn_, wnn.}, k] :=

Evaluate[tNF /. {ci -> 41, cmn -> 4mn, cnn -> ~nn}]

tFNFunct [khelp_] := Evaluate[tFN /. {k -> khelp}];
tFNFunctX[k.] := Evaluate[tFNFunct[khelp]l /. {khelp -> k}1[[2]];
tFNFunctZ[k.] := Evaluate[tFNFunct[khelp]l /. {khelp -> k}1[[1]1];
tFSFunct [khelp_] := Evaluate[tFS /. {k -> khelp}];
tFSFunctX [k_] Evaluate [tFSFunct[khelp]l /. {khelp -> k}1[[31];
tFSFunctZ[k_] Evaluate [tFSFunct[khelp]l /. {khelp -> k}1[[1]1];
Model0utcomeForceFN[{~v1_, ymm_, ymn_}, k] :=

Evaluate[tFN /. {ci -> 41, cmm -> ymm, cmn -> ymn}]
Model0utcomeForceFS[{~y1_, ymm_, wms_.}, k] :=

Evaluate[tFS /. {ci -> 41, cmm -> ymm, cms -> ~yms}]

tSFFunct [khelp_] := Evaluate[tSF /. {k -> khelp}l;

tSFFunctX[k-] := Evaluate[tSFFunct[khelp]l /. {khelp -> k}1[[11];
tSFFunctZ[k-] := Evaluate [tSFFunct[khelp]l /. {khelp -> k}1[[3]1];
tSNFunct [khelp_] := Evaluate[tSN /. {k -> khelp}l;

tSNFunctX [k-] Evaluate [tSNFunct [khelp]l /. {khelp -> k}1[[2]];
tSNFunctZ[k_] := Evaluate[tSNFunct[khelp]l /. {khelp -> k}1[[31];
Model0utcomeForceSF[{~v1., yms_, ss_.}, k] :=
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Evaluate[tSF /. {c1 -> ~1, cms -> yms, css -> ~ss}]
ModelOutcomeForceSN[{~v1_, wns_., vss_}, k] :=
Evaluate[tSN /. {c1 -> ~1, cns -> yns, css -> ss}]

DIMENSIONS FOR THE CUBES, MNS COORDINATE SYSTEM, EXPERIMENTAL FORCE GENERATION

MDimNS = 3.4; NDimNS = 3.; SDimNS = 4.6; AreaNS = MDimNS*SDimNS;
MDimNS = 3.4; NDimNS = 3.; SDimNS = 4.6; AreaNF = MDimNS*SDimNS;
MDimFN = 3.4; NDimFN = 3.4; SDimFN = 3.4; AreaFN = NDimFN*SDimFN;
MDimFS = 3.4; NDimFS = 3.4; SDimFS = 3.4; AreaFS = MDimFS*SDimFS;
MDimSF = 3.2; NDimSF = 2.7; SDimSF = 3.1; AreaSF = MDimSF*SDimSF;
MDimSN = 3.2; NDimSN = 2.7; SDimSN = 3.1; AreaSN = MDimSN*SDimSN;

SetDirectory["E:\\Mathematica\\ HomogeneousFitting\\ SP17"];

NSFullExperimentalData = Import["NSFullExperimentalData.txt", "Table"l;
NFFullExperimentalData = Import["NFFullExperimentalData.txt", "Table"l;
FNFullExperimentalData = Import["FNFullExperimentalData.txt", "Table"l;
FSFullExperimentalData = Import["FSFullExperimentalData.txt", "Table"l;
SFFullExperimentalData = Import["SFFullExperimentalData.txt", "Table"l;
SNFullExperimentalData = Import["SNFullExperimentalData.txt", "Table"l;

NSExperimentalDisplacement = Transpose [NSFullExperimentalDatal[[1,A111];
NSExperimentalXForce = Transpose[NSFullExperimentalDatal[[2,A111];
NSExperimentalZForce = Transpose[NSFullExperimentalDatal[[3,A111];
NFExperimentalDisplacement = Transpose [NFFullExperimentalDatal[[1,A111];
NFExperimentalXForce = Transpose[NFFullExperimentalDatal[[2,A111];
NFExperimentalZForce = Transpose [NFFullExperimentalDatal[[3,A111];
FNExperimentalDisplacement = Transpose[FNFullExperimentalDatal[[1,A1111;
FNExperimentalXForce = Transpose [FNFullExperimentalData][[2,A111];
FNExperimentalZForce = Transpose [FNFullExperimentalData][[3,A111];
FSExperimentalDisplacement = Transpose[FSFullExperimentalDatal[[1,A111];
FSExperimentalXForce = Transpose [FSFullExperimentalData][[2,A111];
FSExperimentalZForce = Transpose [FSFullExperimentalData][[3,A111];
SFExperimentalDisplacement = Transpose[SFFullExperimentalDatal[[1,A4111];
SFExperimentalXForce = Transpose [SFFullExperimentalData][[2,A111];
SFExperimentalZForce = Transpose [SFFullExperimentalData][[3,A111];
SNExperimentalDisplacement = Transpose[SNFullExperimentalDatal[[1,A111];
SNExperimentalXForce = Transpose[SNFullExperimentalDatal[[2,A11]1];
SNExperimentalZForce = Transpose[SNFullExperimentalDatal[[3,A11]1];

NSMaxExperimentalDisplacement = Max[Abs[NSFullExperimentalData[[A11,1111];
NFMaxExperimentalDisplacement = Max[Abs[NFFullExperimentalData[[A11,1111];
FNMaxExperimentalDisplacement = Max[Abs[FNFullExperimentalData[[A11,1111];
FSMaxExperimentalDisplacement = Max[Abs[FSFullExperimentalDatal[[A11,11]11];
SFMaxExperimentalDisplacement = Max[Abs[SFFullExperimentalDatal[[A11,1111];
SNMaxExperimentalDisplacement = Max[Abs[SNFullExperimentalData[[A11,1]11];

GRAPHS
t1 = 0.015;

NSExpXPlot = ListPlot[Transpose[{NSExperimentalDisplacement,
NSExperimentalXForce}], AxesLabel -> {d/mm, Subscript[F, NSx]/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{1.5, 1.5, t1}}, {{-40, -40, t1}, {-20, -20, t1}, {20, 20, t1}, {40, 40, t1}}}1;

NSExpZPlot = ListPlot[Transpose[{NSExperimentalDisplacement,
NSExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, NSzl/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{1.5, 1.5, t1}}, {{5, 5, t1}, {15, 15, t1}, {25, 25, t1}}}1;

NFExpXPlot = ListPlot[Transpose[{NFExperimentalDisplacement,
NFExperimentalXForce}], AxesLabel -> {d/mm, Subscript[F, NFx]/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, %1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{1.5, 1.5, t1}}, {{-60, -60, t1}, {-30, -30, t1}, {80, 30, t1}, {60, 60, t1}}}1;

NFExpZPlot = ListPlot[Transpose[{NFExperimentalDisplacement,
NFExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, NFz]/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{t.5, 1.5, t1}}, {{20, 20, t1}, {40, 40, t1}}}1;

FNExpXPlot = ListPlot[Transpose[{FNExperimentalDisplacement,
FNExperimentalXForce}], AxesLabel -> {d/mm, Subscript[F, FNx]/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{1.5, 1.5, t1}}, {{-70, -70, ¢t1}, {-35, -35, t1}, {35, 35, t1}, {70, 70, t1}}}1;

FNExpZPlot = ListPlot[Transpose[{FNExperimentalDisplacement,
FNExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, FNzl/mN},
TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl1},
{t.5, 1.5, t1}}, {{20, 20, t1}, {40, 40, t1}}}1;
FSExpXPlot = ListPlot[Transpose[{FSExperimentalDisplacement,
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FSExperimentalXForce}], AxesLabel -> {d/mm, Subscript[F, FSx]1/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{1.5, 1.5, t1}}, {{-80, -80, t1}, {-40, -40, t1}, {40, 40, t1}, {80, 80, t1}}}1;
FSExpZPlot = ListPlot[Transpose[{FSExperimentalDisplacement,

FSExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, FSz]l/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{1.5, 1.5, t1}}, {{35, 35, t1}, {70, 70, t1}}}1;
SFExpXPlot = ListPlot[Transpose[{SFExperimentalDisplacement,

SFExperimentalXForce}], AxesLabel -> {d/mm, Subscript[F, SFx1/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{1.5, 1.5, t1}}, {{-40, -40, t1}, {-20, -20, t1}, {20, 20, t1}, {40, 40, t1}}}1;
SFExpZPlot = ListPlot[Transpose[{SFExperimentalDisplacement,

SFExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, SFzl/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{t.5, 1.5, t1}}, {{7.5, 7.5, t1}, {15, 15, t1}}}1;
SNExpXPlot = ListPlot[Transpose[{SNExperimentalDisplacement,

SNExperimentalXForce}]l, AxesLabel -> {d/mm, Subscript[F, SNx1/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{1.5, 1.5, t1}}, {{-20, -20, t1}, {-10, -10, t1}, {10, 10, t1}, {20, 20, t1}}}1;
SNExpZPlot = ListPlot[Transpose[{SNExperimentalDisplacement,

SNExperimentalZForce}], AxesLabel -> {d/mm, Subscript[F, SNzl/mN},

TextStyle -> {FontSize -> 5},

Ticks -> {{{-1.5, -1.5, t1}, {-0.5, -0.5, t1}, {0.5, 0.5, tl},

{1.5, 1.5, t1}}, {{6, 6, t1}, {12, 12, t1}}}];

@InitGuessNS = {1, 3, 1}; NSModelXPlot =
Plot [ModelDutcomeForceNS [A InitGuessNS,

k/ (2*NSMaxExperimentalDisplacement)] [[3]],

{k, -NSMaxExperimentalDisplacement, NSMaxExperimentalDisplacement}];
NSModelZPlot = Plot[ModelOutcomeForceNS[A#InitGuessNS,

k/ (2*NSMaxExperimentalDisplacement)] [[2]],

{k, -NSMaxExperimentalDisplacement, NSMaxExperimentalDisplacement}];
@InitGuessNF = {1, 2, 0.8}; NFModelXPlot =

Plot [ModelOutcomeForceNF[#InitGuessNF,

k/ (2*NFMaxExperimentalDisplacement)] [[11],

{k, -NFMaxExperimentalDisplacement, NFMaxExperimentalDisplacement}];
NFModelZPlot = Plot[ModelOutcomeForceNF[#InitGuessNF,

k/ (2*NFMaxExperimentalDisplacement)] [[2]],

{k, -NFMaxExperimentalDisplacement, NFMaxExperimentalDisplacement}];
@InitGuessFN = {1, 3, 1}; FNModelXPlot =
Plot [ModelOutcomeForceFN[f InitGuessFN,

k/ (2+FNMaxExperimentalDisplacement)] [[2]],

{k, -FNMaxExperimentalDisplacement, FNMaxExperimentalDisplacement}];
FNModelZPlot = Plot[ModelOutcomeForceFN[A#InitGuessFN,

k/ (2+FNMaxExperimentalDisplacement)] [[1]1],

{k, -FNMaxExperimentalDisplacement, FNMaxExperimentalDisplacement}];
@InitGuessFS = {1, 2, 0.8}; FSModelXPlot =
Plot [ModelDutcomeForceFS [A InitGuessFS,

k/ (2*FSMaxExperimentalDisplacement)] [[3]],

{k, -FSMaxExperimentalDisplacement, FSMaxExperimentalDisplacement}];
FSModelZPlot = Plot[ModelOutcomeForceFS[AInitGuessFS,

k/ (2%FSMaxExperimentalDisplacement)] [[11],

{k, -FSMaxExperimentalDisplacement, FSMaxExperimentalDisplacement}];
@InitGuessSF = {1, 3, 1}; SFModelXPlot =
Plot [ModelOutcomeForceSF[f InitGuessSF,

k/ (2%SFMaxExperimentalDisplacement)] [[11],

{k, -SFMaxExperimentalDisplacement, SFMaxExperimentalDisplacement}];
SFModelZPlot = Plot[ModelQutcomeForceSF[#InitGuessSF,

k/ (2%SFMaxExperimentalDisplacement)][[31],

{k, -SFMaxExperimentalDisplacement, SFMaxExperimentalDisplacement}];
@InitGuessSN = {1, 2, 0.8}; SNModelXPlot =
Plot [ModelDutcomeForceSN [ InitGuessSN,

k/ (2*SNMaxExperimentalDisplacement)] [[2]],

{k, -SNMaxExperimentalDisplacement, SNMaxExperimentalDisplacement}];
SNModelZPlot = Plot[ModelOutcomeForceSN[fInitGuessSN,

k/ (2*SNMaxExperimentalDisplacement)] [[3]],

{k, -SNMaxExperimentalDisplacement, SNMaxExperimentalDisplacement}];

NSXCombPlot = Show[{NSExpXPlot, NSModelXPlot}, DisplayFunction -> Identityl;
NSZCombPlot = Show[{NSExpZPlot, NSModelZPlot}, DisplayFunction -> Identityl;
NFXCombPlot = Show[{NFExpXPlot, NFModelXPlot}, DisplayFunction -> Identityl;
NFZCombPlot = Show[{NFExpZPlot, NFModelZPlot}, DisplayFunction -> Identityl;
FNXCombPlot = Show[{FNExpXPlot, FNModelXPlot}, DisplayFunction -> Identityl;
FNZCombPlot = Show[{FNExpZPlot, FNModelZPlot}, DisplayFunction -> Identityl;
FSXCombPlot = Show[{FSExpXPlot, FSModelXPlot}, DisplayFunction -> Identityl;
FSZCombPlot = Show[{FSExpZPlot, FSModelZPlot}, DisplayFunction -> Identityl;
SFXCombPlot = Show[{SFExpXPlot, SFModelXPlot}, DisplayFunction -> Identityl;
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SFZCombPlot = Show[{SFExpZPlot, SFModelZPlot}, DisplayFunction -> Identity];
SNXCombPlot = Show[{SNExpXPlot, SNModelXPlot}, DisplayFunction -> Identity];
SNZCombPlot = Show[{SNExpZPlot, SNModelZPlot}, DisplayFunction -> Identity];

Show[GraphicsArray[{ {NSXCombPlot, NSZCombPlot}, {NFXCombPlot, NFZCombPlot},
{FNXCombPlot, FNZCombPlot}, {FSXCombPlot, FSZCombPlot},
{SFXCombPlot, SFZCombPlot}, {SNXCombPlot, SNZCombPlot}}1]

H
CREATE COMPLETE FORCE VECTOR FOR ALL LOAD STEPS

NSLegendreData = Import["NSLegendreData.txt", "Table"l;
NSLegendreGaussWeights = Transpose[NSLegendreDatal[[1,A111];
NSLegendreGaussPoints = Transpose [NSLegendreDatal [[2,A111];
NSExpXForceAtGaussPoints = Transpose [NSLegendreDatal[[3,A11]1;
NSExpZForceAtGaussPoints = Transpose [NSLegendreDatal[[4,A11]];
NSArea = Flatten[Import["NSArea.txt", "Table"]];

NFLegendreData = Import["NFLegendreData.txt", "Table"l;
NFLegendreGaussWeights = Transpose[NFLegendreDatal[[1,A111];
NFLegendreGaussPoints = Transpose [NFLegendreDatal[[2,4111];
NFExpXForceAtGaussPoints = Transpose [NFLegendreDatal[[3,A11]1;
NFExpZForceAtGaussPoints = Transpose [NFLegendreDatal[[4,A11]1;
NFArea = Flatten[Import["NFArea.txt", "Table"l]l;

SFLegendreData = Import["SFLegendreData.txt", "Table"l;
SFLegendreGaussWeights = Transpose[SFLegendreDatal[[1,A111];
SFLegendreGaussPoints = Transpose[SFLegendreDatal[[2,A111];
SFExpXForceAtGaussPoints = Transpose[SFLegendreDatal[[3,4111];
SFExpZForceAtGaussPoints = Transpose[SFLegendreDatal[[4,A111];
SFArea = Flatten[Import["SFArea.txt", "Table"]l;

SNLegendreData = Import["SNLegendreData.txt", "Table"l;
SNLegendreGaussWeights = Transpose[SNLegendreDatal[[1,411]1];
SNLegendreGaussPoints = Transpose[SNLegendreData] [[2,A11]];
SNExpXForceAtGaussPoints = Transpose[SNLegendreDatal[[3,A111];
SNExpZForceAtGaussPoints = Transpose[SNLegendreDatal[[4,A111];
SNArea = Flatten[Import["SNArea.txt", "Table"]l;

FNLegendreData = Import["FNLegendreData.txt", "Table"l;
FNLegendreGaussWeights = Transpose[FNLegendreDatal[[1,A111];
FNLegendreGaussPoints = Transpose[FNLegendreDatal[[2,A111];
FNExpXForceAtGaussPoints = Transpose[FNLegendreDatal[[3,A111];
FNExpZForceAtGaussPoints = Transpose[FNLegendreDatal[[4,A111];
FNArea = Flatten[Import["FNArea.txt", "Table"]l;

FSLegendreData = Import["FSLegendreData.txt", "Table"l;
FSLegendreGaussWeights = Transpose[FSLegendreDatal[[1,411]1];
FSLegendreGaussPoints = Transpose [FSLegendreData] [[2,A11]];
FSExpXForceAtGaussPoints = Transpose[FSLegendreDatal[[3,A111];
FSExpZForceAtGaussPoints = Transpose[FSLegendreDatal[[4,A11]];
FSArea = Flatten[Import["FSArea.txt", "Table"]l;

INITIALIZE COMPLETE FORCE VECTOR

NSModelXForceAtGaussPoints =
Flatten[Transpose[tNSFunctX [NSLegendreGaussPoints/
(2*NSMaxExperimentalDisplacement)]]];
NSModelZForceAtGaussPoints =
Flatten[Transpose[tNSFunctZ[NSLegendreGaussPoints/
(2*NSMaxExperimentalDisplacement)]]];
NFModelXForceAtGaussPoints =
Flatten[Transpose[tNFFunctX [NFLegendreGaussPoints/
(2xNFMaxExperimentalDisplacement)]]];
NFModelZForceAtGaussPoints =
Flatten[Transpose [tNFFunctZ [NFLegendreGaussPoints/
(2xNFMaxExperimentalDisplacement)]]];
SFModelXForceAtGaussPoints =
Flatten[Transpose [tSFFunctX[SFLegendreGaussPoints/
(2xSFMaxExperimentalDisplacement)]]];
SFModelZForceAtGaussPoints =
Flatten[Transpose[tSFFunctZ[SFLegendreGaussPoints/
(2*%SFMaxExperimentalDisplacement)]]];
SNModelXForceAtGaussPoints =
Flatten[Transpose[tSNFunctX[SNLegendreGaussPoints/
(2*SNMaxExperimentalDisplacement)]]];
SNModelZForceAtGaussPoints =
Flatten[Transpose[tSNFunctZ[SNLegendreGaussPoints/
(2*SNMaxExperimentalDisplacement)]]];
FNModelXForceAtGaussPoints =
Flatten[Transpose [tFNFunctX [FNLegendreGaussPoints/
(2xFNMaxExperimentalDisplacement)]]];
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FNModelZForceAtGaussPoints =
Flatten[Transpose [tFNFunctZ[FNLegendreGaussPoints/
(2xFNMaxExperimentalDisplacement)]1];
FSModelXForceAtGaussPoints =
Flatten[Transpose [tFSFunctX[FSLegendreGaussPoints/
(2*%FSMaxExperimentalDisplacement)]]1];
FSModelZForceAtGaussPoints =
Flatten[Transpose [tFSFunctZ[FSLegendreGaussPoints/

(2*%FSMaxExperimentalDisplacement)]]1];

NSXDiffForce = N[NSModelXForceAtGaussPoints] NSExpXForceAtGaussPoints;
NSZDiffForce = N[NSModelZForceAtGaussPoints] NSExpZForceAtGaussPoints;
NFXDiffForce = N[NFModelXForceAtGaussPoints] NFExpXForceAtGaussPoints;
NFZDiffForce = N[NFModelZForceAtGaussPoints] NFExpZForceAtGaussPoints;
FNXDiffForce = N[FNModelXForceAtGaussPoints] FNExpXForceAtGaussPoints;
FNZDiffForce = N[FNModelZForceAtGaussPoints] FNExpZForceAtGaussPoints;
FSXDiffForce = N[FSModelXForceAtGaussPoints] FSExpXForceAtGaussPoints;
FSZDiffForce = N[FSModelZForceAtGaussPoints] FSExpZForceAtGaussPoints;
SFXDiffForce = N[SFModelXForceAtGaussPoints] SFExpXForceAtGaussPoints;

SFZDiffForce = N[SFModelZForceAtGaussPoints] -
SNXDiffForce = N[SNModelXForceAtGaussPoints] -
SNZDiffForce = N[SNModelZForceAtGaussPoints] -

SFExpZForceAtGaussPoints;
SNExpXForceAtGaussPoints;
SNExpZForceAtGaussPoints;

COMPUTING PSEUDO ENERGY

NSXForceObjective = NSLegendreGaussWeights . NSXDifchrceZ;
NSZForceObjective = NSLegendreGaussWeights . NSZDiffForcs2;
NFXForceObjective = NFLegendreGaussWeights . NFXDifchrceZ;
NFZForceObjective = NFLegendreGaussWeights . NFZDiffForcs2;
FNXForceObjective = FNLegendreGaussWeights FNXDifchrceZ;
FNZForceObjective = FNLegendreGaussWeights FNZDiffForcs2;
FSXForceObjective = FSLegendreGaussWeights FSXDifchrceZ;
FSZForceObjective = FSLegendreGaussWeights FSZDiffForcs2;
SFXForcelbjective = SFLegendreGaussWeights SFXDifchrceZ;
SFZForcelObjective = SFLegendreGaussWeights SFZDiffForcs2;
SNXForcelObjective = SNLegendreGaussWeights SNXDifchrceZ;
SNZForceObjective = SNLegendreGaussWeights SNZDiffForcs2;

OBJECTIVE FUNCTION

©Q = (1/2)*(NSXForceObjective + NSZForceObjective + NFXForceObjective +
NFZForceObjective + FNXForceObjective + FNZForceObjective +
FSXForceObjective + FSZForceObjective + SFXForceObjective +
SFZForceQbjective + SNXForceObjective + SNZForceObjective);

GradQ1 = D[Q2, ci];
Grad22 = D[, cmm];
Grad23 = D[, cmn];
Grad24 = D[, cms];
Grad25 = D[, cnnl;
Grad26 = D[, cnsl;
GradQ27 = D[, cssl;

GradQ2 = GradQ1, Grad()2, Grad(23, Grad(24,
Grad(25, GradQ26, GradQ7;

HessianQ21 = D[Grad(2, ci1l;
Hessian(22 = D[Grad2, cmm];
Hessian(23 = D[Grad2, cmnl;
Hessian(24 = D[Gradf2, cms];
Hessian(25 = D[Gradf2, cnnl;
Hessian{26 = D[Gradf2, cnsl;
HessianQ27 = D[Gradf2, cssl;
Hessian(2 = N[Partition[Flatten[Hessian{21, Hessian{22, Hessian(23,

Hessian{24, Hessian(25, Hessian(26, Hessian(Q27], 7]];
DEFINE GRADIENT AND HESSIAN AS FUNCTIONS OF THE MATERIAL PARAMETERS

QFunct[{x1_, kmm., kmn_, kms_, knn., kns., kss_}] :=
Evaluate[Q /. {c1 -> ki1, cmm -> xmm, cmn -> kmn, cms
cnn -> Knn, cns -> KNS, CSS —> nss}]
GradQFunct[{k1., kKmm_., kmn_, kms_, knn_, Kkns_, kss_}] :=
Evaluate[GradQ /. {ci -> k1, cmm -> Kmm, cmn -> Kmn,
cnn -> Knn, cns -> Kns, -> kss}]
HessianQFunct[{r1., kmm_, kmn_, kms_, knn_, Kkns_, kss_}] :=
Evaluate [HessianQ /. {ci1 -> k1, cmm -> Kmm, Kmn,
cnn -> Knn, cns -> Kns, -> kss}]

-> kms,

cms -> Kms,

css

cmn -> cms -> Kms,

css

INITIALIZATION OF MATERIAL PARAMETER VECTOR @
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fPrev = 2, 2, 2, 2, 2, 2, 2;
QNow = QFunct[fPrev];
AQ = 1;

OPTIMISATION LooP

While[AQ > 1077 @& A9 > 1077,
QPrev = QFunct[fPrev];
A = -Inverse[HessianQFunct [fPrev] + AxIdentityMatrix[7]] . GradQFunct[APrevl;
ONow = Flatten[APrev + Al;
QNow = QFunct[ANow];
If[QNow < QPrev,
A6 = (ONow - OPrev) . (ONow - OPrev);
AQ = N[Abs[QNow - QPrevl];
OPrev = ONow;
Print [QNow];

Print [ONow];
A = A/10,
A = 10%X

1;

i=i+1;

1
(RELATIVE & ) ABSOLUTE TOTAL ERROR TOTAL ERROR OVER TOTAL AREA

QTotal = QNow;

TotalEnergyContent = NSArea[[1]] + NSArea[[2]] + NFArea[[1]] + NFArea[[2]] +
FNArea[[1]] + FNAreal[[2]] + FSArea[[1]] + FSArea[[2]] +
SFArea[[1]] + SFAreal[[2]] + SNArea[[1]] + SNArea[[2]]1;

QTotalRel = (QNow/TotalEnergyContent;

COVARIANCE MATRIX AND D - OPTIMALITY

HessianQFunct [#Prev]

Inverse[HessianQFunct [#Prev]]

DetH = Det[Hessian{Q2Funct[#Prev]]

CondH = MatrixConditionNumber[Inverse[HessianQ2Funct [@Prev]], 2]
MatrixConditionNumber [HessianQ2Funct[#Prev], 2]

M  OPTIMALITY

H = HessianQFunct[#Prev];
NormalisedH = Array[f, Dimensions[H]];
For[i = 1, i <= Length[H],
For[j = 1, j <= Length[H],
NormalisedH[[i,j1] = H[[i,j11/Sqrt[H[[i,i11*H[[j,j111;
j++l;
i++];
DetNormH = Det [NormalisedH]

PRINTOUT OPTIMIZED FORCE DISPLACEMENT CURVES

fOInitGuess = OPrev;

OInitGuessNS = Flatten[Flatten[Take[#InitGuess, 1, 111,
Flatten[Take[A#InitGuess, 5, 6111;

OInitGuessNF = Flatten[Flatten[Take[#InitGuess, 1, 111,
Flatten[Take[f#InitGuess, 3, 3]], Flatten[Take[#InitGuess, 5, 5]1];
OInitGuessFN = Take[AInitGuess, 1, 3];

OInitGuessFS = Flatten[Flatten[Take[#InitGuess, 1, 211,
Flatten[Take[A#InitGuess, 4, 4111;

fInitGuessSF = Flatten[Flatten[Take[f#InitGuess, 1, 111,
Flatten[Take[AInitGuess, 4, 4]], Flatten[Take[fInitGuess, 7, 7]11];
fInitGuessSN = Flatten[Flatten[Take[f#InitGuess, 1, 111,
Flatten[Take[#InitGuess, 6, 7111;

NSModelXPlot = Plot[ModelOutcomeForceNS[fInitGuessNS,

k/ (2*NSMaxExperimentalDisplacement)] [[3]1],

k, -NSMaxExperimentalDisplacement, NSMaxExperimentalDisplacement];
NSModelZPlot = Plot[ModelQutcomeForceNS[#InitGuessNS,

k/ (2*NSMaxExperimentalDisplacement)][[2]1],

k, -NSMaxExperimentalDisplacement, NSMaxExperimentalDisplacement];
NFModelXPlot = Plot[ModelQutcomeForceNF[#InitGuessNF,

k/ (2*NFMaxExperimentalDisplacement)][[1]1],

k, -NFMaxExperimentalDisplacement, NFMaxExperimentalDisplacementl];
NFModelZPlot = Plot[ModelQutcomeForceNF[#InitGuessNF,

k/ (2*NFMaxExperimentalDisplacement)][[2]],

k, -NFMaxExperimentalDisplacement, NFMaxExperimentalDisplacementl];
FNModelXPlot = Plot[ModelODutcomeForceFN[A#InitGuessFN,

k/ (2%FNMaxExperimentalDisplacement)] [[2]],
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k, -FNMaxExperimentalDisplacement, FNMaxExperimentalDisplacement];
FNModelZPlot = Plot[ModelOutcomeForceFN[A#InitGuessFN,
k/ (2*FNMaxExperimentalDisplacement)] [[1]],

k, -FNMaxExperimentalDisplacement, FNMaxExperimentalDisplacement];
FSModelXPlot = Plot[ModelOutcomeForceFS[AInitGuessFS,
k/(2*FSMaxExperimentalDisplacement)] [[3]],

k, -FSMaxExperimentalDisplacement, FSMaxExperimentalDisplacement];
FSModelZPlot = Plot[ModelOutcomeForceFS[AInitGuessFS,
k/ (2%FSMaxExperimentalDisplacement)] [[11],

k, -FSMaxExperimentalDisplacement, FSMaxExperimentalDisplacement];
SFModelXPlot = Plot[ModelQutcomeForceSF[#InitGuessSF,
k/ (2%SFMaxExperimentalDisplacement)] [[1]],

k, -SFMaxExperimentalDisplacement, SFMaxExperimentalDisplacement];
SFModelZPlot = Plot[ModelOutcomeForceSF[#InitGuessSF,
k/ (2*SFMaxExperimentalDisplacement)] [[3]],

k, -SFMaxExperimentalDisplacement, SFMaxExperimentalDisplacement];
SNModelXPlot = Plot[ModelOutcomeForceSN[fInitGuessSN,
k/ (2*SNMaxExperimentalDisplacement)] [[2]],

k, -SNMaxExperimentalDisplacement, SNMaxExperimentalDisplacement];
SNModelZPlot = Plot[ModelOutcomeForceSN[fInitGuessSN,
k/ (2*SNMaxExperimentalDisplacement)][[31],

k, -SNMaxExperimentalDisplacement, SNMaxExperimentalDisplacement];

NSXCombPlot
NSZCombPlot
NFXCombPlot
NFZCombPlot
FNXCombPlot
FNZCombPlot
FSXCombPlot
FSZCombPlot
SFXCombPlot
SFZCombPlot
SNXCombPlot
SNZCombPlot
FinalGraph

= Show[{NSExpXPlot,

Show [{ NSExpZPlot,
Show [{ NFExpXPlot,
Show [{NFExpZPlot,
Show [{ FNExpXPlot,
Show [{FNExpZPlot,
Show [{FSExpXPlot,
Show [{FSExpZPlot,

= Show[{SFExpXPlot,

Show [{ SFExpZPlot,
Show [{ SNExpXPlot,
Show [{ SNExpZPlot,

NSModelXPlot},
NSModelZPlot},
NFModelXPlot},
NFModelZPlot},
FliMode1XPlot},
FliMode1ZPlot },
FSModelXPlot},
FSModelZPlot },
SFModelXPlot},
SFModelZPlot },
SNModelXPlot},
SNModelZPlot },

Show [GraphicsArray[Transpose [

{{NSXCombPlot, NSZCombPlot, NFXCombPlot,
{FNXCombPlot, FNZCombPlot, FSXCombPlot, FSZCombPlot},
{SFXCombPlot, SFZCombPlot, SNXCombPlot, SNZCombPlot}}]
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DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction
DisplayFunction

NFZCombPlot },

->
->
->
->
->
->
->
->
->
->
->
->

Identityl;
Identityl;
Identityl;
Identityl;
Identityl;
Identityl;
Identity];
Identity];
Identity];
Identity];
Identity];
Identity];

SetDirectory["E:\\Mathematica\ \HomogeneousFitting\ \GraphsForThesis"];
Export["CLSP17FinalGraphBW.eps", FinalGraph, "eps"l;

SP17CLawAllData = Join[{(Now, (2TotalRel, DetH, CondH, Re[DetNormH]}, Flatten[fPrev,

APPENDIX B. ADDITIONAL DATA, HOMOGENEOUS MODEL

211;
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B.2 All Graphs for all Experiments, Homo-
geneous Model

This section gives a list of all graphs obtained from the homogeneous model.
They are listed in the order of experiments and within one experiment CL,
SFL, PZL, TL, LECL. The dotted lines denote the experimental data and the

solid lines denote the model results. This section is referred to in Sec.(6.3).



168  APPENDIX B. ADDITIONAL DATA, HOMOGENEOUS MODEL

Graph of homogeneous model, experiment 1, CL
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Figure B.1: This graph shows the result of the homogeneous model for experiment 1,
CL.
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Graph of homogeneous model, experiment 1, SFL
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Figure B.2: This graph shows the result of the homogeneous model for experiment 1,
SFL.
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Graph of homogeneous model, experiment 1, PZL
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Figure B.3: This graph shows the result of the homogeneous model for experiment 1,
PZL.



B.2. ALL GRAPHS, HOMOGENEOUS MODEL 171

Graph of homogeneous model, experiment 1, TL
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Figure B.4: This graph shows the result of the homogeneous model for experiment 1,
TL.
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Graph of homogeneous model, experiment 1, LECL
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Figure B.5: This graph shows the result of the homogeneous model for experiment 1,
LECL.
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Graph of homogeneous model, experiment 2, CL
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Figure B.6: This graph shows the result of the homogeneous model for experiment 2,
CL.
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Graph of homogeneous model, experiment 2, SFL
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Figure B.7: This graph shows the result of the homogeneous model for experiment 2,
SFL.
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Graph of homogeneous model, experiment 2, PZL
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Figure B.8: This graph shows the result of the homogeneous model for experiment 2,

PZL.
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Graph of homogeneous model, experiment 2, TL
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Figure B.9: This graph shows the result of the homogeneous model for experiment 2,
TL.
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Graph of homogeneous model, experiment 2, LECL
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Figure B.10: This graph shows the result of the homogeneous model for experiment 2,
LECL.
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Graph of homogeneous model, experiment 3, CL
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Figure B.11: This graph shows the result of the homogeneous model for experiment 3,
CL.
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Graph of homogeneous model, experiment 3, SFL
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Figure B.12: This graph shows the result of the homogeneous model for experiment 3,
SFL.
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Graph of homogeneous model, experiment 3, PZL

FNsx FENX FsFx

FNsz FENZ FsFz
N N N
E 3 15 I
y 25 § 40 / 2
15 Y20 /;" i 7.5 3
>-».§ ,—-“':r d \ - ,,r"/ d :'-__4 m,.,'“"' d
1.5 -0.5 0.5 1.5nmm -1.5-0.5 0.5 1.5 nmm -1.5 “0.5 0. 1.5 nm
FNFx FEsx Fsnx
mN N N
80 / 20 !
30 // 40 10 /
4 A d
= d d e d
_1.%‘6.'5 0.5 1.5mm 15 05| 05 L5 mm '175//‘915 0.5 1.5 mm
14 _ /
/ ~30 ,[1 40 I[ -20
FNFz FFsz FSNz
N N N
40 . 12 -
| 3 r { ;]
i 1 3 35 3 J
Loo20 / B 6 /
%, fs’ R\ p) :
S| d Ny | A d N\ s d
-1.5 -0.5 0.5 1.5mm -1.5-0.5 0.5 1.5 nm 1.5 -0.5 0.5 1.5 mm

Figure B.13: This graph shows the result of the homogeneous model for experiment 3,
PZL.
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Graph of homogeneous model, experiment 3, TL

-1.5 -0.5 0.5 1.5mm

Figure B.14: This graph shows the result of the homogeneous model for experiment 3,

TL.

w
[9)]
o

d
~1.5-0.5 0.5 1.5 mm

FEsx

m

80

40

d

1,6 -0.5| 0.5 1.5 mm
7 ~40
{

FFsz

m
A 35 /1

P d
-1.5 -0.5 0.5 1.5 mm

FsFx

TN
40
20

181

-1.5 0.5 0.5

d
1.5 mm

/

,/

-20

10
71./5/5915
/
i

_— d
0.5 1.5 mm

d
1.5 mm



182  APPENDIX B. ADDITIONAL DATA, HOMOGENEOUS MODEL

Graph of homogeneous model, experiment 3, LECL
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Figure B.15: This graph shows the result of the homogeneous model for experiment 3,
LECL.
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Graph of homogeneous model, experiment 4, CL
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Figure B.16: This graph shows the result of the homogeneous model for experiment 4,
CL.
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Graph of homogeneous model, experiment 4, SFL
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Figure B.17: This graph shows the result of the homogeneous model for experiment 4,
SFL.
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Graph of homogeneous model, experiment 4, PZL
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Figure B.18: This graph shows the result of the homogeneous model for experiment 4,
PZL.
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Graph of homogeneous model, experiment 4, TL
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Figure B.19: This graph shows the result of the homogeneous model for experiment 4,
TL.
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Graph of homogeneous model, experiment 4, LECL
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Figure B.20: This graph shows the result of the homogeneous model for experiment 4,

LECL.
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Graph of homogeneous model, experiment 5, CL
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Figure B.21: This graph shows the result of the homogeneous model for experiment 5,
CL.
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Graph of homogeneous model, experiment 5, SFL
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Figure B.22: This graph shows the result of the homogeneous model for experiment 5,

SFL.
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Graph of homogeneous model, experiment 5, PZL
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Graph of homogeneous model, experiment 5, TL
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Figure B.24: This graph shows the result of the homogeneous model for experiment 5,
TL.
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Graph of homogeneous model, experiment 5, LECL
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Figure B.25: This graph shows the result of the homogeneous model for experiment 5,
LECL.



Figure B.26: This graph shows the result of the homogeneous model for experiment 6,
CL.
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Graph of homogeneous model, experiment 6, SFL
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Figure B.27: This graph shows the result of the homogeneous model for experiment 6,
SFL.
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Graph of homogeneous model, experiment 6, PZL
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Figure B.28: This graph shows the result of the homogeneous model for experiment 6,

PZL.
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Graph of homogeneous model, experiment 6, TL
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Figure B.29: This graph shows the result of the homogeneous model for experiment 6,
TL.



B.2. ALL GRAPHS, HOMOGENEOUS MODEL

197

Graph of homogeneous model, experiment 6, LECL
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Figure B.30: This graph shows the result of the homogeneous model for experiment 6,
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Appendix C

Additional Data for FE Model

This chapter gives additional data for the finite element model, i.e. Sec.(C.1)
shows a sample file of the finite element model for experiment 3, i.e. a com-
mand file for the backend of the finite element package CMISS. Sec.(C.2)
presents the tables of the convergence analysis of the finite element meshes
(referred to in Sec.(7.1.3)) and Sec.(C.3) shows all graphs for all four laws

and all experiments (referred to in Sec.(7.3)).

C.1 Example File for FE Model, Exp. 3, CL

# Optimization_Costa.com

# Read data from file
(open datafile, "StepPercentage.ipdata" );
QLines=<datafile>;
close(datafile);
QGauss=();
foreach $Line (QLines) {
$Line=$Line+0;
Q@Gauss=(Q@Gauss, "$Line");

¥
$animal = "SP17"
@modes=("NS","NF","SN","SF","FS","FN") $ModeNum = 1;
if ($RESOLVE ne "TRUE") {

# Don’t need to redo these commands when

# resolving during optimisation

fem define parameters;r;lilicube;

fem define coordinate;r;lliicube;

fem define base;r;liicube;

}

#loop over the shear modes $modenum = 0; foreach $mode ( @modes )

199
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{
$modenum = $modenum + 1;
printf ("= =\nMode %s;numbner’d\n",$mode, $modenum==:
# Read data from file before enter IF LOOP

(open datafile, "${mode}_SQRTweight.ipdata");
OLines=<datafile>;
close(datafile);
QWeight=();
foreach $Line (@Lines) {
$Line=$Line+0;
QWeight=(QWeight, "$Line");
¥

print "\n Gauss:@Gauss \n Weight : QWeight"

fem define node;r;555cube_${animal}_${mode};
fem define fibre;r;555cube_${mode};

if ($RESOLVE ne "TRUE") {

fem define element;r;555cube;
fem define element;r;555cube fibre;

# grouping elements at boundary
fem group elements all external s3=0 as ZOFACE_ELEM;
fem group elements all external s3=1 as Z1FACE_ELEM;

# grouping nodes at boundary
fem group nodes xi3=0 external element ZOFACE_ELEM as ZOFACE_NODE;
fem group nodes xi3=1 external element Z1FACE_ELEM as Z1FACE_NODE;

#grouping all elements
fem group elem all_elements as ALL_ELEM

fem define equations;r;shear_cube lock
fem define materials;r;CellML

# Solve in 1/2 (# of Gauss pts = 12) steps
$number_steps=6;

fem define initial;r;shear_${animall}_${model};
fem define solve;r;shear_cube

==Setup-material-law-throught-CellML-environment=

if (JFIRST ne "FALSE") {

fem define grid;r;liicube gauss class 2

fem update grid geometry

fem group grid element ALL_ELEM as ALL_GRID_PT
fem define equation;r;shear_CellML class 2

fem define mater;d class 2

fem define cell;r;Costa_seven_parameters class 2
fem define material;r;Costa_seven_parameters cell class 2

fem define initial;d class 2
fem define solve;r;CellML class 2
fem solve class 2 to 0;

$FIRST = "FALSE";
¥

CellML-Setup-End %

# Load the experimental force components.
# x and z directions are in indicies 1 and 3, respectively
fem define data;r;${animal}_${model};

for($loadnum=1;$loadnum<=$number_steps;$loadnum++) {
printf( \nStep %d\n",$loadnum);

# solve for original (initial) material parameters
fem solve increment $Gauss[$loadnum-1] iterate 40 error 0.00000001;
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# Save intermediate solution
fem define initial;w;solution_${animal}_${mode}_step_${loadnum};
#fem define initial;r;solution_${animal}_${mode}_step_${loadnum}_Initial;

Create a vector of the experimental reaction force for use by the optimiser
We rearranged Dokos data, such that the x force of the first G/2 entries are positive

and all z force entries are positive to account for both, model output and only
solving for positive displacements to save computational time

*OROROE OB R H

positive forces
fem update residual data point $loadnum index 1 residual’
1+($loadnum-1) *2+ ($modenum-1) *4*$number_steps weight $Weight[$loadnum-1];
fem update residual data point $loadnum index 3 residual}
2+($loadnum-1) *2+($modenum-1) *4*x$number_steps weight $Weight[$loadnum-1];
# negative forces
fem update residual data point $loadnum+$number_steps index 1 residuall,
1+($loadnum-1) *2+ ($modenum-1) *4*$number_steps+$number_steps*2 weight $Weight[$loadnum-1];
fem update residual data point $loadnum+$number_steps index 3 residuall,
2+($loadnum-1) *2+($modenum-1) *4x$number_steps+$number_steps*2 weight $Weight[$loadnum-1];

} #for $loadnum

else { # i.e. if ($RESOLVE eq "TRUE")

# Need to update the material parameters to those being evaluated by the optimiser
fem update optimisation;

for($loadnum=1; $loadnum<=$number_steps;$loadnum++) {
printf ( \nStep %d\n",$loadnum);

# read intermediate solution for current mode and load
fem define initial;r;solution_${animal}_${mode}_step_${loadnum};
fem define solve;r;shear_cube;

# solve for perturbed material parameters
fem solve increment 0.0 iterate 40 error 0.00000001;

# evaluate new (predicted—expt) reaction forces

# positive forces

fem evaluate reaction node Z1FACE_NODE direction 1 residual},
1+($loadnum-1) %2+ ($modenum-1) *4*$number_steps weight $Weight[$loadnum-1];

fem evaluate reaction node Z1FACE_NODE direction 3 residual},
2+($loadnum-1) *2+ ($modenum-1) *4*$number_steps weight $Weight[$loadnum-1];

# negative forces

fem evaluate reaction node Z1FACE_NODE direction 1 residual)
1+($loadnum-1) x2+($modenum-1) *4x$number_steps+$number_steps*2 weight $Weight [$loadnum-1];

fem evaluate reaction node Z1FACE_NODE direction 3 residual)
2+($loadnum-1) *2+ ($modenum-1) *4*$number_steps+$number_steps*2 weight $Weight[$loadnum-1];

fem define initial;w;solution_${animal}_${mode}_step_${loadnum};

} #for $loadnum
} #if $RESOLVE

} #foreach $mode

# Store the updated parameters into Optimized Parameters fem
define optimise;w;0ptimized_Parameters_555;

if ($RESOLVE ne "TRUE") {
$ITERATION = 1;
$RESOLVE = "TRUE";
# do the optimisation
fem define optimise;r;new_shear_555_parameters;
optimise;
set output off;



202 APPENDIX C. ADDITIONAL DATA FOR FE MODEL
C.2 Convergence Analysis of the finite ele-
ment meshes

Table (C.1) shows the numerical results of the convergence analysis for the
CL. The analysis indicated that a 555cube was ideal for the study since the
666cube did only improve A’A’;“P\mﬂ by 0.89% and © by 0.50%. The stress
convergence also suggested this.

Furthermore the convergence analysis for the SFL, PZL and TL showed
very similar results, which confirmed our choice of the 555cube. The notation

used in the tables is defined in Sec.(4.4.6).



R B e ER IS B D B DR A IR A D

111 127.2 0.171 34.0 11.1 12.6 19.3 9.0 13.1

222 121.4 4.82% 25.7% 10.6% 0.189 9.3% 36.7 7.3% 10.4 6.6% 12.1 3.9% 22.8 15.5% 8.5 5.7% 17.6 25.7%
333 121.3 0.06% 22.4% 12.4% 0.184 2.6% 32.2 13.7% 11.6 10.1% 13.4 9.5% 19.3 18.3% 9.5 10.3% 14.4 22.4%
444 122.6 1.05% 5.0% 2.9% 0.185 0.38% 31.2 3.5% 11.9 2.7% 13.7 2.6% 18.4 5.0% 9.7 2.5% 13.8 3.9%
555 123.9 1.07% 3.2% 1.9% 0.187 0.94% 30.5 2.3% 12.1 1.7% 13.9 1.7% 17.8 3.2% 9.9 1.3% 13.6 2.1%
666 124.6 0.50% 1.4% 0.91% 0.187 0.51% 30.2 0.97% 12.2 0.90% 14.1 0.94% 17.6 1.4% 9.9 0.74% 13.4 0.89%
T 124.8 0.21% 0.99% 0.67% 0.188 0.36% 30.0 0.65% 12.3 0.68% 14.2 0.72% 17.4 0.99% 10.0 0.57% 13.3 0.70%
888 124.9 0.09% 0.58% 0.42% 0.189 0.20% 29.9 0.35% 12.3 0.48% 14.3 0.50% 17.3 0.58% 10.0 0.43% 13.3 0.38%

Table C.1: Convergence analysis for CL.
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H SFL H Q ‘ KO H aff ‘ Ai}f ‘ afn ‘ AZ}f ‘ afs ‘ Ag}f ‘ Ann ‘ Ag;z ‘ Ans ‘ Ag;}f ‘ Ass ‘ Ags\f H
111 126 0.279 0.0514 0.0380 0.0762 0.0454 0.0147
222 115 9.58% 0.287 2.8% 0.0218 136% 0.0199 90.6% 0.0819 7.0% 0.0211 115% 0.0316 53.5%
333 101 13.91% 0.264 8.6% 0.0214 2.0% 0.0211 5.8% 0.117 30.0% 0.0170 24.6% 0.0590 46.4%
444 96.2 5.22% 0.274 3.7% 0.0179 19.5% 0.0220 4.1% 0.168 30.4% 0.0144 17.8% 0.0507 16.3%
555 96.2 0.06% 0.280 1.8% 0.0172 4.1% 0.0221 0.38% 0.184 8.9% 0.0145 0.74% 0.0449 13.0%
666 97.4 1.15% 0.270 3.7% 0.0179 4.0% 0.0223 0.65% 0.175 5.4% 0.0171 15.0% 0.0414 8.4%

L oo | o [y Jos | on [on | on [on | o [oig | o Joi | o ||
111 56.7 19.6 24.2 70.8 17.1 122
222 136% 84.2% 57.9 2.1% 42.3 53.7% 49.6 51.2% 74.3 4.7% 36.6 53.2% 102 20.0%
333 78.6% 38.3% 55.2 5.0% 45.7 7.4% 53.4 7.1% 53.3 39.6% 42.1 13.1% 56.9 78.6%
444 34.2% 21.9% 52.1 5.9% 50.0 8.5% 54.0 1.2% 39.7 34.2% 45.6 7.6% 54.7 4.0%
555 13.0% 7.3% 50.3 3.6% 51.6 3.2% 55.0 1.8% 36.4 9.1% 46.1 1.1% 56.8 3.7%
666 15.0% 7.8% 51.4 2.2% 51.1 0.93% 55.1 0.17% 37.8 3.9% 43.9 5.0% 59.8 4.9%

Table C.2:

Convergence analysis for SFL.

¥0¢
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R P RN R F E A R PR P
111 547.6 1.93% 0.759 0.0606 0.0596 0.053 0.0644 0.0847
222 312.5 1.10% 0.774 1.9% 0.0204 198% 0.0271 120% 0.068 23.0% 0.0172 275% 0.0559 51.5%
333 286.1 1.01% 0.803 3.6% 0.0261 22.0% 0.0297 8.6% 0.306 77.7% 0.0105 64% 0.0418 33.9%
444 282.8 1.00% 0.822 2.3% 0.0280 6.7% 0.0304 2.2% 0.352 13.1% 0.0102 3.0% 0.0368 13.4%
555 283.3 1.00% 0.831 1.2% 0.0291 4.1% 0.0307 1.1% 0.298 18.3% 0.0111 8.0% 0.0365 0.84%

[ | masany?) [ amg || ay [am | am [ 2y | o Jasy | e [andt | w a2y | a. [anv |
111 0.354 0.370 0.370 0.276 0.431 0.282
222 275% 60.6% 0.358 0.94% 0.339 9.3% 0.365 1.5% 0.259 6.8% 0.369 16.8% 0.229 23.0%
333 77.7% 22.4% 0.372 3.9% 0.339 0.032% 0.360 1.3% 0.444 41.7% 0.331 11.5% 0.229 0.12%
444 13.4% 4.3% 0.377 1.3% 0.339 0.24% 0.359 0.32% 0.479 7.2% 0.326 1.42% 0.228 0.54%
555 18.3% 3.5% 0.381 1.0% 0.339 0.09% 0.357 0.54% 0.457 4.8% 0.327 0.31% 0.232 1.6%

Table C.3: Convergence analysis for PZL.
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[l o 1o Jow [ony [ o Joni ] on [on o [omt | o [omt [ o [ory]
111 132 1.30 0.141 0.118 0.426 0.111 0.134

222 124 6.8% 1.38 5.5% 0.128 10.2% 0.124 5.0% 0.472 9.8% 0.108 2.83% 0.234 43.0%

333 108 14.1% 1.25 10.5% 0.130 2.0% 0.142 12.6% 0.553 14.6% 0.0930 16.49% 0.301 22.0%

444 103 5.7% 1.24 0.42% 0.115 12.9% 0.150 5.0% 0.681 18.8% 0.0790 17.70% 0.256 17.6%

555 103 0.00% 1.25 0.74% 0.112 3.0% 0.151 0.46% 0.713 4.5% 0.0784 0.78% 0.231 10.8%

666 103 0.64% 1.28 2.09% 0.110 2.1% 0.142 6.4% 0.715 0.33% 0.0864 9.22% 0.234 1.3%

L omer [ oo o [oii | om [oip | on Jogp | o Jaind [ o | o | o | i |
111 15.8 11.5 12.7 17.1 10.9 20.7

222 43.0% 7. 7% 15.8 0.38% 11.9 3.2% 12.9 1.4% 17.5 2.3% 11.2 2.98% 19.6 5.7%

333 30.5% 11.8% 15.3 3.2% 12.4 3.7% 13.3 2.7% 14.9 16.9% 12.0 6.60% 15.0 30.5%

444 18.8% 8.6% 14.9 2.6% 12.9 4.2% 13.3 0.49% 12.8 16.3% 12.6 4.50% 14.6 2.8%

555 10.8% 2.7% 14.6 2.1% 13.1 1.7% 13.5 1.0% 12.3 4.5% 12.7 0.90% 14.8 1.7%

666 9.2% 2.5% 14.4 1.8% 13.3 0.95% 13.7 1.8% 12.2 0.92% 12.5 1.35% 14.7 1.2%

Table C.4: Convergence analysis for TL.
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C.3 All Graphs for all Experiments, FE Model

The dotted lines in the graphs denote the experimental data and the solid

lines denote the model results.
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Graph of FE model, experiment 1, CL
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Figure C.1: This graph shows the result of the FEM model for experiment 1, CL.
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Graph of FE model, experiment 1, SFL
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Figure C.2: This graph shows the result of the FEM model for experiment 1, SFL.
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Graph of FE model, experiment 1, PZL
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Figure C.3: This graph shows the result of the FEM model for experiment 1, PZL.
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Graph of FE model, experiment 1, TL
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Figure C.4: This graph shows the result of the FEM model for experiment 1, TL.
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Graph of FE model, experiment 2, CL
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Figure C.5: This graph shows the result of the FEM model for experiment 2, CL.
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Graph of FE model, experiment 2, SFL
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Figure C.6: This graph shows the result of the FEM model for experiment 2, SFL.
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Graph of FE model, experiment 2, PZL
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Figure C.7: This graph shows the result of the FEM model for experiment 2, PZL.
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Graph of FE model, experiment 2, TL
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Figure C.8: This graph shows the result of the FEM model for experiment 2, TL.



216 APPENDIX C. ADDITIONAL DATA FOR FE MODEL

Graph of FE model, experiment 3, CL

NSx FNx SFx
40
20
0
-20
-40
-1 0 1
NSz FNz SFz
60 20
20
10
0

NFx FSx SNx

-1 0 1 -1 0 1 -1 0 1
NFz FSz SNz
30
20
10
0

Figure C.9: This graph shows the result of the FEM model for experiment 3, CL.
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Graph of FE model, experiment 3, SFL
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Figure C.10: This graph shows the result of the FEM model for experiment 3, SFL.
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Graph of FE model, experiment 3, PZL
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Figure C.11: This graph shows the result of the FEM model for experiment 3, PZL.
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Graph of FE model, experiment 3, TL
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Figure C.12: This graph shows the result of the FEM model for experiment 3, TL.
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Graph of FE model, experiment 4, CL
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Figure C.13: This graph shows the result of the FEM model for experiment 4, CL.
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Graph of FE model, experiment 4, SFL
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Figure C.14: This graph shows the result of the FEM model for experiment 4, SFL.
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Graph of FE model, experiment 4, PZL
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Figure C.15: This graph shows the result of the FEM model for experiment 4, PZL.
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Graph of FE model, experiment 4, TL
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Figure C.16: This graph shows the result of the FEM model for experiment 4, TL.
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Graph of FE model, experiment 5, CL
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Figure C.17: This graph shows the result of the FEM model for experiment 5, CL.



C.3. ALL GRAPHS FOR ALL EXPERIMENTS, FE MODEL 225

Graph of FE model, experiment 5, SFL
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Figure C.18: This graph shows the result of the FEM model for experiment 5, SFL.
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Graph of FEM model, experiment 5, PZL
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Figure C.19: This graph shows the result of the FEM model for experiment 5, PZL.
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Graph of FE model, experiment 5, TL
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Figure C.20: This graph shows the result of the FEM model for experiment 5, TL.
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Graph of FE model, experiment 6, CL
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Figure C.21: This graph shows the result of the FEM model for experiment 6, CL.
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Graph of FE model, experiment 6, SFL
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Figure C.22: This graph shows the result of the FEM model for experiment 6, SFL.
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Graph of FE model, experiment 6, PZL
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Figure C.23: This graph shows the result of the FEM model for experiment 6, PZL.
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Graph of FE model, experiment 6, TL
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Figure C.24: This graph shows the result of the FEM model for experiment 6, TL.
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