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Abstract. Branch indices of points on curves (introduced by Urysohn
and Menger) are of basic importance in the mathematical theory of
curves, defined in Euclidean space. This paper applies the concept of
branch points in the 3D orthogonal grid, motivated by the need to an-
alyze curve-like structures in digital images. These curve-like structures
have been derived as 3D skeletons (by means of thinning). This paper
discusses approaches of defining branch indices for voxels on 3D skele-
tons, where the notion of a junction will play a crucial role. We illustrate
the potentials of using junctions in 3D image analysis based on a recent
project of analyzing the distribution of astrocytes in human brain tissue.
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1 Introduction and Basic Notions

Our theoretical studies on discrete versions of 3D branch indices have been ini-
tiated within a recent project about the analysis of confocal microscope images
of human brain tissue. Those images are taken layer by layer and constitute a
volume, which we assume to be defined within a regular orthogonal grid in 3D
space. Figure 1 shows such a volume where 3D rendering has been used.

This 3D view clearly shows some type of “curve-like structures”, which can
be analyzed after segmentation, skeletonization, and property calculations for
voxels on skeletons. Similar curve-like structures appear in other biomedical
images such as, for example, in 3D scans of blood vessels, or in 3D ultrasound
images.

Long term observations in the School of Medicine at The University of Auck-
land produced the hypothesis that the number, distribution and “complexity”
of astrocytes (i.e., brain cells whose shape resembles that of a star) are related
to brain normality or defined types of abnormality (e.g., epilepsy). However, the
intuitive concept of “complexity” requires a definition and quantitative studies,

Following discussion with colleagues from the School of Medicine we decided
to focus on the number, distribution and complexity of “junctions” of curve-like
structures. This paper will provide a definition of such junctions, and discusses
consequences of the chosen definition. The definition is an adaptation of basic
concepts in 3D curve theory of Euclidean space.



Fig. 1. Example of an input data set of 42 slices of 256 x 256 density images, all
generated by confocal microscopy from a sample of human brain tissue: The astrocytes
are partially located around a blood vessel having approximately “Y-shape” (from
lower left to upper right) in this sample.

As a first step we point out that 3D topological thinning algorithms (see [10,
4]) deliver skeletons which consist of different “types” of voxels, characterized
by branching index. Branching indices will then allow to cluster specific voxels
into “junctions”. We then map the 3D skeleton into an undirected graph where
nodes are defined by junctions and endvoxels. We also propose ways of labeling
this graph for supporting the quantitative analysis of curve-like structures. This
will be illustrated for the shown sample (in Figure 1) of brain tissue.

We use common adjacency concepts: 4-, 8- (in 2D), 6-, 18-, 26- (in 3D) for
the grid point model, and 0-, 1- (in 2D), 0-, 1-, 2- (in 3D) for the grid cell model
(see Figure 2 for an illustration in the grid cell model), with notations as in [6].
Any of these adjacency relations A,, a € {0,1,2,4,6,8,18,26}, are irreflexive
and symmetric. The a-neighborhood N, (p) of a pixel or voxel location p includes
p and its a-adjacent pixel or voxel locations.



Fig. 2. Neighborhoods (left) N2(p), (middle) Ni(p) (right), and No(p).

Concepts for describing curve points in a continuous space are known for
more than 80 years (see [6] for a review). P. Urysohn in 1923 and K. Menger
in 1932 proposed (independently) equivalent definitions for simple curves (arcs)
based on the notion of the branching index of a point on a curve (arc). The
branching index of a point on a curve was defined as follows:

Definition 1. Let p be a point, € be a positive real, and U.(p) be the e-neighbor-
hood of p. A curve v has branching index m > 0 at p € v iff (read: if and only
if) for any r > 0, there is an € < r such that the cardinality of the ~y-frontier of
U:(p) N~ is at most m.

Figure 3 shows two examples where ¢ has branching index 4 and p has branch-
ing index 2. It is obvious that the branching index of a curve point p € 7y in the
Euclidean space is the number of crossings of a circle (with radius e < r and
middle point p) and curve v. For all circles close enough to p this number has
to be constant for defining a branching index.

A simple curve in the Euclidean space is a curve 7 in which every point p € ~
has branching index 2. A simple arc is either a curve in which every point p has
branching index 2 except for two endpoints, which have branching index 1, or a
simple curve with one of its points labeled as an endpoint.

Fig. 3. U-(¢) Ny =4 and U-(p) Ny = 2, assuming that ¢ is sufficiently small.



An application of those concepts in the 3D digital space (based on 0-adjacency
in the cell model) may lead to the following definitions:

digital curve p has branching indexr m > 0 at voxel p € p iff exactly m
0-adjacent voxels are elements of p;

— voxel p € p is regular iff p has branching index 2;

— p € pis a branch vozel iff p has a branching index of at least 3;

— p € pis an endvozel iff p has branching index 1;

— p € pis a singular vozel iff p is either a branch voxel or an endvoxel;

— the digital curve p in 3D space is simple iff every voxel in + is regular; and
— pis a simple arciff it is either a curve in which every voxel p is regular except
for two endvoxels, or a simple curve where one of its voxels is labeled to be
a (double) endvoxel.

This results into limitations of branching indices at voxels which restricts the
generality of the concept.

2 Junctions and Abstract Curve Graphs

For ensuring unlimited branching indices we introduce specific clusters of branch
voxels. The need for unlimited branching indices occurred when studying 3D
skeletons of curve-like structures, produced by a 3D topological thinning algo-
rithm. See, for example, [10,4] for a discussion of 3D skeletonization. (Those
algorithms iteratively delete simple voxels until only non-simple voxels or end-
voxels remain.) A 3D curve skeleton p is a digital curve, which we consider with
respect to O-adjacency.

Definition 2. A 0-region of branch vozels of a digital curve p is called a junc-
tion. The branching index of a junction J in p is the number of reqular vozels
or end vozels in p being 0-adjacent to any one of the branch vozels in J.

Junction—s

Fig. 4. Example of a junction containing three voxels.



Figure 4 illustrates a junction which consists of three branch voxels. Note that a
junction is a non empty 0-connected set of branch voxels. A single branch voxel
also represents a junction (with cardinality one).

It follows that a junction has a branching index greater than 2. For example,
the branching index of the junction shown in Figure 4 is 3. The complexity of a
junction is measured by its branching index.

The following definition is useful for determining the geometric location of a
junction. Let J be a junction, n be the number of branch voxels p; constituting
J, with p; = (24,¥:), 1 < i < n. The centroid c¢(J) of J is a 3D point with
coordinates:

Z?:l Lp; Z?:l Yps Z?:l Zp;

= — = —— = —-—— 1
x Y 2 - (1)

We identify the geometric position of a junction with that of its centroid.

Definition 3. A digital curve p is mapped into an undirected graph G, where a
node of G is either a junction or an endvozel of p. Two nodes in G are connected
by an edge iff the corresponding junctions or endvozels are 0-connected in p. G
1s the abstract curve graph of p.

G is uniquely defined by the chosen adjacency (0-adjacency in our case). The
geometric positions of a junction or of an endvoxel define the geometric positions
of the nodes of G.

In experiments we assign indices to all nodes of the abstract curve graph.
All branch voxels of one junction obtain the same label this way. Edges of the
abstract curve graph correspond to digital arcs between junctions or endvoxels
of the curve. See Figure 5 for an example where the skeleton has been calculated
for a 3D brain tissue scan. Due to using only one label for all branch voxels of one
junction, different arcs may start from different branch voxels which all have the
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Fig.5. Left: a skeleton (junctions are shown as black voxels). Right: abstract curve
graph for this skeleton (nodes are labeled by indices).



same label. For example, By, in Figure 5 consists of three branch voxels. Each of
them is an endvoxel of a digital arc. We use the geometric position (i.e., centroid)
of B4 as endpoint for all of those three arcs, for example for the calculation of
the Euclidean distance to other nodes (i.e., junctions or endvoxels).

A straightforward application of this convention allows the calculation of
Euclidean distances between nodes. For a more accurate estimation of distances
between nodes we apply length estimation based on connecting digital arcs.
First we identify the two endvoxels for each arc. This can be done by a second
labeling process where all arcs are uniquely labeled. All voxels in one arc obtain
the same label; each branch voxel is mapped (say randomly) to exactly one arc
[5]. After these assignments, we apply a (global) DSS-based length measurement
(see [6]), where we decided for algorithm DR1995 as published in [1]. The
DSS algorithm cuts an arc into a set of digital straight segments, and the total
length is the sum of the lengths of those segments. We have chosenthe way of
DSS-based length estimations because (besides a general theoretical benefit of
being multigrid convergent to the true length) it also proved to be adequate for
characterizing the complexity of distributions of astrocytes.

The distances between pairs of singular voxels can now be used for calcu-
lating weights for all edges in the abstract curve graph (using means in case of
multiple arcs). Based on the cost matrix for this weighted graph together with
the coordinates of all nodes we then applied traditional algorithms from graph
theory (such as algorithms for calculating the minimum path between any two
nodes, algorithms for determining the total weight of the minimum spanning
tree, or algorithms for finding the diameter of the graph and so on) for further
analysis of the curve-like structure in the given 3D image.

We determined the uniformity of junctions as follows: The volume data are
divided into a set of subcubes (small cubes of identical size). For a fixed branching
index j, we count the number of junctions in each cube having branching index
j. If the number of junctions with branching index j is equal in every subcube
then we say that junctions of branching index j are wuniformly distributed in
the whole volume. The deviation from this ideal case characterizes the degree of
non-uniformity.

The division into subcubes can be fixed (a segmentation into pairwise disjoint
subcubes), or there can be a sliding subcube of varying size. In the examples
below we only illustrate the case of a fixed segmentation using pairwise disjoint,
uniformly sized cubes of voxels. (Sliding subcubes experiments are not reported
in this paper.)

For the description of the density of junctions we calculate the shortest path
between (unordered) pairs of distinct junctions with the same branching index j.
The shorter the path, the more dense are the junctions positioned in 3D space.
The total number of junctions in a subcube is a (simple) expression of density
of junctions in this subcube.

The data set shown in Figure 1 is divided into 36 subcubes, all of size 423.
(This also generates some excessive data.) See Figure 6 for the resulting curve
(3D skeleton). We illustrate the approach by results for this example data set.



Fig. 6. 3D skeleton of the binarized volume shown in Figure 1.

All identified junctions have branching indeces between 3 and 7. The shaded
cubes in Figure 7 correspond to the location of the main blood vessel, and they

Fig. 7. Location of a main blood vessel (shown as gray cubes) detected by analyzing
the 3D skeleton shown in Figure 6.



‘ Branching index j Junctions in V1 Junctions in V5 Ratio between V7 and Vg‘

i=3 150 276 54.3%
j=4 53 85 62.4%
i=5 16 21 76.2%
i=6 5 7 71.4%
i=7 2 2 100%
3<j<7 226 391 57.8%

Table 1. Number of junctions per branching index in the gray cubes (volume V;) and
in the total volume (volume V5).

contain in total more than 50% of all junctions, for each branching index between
three and seven. Table 1 presents the total number of junctions per branching
index for all the gray cubes (volume V;) and for the whole volume V5.

We counted the number of junctions of equal types per cube to find out how
they are distributed in the volume. Obviously, they are not (ideally) uniformly
distributed (see Table 2) in the whole volume. Most of them are located close to
the blood vessel.

The cardinality of junctions in this experiment did not exceed four and the
maximum branching index did not exceed seven. The original structure of the
image (elongated parts) and a range of preprocessing steps (segmentation and
noise reduction by a sequence of morphological operations) are reasons for keep-
ing the cardinality and the branching index at low values. Theoretically, this is
not always the case.
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Table 2. Distribution of junctions in subcubes: The horizontal axis represents the
numbers of subcubes, and the vertical axis represents the number of all junctions in a
subcube.



3 Properties of Junctions in 3D Curves

The branching index in the continuous space is defined for a single point p € ~
of a curve 7. With above definitions we merge a set (i.e., a 0-connected region)
of branch voxels into a single node in the abstract curve graph G. Interestingly,
the size of this region can grow behind any limit.

Fig. 8. A junction with cardinality 10 and m = 9.

The cardinality of a junction can grow if the image size or the grid resolution
grows. All black voxels in Figure 8 are non-regular with a branch index m > 3,
and all white voxels are endvoxels (if the white voxels would be regular then the
junction would not change). If endvoxel ¢ (as a grid cube) would share two more
vertices with two more voxels, then ¢ would change into a branch voxel; we could
continue this process of adding two more voxels to one of the new endvoxels. As
a consequence the junction would grow and the branching index could increase
behind any limit.

The maximum branching index for a junction with cardinality one is eight;
see Figure 9.

We recall the concept of an attachment set to separate branch voxels into
two types. The frontier of a voxel is the union of its six faces. A face of a voxel
includes its 4 edges, and each edge includes its 2 vertices. Let p be an n-cell,
0 < n < 3. The frontier of an n-cell p is a union of i-cells with 0 < i < n (i.e.,
excluding p itself). For example, if p is a voxel (a 3-cell) then the frontier consists
of eight 0-cells, twelve 1-cells and six 2-cells.

Kong [7] defined the I-attachment set of a cell p for the grid cell model as
follows, where I is an image:

Definition 4. Let p and q are grid cells. The I-attachment set of a n-cell p in I
is the union of all i-cells, 0 < i < n, on the frontier of p that also lie on frontiers
of other grid cells q¢ with I(p) = I1(q),p # q.



Fig. 9. A junction with cardinality 1 and m = 8.

Let m be the number of voxels in Ny(p) (.S and n the number of components
in the I-attachment set of p. A branch voxel p is called:

— a proper branch vozel if m = n,
— a normal branch vozel if m > n.

A junction is either a 0-region of normal branch voxels, or a proper branch
voxel. It follows that a proper branch voxel is a junction of cardinality one.
This definition splits the large junction in Figure 8 (for example) into three
disjoint junctions. The black voxels (see Figure 10) represent a new junction
with cardinality eight and m = 7. Voxels p and ¢ are disjoint junctions with
m = 3 each.

This approach increases the number and the density of junctions and it pre-
vents junctions from growing in a certain direction.

For the application of the DSS algorithm we use the centroid of each junction
J as a node in the abstract curve graph G, and each 0-connected regular voxel
or end voxel to J is a start (or end) voxel for the length measurement of a digital
arc between two nodes. We do not use voxels in junctions as start or end voxel

Fig. 10. Three 0-connected junctions, one formed by the dark gray voxels, and two
defined by single voxels each (voxels p and q).



for the DSS algorithm. The length between two nodes is the calculated length of
the arc between two nodes plus the Euclidean distance from the start voxel of the
arc to the centroid of the 0-connected junction (if it is connected to a junction)
plus the Euclidean distance from the end voxel of the arc to the centroid of the
O-connected junction (if it is connected to a junction).

4 Conclusions

In this paper we propose a classification of voxels in 3D skeletons for subsequent
length measurements of digital arcs. The definition of branch voxels follows curve
theory for the Euclidean space. Junctions are defined as 0-connected regions of
branch voxels. These junctions and their properties are useful for the analysis of
curve-like structures in biomedical images. An adjustment for the definition of
junctions is introduced to prevent arbitrary growth and to improve the accuracy
of length measurements using the DSS algorithm.
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