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Abstract. Since 1987 it is known that the Euclidean shortest path prob-
lem is NP-hard. However, if the 3D world is subdivided into cubes, all of
the same size, defining obstacles or possible spaces to move in, then the
Euclidean shortest path problem has a linear-time solution, if all spaces
to move in form a simple cube-curve. The shortest path through a sim-
ple cube-curve in the orthogonal 3D grid is a minimum-length polygonal
curve (MLP for short). So far only one general and linear (only with re-
spect to measured run times) algorithm, called the rubberband algorithm,
was known for an approximative calculation of an MLP. The algorithm
is basically defined by moves of vertices along critical edges (i.e., edges
in three cubes of the given cube-curve). A proof, that this algorithm al-
ways converges to the correct MLP, and if so, then always (provable) in
linear time, was still an open problem so far (the authors had success-
fully treated only a very special case of simple cube-curves before). In
a previous paper, the authors also showed that the original rubberband
algorithm required a (minor) correction.
This paper finally answers the open problem: by a further modification of
the corrected rubberband algorithm, it turns into a provable linear-time
algorithm for calculating the MLP of any simple cube-curve.
The paper also presents an alternative provable linear-time algorithm for
the same task, which is based on moving vertices within faces of cubes.
For a disticntion, we call the modified original algorithm now the edge-
based rubberband algorithm, and the second algorithm is the face-based
rubberband algorithm; the time complexity of both is in O(m), where m
is the number of critical edges of the given simple cube-curve.

1 Introduction

A cube-curve g is a loop of face-connected grid cubes in the 3D orthogonal grid;
the union g of those cubes defines the tube of g. The paper discusses Euclidean
shortest paths in such tubes, which are defined by minimum-length polygonal
(MLP) curves (see Figure 1).

The Euclidean shortest path problem is as follows: Given a Euclidean space
which contains (closed) polyhedral obstacles; compute a path which (i) connects
two given points in the space, (ii) does not intersect the interior of any obstacle,
and (iii) is of minimum Euclidean length. This problem (starting with dimension
2) is known to be NP-hard [2].

There are algorithms solving the approximate Euclidean shortest path prob-
lem in 3D in polynomial time, see [3]. Shortest paths or path planning in todays



Fig. 1. A cuboidal world: seven robots at the lower left corner, and the bold curve is
an initial guess for a 3D walk (or flight) through the given loop of shaded cubes. The
length of the 3D walk needs to be minimized, which defines the MLP.

3D robotics (see, for example, [15], or the annual ICRA conferences in general)
seems to be dominated by heuristics rather than by general geometric algorithms.
If a cuboidal world can be assumed then this paper provides two general and
linear-time shortest path algorithms.

3D MLP calculations generalize MLP computations in 2D; see, for example,
[8, 17] for theoretical results and [5, 21] for 2D robotics scenarios. Shortest curve
calculations in image analysis also use graph metrics instead of the Euclidean
metric; see, for example, [20].

Interest in 3D MLPs was also raised by the issue of multigrid-convergent
length estimation for digitized curves. The length of a simple cube-curve in 3D
Euclidean space can be defined by that of the MLP; see [18, 19], which can be
characterized as a ‘global approach’. A ‘local approach’ for 3D length estimation,
allowing only weighted steps within a restricted neighborhood, was considered
in [7]. Alternatively to the MLP, the length of 3D digital curves can also be
measured (within time, linear in the number of grid points on the curve) based
on DSS-approximations [4].

The computation of 3D MLPs was first time published in [1], proposing
a ‘rubberband’ algorithm1. This iterative algorithm was experimentally tested
and showed linear run-time behavior. It also was correct for all the tested inputs
(where correctness was tested manually!). However, in this publication, no math-

1 Not to be confused with a 2D image segmentation algorithm of the same name [16].



ematical proof was given for linear run time or general correctness (i.e., that its
solution iterates, for any simple cube-curve, to the MLP). This original rubber-
band algorithm is also published in the monograph [10]. Recent applications of
this algorithm are in 3D medical imaging; see, for example, [6, 22].

The authors approached the correctness and linearity problem of the rubber-
band algorithm along the following steps:

[11] only considered a very special class of simple cube-curves and developed
a provable correct MLP algorithm for this class. The main idea was to decompose
a cube-curve of that class into arcs at “end angles” (see Definition 3 in [11]),
that means, the cube-curves have to have end-angles, that the algorithm can be
applied.

[12] constructed an example of a simple cube-curve whose MLP does not have
any of its vertices at a corner of a grid cube. It followed that any of cube-curve
with this property does not have any end angle, and this means that we cannot
use the MLP algorithm as proposed in [11]. This was the basic importance of
the result in [12]: we showed the existence of cube-curves which require further
algorithmic studies.

[14] showed that the original rubberband algorithm requires a modification
(in its Option 3) to guarantee that calculated curves are always contained in the
tube g. This corrected rubberband algorithm achieves (as the original rubberband
algorithm) minimization of length by moving vertices along critical edges (i.e.,
grid edges incident with three cubes of the given simple cube-curve).

This paper now (finally) extends the corrected rubberband algorithm into
the edge-based rubberband algorithm and shows, that it is correct for any (!)
simple cube-curve. The paper also presents a totally new algorithm, the face-
based rubberband algorithm, and shows that it is also correct for any simple
cube-curve. We prove that both, the edge-based and the face-based rubberband
algorithm, have time complexity in O(m) time, where m is the number of critical
edges in the given simple cube-curve.

Further (say, ‘more elegant’) algorithms for calculating MLPs in simple cube-
curves may exist; this way this article may be just the starting point for more
detailed performance evaluations. Also, the given modifications of the original
rubberband algorithm might be not always necessary, or the simplest ones.

The paper is organized as follows: Section 2 describes the concepts used in this
paper. Section 3 provides mathematical fundamentals for our two algorithms.
Section 4 describes the edge-based and face-based rubberband algorithm, and
discusses their time complexity. Section 5 presents an example illustrating how
the edge-based and face-based rubberband algorithms are converging to identical
results (i.e., to the MLP ). Section 6 gives our conclusions.

2 Definitions

Following [10], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of a
grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices at its corners. Cells are either cubes, faces, edges, or vertices. The



intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck %= φ then either |i− k| = 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci
⋂

ck is a vertex.
A tube g is the union of all cubes contained in a cube-curve g. A tube is a

compact set in R3; its frontier defines a polyhedron. A curve in R3 is complete
in g iff it has a nonempty intersection with every cube contained in g. Following
[18, 19], we define:

Definition 1. A minimum-length curve of a simple cube-curve g is a shortest
simple curve P which is contained and complete in tube g. The length L(g) of g
is defined to be the length L(P ).

It turns out that such a shortest curve P is always a polygonal curve, called
MLP for short; it is uniquely defined if the cube-curve is not contained in a
single layer of cubes of the 3D grid (see [18, 19]). If it is contained in just one
layer then the MLP is uniquely defined up to a translation orthogonal to that
layer. We speak about the MLP of a simple cube-curve.

Figure 2 shows a simple-cube curve and (as bold polygonal curve) its MLP;
grid edges containing vertices of the MLP are also shown in bold.

Definition 2. A critical edge of a cube-curve g is a grid edge which is incident
with exactly three different cubes contained in g. If e is a critical edge of g and l
is a straight line such that e ⊂ l, then l is called a critical line of e in g or critical
line for short. If f is a face of a cube in g and one of f ’s edges is a critical edge
e in g then f is called a critical face of e in g or critical face for short.

Definition 3. A simple cube-curve g is called first-class iff each critical edge of
g contains exactly one vertex of the MLP of g.

Figure 3 shows a first-class simple cube-curve. The cube-curve shown in Figure 2
is not first-class because there are no vertices of the MLP on the following
critical edges: e1, e4, e5, e6, e8, e9, e10, e11 and e14 (will be later shown in the
experiments, summarized in Table 4).

Unfortunately, we need also a few rather technical definitions:

Definition 4. Let e be a critical edge of a simple cube-curve g and f1, f2 be
two critical faces of e in g. Let c1, c2 be the centers of f1, f2 respectively. Then
a polygonal curve can go in the direction from c1 to c2, or from c2 to c1, to visit
all cubes in g such that each cube is visited exactly once. If e is on the left of
line segment c1c2, then the orientation from c1 to c2 is called counter-clockwise
orientation of g. f1 is called the first critical face of e in g. If e is on the right of
line segment c1c2, then the direction from c1 to c2 is called clockwise orientation
of g.

Figure 2 shows all critical edges (e0, e1, e2, . . ., e18) and their first critical
faces (f0, f1, f2, . . ., f18) of a simple cube-curve g.



Fig. 2. A simple cube-curve and its MLP (see also Table 1).

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 -0.5 1 -0.5 -0.5 1 0.5
e1 -0.5 2 -0.5 -0.5 2 0.5
e2 -1.5 3 -0.5 -1.5 3 0.5
e3 -2.5 3 -0.5 -2.5 4 -0.5
e4 -3.5 3 -0.5 -3.5 4 -0.5
e5 -3.5 3 -1.5 -3.5 4 -1.5
e6 -4.5 3 -1.5 -4.5 4 -1.5
e7 -5.5 4 -2.5 -5.5 4 -1.5
e8 -6.5 4 -2.5 -5.5 4 -2.5
e9 -6.5 4 -2.5 -6.5 5 -2.5
e10 -6.5 4 -3.5 -6.5 5 -3.5
e11 -7.5 4 -3.5 -7.5 5 -3.5
e12 -7.5 4 -4.5 -7.5 5 -4.5
e13 -8.5 4 -5.5 -7.5 4 -5.5
e14 -8.5 4 -6.5 -8.5 4 -5.5
e15 -8.5 3 -6.5 -8.5 3 -5.5
e16 -9.5 -1 -5.5 -8.5 -1 -5.5
e17 -8.5 -2 -0.5 -8.5 -1 -0.5
e18 -0.5 -1 -0.5 -0.5 -1 0.5

Table 1. Coordinates of endpoints of critical edges shown in Figure 2 (also used later
in an experiment).

Definition 5. A minimum-length pseudo polygon of a simple cube-curve g, de-
noted by MLPP , is a shortest curve P which is contained and complete in tube
g such that each vertex of P is on the first critical face of a critical edge in g.



Fig. 3. A first-class simple cube-curve.

From results in [19] it follows that the MLPP of a simple cube-curve g is
unique. The number of vertices of an MLPP is the number of all critical edges
of g. p40p41 · · · p418 (see Table 3) is the MLPP of g as shown in Figure 2.

Let fi1, fi2 be two critical faces of ei in g, i = 1, 2. Let ci1, ci2 be the centers
of fi1, fi2 respectively, for i = 1, 2. Obviousely, the counter-clockwise orientation
of g defined by c11, c12 is identical to the one defined by c21, c22.

Definition 6. Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges
of g in the counter-clockwise orientation of g. Let fi be the first critical face
of ei in g, and pi be a point on fi, where i = 0, 1, 2, . . ., m or m + 1. Then
the polygonal curve p0p1 · · · pmpm+1 is called an approximate minimum-length
pseudo polygon of g, denoted by AMLPP .

The polygonal curve p10p11 · · · p118 (see Table 2) is an AMLPP of g shown
in Figure 2.

Definition 7. Let p1, p2 and p3 be three consecutive vertices of an AMLPP of
a simple cube-curve g. If p1, p2 and p3 are colinear, then p2 is called a trivial
vertex of the AMLPP of g. p2 is called a non-trivial vertex of the AMLPP of
g if it is not a trivial vertex of that AMLPP of g.

A simple cube-arc is an alternating sequence a = (f0, c0, f1, c1, . . . , fk, ck, fk+1)
of faces fi and cubes ci with fk+1 %= f0, denoted by a = (f0, f1, . . . , fk+1) or
a(f0, fk+1) for short, which is a consecutive part of a simple cube-curve. A subarc
of an arc a = (f0, f1, . . . , fk+1) is an arc (fi, fi+1, . . . , fj), where 0 ≤ i ≤ j ≤ k.

Definition 8. Let a polygonal curve P = p0p1 · · · pmpm+1 be an AMLPP of g
and pi ∈ fi, where fi is a critical face of g, i = 0, 1, 2, . . ., m or m + 1. A
cube-arc ρ = (fi, fi+1, . . . , fj) is called



– a (2,3)-cube-arc with respect to P if each vertex pk is identical to pk−1 or
pk+1, where k = i +1, . . ., j - 1, 2

– a maximal (2,3)-cube-arc with respect to P if it is a (2,3)-cube-arc and pi is
not identical to pi+1 and pi−1, and pj is not identical to pj−1 and pj+1,

– a 3-cube-arc unit with respect to P if it is a (2,3)-cube-arc such that j = i
+ 4 (mod m + 2) and pi+1, pi+2, pi+3 are identical.

– a 2-cube-arc with respect to P if it is a (2,3)-cube-arc and no three consec-
utive vertices of P on a are identical,

– a maximal 2-cube-arc with respect to P if it is both a maximal (2,3)-cube-arc
and a 2-cube-arc as well,

– a 2-cube-arc unit with respect to P if it is a 2-cube-arc such that j = i + 3
(mod m + 2) and pi+1 is identical to pi+2,

– a regular cube-arc unit with respect to P if a = (fi, fi+1, fj) such that pi is
not identical to pi+1 and pj is not identical to pi+1,

– a cube-arc unit with respect to P if a is a regular cube-arc unit, 2-cube-arc
unit or 3-cube-arc unit, or

– a regular cube-arc with respect to P if no two consecutive vertices of P on
a are identical.

Let P18i = pi0p11 · · · p118 (see Table 2), where i = 1, 2, 3, 4. Then there are
four maximal 2-cube-arcs with respect to P18i : (pi18 , pi0 , pi1 , pi2), (pi2 , pi3 , pi4 ,
pi5), (pi7 , pi8 , pi9 , pi10) and (pi12 , pi13 , pi14 , pi15) in total, where i = 1, 2, 3. They
are also maximal 2-cube-arcs and 2-cube-arc units with respect to P18i , where
i = 1, 2, 3. There are no 3-cube-arc units with respect to P18i , where i = 1, 2,
3. (pi1 , pi2 , pi3) is a regular cube-arc unit with respect to P18i and (pi4 , pi5 , pi6 ,
pi7 , pi8) is a regular cube-arc with respect to P18i , where i = 1, 2, 3.

There are three maximal 2-cube-arcs with respect to P184 : (p418 , p40 , p41 , p42),
(p42 , p43 , p44 , p45), and (p412 , p413 , p414 , p415) in total. They are also maximal
2-cube-arcs and 2-cube-arc units with respect to P184 . (p46 , p47 , p48 , p49 , p410 ,
p411 , p412) is a (2,3)-cube-arc with respect to P184 . (p46 , p47 , p48 , p49 , p410) is a
unique 3-cube-arc unit with respect to P184 .

Definition 9. Let ρ = (fi, fi+1, . . . , fj) be a simple cube-arc and pk ∈ fk, where
k = i, j. A minimum-length arc with respect to pi and pj of ρ, denoted by
MLA(pi, pj), is a shortest arc (from pi to pj) which is contained and complete
in ρ such that each vertex of MLA(pi, pj) is on the first critical face of a critical
edge in ρ.

3 Basics

We provide mathematical fundamentals to be used in the following. We start
with citing a theorem from [9]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.
2 Note that it is impossible that four consecutive vertices of P on ρ are identical.



Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m+2 consecutive critical edges in a simple

cube-curve g, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical
lines. We express a point pi(ti) = (xi +kxiti, yi +kyiti, zi +kziti) on li in general
form, with ti ∈ R, where i = 0, 1, . . ., or m + 1.

Let ei, ej , and ek be three (not necessarily consecutive) critical edges in a
simple cube-curve.

Lemma 1. ([11], Lemma 1) Let dj(ti, tj , tk) = de(pi, pj) + de(pj , pk). It follows
that ∂2dj

∂tj
2 > 0.

By elementary geometry, we also have:

Lemma 2. Let P be a point in 'ABC such that P is not on any of the three
line segments AB,BC and CA. Then dPA + dPB < dCA + dCB.

The following Lemma is straightforward but useful in our description of the
edge-based rubberband algorithm in Section 4.

Lemma 3. Let pi and pi+1 be two consecutive vertices of an AMLPP of g. If
pi is identical to pi+1 then pi and pi+1 are on a critical edge of g.

Lemma 4. ([13], Lemma 4) The number of MLPP s of a first-class simple cube-
curve g is finite.

Let pi ∈ fi, where fi is the first critical face of ei in g, i = 0, 1, 2, . . ., m or
m + 1. Let P be a polygonal curve p0p1 · · · pmpm+1 .

Corollary 1. The number of MLPP s of a simple cube-curve g is finite.

Proof. If there is a vertex pi ∈ fi such that pi is not on an edge of fi (i.e, pi is
a trivial vertex of MLPP ), then pi−1, pi and pi+1 are colinear. In this case, pi

can be ignored because it is defined by pi−1 and pi+1. Therefore, without loss
generality, we can assume that each pi is on one edge of fi, where i = 0, 1, 2,
. . ., m or m+1. In this case, the proof of this lemma is exactly the same as that
of Lemma 4. ()

Fig. 4. Illustration for the proof of Lemma 2.



Lemma 5. ([13], Lemma 14) Each first-class simple cube-curve g has a unique
MLPP .

Analogous to the proof of Lemma 5, we also have

Lemma 6. Each simple cube-curve g has a unique MLPP .

Theorem 2. P is an MLPP of g iff for each cube-arc unit a = (fi, fi+1, . . . , fj)
with respect to P , the arc (pi, pi+1, . . . , pj) is equal to MLA(pi, pj).

Proof. The necessarity is straightforward. The sufficiency is by Lemma 6. ()

Analogously to the proof of Theorem 1 we also obtain

Lemma 7. If a vertex p of an AMLPP of g is on a first critical face f but not
on any edge of it, then p is a trivial vertex of the AMLPP .

4 Algorithms

We present two algorithms which are both linear-time and provable convergent
to the MLP of a simple cube-curve. We start to describe some useful procedures
which will be used in those two algorithms (as subroutines).

4.1 Procedures

Given a critical e in g, and two points p1 and p3 in g, by Procedure 1, we can
find a unique point p2 in f such that dp1p2 + dp3p2 = min{dp1p + dp3p : p ∈ e}.

Procedure 1
Let the two endpoints of e be a and b. Then by Lemma 6 of [13], p2 = a

+ t ∗ (b − a), where t = −(A1B2 + A2B1)/(B2 + B1), A1, A2, B1 and B2 are
functions of the coordinates of p1, p3, a and b.

Given a critical face f of a critical edge in g, and two points p1 and p3

in g, by Procedure 2, we can find a point p2 in f such that dp1p2 + dp3p2 =
min{dp1p + dp3p : p ∈ f}.

Procedure 2
Case 1. p1p3 and f are on the same plane. Case 1.1. p1p3 ∩ f %= φ. In this

case, p1p3 ∩ f is a line segment. Let p2 be the end point of this segment such
that it is close to p1. Case 1.2. p1p3 ∩ f = φ. By Lemmas 2, p2 must be on the
edges of f . By Lemmas 1, p2 must be uniquely on one of the edges of f . Apply
Procedure 1 on the four edges of f , denoted by e1, e2, e3 and e4, we get p2i such
that dp1p2i + dp3p2i = min{dp1p + dp3p : p ∈ ei}, where i = 1, 2, 3, 4. Then we
can find a point p2 such that dp1p2 + dp3p2 = min{dp1p2i +dp3p2i : i = 1, 2, 3, 4.}.



Case 2. p1p3 and f are not on the same plane. Case 2.1. p1p3 ∩ f %= φ. It
follows that p1p3 ∩ f is a unique point. Let p2 be this point. Case 2.2. p1p3 ∩ f
= φ. In this case, p2 can be found exactly the same way as in Case 1.2.

The following procedure is used to convert an MLPP into an MLP .

Procedure 3
Given a polygonal curve p0p1 · · · pmpm+1 and three pointers addressing ver-

tices at positions i - 1, i, and i + 1 in this curve. Delete pi if pi−1, pi and pi+1

are colinear. Next, the subsequence (pi−1, pi, pi+1) is replaced in the curve by
(pi−1, pi+1). Then, continue with vertices (pi−1, pi+1, pi+2) until i + 2 is m +
1.

Let pi ∈ li ⊂ fi ,. . ., pj ∈ lj ⊂ fj be some consecutive vertices of the AMLPP
of g, where fi, . . ., fj are some consecutive critical faces of g, and lk is a line
segment on fk, k = i, i + 1, . . ., j. Let ε = 10−10 (this value defines the ac-
curacy of the output of this algorithm). We can apply the method of Option 3
of rubberband algorithm (page 967, [1], and see correction in [14]) on cube-arc
ρ = (fi, fi+1, . . . , fj) to find an approximate MLA(pi, pj) as follows:

Procedure 4
1. Calculate the length of arc pipi+1 · · · pj−1pj , denoted by L1;
2. Let k = i+1;
3. Take two points pk−1 ∈ fk−1 and pk+1 ∈ fk+1;
4. For line segment lk on a critical face fk in g, and points pk−1 and pk+1 on

lk−1 and lk+1, respectively, apply Procedure 1 to find a point qk ∈ lk such that
dpk−1qk + dpk+1qk = min{dpk−1p + dpk+1p : p ∈ lk}. Let pk = qk.

5. k = k + 1;
6. If k = j, calculate the length of arc pipi+1 · · · pj−1pj , denoted by L2.
7. If L1 - L2 > ε, let L1 = L2 and go to Step 2. Otherwise, output the arc

pipi+1 · · · pj−1pj .

Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges of g in the
counter-clockwise orientation of g. Let fi be the first critical face of ei in g, and
ci be the center of fi, where i = 0, 1, 2, . . ., m or m + 1. All indices of points,
edges and faces are taken mod m + 2. Let ε = 10−10. By Procedure 5, we can
compute an AMLPP of g and its length.

Procedure 5
1. Let P be a polygonal curve p0p1 · · · pmpm+1;
2. Calculate the length of P , denoted by L1;
3. Let i = 0;
4. Take two points pi−1 ∈ fi−1 and pi+1 ∈ fi+1;



5. For the critical face fi of an critical edge ei in g, and points pi−1 and pi+1

in fi−1 and fi+1, respectively, apply Procedure 2 to find a point qi in fi such
that dpi−1qi + dpi+1qi = min{dpi−1p + dpi+1p : p ∈ fi}. Let pi = qi.

6. i = i + 1;
7. If i = m + 3, calculate the length of the polygonal curve p0p1 · · · pmpm+1,

denoted by L2.
8. If L1 - L2 > ε, let L1 = L2 and go to Step 2. Otherwise, output the

polygonal curve p0p1 · · · pmpm+1 as an AMLPP of g and its length L2.

Given an n-cube-arc unit (fi, . . ., fj) with respect to a polygonal curve P of
g, where n = 2 or 3. Let pi ∈ fi and pj ∈ fj . We can find an MLA(pi, pj) by
the following procedure.

Procedure 6
1. Compute the set E = {e: e is an edge of fk, k = i +1, . . ., j - 1};
2. Let I = 1 and L = 100;
3. Compute the set SE = {S: S ⊆ E and |S| = I };
4. Go through each S ∈ SE, input pi, e1, . . ., el, pj to Procedure 4 to compute

an approximate MLA(pi, pj) such that it has minimal length with respect to all
S ∈ SE, denoted by AMLA(I, SE), where ek ∈ S, k = 1, 2 , . . ., l and l = |S|.
If the length of AMLA(I, SE) < L, let MLA(pi, pj) = AMLA(I, SE) and L =
the length of AMLA(I, SE);

5. Let I = I +1.
6. If I < n then go to Step 3. Otherwise, stop.

Lemma 8. For each cube-arc unit ρ = (fi, fi+1, . . . , fj) with respect to P ,
MLA(pi, pj) can be computed in O(1).

Proof. If ρ is a regular cube-arc unit, then MLA(pi, pj) can be found by Proce-
dure 2, which has complexity O(1). Otherwise, ρ is an n-cube-arc unit, where n
= 2 or 3. Then, by Lemma 7, MLA(pi, pj) can be found by Procedure 6, which
can be computed in O(1) because n = 2 or 3. ()

4.2 Algorithms

The original rubberband algorithm was published in [1] and slightly corrected
in [14]. We now extend this corrected rubberband algorithm into the following
(provable correct) algorithm.

The Edge-Based Rubberband Algorithm
1. Let P0 be the polygon obtained by the (corrected) rubberband algorithm;
2. Find a point pi ∈ fi such that pi is the intersection point of an edge of

P0 with fi, where i = 0, 1, 2, . . ., m or m + 1. Let P be a polygonal curve
p0p1 · · · pmpm+1;

3. Apply Procedure 6 to all cube-arc units of P . If for each cube-arc unit
ρ = (fi, fi+1, . . . , fj) with respect to P , the arc (pi, pi+1, . . . , pj) = MLA(pi, pj),



then P is the MLPP of g (by Theorem 2), and go to Step 4. Otherwise, go to
Step 3.

4. Apply Procedure 3 to obtain the final MLP .

The Face-Based Rubberband Algorithm
1. Take a point pi ∈ fi, where i = 0, 1, 2, . . ., m or m + 1;
2. Apply Procedure 5 to find an AMLPP of g, denoted by P ;
3. Find all maximal 2-cube-arcs with respect to P , apply Procedure 4 to

update the vertices of the AMLPP , which are on one of the 2-cube-arcs. (By
Lemma 3, the input line segments of Procedure 4 are critical edges.) Repeat
this step until the length of the updated AMLPP is sufficiently accurate ( i.e.,
previous length minus current length < ε);

4. Apply Procedure 5 to update the current AMLPP ;
5. Find all maximal (2,3)-cube-arcs with respect to the current P , apply

Procedure 4 to update the vertices of the current AMLPP , which are on one of
the (2,3)-cube-arcs. The input line segments of Procedure 4 can be found such
that they are on the critical face and parallel or perpendicular to the critical
edge of the face. Repeat this step until the length of the updated AMLPP is
sufficiently accurate;

6. Apply Procedure 5 to update the current AMLPP .
7. Apply Procedure 6 to all cube-arc units of P . If for each cube-arc unit

ρ = (fi, fi+1, . . . , fj) with respect to P , the arc (pi, pi+1, . . . , pj) = MLA(pi, pj),
then P is the MLPP of g (by Theorem 2), and go to Step 8. Otherwise, go to
Step 3.

8. Apply Procedure 3 to obtain the final MLP .

4.3 Computational Complexity

It is obvious that Procedures 1 and 2 can be computed in O(1), and Procedure
3 can be computed in O(m), where m is the number of critical edges of g. The
main operation of Procedure 4 is Step 4, which can be computed in O(n), where
n is the number of points of the arc. Analogously, Procedure 5 can be computed
in O(m), where m is the number of points of the polygonal curve.

[14] has proved that the (corrected) rubberband algorithm can be computed
in O(m), where m is the number of critical edges of g. The main additional oper-
ation of the edge-based rubberband algorithm is Step 3 which can be computed
in O(m), where m is the number of critical edges of g (by Lemma 8). It follows
that the edge-based rubberband algorithm can be computed in O(m), where m
is the number of critical edges of g.

For the face-based rubberband algorithm, Step 1 is trivial; Steps 2, 4, 6 have
the same complexity as Procedure 5. Step 3 can be computed in N1(ε)O(m),
where N1(ε) depends on the accuracy ε, where m is the number of points of
the polygonal curve. Analogously, Step 5 can be computed in N2(ε)O(m), where
N2(ε) depends on the accuracy ε (Note that there is a constant number of dif-
ferent combinations of input line segments of Procedure 4). By Lemma 8, Step 7



can be computed in O(m), where m is the number of critical edges of g. There-
fore, the face-based rubberband algorithm can be computed in O(m), where m
is the number of critical edges of g.

p1i x1i y1i z1i p2i x2i y2i z2i

p10 -0.5 1 0 p20 -0.5 1 -0.21
p11 -0.5 1 0 p21 -0.5 1 -0.21
p12 -1.5 3 -0.34 p22 -1.5 3 -0.34
p13 -2.5 3.29 -0.5 p23 -2.5 3.23 -0.5
p14 -2.5 3.29 -0.5 p24 -2.5 3.23 -0.5
p15 -3.5 3.5 -1.11 p25 -3.5 3.45 -1.11
p16 -4.15 3.64 -1.5 p26 -4.15 3.64 -1.5
p17 -5.5 3.94 -2.32 p27 -5.5 3.94 -2.32
p18 -5.8 4 -2.5 p28 -5.69 4 -2.5
p19 -5.8 4 -2.5 p29 -5.69 4 -2.5
p110 -6.5 4 -3.32 p210 -6.5 4 -3.32
p111 -6.65 4 -3.5 p211 -6.65 4 -3.5
p112 -7.5 4 -4.5 p212 -7.5 4 -4.5
p113 -7.95 4 -5.5 p213 -8 4 -5.5
p114 -7.95 4 -5.5 p214 -8 4 -5.5
p115 -8.5 3 -5.5 p215 -8.5 3 -5.5
p116 -8.5 -1 -5.5 p216 -8.5 -1 -5.5
p117 -8.5 -1 -0.5 p217 -8.5 -1 -0.5
p118 -0.5 -1 -0.1 p218 -0.5 -1 -0.1

Table 2. Comparison of results of steps of the face-based rubberband algorithm. p10 ,
p11 , . . ., p118 are the results of Step 2, and p20 , p21 , . . ., p218 are the results of Step 3.

p3i x3i y3i z3i p4i x4i y4i z4i

p30 -0.5 1 -0.21 p40 -0.5 1 -0.5
p31 -0.5 1 -0.21 p41 -0.5 1 -0.5
p32 -1.5 3 -0.41 p42 -1.5 3 -0.5
p33 -2.5 3.23 -0.5 p43 -2.5 3.22 -0.5
p34 -2.5 3.23 -0.5 p44 -2.5 3.22 -0.5
p35 -3.5 3.47 -1.13 p45 -3.5 3.48 -1.17
p36 -4.09 3.62 -1.5 p46 -4 3.61 -1.5
p37 -5.5 3.95 -2.38 p47 -5.5 4 -2.5
p38 -5.69 4 -2.5 p48 -5.5 4 -2.5
p39 -5.69 4 -2.5 p49 -5.5 4 -2.5
p310 -6.5 4 -3.4 p410 -6.5 4 -3.5
p311 -6.59 4 -3.5 p411 -6.5 4 -3.5
p312 -7.5 4 -4.5 p412 -7.5 4 -4.5
p313 -8 4 -5.5 p413 -8 4 -5.5
p314 -8 4 -5.5 p414 -8 4 -5.5
p315 -8.5 3 -5.5 p415 -8.5 3 -5.5
p316 -8.5 -1 -5.5 p416 -8.5 -1 -5.5
p317 -8.5 -1 -0.5 p417 -8.5 -1 -0.5
p318 -0.5 -1 -0.27 p418 -0.5 -1 -0.5

Table 3. Comparison of results of steps of the face-based rubberband algorithm. p30 ,
p31 , . . ., p318 are the results of Step 4, and p40 , p41 , . . ., p418 are the results of Step 7.



5 An Example

We approximate the MLP of the simple cube-curve g, shown in Figure 2. Table 1
lists all coordinates of critical edges of g. We take the centers of the first critical
faces of g to produce an initial polygonal curve for the face-based rubberband
algorithm. The updated polygonal curves are shown in Tables 3 2 and 3. We take
the middle points of each critical edge of g for the initialization of the polygonal
curve of the (corrected) rubberband algorithm. The resulting polygon is shown
in Table 4. Table 5 shows that the edge-based and face-based rubberband
algorithms converge to the same MLP of g.

finalpi xi yi zi

p40 -0.5 1 -0.5
p42 -1.5 3 -0.5
p43 -2.5 3.22 -0.5
p47 -5.5 4 -2.5
p412 -7.5 4 -4.5
p413 -8 4 -5.5
p415 -8.5 3 -5.5
p416 -8.5 -1 -5.5
p417 -8.5 -1 -0.5
p418 -0.5 -1 -0.5

Table 4. Results of the edge-based rubberband algorithm. p40 , p41 , . . ., p418 are the
vertices of the MLP of the simple cube-curve shown in Figure 2.

step initial 2 3 4 8 edge-based rubberband algorithm

length 35.22 31.11 31.08 31.06 31.01 31.01

Table 5. Lengths of calculated curves at different steps of the face-based rubberband
algorithm, compared with the length calculated by the edge-based rubberband algo-
rithm.

6 Conclusions

We have presented an edge-based and a face-based rubberband algorithm and
have shown that both are provable correct for any simple cube-curve. We also
have proved that their time complexity is O(m), where m is the number of
critical edges of g. The presented algorithms followed the basic outline of the
original rubberband algorithm [1].
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