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Abstract

This paper proposes algorithms for the analysis of sets of confocal microscope images of human brain
tissue which constitute a 3D volume. The identification of suitable features for curve-like structures in
these volumes is required for subsequent classification. The final goal is the distinction between brain
tissues of patients with different degrees of neurological deceases. The given volumes show varying
distributions, shapes and numbers of astrocytes (i.e., brain cells whose shape resembles that of of a
star). The hypothesis is that the “distribution” of astrocytes in brain tissue is related to the number
and distribution of branch nodes (clustered into junctions) in 3D skeletons of these cells. Segmentation
is followed by an application of a modified 3D thinning algorithm. Further analysis is based on our
definition of ‘junctions’ and new methods for locating such junctions. We characterize their distribution
based on subdividing the volume into subcubes, also using measures of complexity of junctions and
distances between junctions (based on different metrics).
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1 Introduction analysis task: given are these volume data. How
to analyze the curve-like structures given in these
Curve-like structures appear in different types  volume data?
of 3D biomedical image analysis (e.g., analysis
of blood vessels). Our studies are based on sets
of confocal microscope images of human brain
tissue which constitute a volume. Figure 1 shows
a 3D view of such a volume. This example
illustrates the topological complexity of “bright
curve-like structures” defined by blood vessels
and astrocytes. Blood vessels are basically only
apparent because astrocytes are attached to them.
The shown example contains a “Y-shaped” blood
vessel, reaching from lower left to upper right.
Our studies are thus not about 3D structures of
blood vessels; however, the given distribution of
astrocytes is influenced by them.

The general layout of processing steps is kind of
straightforward: (1) segmentation and noise re-
duction, (2) 3D curve thinning, (3) branch node

The state of neurological deceases can be char-
acterized by medical experts just by looking at
these images. These evaluations are based on ex-
perience, and they are subjective. Given reason-
ing points out that the “3D structure” of astro-
cytes, characterized by “density” (numbers of cells
per volume) and “complexity” (numbers of curve-
like patterns per volume and their topological fea-
tures), is essential for this characterization. In our
project we identified features which allow objective
measurements. In a next step we have to verify
these quantitative features with medical experts. ~ Figure 1: Example of an input data set of 42 slices
Therefor, this report is basically about an image  ©of 256 x 256 gray-level images.




identification and arc labeling, and (4) analysis of
junctions. (The definition of branch nodes follows
the classical curve theory of Urysohn and Menger,
and junctions will be defined as special clusters of
branch nodes.) The paper is structured following
these processing steps.

2 Segmentation and Noise Reduction

Global thresholding allowed acceptable results. A
threshold was calculated based on assuming bi-
modal gray level histograms. A result using thresh-
old 55 is shown in Figure 2 (for the data set shown
in Figure 1).
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Figure 2: 3D image showing a set of 42 binarized
2D images.

Noise reduction was achieved by applying a se-
quence (optimized based on experiments) of mor-
phological operations. We decided for 18-closing
followed by 6-opening.

3 3D Thinning

3D thinning is a process of repeated removals of
simple voxels. In [2, 7] we highlighted the benefit
of describing non-simple voxel for achieving a faster
version of the thinning algorithm published in [4,
5, 6]. This algorithm applies the concept of delet-
ing simple voxels in 3D sequential 6-subiterations.
Original and modified algorithm produce 3D skele-
tons, where results are basically identical besides
length reductions at terminal arcs (having only
one endpoint in the 3D skeleton) for the modified
algorithm.

In this paper we focus on defining junctions in
these skeletons, and we determine the complexity,

Figure 3: Subcube visualized by VTK (left) and
(in form of cubes) by OpenGL (right).

relative location and distribution of junctions to
describe astrocytes (and, to some extent, blood
vessels). Basically, a junction is defined by arcs
of the skeleton (details follow further below).

We subdivide the volume into subcubes (i.e.,
equally sized small cubes) and we analyze the
number of junctions and (different types of)
distances between them. Figure 3 shows a
subcube of data of the binarized volume shown in
Figure 2. As an example of a local configuration,
at the voxel labeled by p we have that two
non-connected parts “visually overlap” in 3D with
respect to the chosen viewing direction.

The results of thinning for the subcube in Figure 3
are shown in Figure 4. In the left image (result
of the original algorithm) we used labels to indi-
cate the different parts in the resulting skeletons
at some places. The modified algorithm reduces
the length of arcs with endpoints pl,p2,...,p7. This
is not a disadvantage for the following processes
because we are interested to identify junctions, and
in measurements between them. Both algorithms
deliver topologically equivalent skeletons. We de-
cided for use of the modified algorithm as described
in [2].

Our thinning algorithm delivers a skeleton, and
(due to the topological invariance of our thinning
algorithm) there exists a bijective mapping
between the components of the skeleton and the
components in the binarized volume.
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Figure 4: 3D skeletons of original (left) and
modified (right) thinning algorithm.



4 Branch Nodes and Junctions

Each component of a skeleton consists of digital
arcs, defined by two endvoxels, and having no in-
tersection with any other arc of the skeleton. (See
[3] for used approaches and basic definitions in
digital geometry.) We may use different metrics
to measure the length of these arcs (measured be-
tween both endvoxels).

We distinguish between three types of voxels in
a 3D skeleton: branch voxels, regular voxels, and
endvoxels. An arc starts with either a branch voxel
or an endvoxel of the skeleton, ends with another
branch voxel or another endvoxel of the skeleton,
and it consists of a finite number of connected
regular voxels. Several branch voxels may cluster
together to form a junction. Figure 5 displays a
junction consisting of three branch voxels, where
each corresponds to an endvoxel of one arc. For
each of these branch voxels, we need to identify
the “opposite” endvoxel of “its” arc.

Junction—s

Figure 5: Example of a junction.

4.1 Definitions

We use common adjacency definitions: 4-, 8-
(2D), 6-, 18-, 26- (3D) for the grid point model,
and 0-, 1- (2D), 0-, 1-, 2- (3D) for the grid cell
model. Any of these adjacency relations A,
a € {0,1,2,4,6,8,18,26}, are irreflexive and
symmetric. The a-neighborhood N, (p) of a pixel
(voxel) p includes p and its a-adjacent pixels
(voxels).

Concepts for describing curve points in a continu-
ous space are applied to the 3D digital space (see
[3]). P. Urysohn in 1923 and K. Menger in 1932
proposed equivalent definitions for simple curves
(arcs) based on the notion of the branching index
of a point in a curve (arc). The branching index of
a point in a curve was defined as follows:

Let p be a point, € be a positive real, and U (p) be
the e-neighborhood of p. A curve v has branching
index m > 0 at p € v iff, for any r > 0, there is a
€ < r such that the cardinality of the y-frontier of
U:(p) N~ is at most m.

A simple curve is a curve in which every point p
has branching index 2. A simple arc is either a
curve in which every point p has branching index
2 except for two endpoints, which have branching
index 1, or a simple curve with one of its points
labeled as an endpoint.

Above we listed the three different types of voxels
of a 3D curve skeleton. Formally we define these
as follows; a voxel p of a 3D curve skeleton S is

e a regular voxel if p has branching index 2;

e a branch voxel if p has branching index of at
least 3;

e an endvoxel of S if p has branching index 1;

e a singular voxel if p is either a branch voxel or
an endvoxelof S.

In a 3D curve skeleton S, we may have 0-adjacent
branch voxels (see Figure 5), and a 0O-region of
branch voxels of S is called a junction. Note that a
junction is a non empty 0-connected set of branch
voxels. A single branch voxel also represents a
junction (with cardinality one).

The branching index of a junction J of a skeleton
S is the number of regular voxels in S, which are
0-adjacent to one of the branch voxels in J.

It follows that a junction has a branching index
greater than 2. For example, the branching index
of the junction shown in Figure 5 is 3. The com-
plexity of a junction is measured by its branching
index.

A node of a skeleton S is either a junction or an
endvoxel of S.

The following definition is useful for determining
the geometric position of a junction of an arc. Let
J be a junction, n be the number of branch voxels
p; constituting J, with p; = (x5,y:), 1 < i <
n. The centroid ¢(J) of J is a 3D point with
coordinates:
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We identify the geometric position of a junction
with that of its centroid.

4.2 Algorithms

We uniquely assign labels to all nodes of a skeleton.
(All branch voxels of one junction obtain the same
label.) This results into labeled nodes of an undi-
rected graph, where edges of the graph correspond
to digital arcs between nodes of the skeleton. See
Figure 6 for an example.



Figure 6: Above: a skeleton. Below: undirected
graph after labeling

Due to using only one label for all branch voxels of
one junction, different arcs may start from different
branch voxels which all have the same label. For
example, Byy in Figure 6 consists of three branch
voxels. Each of them is an endvoxel of a digital arc.
We use the centroid of By, as geometric endpoint
for all these three arcs for the calculation of the
Euclidean distance to other nodes.

Skeletons of brain tissue contain a large number of
singular voxels and connecting arcs. For accurate
length measurements we apply a second labeling
process where all arcs are uniquely labeled. All
voxels on one arc get the same label; each branch
voxel is mapped (say, randomly) to exactly one
arc. After these assignments, we apply a (global)
DSS-based length measurement (see [3]), where we
decided for algorithm DR1995 as published in [1].

For testing alternatives, we also performed
distance measurements simply by using the
Fuclidean distance between geometric positions

of junctions (ignoring the curvedness of arcs),
and the number of voxels between junctions
(as a simple local length measure, known to be
not multigrid convergent to the correct length).
The Euclidean distance is indeed only a rough
estimation of the length of the digital arc because
it only returns the length of the straight line
between junctions. The DSS algorithm cuts an arc
into a set of digital straight segments and the total
length is the sum of the lengths of these segments.
We have chosen this algorithm because, besides
it general theoretical benefit of being multigrid
convergent to the true length, it also proved to be
more relevant for characterizing distributions of
astrocytes.

The distances between pairs of singular voxels
are now the weights in our undirected graph.
Based on the cost matrix for this weighted graph
together with the coordinates of all singular voxels
we can apply traditional algorithms from graph
theory (such as algorithms for calculating the
minimum path between any two nodes, algorithms
for determining the total weight of the minimum
spanning tree, or algorithms for finding the
diameter of the graph and so on) for further
analysis.

We determine the wuniformity of junctions as fol-
lows. The volume data are divided into a set of
subcubes (small cubes of identical size). For a
fixed branching index j, we count the number of

junctions in each cube having branching index j. If

the number of junctions with branching index j is
equal in every subcube then we say that junctions

Figure 7: 3D skeleton of the binarized volume
shown in Figure 2.
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Figure 8: Example of numbered subcubes.

of branching index j are wuniformly distributed in
the whole volume. The deviation from this ideal
case characterizes non-uniformity.

For the description of density of junctions we calcu-
late the shortest path between (unordered) pairs of
distinct junctions with the same branching index j.
The shorter the path, the more dense are the junc-
tions positioned in 3D space. The total number of
junctions in a subcube is a (simple) expression of
density of junctions in this subcube.

4.3 Experiments

This short paper only allows to report about a
selection of experimental results. For experiments
using the number of junctions we subdivided the
volume into uniformly sized, disjoint subcubes. For
the data set shown in Figure 1, we used 36 sub-
cubes, all of size 423. This also generates some
excessive data, see Figure 7. (Sliding subcubes
experiments are not reported in this paper.) We
report about results for this data set.

We analyze the total number of junctions with a
branching index between three and seven. In this
data set, about 70% of all junctions have branching

Figure 9: Location of main blood vessel shown as
gray cubes

Branching Number of Biin MNumber of Biin A1 i AZ
Index | Colored Cubes (A1) all cubes (Az)
j=3 150 276 54 3%
j=4 53 25 624%
j=5 16 21 T62%
j=6 5 7 T714%
j=7 2 2 100%

=7 226 391 57 8%

Table 1: Number of junctions per branching index
in A1 and A2.

index three, and only two junctions have index
seven. The shaded cubes in Figure 9 are identified
by numbers of junctions; they coincide with the
location of the main blood vessel. These cubes
are characterized by a large number of junctions:
more than 50% of all junctions (for each branching
index between three and seven) are located in these
cubes.

Table 1 presents the total number of junctions per
branching index for the gray cubes in total (A1),
and for the whole volume (A2).

We counted the number of junctions of equal types
per cube to find out how they are distributed in
the volume. Obviously, they are not (ideally) uni-
formly distributed (see Table 2) in the whole vol-
ume. Most of them are located close to the blood
vessel. Subcubes 14, 23 and 29 are not incident
with the blood vessel, and they also have a large
number of junctions as shown in the diagram.

Experiments based on length measurements
showed in general similar results for identifying
subcubes with “higher structural complexity”.
The total length of all arcs increases in subcubes
closer to blood vessels. We illustrate again for our
example data set. Each subcube shown in light or
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Table 2: The z-axis represents the numbers of
subcubes, and the y-axis represents the number of
junctions.



Figure 10: The total length in grey subcubes is
greater than 195.

dark gray in Figure 10 has a total length of above
195.

Cubes 18, 23, 27 and 29 are dark grey but not
incident with the blood vessel.

In the illustrated experiment we divided the whole
volume into pairwise disjoint cubes. This subdi-
vision cuts digital arcs of the skeleton and it pro-
duces artificial endvoxels. It can also cut junctions.
These type of endvoxels are not problematic for
length measurements because they are endvoxels
of arcs in a subcube. Cutting junctions results in
a different complexity and a different number of
junctions. This problem can be solved by consider-
ing a sliding cube of fixed size that moves through
the volume: after each move of fixed step size we
count the number of junctions on the length of arcs.
These two features label the center of the subcube
at the given position. Allowing different sizes for
sliding subcubes is a further way for more detailed
studies. Approaches and algorithms are defined
and implemented; in a next step quantitative clas-
sifications need to be evaluated by medical experts.

5 Conclusions

We propose a sequence of processing steps to iden-
tify and quantify junctions in 3D images. Distri-
bution of junctions in subcubes is characterized
by numbers (for separate branching indices) and
total length of arcs between nodes. Distances be-
tween junctions were measured based on different
metrics. The result is (in each case) a weighted
undirected graph (for each subcube) which can be
used to apply graph algorithms. Experimental re-
sults support the hypotheses that there is a close
relationship between distributions of junctions and
distribution of astrocytes.
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