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Abstract
The paper starts with presenting three curvature estimators which follow definitions (approaches) in
differential geometry. Digital-straight segment (DSS) approximation is used in those estimators, we
point to problems caused by this approach, and propose simple ways for eliminating those problems. The
paper then informs about multigrid analysis experiments, where all estimators appear to be multigrid
convergent when digitizing an ellipse. The paper also applies these estimators for corner detection and
compares their performance with a recently published heuristic corner-detection approach by means of
multigrid analysis. Experiments indicate that corner detectors (based on curvature estimation) perform
about as good as the heuristic method for large grid resolutions, and one detector might be even superior.
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1 Introduction

‘Corner’ or ‘dominant point’ detection is important
for pattern or picture analysis. Many approaches
have been proposed, often based on heuristics.
We are particularly interested in those approaches
which follow (i.e., by means of digitization)
defined mathematical concepts in continuous
spaces, and how they perform compared to
heuristically defined corner detectors. Higher
resolution pictures support the applications of
methods derived from differential geometry.

A corner is (informally) defined as a high-curvature
point on a simple digital arc or curve. Corners can
be used to segment arcs or curves, for example in
concave and convex segments.

We refer to [6] for a recent comparison of algo-
rithms and methods for corner detection. Algo-
rithms are classified in this unpublished PhD with
respect to underlying methodology, which is often
based on heuristics rather than on curvature defi-
nitions in geometry. See [7] for an early example.
([5] contains a review of [6].)

The following section describes three methods for
estimating curvature along a digitized smooth
curve based on definitions in differential geometry
and compares those in an experiment focused on
multigrid convergence. Section 3 applies these
curvature estimators for corner detection, and
experiments on multigrid convergence also include
a heuristic method published in [1].

2 Curvature Estimation

We consider simple 8-curves ρ in the digital
plane Z2. Pixels pi in such a digital curve
ρ = p0, p1, · · · , pn−1 have coordinates (xi, yi).
Subscripts are modulo n; for example, pixel pi−k

with i − k < 0 coincides with pixel pn−1+i−k.

In order to detect a corner at pixel pi on a curve
ρ, it is common practice that a corner detector
considers an angular measure based on a prede-
cessor pi−kb

, pi itself, and a successor pi+kf
, where

kb, kf > 0 are fixed (e.g., both equal to k = 0.02·n)
or variables within a defined interval. Angular
measures resulting for possible values of kb and kf

are taken into account to identify pi as a corner or
not.

Non-adaptive specifications of possible values of kb

or kf do not reflect the shape of the given digital
curve. For example, a fixed value of k (e.g. k =
6) defines a local approach for corner detection.
Adaptive specifications of kb or kf can be based,
for example, on digital straight segment or DSS
approximation; see [2, 4]. 1 The benefit of this
approach is to have uniquely defined kb and kf for

1For DSS approximation we apply the linear-time algo-
rithm DR1995 of [3]. This algorithm is based on arithmetic
geometry. Let µ ∈ Z, and a and b be relatively prime
integers. The set

Da,b,µ = {(i, j) ∈ Z2 : µ ≤ ai + bj < µ + max{|a|, |b|}}

is a DSS. Algorithm DR1995 segments a digital curve into
a sequence of subsequent maximum-length DSSs.
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Figure 1: Curvature Definition

Algorithm 1 Curvature Estimation HK2003
Compute-curvature(Curve C)
For point p in C do
compute s1 (q, p) and s2 (p, q′) with DSS-Algorithm
compute θ1 = arctan

(
|q.x−p.x|
|q.y−p.y|

)
and θ2 = arctan

(
|p.x−q′.x|
|p.y−q′.y|

)
compute θ = 1

2 · θ1 + 1
2 · θ2

compute δ1 = |θ1 − θ| and δ2 = |θ2 − θ|
return 1

2 ·
δ1

‖s1‖2
+ 1

2 ·
δ2

‖s2‖2

3

Figure 1: Tangent based curvature estimation.

every point pi, and those values reflect the shape
of the curve.

2.1 Derivative of Tangent Angle

The curvature estimation method of [4] follows the
definition of curvature based on changes in orien-
tations of the tangent.

Let p and q be two points on a plane curve, and
δ the angle between positive directions of both
tangents at those points (see Figure 1). Curvature
κ at p is defined to be the limit

κ(p) = lim
pq→0

δ

pq

Algorithm HK2003 uses backward (ending at pi)
and forward (beginning at at pi) DSSs for approx-
imating the tangent at pi.

Algorithm 1 Curvature Estimation HK2003

Compute-curvature(Curve ρ)

For point pi in ρ do

compute kb and kf with DR1995

lb = d2(pi−kb
, pi) and θb = tan−1

(
|xi−kb

−xi|
|yi−kb

−yi|

)
lf = d2(pi+kf

, pi) and θf = tan−1

(
|xi+kf

−xi|
|yi+kf

−yi|

)
compute θ = 1

2 · θb + 1
2 · θf

compute δb = |θb − θ| and δf = |θf − θ|

return δb

2lb
+ δf

2lf

(Note that δb = δf .)

We use this algorithm (without alterations) as pro-
posed in [4]. Only positive values are returned and

Figure 2: The dashed circle is incident with points
qb, p, and qf ; it ‘moves’ into the osculating circle
centered at c.

therefore we are not able to obtain information
about convexity or concavity.

2.2 Radius of Osculating Circle

The osculating circle at a point p on a smooth curve
γ can be defined in differential geometry by a circle
that intersects γ at p and two points pb and pf

(left and right of p). Moving both points into p
results into the osculating circle at p with center c
(see Figure 2). The absolute value of curvature at
point p is then defined as the reciprocal value of
the radius r = d2(c, p).

The following calculation of the osculating circle
makes use of the geometric property that three
points uniquely define a circle. At point pi we
compute two DSSs as in HK2003. The algorithm
is as follows:

Algorithm 2 Curvature Estimation HK2005

Compute-curvature(Curve ρ)

For point pi in ρ do

compute kb and kf (with DR1995)

compute bisecting lines gb and gf of segments
pi−kb

pi and pi+kf
pi

compute c as intersection of gb and gf

compute radius r = d2 (c, pi)

return 1
r

2.3 Derivative of Curve

A parametrized curve γ(t) = (x(t), y(t)) allows
to calculate curvature based on derivatives; the
curvature is as follows

κ =

∣∣∣ x′

x′′
y′

y′′

∣∣∣
(x′2 + y′2)

3
2

(1)



[6] proposes to use second order polynomials to ap-
proximate the digital curve ρ locally at pi by using
also pixels pi−kb

and pi+kf
. The approximating

polynomial γ(t) = (x(t), y(t)) is defined by

x(t) = a2t
2 + a1t + a0, and

y(t) = b2t
2 + b1t + b0

with t ∈ [−1, 1]. Let t = −1 define pi−k, t = 0
specifies pixel pi, and t = 1 defines pi+k. In this
particular case, Equation (1) takes the following
form

κ =
2(a1b2 − a2b1)

(a2
1 + b2

1)
3
2

(2)

at point pi.

Values of a1, a2, b1 and b2 follow from the equa-
tional system

a2 − a1 + a0 = xi−kb

a0 = xi

a2 + a1 + a0 = xi+kf

and analogously for y; we obtain

a1 =
xi+kf

− xi−kb

2

a2 =
xi+kf

+ xi−kb

2
− xi

b1 =
yi+kf

− yi−kb

2

b2 =
yi+kf

+ yi−kb

2
− yi

Those values are used in Equation (2).

2.4 Multigrid Analysis

We perform multigrid experiments for those three
estimators in which we digitize elliptical discs of a
certain shape with increasing grid resolution. We
use Gauss digitization for digitizing these elliptical
discs

x2

a2
+

y2

b2
≤ 1, where a = 2 · b and 10 ≤ b ≤ 520

We extract 8-curves via border tracking of those
digital ellipses which are the input for curvature
estimators.

For every resolution b, we compute the mean mb

of absolute errors of estimated curvature at every
border pixel. Resulting scattered points are fil-
tered by a sliding mean using 1

39

∑19
i=−19 mb+i and

drawn in increments of 5 into the diagrams shown
in Figures 3 and 4.

The curvature at p = (x, y) on the frontier of the
elliptical disk is
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Figure 3: Error curves for DSS-based estimators.

1
κ

= a2b2

(
x2

a4
+

y2

b4

)
How to find a border pixel pi the corresponding
point p = (x, y) on the ellipse in order to compute
the absolute error?

A first option is that we identify p with pi. A sec-
ond option is that we choose p as the intersection
of the ellipse x2

a2 + y2

b2 ≤ 1 with the straight line
y = yi

xi
x.

We can see from Figure 3 that all three estimators
seem to be multigrid convergent. The smooth
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Figure 4: Error curves using just k = 0.02n.



curve represents HK2003, the curve with circles
HK2005, and the curve with stars represents
M2003. The line with plus signs shows the
difference between first and second option of error
measurements, which proves to be of marginal
impact. Errors are close to zero for b > 200.

Alternatively, we replaced all DSS-based calculated
values of kb and kf simply by a uniform value of
k = 0.02 · n. The results are shown in Figure 4.
We obtain slightly better results for all estimators!
This is probably due to the fact that an ellipse is
such a ‘uniformly smooth’ curve. We will see later
that derived corner detectors perform equally good
when applying curvature estimators being either
DSS-based or using uniformly a constant such as
k = 0.02n.

2.5 Possible Alterations

We noticed that the performance of DSS-based
curvature estimators is influenced by different
types of problems; both may appear as minor,
but they have definitely impacts on convergence
analysis (as already discussed in [4]).

ip

 +1ip - noise

DSS without noiseo
45
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evaluation

evaluation

evaluation

evaluation

Figure 5: Single pixel, not aligned with a DSS.

(i): Suppose we have a curve segment with small
curvature but containing a single pixel pi+1 which
is ‘not aligned with the segment’ (e.g., to be con-
sidered as noise), see Figure 5. If a DSS ends at
pi, then the next DSS will be the segment pipi+1,
which forms an angle of about 45◦ with the previ-
ous DSS, i.e., this will fall into the category of ‘high
curvature’. However, in general we rather prefer to
ignore this ‘noisy pixel’ pi+1. The conclusion here
could be that we do not use DSSs of length 2 for
defining kb or kf , but use k = 0.02 · n in this case.
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+9i
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p
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DSS refinement
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evaluation
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Figure 6: Parallel problem for DSS

(ii): Another problem is that we do not get an
angle 6= π at pi if it is at a center position on a DSS.
If we do accuracy experiments for digitized smooth

curves (with non-zero curvature everywhere), then
this will always result into an error at pi. We
could enforce non-zero curvature between pi−kb

pi

and pipi+kf
by ‘adding’ a pixel to the second end

of such a DSS as shown in Figure 6.

Both alterations reduce the measured errors of
DSS-based curvature estimators for digitized
ellipses. However, if curvature estimators are used
for corner detection, then the following section
shows that we do not really need such alterations.

3 Corner Detection

We compare corner detectors based on the three
curvature estimators discussed before with the
heuristic approach of [1] (which proved to be of
good performance in a particular application [8]).

3.1 A Heuristic Approach

A first run of CS1999 through all pixels of a digital
curve identifies all potential candidates of corners.
To decide wether pi is a potential corner, con-
sider the set Ti of all triples (pi−kb

, pi, pi+kf
) with

kb, kf > 0 such that

dmin ≤ d2(pi, pi+kf
) ≤ dmax and

dmin ≤ d2(pi, pi−kb
) ≤ dmax

where dmin and dmax are fixed thresholds (we used
the default setting of dmin = 7 and dmax = dmin +
2; another option could be, for example, dmin =
0.02n). Let τ ∈ Ti and a = d2(pi, pi−kf

), b =
d2(pi, pi+kb

), and c = d2(pi−kb
, pi+kf

). Then

ατ = arccos
(

a2 + b2 − c2

2ab

)
is the angle between pipi+kf

and pipi−kb
. Pixel pi

is a potential corner if min{ατ : τ ∈ Ti} < αmax

where αmax is a third fixed threshold (default is
αmax = 150) of this heuristic method.

f
k+i

p

b
k{i

p

max
d

min
d

i
p

b

c

a

¿
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evaluation
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Figure 7: Defining potential corners for CS1999

A second run of CS1999 through all pixels of the
given digital curve deals with all situations where



more than one pixel ‘responded’ to the same cor-
ner. Pixels pi and pj are neighbors iff d2(pi, pj) ≤
dmax. Compare each potential corner pi with all
the neighboring potential corners, and only keep it
as a detected corner if its α-angle defines a mini-
mum in this neighborhood.

3.2 Curvature-Based Corner Detection

A first run detects potential corners; a pixel pi is
a potential corner if the estimated curvature κ(pi)
exceeds a given threshold κt.

In a second run we discard all potential corners
which have a potential corner with higher curva-
ture in its neighborhood. The neighborhood is
defined as in CS1999, using the same distance
threshold dmax.

3.3 Multigrid Analysis

This experiment aims at analyzing up to what an-
gle a detector has the potential ability to detect a
corner. Therefore we set up a perfect and measur-
able environment, where it should be possible to
assign a detected corner to a specific corner of a
synthesized object.

We generate a digital spiral defined by a parame-
ter ` ∈ {50, 60, ..., 300}: successively draw lines of
length ` with angles α = 90, 45, 40, 35, 30, 25, 20,
15, and 10 degrees, defining corners at all vertices.
We use dmax = `−2

2 as the neighborhood threshold
for corner detectors as in Figure 8.

2
||{ 2` = maxd

30

`4590

40

35

25
20

15

10

please register!

evaluation

evaluation

evaluation

evaluation

Figure 8: Corner detection multigrid experiment.
Within the gray neighborhood only one corner can
be detected, due to the parameter dmax.

A corner detector identifies a corner po correctly if
it detects a pixel pe with d2(po, pe) ≤ `

10 . (We do
not have to test more than one detected corner pe

due to the chosen neighborhood threshold.)

For every `, we initialize an error measure with
zero. For every correctly detected corner po we
increment this measure by d2(po, pe), otherwise (no
corresponding pe detected) we increment by `

10 .

In CS1999 we used default values of dmin and
dmax for the first run, but dmax = `−2

2 in the
second run. Since we want to detect all corners
defined by an angle of 10 degrees or more, we use
αmax = 170. For the curvature estimators we use
1
κt

= 2n to make sure that all corners are detected.
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Figure 9: First experiment (k = 0.02n).

In a first experiment we compare results obtained
with curvature estimator using k = 0.02n, and in
a second experiment DSS-based estimators. The
resulting diagrams in Figures 9 and 10 do not
use sliding means. Errors at ` ∈ {50, 60, ..., 300}
are connected by straight segments. The smooth
polygonal line represents results of the HK2003
corner detector, the line with circles those of the
HK2005 corner detector, the line with stars those
of the M2003 corner detector, and the line with
plus signs represents those of CS1999.

Figure 9 illustrates the case of using k = 0.02n;
HK2005, M2003 and CS1999 ensure equally
good results while errors of the corner detector
based on HK2003 are diverging for increasing
resolution.

In case of using DSS-based curvature estimators
(Figure 10) we notice that errors of all estima-
tors (for varying resolution) are in one interval; for
M2003 there might be even a convergence towards
zero error. The experiments indicate that corner
detectors using DSS-based estimators perform bet-
ter than those with k = 0.02n. Problems with the
latter choice are illustrated in Figure 11, where
‘spiraling curves’ may actually exclude relatively
large values defined by the uniform rule k = 0.02n.
A curvature estimator using k = 0.02n would re-
turn a higher curvature value than one using DSS-
segmentations.
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Figure 10: Second experiment (DSS-based).

{6i
p

+7i
p

{12i
p

+12i
p

i
p

please register!

evaluation

evaluation

evaluation

evaluation

Figure 11: Dashed line for k = 0.02n and n = 600.

The curve used in Figures 12 to 14 was gener-
ated manually. The neighborhood threshold was
dmax = 9 for all detectors. For CS1999 we used
α = 135, and for the curvature-based detectors
we used 1

κ = 0.02 · n to be consistent with those
using k = 0.02n. The results for HK2005, M2003
and CS1999 seem to be equally good, whether
DSS-based or not. (We are not showing results
for M2003 since they are very similar to those of
HK2005).

4 Conclusions

Our experiments support in general the hypothesis
that DSS-based curvature estimators (and derived
corner detectors) improve with increases in grid
resolution. The corner detector using the DSS-
based version of M2003 seems to be the best

Figure 12: Detected corners using CS1999.

Figure 13: Corners using HK2005 (DSS-based).

Figure 14: Corners using HK2005 (k = 0.02n).

choice of all the corner detectors compared in
our experiments. Of course, this may vary with
selecting different types of digital curves, and a
wider study might be in place.

References

[1] D. Chetverikov ad Z. Szabo. A simple and efficient
algorithm for detection of high curvature points
in planar curves. In Proc. Workshop Austrian
Pattern Recognition Group, page 175–184, 1999.

[2] D. Coeurjolly, S. Miguet, and L. Tougne. Discrete
curvature based on osculation circle estimation.
In Proc. Int. Workshop Visual Form, LNCS 2059,
pages 300–312, Springer, Berlin, 2001.

[3] I. Debled-Rennesson and J.-P. Reveillès. A linear
algorithm for segmentation of digital curves. Pat-
tern Recognition, 9:635–662, 1995.

[4] S. Hermann and R. Klette. Multigrid analysis
of curvature estimators. In Proc. Image Vision
Computing New Zealand, pages 108–112, 2003.

[5] R. Klette and A. Rosenfeld. Digital Geometry –
Geometric Methods for Digital Picture Analysis.
Morgan Kaufmann, San Francisco, 2004

[6] M. Marji. On the detection of dominant points
on digital planar curves. PhD thesis, Wayne State
University, Detroit, Michigan, 2003.

[7] A. Rosenfeld and J.S. Weszka. An improved
method of angle detection on digital curves. IEEE
Trans. Computers, 24:940–941, 1975.

[8] B. Rosenhahn, L. He, and R. Klette. Automatic
human model generation. In Proc. Computer
Analysis Images Patterns, LNCS 3691, pages 41–
48, 2005.


