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Abstract
Recognition of animal tracks plays an important role in environmental research and pest control. So
far such track analysis can only be accurately carried out by experienced biologists. In this paper we
discuss the potential of image analysis methodologies for allowing automatic identification of rat tracks.
The approach is basically a refinement of template matching (as designed earlier for automated track
localization), now also allowing identification of rat species.
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1 Introduction

Three species of rats are used as study samples in
our project; the ship rat (Rattus rattus), Norway
rat (R. norvegicus) and Pacific rat (kiore, R. exu-
lans). Their tracks are collected by a tracking sys-
tem which involves a tracking tunnel, a pre-inked
tracking card and lures placed on the centre of the
card. Animals attracted by lures walk through the
tracking tunnel and leave their footprints on the
tracking card. Tracking cards are then scanned at
different resolutions, and resulting digital images
are automatically analyzed.

Three species of rodents have caused species ex-
tinctions and devastated native biota across the
world [1]. All three species of invasive rats were
introduced to New Zealand when humans first vis-
ited the main islands [7]. Around the 10th century
the smaller Pacific rat was brought to the mainland
by Maori settlers. In the 18th century the larger
Norway rat arrived in New Zealand with European
or North American sailing ships. The intermedi-
ately sized ship rat was probably introduced to the
mainland in the early 19th century and is now the
most common and dominant rat. All three rats
persist on offshore islands where they continue to
diminish conservation efforts [13].

The Wistar rat is a common strain of white lab
rat (domesticated wild Norway rat) for medical or
biological experimental purposes [12].

To recognize these rats, some major biological dif-
ferences among their bodies are described in Ta-
ble 1, see [8]. Wistar rat is also listed as an in-

dividual case in Table 1 because, after long term
domestication, the Wistar rat has some evolutions
compared with the wild Norway rat. Rat tracks are
relatively different because of species characteris-
tics. Therefore, experts are able to subjectively
identify different species using their footprints.

However, distinguishing tracks is difficult for in-
experienced people because of the similarities be-
tween different rat tracks. Figure 1 shows two left
front prints of a kiore and a ship rat; the footprint
of this ship rat is slightly larger than kiore. More
detailed features (e.g., the severity of experimental
injuries to a rat) can also be derived from a track,
see, e.g., [11] for early studies.

A rat has four (five) toes on the front (hind) foot.
The front toes are evenly distributed and hind cen-
tral three toes are normally bunched and parallel
[2]. Rat footprints are fairly circular in shape,

Norway rat Ship rat Kiore Wistar rat

Max. HBL (head-body length) (mm)
250 225 180 283

Adult weight (g)
200-300 120-160 60-80 200-485

Hind foot length (mm)
30-41.5 28-38 24.5-31 over 30

Tail
Shorter Longer About same Shorter

than HBL than HBL as HBL than HBL

Back color
Brown Grey-brown Brown White

or black

Table 1: Comparison of rat species.



Figure 1: Left front prints of kiore and ship rat.

and if a line is connected between two end toes
on the front or hind foot, the line should bisect or
lie behind the central pad [5]; see Figure 2.

Tracks of rats on X-ray film have been analyzed
in [3], discussing the use (for diagnosing an indi-
vidual rat) of stride length, foot print length, and
toe spread for defining a sciatic functional index
(SFI). [11] followed this work, and the quantitative
analysis of locomotion of rats is a common subject
today in biomedical research.

Our motivation (i.e., classification of rat species)
differs from analyzing individual rats. This paper
is an extension of [6]. Here footprints of mice and
rats were discriminated using template matching.
This method first created a universal template for
rodents, and then followed these steps:

(i) a common binarization method for image seg-
mentation, then (ii) ellipse fitting for identifying
toes and pads, and finally (iii) apply a linear evo-
lution function for template matching.

The experimental results of this work showed that
template matching might be a suitable way to dis-
tinguish small animal tracks.

Because the previous method had only one
universal template for all rats and mice,
distinguishing different species was impossible.
This paper intends to discriminate tracks of
different rat species using image processing
algorithms and pattern recognition techniques.

Figure 2: A front foot and a hind foot of a ship rat:
red ellipses represent toes; blue ellipses represent
cental pads; yellow ellipses represent lumps (see
online version of repot for colors).

Most algorithms from [6] have been modified to
guarantee better performance (e.g., better pattern
recovery using new binarization and ellipse fitting
algorithms).

For a wider application, the new methodology is
able to deal with some ”difficulties”, such as foot-
prints with missing toes or faint footprints.

2 Approach and methodology

An automatic track recognition system is
concerned with the following main stages:

(i) track acquisition (i.e., acquire footprint images
and determine their formats for further analysis),
(ii) footprint template extraction (i.e., extract an
initial template database from a given training
set for future matching), (iii) template matching
[i.e., combine track identification for querying a
template database to find a comparable template,
for example based on similarity estimation
(between unknown footprints and templates),
and track classification for classifying inputs into
different classes according to their geometric
characteristics], and (iv) template updating (i.e.,



update template database dynamically, improve
algorithm efficiency).

2.1 Track acquisition

Rat tracks are collected from around New Zealand
using tracking tunnels. Most are acquired from
islands where only one rat species is present hence
guaranteeing the species. Using tracking tunnels,
baits and tracking cards to non-invasively capture
small animal tracks is widely recognized as a
suitable method of indirect population study. To
provide computer analyzable footprint patterns,
tracking cards are scanned at 300 and 600dpi using
flatbed scanners and stored in ’bmp’ format as
gray-scale pictures. Generally, the dimension of a
300dpi scanned tracking card is about 1170× 3500
pixels, and occupies around 3.9 Megabytes of
memory space.

For purposes of template extraction and exper-
imental evaluation, any unknown tracking cards
are pre-classified by experienced biologists. Some
cards are then selected as a training set for tem-
plate extraction while others become the test set
for experimental purposes.

As tracks are randomly collected from the field,
most are not clear. This requires that our method-
ology should have greater tolerance, which is neces-
sary for it to have application to wildlife biologists.

2.2 Footprint template extraction

The first stage of the methodology is to gener-
ate an initial template database, which can pro-
vide templates for further comparison. The prin-
ciple of template selection is to elect multiple tem-
plates that can reflect the variance and represent
the mainstream of a given training set. The num-
ber of templates in the database also needs to be
carefully determined. A large number of templates
will dramatically increase computation complexity,
while a small number might not be sufficient.

In [15], a method (MDIST) was introduced to
perform fingerprint template selection. It showed
good experimental performance to deal with
intra-class variation. In [9], a method using a
symmetric distance to measure correspondence
between binary patterns was given. Based on
these concepts, an adapted method with regard to
footprint recognition is proposed as follows:

(i) calculate pair-wise symmetric distance between
n footprints in the training set; (ii) for each foot-
print, find its average symmetric distance with re-
spect to all other n − 1 footprints; (iii) create a
template set using minimum distance criteria to
choose k templates.

Similarity measurement between two footprints is
based on symmetric difference, which is defined
as the union of nonintersecting parts between two
sets:

A∆B = (A ∪B)\(A ∩B)

The symmetric difference allows to define a metric
which represents the similarity between two foot-
prints by normalizing the symmetric difference:

d(A,B) =
card(A∆B)
card(A ∪B)

0 ≤ d ≤ 1

d is a metric (see [9, 10]); thus it provides pair-wise
symmetric distances, and an average distance of a
particular footprint i can be computed as follows:

ai =
∑

di,j

(n− 1)
i 6= j

where n is the number of footprints in the training
set, and j is a footprint different from i. Finally, all
average distances are sorted by order, and a tem-
plate set T, which has k templates, will be selected
based on minimum average distance criteria.

This method is endeavoring to find a number of
footprints which represent maximum similarity
with others in the training set, and therefore, they
are good candidates to form the initial template
database.

After initial templates are selected, important in-
formation about a particular template should be
extracted from the original template image and
stored in an XML database.

Basic information that is extracted is described as
follows: rat species, foot ’corner’ (i.e., left front,
left hind, right front and right hind), central pad
area, distances of toes relative to central pad, an-
gles between each toe and its two neighbors, and
area of toes.

2.3 Template matching

The principle of template matching is to compare
the potential footprints on a tracking card with all
templates in the database, and seek the most likely
match. Two sub-steps are inclusive, namely track
identification and classification. In track identifi-
cation, the algorithm searches all templates and
estimates similarities to find the most likely tem-
plate, before deciding the matching footprint and
hence species.

2.3.1 Track identification

To identify a footprint on a new tracking card, the
procedure is divided into three sub-steps: segmen-
tation, footprint ellipse fitting (all possible toes,



lumps and central pads), and similarity estimation
between potential footprint and templates in the
database.

Binarization and segmentation

Binarization is the first stage to render explicit
footprint patterns on a tracking card. Since the
intensity of a rat footprint greatly depends on ink
quantity on its pads, a fixed binarization thresh-
old cannot reduce noise or detect footprint pat-
terns reasonably. [16] compared binarization meth-
ods and identified Abutaleb’s method as the most
reliable for binarizing insect footprints. In case
of rat footprints, large variances in mean values
of individual prints (on the same card) made a
straightforward adaptation of Abutaleb’s method
impossible.

We decided for an adaptive binarization method.
We map a gray level image f into a two-level image
h as follows: apply a standard scan on f ; as long as
sliding mean and pixel value are within a defined
(small) range, we continue with scanning f , oth-
erwise we initiate a region A (i.e., a connected set
of pixels p) in input image f ; A “grows” (unfortu-
nately, dependent upon scan order of pixels) as a
maximum-size component of pixels all satisfying

Figure 3: Top: original image. Bottom: the
adaptive binarization result for tA = 32 (for any
region A).

|mA,p − f(p)| ≤ tA

where f(p) is the image value at pixel p, tA is the
intensity tolerance for this region (e.g., defined by
a percentage of the initiating pixel value) and mA,p

is the sliding mean of region A (up to reading pixel
p). It follows that all pixels q adjacent to region A
satisfy

|mA,q − f(p)| > tA

h(p) is the final binarization response for all pixels
p ∈ A, with

h(p) =
{

255 if m ≤ card(A) ≤ M
0 otherwise

where m < M are thresholds for tolerable sizes of
regions A; h(p) = 0 for pixel p which is not in such
a region A.

Regions A with value 255 are treated as poten-
tial parts of footprint patterns for further analysis
(Figure 3).

In many cases, drag marks cause that footprint
patterns (e.g., central pad and lumps) are con-
nected, and these marks normally have obviously
lower intensity values than real print patterns. Bi-
narization can wipe off such drag marks and other
noises. Therefore it ensures better footprint pat-
terns for future analysis.

Footprint ellipse fitting

Next we identify all possible toes and central pads
in the binarized image h, which are fairly circu-
lar in shape. Binarization provides potential pad
marks; these marks are (connected) regions. Pixels
p = (x, y) on the border of each of those regions
are used for a least square fit of a uniquely defined
ellipse. We use the direct least-square fitting algo-
rithm of [4], and give a brief review of this method:

A generic conic can be represented as:

F (α, x) = ax2 + bxy + cy2 + dx + ey + f

One method to fit a conic is to minimize the alge-
braic distance F (α, pi) = d of all n border points
pi in the least squares sense, formally represented
as follows:

α̂ = argminα

{
n∑

i=1

F (α, pi)2
}

The minimization problem can be solved by a rank-
deficient generalized eigenvalue system; eigenval-
ues λ are defined by

DT Dα = Sα = λCα

for a design matrix D, a scatter matrix S and a
constraint matrix C, which are defined as follows:



Figure 4: Fitted ellipses for the binary image of
Figure 3.

D = [~p1, ~p2, · · · , ~pn]T

S = DT D

C =


0 0 −2 0 0 0
0 1 0 0 0 0
−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


A resulting ellipse is guaranteed by this algorithm.
See Figure 4 for an example.

Similarity estimation

Once we have all possible toes and central pads af-
ter ellipse fitting, the next main task is to evaluate
the similarity between a potential footprint config-
uration and a template in the database. Since the
central pad is more likely to leave clear marks on
the tracking card, we start to find all preliminary
central pad ellipses based on area constraints (the
area of a central pad must be within a specified
range). All other ellipses that are close to the cen-
tral pad (within a limited distance) will be qualified
as possible toes to that central pad.

A method was proposed in [6] to search for the best
combinations of toes for a specific central pad. The
central pad and its preliminary toes are placed into
a local coordinate system, where toes are ordered
by angle, and all combinations of the central pad
with these toes are iteratively compared with the
template list. A similarity value will be calculated
for the given combination (a central pad and its
preliminary toes) and the selected template. A
liner evaluation function was used in [6]. To ensure
a high evaluation value for a potential footprint
which only has minor differences to a template,
we replaced the linear function by a continuous
Gaussian function

Ei = e
−(ai−mi)

2

σ2

where Ei is the evaluation of a particular parame-
ter value (distance, area, angles) of a preliminary
toe i, ai is the parameter value for this toe, mi

is the parameter value of the template, and σ is
the tolerance factor (or standard deviation) for this
parameter. Therefore, a normalized evaluation for
each parameter k is defined as follows:

Ek =
1
n

n∑
i=1

Ei

Where n is the number of toes. Finally, a normal-
ized evaluation value (in the range 0 to 1) can be
calculated as below:

E =
1∑
Ck

K∑
k=1

CkEk

where Ck is a weight value for each parameter
(initial value Ck=1).

2.3.2 Track classification

The similarity estimation function guarantees a
higher output (greater value) for a comparable
footprint with a template and a lower outcome
(smaller value) for an incomparable sample. Track
classification is then straightforward. A threshold
value is used to decide whether the preliminary
footprint combination is a real footprint. Once
the potential footprint is confirmed, it will then be
categorized to the same class of the comparable
template.

2.4 Template updating

A constant template database is of limited use be-
cause it comes from an obsolete training set, and
hence can not incorporate new samples. We also
use dynamic template updating, where the basic
idea is to reuse already recognized tracks to retrain
them in our template database, where the retrain-
ing procedure is the same as template selection.
However, template updating should be carefully
managed because, if too many false samples are
used for training, it will generate a biased template
database, and therefore influences the accuracy of
our methodology. Therefore, only highly confirmed
samples will be chosen for template updating.

The first section mentioned a remarkable biological
characteristic of rat footprints: if a line segment is
drawn between two end toes of the rat footprint,
the line must bisect, or lie behind of the central
pad. This property might be a good candidate to
stabilize templates. Therefore, two conditions are
applied to restrict the template updating proce-
dure, the first is a high similarity value, and the
second is this line segment constraint.



Figure 5: Top: faint footprint. Bottom: footprint
with a missing toe.

3 Problems to be addressed

Faint footprints and footprints with missing toes
are two frequently occurring situations on tracking
cards, see Figure 5. Here, we proposed two meth-
ods which can help to address these problems.

Our adaptive binarization method allows detection
of faint tracks. Adjusting tolerance tA properly can
provide better regions, and these regions construct
more accurate ellipses to represent toes or pads.

A few toes (one or two) missing should still be
acceptable. We generated templates with missing
toe(s) to fix this problem. In our implementation,
templates in the database are automatically refor-
matted. For example, if “one toe (or lump) is
missing” is acceptable, then each original template
will generate six new templates for a front foot and
seven for a hind foot.

4 Experimental results

We illustrate experimental results for a four-class
situation: footprints of kiore, Norway, ship and
Wistar rats. Table 2 shows the number of used
training footprints and templates in the data base,
generated by using these footprints. For each item,

Kiore Norway Ship Wistar
Front left 8(6) 5(4) 14(9) 11(6)
Front right 12(8) 7(5) 12(8) 3(3)
Hind left 7(5) 4(4) 6(6) 5(3)
Hind right 9(6) 3(3) 10(7) 3(2)
Total 36(25) 19(16) 42(30) 22(14)

Table 2: Templates of kiore, Norway rat, ship and
Wistar rat.

Kiore Norway Ship Wistar
Total prints 164 45 134 30
True positive 115 34 102 25
False positive 34 9 25 2
True negative 15 2 7 3

Table 3: Classification results of individual foot-
prints.

Kiore Norway Ship Wistar
Total cards 30 10 32 9
Identified 25 8 27 8
Unidentified 5 2 5 1

Table 4: Classification results of tracking cards.

the first number shows the size of the training set,
and the second is the number of templates. For
example, using the template generation algorithm,
30 templates are generated for ship rats (using 42
footprints). These templates were then applied to
a testing set (which contains 373 footprints from
our 81 testing tracking cards) to identify footprints
of all species.

The experimental results of individual footprints
are shown in Table 3. We denote correctly rec-
ognized footprints as “true positive”, wrongly rec-
ognized footprints as “false positive”, and missed
footprints as “true negative”.

If the majority of footprints on a tracking card
is correctly classified, the card is then marked as
“identified”, otherwise “unidentified”. Experimen-
tal results of tracking cards are given in Table 4.

In our experiments, see Figure 6, over 70%
footprints of all species are correctly classified,
and all have over 80% tracking card recognition
rate. All test footprints are from original cards,
and a number of them are faint, merged or
smudgily prints. Although these uncertain
prints impact on footprint recognition rate, our
algorithm still can distinguish the majority prints
on tracking cards and identify most tracking
cards correctly. The used Wistar rat tracks came
from four individuals and obtained in laboratory
condition, and thus fewer templates were used



Figure 6: Recognition percentage of different
species. Green columns represent footprint recog-
nition rate, and yellow columns are tracking card
recognition rate.

which still allowed highest recognition rates;
tracks of other rats came from a much larger
(actually unknown) number of individuals, and
hence more templates were needed. Alternatively,
it is possible to improve the true positive rate
by increasing the template number. However,
there is a tradeoff between number of templates
and computation time. A remarkable result
was derived from our experiments, an important
tracking card of Norway rat was rightly classified
and verified as it detected a Norway rat invasion
on a small island in New Zealand (previously also
already identified by experts).

5 Conclusion

Invasion by all three rat species is an ongoing
problem in New Zealand [14]. Developing accurate
methods to identify rat tracks and species would
be beneficial to conservation managers. However,
the lack of experts and the subjective nature
of this method (identification by foot prints) is
a problem. Generating larger sets of tracking
cards under controlled conditions would help to
overcome this situation.

The proposed methodology might not be limited
to identification of rat tracks. Understanding other
small animal tracks is also possible through adding
more corresponding templates, and therefore, this
could become a general method for small animal
track recognition.
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