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1 Surface Area of Ellipsoid

Consider the area of the surface (or part of it) of an ellipsoid centred at the
coordinate origin, with rectangular Cartesian coordinate axes along the semi–
axes α, β, γ :

x2

α2
+
y2

β2
+
z2

γ2
= 1 . (1)

In applications, the semi–axes could be of any magnitude from atomic nuclei
to cosmological structures. For numerical computation, it is advantageous to
consider a non–dimensionalized form. Take some representative length K, e.g.
K could be the average of α, β, γ, or it could be their maximum. Then, consider
an ellipsoid E

x2

a2
+
y2

b2
+
z2

c2
= 1 , (2)

which is a scaled version of (1), with semi–axes a = α/K, b = β/K, c = γ/K
which are of the order of 1. Computation involving E is numerically more
convenient than with (1); and the surface area of any part of the original ellipsoid
(1) is K2 times the corresponding area on E . And any other point (x, y, z), to
be considered in relation to (1), could be compatibly scaled to (x/K, y/K, z/K)
and then considered in relation to the scaled ellipsoid E .

Hereafter, we shall consider the ellipsoid E , with semi–axes a, b, c.
A point P = (ξ, η, ζ) is outside E , if and only if

ξ2

a2
+
η2

b2
+
ζ2

c2
> 1 , (3)
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and P is inside E , if and only if

ξ2

a2
+
η2

b2
+
ζ2

c2
< 1 . (4)

1.1 Ellipsoids of revolution

An ellipsoid of revolution with semi–axes a, b, b is called a spheroid, prolate if
(a > b), and oblate if (a < b).

In 1714, Roger Cotes found the surface area of ellipsoids of revolution [Cotes].
Denote q = 1− b2/a2. The surface areas for prolate spheroids (a > b), spheres
(a = b) and oblate spheroids (a < b) are:

A =


2πb

(
a× arcsin

√
q√

q
+ b

)
(prolate),

2πb(a+ b) = 4πa2 (sphere),

2πb
(
a× arcsinh

√
−q√

−q
+ b

)
(oblate) .

(5)

These are now standard problems in first–year calculus.
Neither the hyperbolic functions nor their inverses had been invented by

1714, and Cotes gave a logarithmic formula for the oblate spheroid [Cotes, pp.
169-171]. In modern notation [Cotes, p.50],

A = π

[
2a2 + b2

1√
−q

log
(

1 +
√
−q

1−
√
−q

)]
. (6)

For |q| � 1, use the power series for (arcsin x)/x to get the rapidly conver-
gent series

A = 2πb
(
a
[
1 + 1

6q + 3
40q

2 + 5
112q

3 + · · ·
]
+ b
)
. (7)

1.2 Surface area of general ellipsoid

For a surface defined by z = z(x, y) in rectangular Cartesian coordinates xyz,
an element of area dx dy in the xy plane projects normally from that plane onto
that surface, to give an element of surface area

dσ =

√
1 +

(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy . (8)

Thus, the standard formula for surface area is:

Area =
∫ ∫ √

1 +
(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy. (9)

On the ellipsoid E ,

∂z

∂x
=

−c2x
a2z

,
∂z

∂y
=

−c2y
b2z

. (10)
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Consider the octant for which x, y, z are all non–negative. Then the surface
area for that octant is

S =

a∫
0

b
√

1−x2/a2∫
0

√
1 +

c4x2

a4z2
+
c4y2

b4z2
dy dx

=

a∫
0

b
√

1−x2/a2∫
0

√√√√√ z2

c2
+
c2

a2

x2

a2
+
c2

b2
y2

b2

z2/c2
dy dx

=

a∫
0

b
√

1−x2/a2∫
0

√√√√√√√1− x2

a2
− y2

b2
+
c2

a2

x2

a2
+
c2

b2
y2

b2

1− x2

a2
− y2

b2

dy dx

=

a∫
0

b
√

1−x2/a2∫
0

√√√√√√√1−
(

1− c2

a2

)
x2

a2
−
(

1− c2

b2

)
y2

b2

1− x2

a2
− y2

b2

dy dx . (11)

Hence, if two semi-axes (a and b) are fixed and the other semi-axis c increases,
then the surface area increases.

Denote

δ = 1− c2

a2
, ε = 1− c2

b2
, (12)

and then (11) becomes

S =

a∫
0

b
√

1−x2/a2∫
0

√√√√√√√1− δ
x2

a2
− ε

y2

b2

1− x2

a2
− y2

b2

dy dx . (13)

If c > a then δ < 0, and if c > b then ε < 0. For a general ellipsoid, the
coordinate axes can be named so that a ≥ b ≥ c, and then 1 > δ ≥ ε ≥ 0.

1.2.1 Legendre’s series expansion for ellipsoid area

In 1788, Adrien-Marie Legendre (1752-1833) converted this double integral to
a convergent series for the surface area A [Legendre 1788] [Legendre 1825, pp.
350–351] [Tee pp. 5–7]:

A = 4πab
(
1− 1

1·3P1 − 1
3·5P2 − 1

5·7P3 − 1
7·9P4 − · · ·

)
, (14)

where

P1 = 1
2δ + 1

2ε,

P2 = 1·3
2·4δ

2 + 1·1
2·2δε+ 1·3

2·4ε
2,

P3 = 1·3·5
2·4·6δ

3 + 1·3·1
2·4·2δ

2ε+ 1·1·3
2·2·4δε

2 + 1·3·5
2·4·6ε

3, et cetera. (15)

Legendre’s series converges rapidly for near-spheres (with ‖δ‖ � 1 and ‖ε‖ �
1), but it converges slowly for ellipsoids which are far from spherical.
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1.3 Legendre on elliptic integrals

Legendre worked on elliptic integrals for over 40 years, and he summarized his
work in [Legendre 1825]. He investigated systematically the integrals of the form∫
R(t, y) dt, where R is a general rational function and y2 = P (t), where P is a

general polynomial of degree 3 or 4. Legendre called them “fonctions élliptique”,
because the formula (24) for arclength of ellipse is of that form — now they are
called elliptic integrals. He shewed how to express any such integral in terms of
elementary functions, supplemented by 3 standard types of elliptic integral1.

Each of Legendre’s standard integrals has 2 (or 3) parameters, including
x = sin φ. Notation for those integrals varies considerably between various
authors. Milne-Thomson’s notation for Legendre’s elliptic integrals [Milne-
Thomson, §17.2] uses the parameter m, where Legendre (and many other au-
thors) had used k2.

Each of the three kinds is given as two integrals. In each case, the second
form is obtained from the first by the substitutions t = sin θ and x = sinφ.

The Incomplete Elliptic Integral of the First Kind is:

F (φ|m) def=
∫ φ

0

dθ√
1−m sin2 θ

=
∫ x

0

dt√
(1− t2)(1−mt2)

. (16)

The Incomplete Elliptic Integral of the Second Kind is:

E(φ|m) def=
∫ φ

0

√
1−m sin2 θ dθ =

∫ x

0

√
1−mt2

1− t2
dt . (17)

That can be rewritten as ∫ x

0

1−mt2√
(1− t2)(1−mt2)

dt , (18)

which is of the form
∫
R(t, y) dt, where y2 = (1− t2)(1−mt2).

The Incomplete Elliptic Integral of the Third Kind is:

Π(n;φ|m) def=
∫ φ

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ

=
∫ x

0

dt
(1− nt2)

√
(1− t2)(1−mt2)

. (19)

The special cases for which φ = 1
2π (and x = 1) are found to be particularly

important, and they are called the Complete Elliptic Integrals [Milne-Thomson,
§17.3].

The Complete Elliptic Integral of the First Kind is:

K(m) def= F
(

1
2π|m

) def=
∫ π/2

0

dθ√
1−m sin2 θ

=
∫ 1

0

dt√
(1− t2)(1−mt2)

. (20)

1But for a general elliptic integral, reduction to the standard elliptic integrals is an ex-
tremely complicated operation [Milne-Thomson §17.1]. It is usually simplest to evaluate
elliptic integrals directly by Romberg integration, possibly after performing some substitution
(e.g. t = sin θ) to make the integrand smooth.
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The Complete Elliptic Integral of the Second Kind is:

E(m) def= E
(

1
2π|m

)
=
∫ π/2

0

√
1−m sin2 θ dθ =

∫ 1

0

√
1−mt2

1− t2
dt . (21)

The complete elliptic integrals K(m) and E(m) can efficiently be computed
to high precision, by constructing arithmetic-geometric means [Milne-Thomson.
§17.6.3 & 17.6.4].

Integrals of the form Q(t) =
∫
R(t, y) ds, where R is a general rational

function and y2 = P (s), where P is a polynomial of degree greater than 4, are
called hyperelliptic integrals.

1.3.1 Circumference of ellipse

In 1742, Colin MacLaurin constructed a definite integral for the circumference
of an ellipse [MacLaurin]. Consider an ellipse with semi-axes a and b, with
Cartesian coordinates along the axes:

x2

a2
+
y2

b2
= 1 , (22)

Denote the circumference by C(a, b).
On that ellipse, 2xdx/a2 + 2y dy/b2 = 0, and hence dy/dx = −b2x/(a2y),

and C(a, b) is 4 times the ellipse quadrant with x ≥ 0 and y ≥ 0. That quadrant
has arclength

C(a, b)
4

=
∫ a

0

√
1 +

b4x2

a4y2
dx =

∫ a

0

√
1 +

b2(x/a)2

a2(y/b)2
dx

=
∫ a

0

√
1 +

(b/a)2(x/a)2

1− (x/a)2
dx . (23)

Substitute t = x/a, and the circumference becomes

C(a, b) = 4a
∫ 1

0

√
1 +

(b/a)2t2

1− t2
dt = 4a

∫ 1

0

√
1−mt2

1− t2
dt , (24)

where

m = 1− b2

a2
. (25)

With a ≥ b this gives 0 ≤ m < 1.
That integral could not (in 1742) be expressed finitely in terms of standard

functions. But, in terms of Legendre’s Complete Elliptic Integral of the Second
Kind, the circumference of the ellipse is

C(a, b) = 4aE
(

1− b2

a2

)
. (26)
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1.4 Legendre’s explicit formula for ellipsoid area

In 1825, Legendre constructed an explicit expression for the area of a general
ellipsoid, in terms of Incomplete Elliptic Integrals of the First and Second Kinds
[Legendre 1825, pp.352–359]. In Milne-Thomson’s notation, with δ and ε as in
(12),

A = 2πc2 +
2πab√
δ

[
(1− δ)F (

√
δ|ε/δ) + δ E(

√
δ|ε/δ)

]
. (27)

Note that Legendre’s formula does not hold for a sphere, and for a near-
sphere Legendre’s rapidly–convergent series (14) should be used for the area.
Otherwise, A can conveniently be evaluated by using Romberg integration to
compute F from the integral (16) and E from the integral (17). Both integrands
with t are singular at t = 1, and so the integrands with θ should be used for
evaluation by Romberg integration.

Legendre’s proof of his elliptic integral formula for area is long and com-
plicated, and that formula has been very little known. For example, in 1979
Stuart P. Keller asserted that “Except for the special cases of the sphere, the
prolate spheroid and the oblate spheroid, no closed form expression exists for
the surface area of the ellipsoid. This situation arises because of the fact that it
is impossible to carry out the integration in the expression for the surface area
in closed form for the most general case of three unequal axes”[Keller, p.310].

In 1897, Ernesto Cesàro computed the surface area of the ellipsoid with axes√
3,

√
2, 1 as 3π × 2.52620923 [Cesàro, p.338]. In 1953, Frank Bowman pub-

lished [Bowman] an obscure derivation of the formula (27) for the area (without
mentioning Legendre), in 1958 Albert Eagle proved Legendre’s formula [Eagle,
p.284 (12)], and in 1994 Leo Maas proved Legendre’s formula [Maas]. The clear-
est proof was given by Derek Lawden in 1989 [Lawden, pp.100–102] (without
mentioning Legendre). In 1999 an incorrect version of the formula was published
[Wolfram, p.976], without proof2 or references.

1.5 Area by double integration

The double integral (13) for the area S of an octant can be computed by in-
tegrating the integrand in the y direction, and then integrating that in the x
direction. Putting

x = as, y = bt
√

1− s2, m =
ε
(
1− s2

)
1− δs2

, (28)

for 9 ≤ x < a we get the integral with respect to y as

b
√

1−x2/a2∫
0

√√√√√√√1− δ
x2

a2
− ε

y2

b2

1− x2

a2
− y2

b2

dy = b
√

1− s2
∫ 1

0

√
1− δs2 − ε(1− s2)t2

1− s2 − t2(1− s2)
dt

= b

∫ 1

0

√
1− δs2 − ε(1− s2)t2

1− t2
dt = b

√
1− δs2

∫ 1

0

√√√√√1− ε(1− s2)
1− δs2

t2

1− t2
dt

2An obscure statement of that incorrect formula is also given in the website
<http://documents.wolfram.com/v4/MainBook/G.1.7.html>. At least 3 people have re-
ported that error to the administrator of that website, but without effect.
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= b
√

1− δs2
∫ 1

0

√
1−mt2

1− t2
dt = b

√
1− δs2 E(m) . (29)

Here E is the Complete Elliptic Integral of the Second Kind (21), and m is a
function (28) of s. And E(m) can efficiently be computed to high precision, by
using arithmetic-geometric means [Milne-Thomson. §17.6.3 17.6.4].

Then the area of the ellipsoid is

A = 8b
∫ a

0

√
1− δx2

a2
E(m) dx = 8ab

∫ 1

0

√
1− δs2 E(m(s)) ds , (30)

and that integral can efficiently be evaluated by Romberg integration [Klette &
Rosenfeld, pp. 287–290].

However, evaluation of the integrand in (30) requires the computation of an
arithmetic-geometric mean. Legendre’s formula (14) involves computation of 2
Incomplete Elliptic Integrals F and E, both of which have integrands which are
simple to compute. Accordingly, computation of the surface area by (30) takes
somewhat more time than does Legendre’s formula.

1.5.1 Ellipsoids in n dimensions

For n–dimensional ellipsoids with n ≥ 3, the surface area and electrostatic
capacity have been found [Tee].

2 Intersection Between Plane and Ellipsoid

For a surface with equation F (x, y, z) = 0, the plane tangential at a point
(x̄, ȳ, z̄) on the surface has the equation [Helmut & Kopka, p.146]

∂F

∂x
(x− x̄) +

∂F

∂y
(y − ȳ) +

∂F

∂z
(z − z̄) = 0, (31)

and the normal at that point has the equation

x− x̄

∂F

∂x

=
y − ȳ

∂F

∂y

=
z − z̄

∂F

∂z

. (32)

Each of the partial derivatives of F is evaluated at (x̄, ȳ, z̄).
For the ellipsoid E , F (x, y, z) = x2

a2 + y2

b2 + z2

c2 − 1, and so

∂F

∂x
=

2x̄
a2
,

∂F

∂y
=

2ȳ
b2
,

∂F

∂z
=

2z̄
c2

. (33)

Accordingly, the plane tangent to E at (x̄, ȳ, z̄) has the equation

2x̄(x− x̄)
a2

+
2ȳ(y − ȳ)

b2
+

2z̄(z − z̄)
c2

= 0 , (34)

which reduces (in view of (2)) to

x̄x

a2
+
ȳy

b2
+
z̄z

c2
= 1 . (35)
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And the normal to E at (x̄, ȳ, z̄) has the equation (with parameter w/2)

x = x̄
(
1 +

w

a2

)
, y = ȳ

(
1 +

w

b2

)
, z = z̄

(
1 +

w

c2

)
. (36)

The unit vector

Υ def=


x̄

a2

ȳ

b2

z̄

c2


(( x̄

a2

)2

+
( ȳ
b2

)2

+
( z̄
c2

)2
)−1/2

(37)

has the direction of the normal to E , at (x̄, ȳ, z̄).

2.1 Poles and polar planes

Consider a point P = (ξ, η, ζ) which is on the tangent plane (35). Hence P
is outside (or on) E , and if P is outside E then the line from P to (x̄, ȳ, z̄) is
tangential to E at (x̄, ȳ, z̄). Then (35) shews that

x̄ξ

a2
+
ȳη

b2
+
z̄ζ

c2
= 1 . (38)

Thus, each line through P which is tangential to E touches it at a point (x̄, ȳ, z̄),
which is on E and also is on the plane

ξx

a2
+
ηy

b2
+
ζz

c2
= 1 . (39)

That plane intersects E in an ellipse.
For any point P = (ξ, η, ζ), which can be outside or on or inside E , its polar

plane for the ellipsoid E is defined by this equation (39). The point P is called
the pole of that plane.

If P is on the ellipsoid E , then (35) and (39) shew that the polar plane is
tangential to E at P .

2.2 Criterion for intersection of ellipsoid and plane

A general plane
`x+my + nz = f (40)

is the polar plane of the point P = (ξ, η, ζ), where equation (40) is f times
equation (39). Thus the pole of the plane (40) is the point

P = (ξ, η, ζ) =
(
a2`

f
,
b2m

f
,
c2n

f

)
, (41)

unless the plane passes through the centre of E . If the plane passes through the
centre of E then f = 0, and the pole is then the point at infinity on the line
with direction cosines proportional to (a2`, b2m, c2n).

The point P is outside E , if and only if its polar plane intersects E . Hence,
the plane (40) intersects E , if and only if

1 <

(
ξ

a

)2

+
(η
b

)2

+
(
ζ

c

)2

=
(
a`

f

)2

+
(
bm

f

)2

+
(
cn

f

)2

. (42)
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Thus, the plane (40) intersects E , if and only if

a2`2 + b2m2 + c2n2 > f2 ; (43)

and the plane (40) touches E (at (41)), if and only if

a2`2 + b2m2 + c2n2 = f2 . (44)

Divide the equation (40) by κ =
√
`2 +m2 + n2 if f ≥ 0, and otherwise

divide (40) by−κ. Then the plane (40) is equally specified by the scaled equation

λx+ µy + νz = h , (45)

where
λ =

`

κ
, µ =

m

κ
, n =

ν

κ
, h =

f

κ
, (46)

and h ≥ 0. Here, h is the length of the normal to the plane from the origin,
and that normal has direction cosines (λ, µ, ν), with λ2 +µ2 + ν2 = 1. Thus the
vector

Γ def=

 λ
µ
ν

 (47)

is a unit vector, normal to the plane (45). The pole P (41) can equally be
represented as

P = (ξ, η, ζ) =
(
a2λ

h
,
b2µ

h
,
c2ν

h

)
, (48)

and the plane (45) intersects E , if and only if

h2 < a2λ2 + b2µ2 + c2ν2 . (49)

For planes not through the centre of E , h can be indefinitely small, and
division by h is numerically unstable for h close to 0. Hence, division by h
should be avoided wherever that is feasible. For instance, the pole P can be
specified by (hξ, hη, hζ) = (a2λ, b2µ, c2ν).

Hereafter we shall consider only planes which do intersect E .

3 Area of Segment

The intersection between the ellipsoid (2) and the plane (45) is an ellipse, which
is called here the ellipse of intersection. The ellipse of intersection plus its
interior is called here the elliptical disk. The parallel projection, normal to
the xy–plane, of the ellipse of intersection onto the xy–plane is called here the
projected ellipse, and that projected ellipse (with its interior) is called here the
projected elliptical disk.

For a general ellipsoid cut by a plane, consider the areas of the two segments
of that ellipsoid.

If the plane is normal to an axis of the ellipsoid, then the area of the segment
can readily be computed by integration. For example, with the plane x = g,
the area of the segment from x = g to x = a is given (cf. (30)) as

4ab
∫ 1

g/a

√
1− δs2 E(m(s)) ds , (50)
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which can readily be evaluated by Romberg integration.
If the plane passes through the centre of the ellipsoid then each segment has

half the area of the full ellipsoid.
Otherwise, the segment on the side of the plane away from the centre has

surface area smaller than the other segment, on the side of the plane with
the centre. Compute the area of the smaller segment — if the area of the
larger segment is required then compute the full area by Legendre’s formula (or
Legendre’s series, for a near–sphere) and subtract from it the area of the smaller
segment.

In §1.5 the ellipsoid E is intersected by the xy–plane, and the surface area
is found (11) by parallel projection of elements of area in the xy–plane normal
to that plane, onto the surface of the ellipsoid.

For an ellipsoid segment, if the ellipse of intersection does not pass through
the xy–plane (i.e. on the ellipse of intersection either z ≥ 0 everywhere, or
z ≤ 0 everywhere), then the area of the ellipsoid segment could be computed
by normal projection from the projected elliptical disk onto the entire segment.
But otherwise, some part of the xy–plane outside the projected ellipse would
have to be projected onto the segment, both for z > 0 and for z < 0. Several
cases would have to be treated separately, which would complicate greatly the
computation.

A simpler approach is to use normal projection from the projected elliptical
disk onto the elliptical disk, and then to project that elliptical disk onto the
segment by projection from the pole (48) of the plane (45).

3.1 Ellipse of intersection

Choose the axis making the smallest angle with the normal to the intersecting
plane as the z–axis, so that ν is the largest coefficient (in modulus) in equation
(45). Then,

z =
h− λx− µy

ν
(51)

on the ellipse of intersection. Since λ2 + µ2 + ν2 = 1, this choice of axis gives
|ν| ≥ 1/

√
3 .

Substitute (51) for z in (2) (times ν2c2), and we get the x–y equation of a
conic section (in the plane (45)) as

Ax2 +Bxy + Cy2 +Dx+ Ey +G = 0 , (52)

where

A =
ν2c2

a2
+ λ2 , B = 2λµ , C =

ν2c2

b2
+ µ2 ,

D = −2hλ , E = −2hµ , G = h2 − ν2c2 ,

(53)

so that A > 0 and C > 0. Each point on the conic section is on the ellipsoid E
and hence x and y are bounded3, and so that conic section must be an ellipse.

The area and the circumference of the ellipse of intersection are constructed
in Appendix A.

On that ellipse of intersection, z is given as a function of x and y by (51).
The equation of the projected ellipse (in the xy–plane) is also (52).

3In fact, |x| ≤ a and |y| ≤ b.

10



That projected ellipse is centred (135) at U = (v, w), where

2Av +Bw = −D,
Bv + 2Cw = −E, (54)

and hence
v =

BE − 2CD
4AC −B2

, w =
BD − 2AE
4AC −B2

, (55)

and the centre of the ellipse of intersection is at (v, w, [h− λv − µw]/ν).
The cosine of the angle between the plane (45) and the xy–plane is ν, and

hence normal projection of any region of area S from the xy–plane onto the
plane (45) gives a region with enlarged area S/ν. In particular, the area of the
elliptical disk is the area of the projected elliptical disk, divided by ν. Note that
we can take |ν| ≥ 1/

√
3, and so the modulus of the area is enlarged by a factor

no more than
√

3.
Since P is outside E then its polar plane intersects E in an ellipse of intersec-

tion, and the lines from P to points on that ellipse of intersection are tangents
to E on that ellipse of intersection. Those tangents from P generate a circular
cone which is generally oblique; but if E is an ellipsoid of revolution and P is
on an axis of revolution, then those tangents form a right circular cone.

Thus the ellipsoid E is contained wholly within that cone, except for tan-
gential contact at each point on the ellipse of intersection. Each line from P
through any point inside that ellipse of intersection will intersect E at one point
of the larger segment (containing the centre of E), and at one point of the smaller
segment.

The area of the (smaller) segment of the ellipsoid will be found by projection,
from the pole P , of the elliptical disk onto that segment, between the plane (45)
and its pole P .

4 Formula for Area of Segment

Consider planes H, I and J , with angle α between H and J and angle β between
I and J . Thus, each line normal to J makes angle α with each line normal to H,
and angle β with each line normal to I. If a region R (with area s) on plane H
projects (normal to plane J) onto a region T in J , then the area of T is s cos α.
If T projects (normal to plane J) onto a region U in the plane I, then the area
of U is s cos α/ cos β.

If the planes H and I are replaced by smooth surfaces, then we can consider
parallel projection of points on surface H onto surface I, by lines normal to
plane J . Let point U on H project to point V on surface I, with the line UV
(normal to plane J) making angle α with the normal to surface H at U , and
making angle β with the normal to surface I at V . Then an infinitesimal area ds
on surface H at U projects to an infinitesimal area ds cos α/ cos β on surface
I at V .

Now consider projection from a point W of an infinitesimal area ds at U
on surface H to V on surface I, with the line WUV making angle α with the
normal to surface H at U , and making angle β with the normal to surface I
at V . At U on H, the infinitesimal area ds projects (from W ) onto the plane
through U normal to WUV as ds cos α. From W , that projects onto the plane
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through V normal to WUV as (WV/WU)2ds cos α. Hence, the projection
from W of ds on surface H at U to surface I at V has area(

WV

WU

)2 cos α
cos β

ds .

Each point L = (x, y) inside the projected ellipse (52) is projected (normal
to the xy–plane) to a point M = (x, y, z) in the elliptical disk on the plane
(45), where z = (h − λx − µy)/ν (cf. (51)). The element of area dxdy at L is
projected to dxdy/ν at M . On the line from the pole P (48) to M , each point
(x̄, ȳ, z̄) has the equation

x̄ = x+ (ξ − x)t, ȳ = y + (η − y)t, z̄ = z + (ζ − z)t, (56)

with parameter t. As t increases from 0 to 1, the point (x̄, ȳ, z̄) moves from M
(in the elliptical disk) to the pole P . In terms of $ = t/h, this becomes

x̄ = x+ (a2λ− hx)$, ȳ = y + (b2µ− hy)$, z̄ = z + (c2ν − hz)$, (57)

with t = $h.
If the point (x̄, ȳ, z̄) on the interval PM is also on E , then

x̄2

a2
+
ȳ2

b2
+
z̄2

c2
= 1 . (58)

Substitute (57) in (58), and we get a quadratic equation in the parameter
$:(

x+ (a2λ− hx)$
a

)2

+
(
y + (b2µ− hy)$

b

)2

+
(
z + (c2ν − hz)$

c

)2

= 1 .

(59)
This reduces to

φ$2 + χ$ + ψ = 0 , (60)

where

φ =
(
aλ− hx

a

)2

+
(
bµ− hy

b

)2

+
(
cν − hz

c

)2

,

χ =
2x(a2λ− hx)

a2
+

2y(b2µ− hy)
b2

+
2z(c2ν − hz)

c2
,

ψ =
x2

a2
+
y2

b2
+
z2

c2
− 1 , (61)

and hence φ > 0. In view of (45), χ simplifies to χ = −2hψ.
The pointM = (x, y, z) is on the ellipse of intersection, which is inside E , and

hence (x/a)2 + (y/b)2 + (z/c)2 < 1. Therefore ψ < 0, and hence the quadratic
equation (60) has a positive root and a negative root (of larger modulus).

For numerical stability, compute the negative root of that quadratic equation
φ$2 − 2hψ$ + ψ = 0 as

u =
hψ −

√
h2ψ2 − φψ

φ
, (62)
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and then compute the root with smaller modulus as $ = φ/(uψ). Use that
positive root $ in (57) to get the intersection N = (x̄, ȳ, z̄) of PM with the
smaller segment of E , between the plane (45) and its pole P . (The other root
gives the intersection of PM with the larger segment of E). Then compute
t = $h, which is non–negative.

This holds for all h including h = 0, in which case χ = 0 and

$ =

√
−ψ
φ

=

√√√√√ 1− x2

a2
− y2

b2
− z2

c2

a2λ2 + b2µ2 + c2ν2
, (63)

and t = 0. And the negative root of (60) is4 −$.
Thus, the element of area dxdy at L in the projected ellipse is transformed

to the element of area (1−t)2 cos α dxdy/(ν cos β) at N on the segment, where
the line PNM makes angle α with the normal to the plane (45), and it makes
angle β with the normal to E at N .

The unit vector Γ in (47) is normal to the plane (45), and the unit vector
Υ in (37) is normal to E at N . The vector

∆ def=

 x− ξ
y − η
z − ζ

h =

 hx− a2λ
hy − b2µ
hz − c2ν

 (64)

has the direction from the pole P to M , and it is numerically stable for all h
(including h = 0). Accordingly, in terms of the Euclidean vector norm,

∆T Γ = ‖∆‖ ‖Γ‖ cos α = ‖∆‖ cos α,
∆T Υ = ‖∆‖ ‖Υ‖ cos β = ‖∆‖ cos β , (65)

and so
cos α
cos β

=
∆T Γ
∆T Υ

. (66)

Furthermore, M = (x, y, z) is on the plane (45), and so

∆T Γ = [(hx− a2λ), (hy − b2µ), (hz − c2ν)]

 λ
µ
ν


= h(λx+ µy + νz)− a2λ2 − b2µ2 − c2ν2

= h2 − a2λ2 − b2µ2 − c2ν2, (67)

which is a negative constant, since the plane (45) does intersect E (cf. (49)).
Indeed, ‖Γ‖ cos α (in (65)) is the length (times h) of the normal from P onto
its polar plane (48), for all M = (x, y, z) on that plane.

Hence, the area Ξ of the (smaller) segment of E is

Ξ =
h2 − a2λ2 − b2µ2 − c2ν2

ν

∫ ∫
(1− t)2

∆T Υ
dy dx , (68)

4In (45), the equation of the plane was scaled to give h ≥ 0. If that had not been done,
then for h = 0 (or very close to it), roundoff could make the root $ with smaller modulus
flip sign from + to -, so that the point N on the ellipsoid would then flip from one side of the
plane (45) to the other, and that would make the computation fail. But with h ≥ 0 we do get
$ > 0 inside the ellipse of intersection.
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where the double integration is done over the projected elliptical disk in the
xy–plane. In that integrand ∆,Υ and t are functions of x and y.

That expression computes a signed area, and so its modulus should be used
for the unsigned area.

With
ω

def=
1√( x̄

a2

)2

+
( ȳ
b2

)2

+
( z̄
c2

)2
, (69)

we get from (64) and (37) that

∆T Υ = [(hx− a2λ), (hy − b2µ), (hz − c2ν)]


x̄

a2

ȳ

b2

z̄

c2

ω

= ω
(
h
(xx̄
a2

+
yȳ

b2
+
zz̄

c2

)
− λx̄− µȳ − νz̄

)
. (70)

For L = (x, y) on the projected ellipse, M = N and (x, y, z) = (x̄, ȳ, z̄), so that
t = 0. Then, (x, y, z) satisfies both equation (2) for E and equation (45) for the
plane, so that ∆T Υ = ω(h−h) = 0 and cos β = 0. Thus, the integrand in (68)
is singular on the boundary (52) of the domain of double integration.

4.1 Polar coordinates

Integration of (68) over x then over y (or conversely) leads to some awkward
singularities. Accordingly, we shall perform the double integration over the
projected elliptic disk in polar coordinates, centred at the centre U = (v, w) of
that ellipse (52), with

x = v + r cos ϑ, y = w + r sin ϑ , (71)

where ϑ is the angle from the x–axis. The element of area dxdy is replaced by
r dϑ dr.

The line through the ellipse centre U with angle ϑ intersects the projected
ellipse at r = ±ρ(ϑ), where ρ is the positive root of the quadratic equation got
by substituting (71) in (52):

0 = A(v + r cos ϑ)2 +B(v + r cos ϑ)(w + r sin ϑ) + C(w + r sin ϑ)2

+D(v + r cos ϑ) + E(w + r sin ϑ) + r sin ϑ+G

=
[
A cos2 ϑ+B cos ϑ sin ϑ+ C sin2 ϑ

]
r2

+
[
(2Av +Bw +D) cos ϑ+ (Bv + 2Cw + E) sin ϑ

]
r

+Av2 +Bvw + Cw2 +Dv + Ew +G . (72)

Since (v, w) is the centre of the ellipse then 2Av+Bw+D = 0 and Bv+2Cw+
E = 0 from (54), and so the coefficient of r is 0, as we expected. Therefore,

ρ(ϑ) =

√
−(Av2 +Bvw + Cw2 +Dv + Ew +G)
A cos2 ϑ+B cos ϑ sin ϑ+ C sin2 ϑ

. (73)
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Thus, (68) becomes

Ξ =
h2 − a2λ2 − b2µ2 − c2ν2

ν

∫ 2π

0

J(ϑ) dϑ , (74)

where

J(ϑ) def=
∫ ρ(ϑ)

0

(1− t)2

∆T Υ
r dr . (75)

Here, t, ∆ and Υ are functions of x and y, and hence they are functions of the
polar coordinates r and ϑ.

For the integration over ϑ, the integrand J(ϑ) is a smooth function with
period 2π. Accordingly, that integral is best evaluated by Composite Rectan-
gular Rule [Davis & Rabinowitz, pp.134–146], which is equivalent to Composite
Trapezoidal Rule for a periodic function integrated over its period.

But for the integration over r, the integrand in (75) is singular at r =
±ρ(ϑ), and since J(ϑ) exists for each ϑ those singularities are integrable. The
singularity analysis in Appendix B (158) shews that the integrand in (75) has
the form

(1− t)2

∆T Υ
r = κ(r) + (ρ− r)−1/2σ(r), (76)

where κ(r) and σ(r) are smooth functions for r ∈ [0, ρ].
Accordingly, (75) can be rewritten as

J(ϑ) =
∫ ρ(ϑ)

0

(ρ− r)−1/2 F (r) dr, (77)

where
F (r) = κ(r)

√
ρ− r + σ(r) . (78)

Substitute u =
√
ρ− r so that r = ρ− u2 and dr = −2u du, and (77) becomes

J(ϑ) = 2
∫ √

ρ

0

F (ρ− u2) du . (79)

Is this integrand a smooth enough function of u to be integrated readily?
Since F (r) is of the form (78),

dF
dr

= − 1
2κ(r) (ρ− r)−1/2 + κ′(r)

√
ρ− r + σ′(r) . (80)

Thus F (r) is continuous on the integration interval [0, ρ], but dF/dr is singular
at r = ρ (unless ε(ρ) = 0). However,

dF
du

=
dF
dr

dr
du

= κ(r) (ρ− r)−1/2u− 2uκ′(r)
√
ρ− r − 2uσ′(r)

= κ(ρ− u2)− 2u2κ′(ρ− u2)− 2uσ′(ρ− u2) . (81)

Hence, all derivatives of F with respect to u are continuous over the integration
interval u ∈ [0,

√
ρ].

Therefore, J(ϑ) can readily be computed from (79), since F (ρ − u2) is an
infinitely differentiable function of u.
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Thus, (75) can be converted to

J(ϑ) =
∫ √

ρ

0

(1− t)2(ρ− u2)
2u

∆T Υ
du , (82)

where t, ∆ and Υ are evaluated for r = ρ − u2. This integrand has the
indeterminate form 0/0 at u = 0, on the projected ellipse. Its limiting value on
the projected ellipse is given by (78) as σ(ρ) — but the computation of that
expression would be very complicated.

4.2 Romberg integration

The integral of a smooth function f over a finite interval L def=
∫ b

a
f(x) dx is usu-

ally evaluated by Romberg integration [Davis & Rabinowitz, pp.434–446]. That
is a systematic extrapolation of Composite Trapezoidal Rule, based on the cor-
rection terms in Euler–MacLaurin quadrature. Romberg’s algorithm generates a
triangular array of estimates Ti,j , with i ≥ 0 and 0 ≤ j ≤ i. The initial estimate
is computed by the simple Trapezoidal Rule T0,0 = (b− a)(f(a) + f(b))/2, and
then successive estimates Ti,0 are computed by Composite Trapezoidal Rule,
with the interval [a, b] being divided into 2i equal sub–intervals and with sim-
ple Trapezoidal Rule being applied over each sub–interval. Each estimate Ti,0

is then subjected to an iterated extrapolation process, generating successively
Ti,1, Ti,2, · · · , Ti,i . For a sufficiently smooth function f , the diagonal estimates
Ti,i converge very rapidly to L.

Romberg integration of f(x) over [a, b] is a closed quadrature formula, which
uses the values of f(a) and of f(b). Hence, if either f(a) or f(b) has indefinite
form, then

∫ b

a
f(x) dx cannot be computed by standard Romberg integration

— but it can be computed by a modified version.

4.2.1 Midpoint Romberg integration

In Romberg’s algorithm, replace the simple Trapezoidal Rule (which is a closed
formula) by the simple Midpoint Rule T0,0 = (b − a)f

(
1
2 (a+ b)

)
, which is an

open quadrature formula. (For integrating any quadratic polynomial f , the
truncation error of simple Midpoint Rule equals -2 times the truncation error
of simple Trapezoidal Rule.) Then neither f(a) nor f(b) is required, and so
this Midpoint Romberg integration is an open quadrature formula, which can
be applied when f(x) is indefinite at either x = a or x = b.

In particular, the integral (82) for J(ϑ) can readily be computed by Midpoint
Romberg integration over u.

4.3 Computed examples

A program to compute segment area by Midpoint Romberg integration over u
and then by Composite Rectangular Rule over ϑ, has been written in THINK
Pascal with extended variables (equivalent to about 19 or 20 significant dec-
imal figures), and used on a Macintosh computer. That program gives rapid
convergence for the double integration.
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4.3.1 Test cases

Archimedes proved that, for a sphere of radius a intersected by a plane at
distance g from the centre, the surface area of the sphere segment is 2πa(a− g)
[Archimedes, Prop. 42 & 43]. For a unit sphere, the THINK Pascal program
computes the area of the segment from z = g to z = 1 for g = 0, 0.5, 0.9 and
0.95, as 6.283185307179586, 3.141592653589794, 0.628318530717959 and
0.314159265358979 respectively. Those computed areas do equal 2π, π, π/5
and π/10, within 10−15.

If the intersecting plane (45) is normal to an axis (which we call the x–axis)
of the ellipsoid E

x2

a2
+
y2

b2
+
z2

c2
= 1 , (83)

then the area of the segment from x = g to x = a is given by the definite integral
(50). Table 1 gives various examples of such segment areas computed by our
algorithm of double integration, and the difference from the definite integral
(50).

Table 1

a b c g Double integration Difference

1 1 1 0.5 3.141592653589793 −2.70× 10−16

3 1 2 1 14.898564166191096 −2.32× 10−16

1.1 0.7 1.3 0.4 4.102165227994899 −1.65× 10−16

2 0.8 1.5 1.5 2.419521133392435 −1.18× 10−16

1.6 1.1 0.9 1.3 1.320531492584690 2.74× 10−17

Table 2 gives various computed examples of half the area of the ellipsoid
(83) (computed by Legendre’s formula), and the area of the (smaller) segment
intersected by the plane `x+my + nz = f .

Table 2

a b c Half Ellipsoid ` m n f Segment

2 0.7 1.2 10.21169524241981
4 -3 1 0
3 -2 4 7
1 -7 4 1

10.21169524241981
0.805727202906178
8.88982342451370

1.9 0.6 1 8.060185336491328

-3 2 1 0
-3 2 1 -4
-3 2 1 5.8
1 3 -2 -3

8.060185336491328
2.020205465454151
0.086701019126932
0.719344732924807

1.5 0.8 0.9 6.978898751442496
1 -1 7 0
-2 1 -4 4
-2 1 4 1

6.978898751442496
1.050044459459405
5.458346340746586

0.7 1.3 1.4 8.015485343804755

1 -1 0 0
2 2 -1 -1
-7 5 3 9
-7 5 3 1

8.015485343804754
5.452684579507425
0.138647695911539
7.124341012035889
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Each plane with f = 0 passes through the centre of the ellipsoid, and its
segment area computed by our algorithm agrees closely with half the ellipsoid
area computed from Legendre’s formula.

5 Intersecting Ellipsoids

When software is developed for computing area of surfaces from digitized pic-
tures, then it can be tested on simple surfaces of known area, e.g. spheres and
ellipsoids [Klette & Rosenfeld, Chapter 8]. More general test surfaces could be
constructed from intersections of such surfaces, e.g. 2 intersecting spheres.

In particular, a segment of an ellipsoid together with its elliptical disk forms a
convex closed surface, whose area can be computed. And further plane segments
could be sliced off, giving a convex faceted ellipsoid whose area can be computed.

If 2 ellipsoids intersect, then their intersection is in general a complicated
space curve (or pair of curves), and the computation of the surface area of a
segment of an ellipsoid intersected by another ellipsoid would be a very difficult
problem. Accordingly, we shall consider an ellipsoid intersected by a plane in an
ellipse of intersection, and another ellipsoid with the same ellipse of intersection.

5.1 Intersection of similar ellipsoids

For example, if E does intersect the plane (45), then their intersection is the
plane ellipse of intersection (52) and (51). For any real parameter ς, the quadric
surface

x2

a2
+
y2

b2
+
z2

c2
+ ς(λx+ µy + νz) = 1 + ςh (84)

intersects E and the plane (45) in that ellipse of intersection. Equation (84)
may be rewritten as

1
a2

(
x2 + ςλa2x+ 1

4 ς
2λ2a4

)
+

1
b2
(
y2 + ςµb2y + 1

4 ς
2µ2b4

)
+

1
c2
(
z2 + ςνc2x+ 1

4 ς
2ν2c4

)
= 1 + ςh+ 1

4 ς
2(λ2a2 + µ2b2 + ν2c2). (85)

Denote
κ

def= 1 + ςh+ 1
4 ς

2(λ2a2 + µ2b2 + ν2c2) , (86)

and this reduces to

(x+ 1
2 ςλa

2)2

a2κ
+

(y + 1
2 ςµb

2)2

b2κ
+

(z + 1
2 ςνc

2)2

c2κ
= 1 . (87)

From (86), it follows that κ = 0 if and only if

1 + hςh+ 1
4 ς

2(λ2a2 + µ2b2 + ν2c2) = 0. (88)

This quadratic equation in ς has the discriminant h2 − λ2a2 − µ2b2 − ν2c2, and
that is negative (49) since the plane (45) intersects E . Consequently, κ > 0 for
all real ς.

Hence, (87) is the equation of an ellipsoid similar to E centred at the point
(− 1

2 ςλa
2,− 1

2 ςµb
2,− 1

2 ςνc
2), with semi–axes a

√
κ, b

√
κ, c

√
κ, which are parallel

to the x, y, z axes. This ellipsoid intersects E in the ellipse of intersection
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with the plane (45), and the areas of both segments of the ellipsoid (87) can be
computed as for E (after a parallel shift of origin to (− 1

2 ςλa
2,− 1

2 ςµb
2,− 1

2 ςνc
2)).

Either of the segments of E could be joined to either of the segments of the other
ellipsoid (87) to give 4 figures, whose surface area can be computed as above.
The 2 surfaces which are composed of segments of both ellipsoids on the same
side of the plane (45) are concave — the other 2 surfaces, which are composed
of segments of both ellipsoids on opposite sides of the plane (45), can be convex
or concave.

5.2 Intersection of general ellipsoids

More generally, for real parameters ρ, ς, τ, k, the surface

x2

a2
+
y2

b2
+
z2

c2
+ (ρx+ ςy + τz − k)(λx+ µy + νz − h) = 1 (89)

is a quadric surface, which intersects E at the ellipse of intersection with the
plane (45). This equation can be expanded as(

1
a2

+ ρλ

)
x2 +

(
1
b2

+ ςµ

)
y2 +

(
1
c2

+ τν

)
z2

+(ρµ+ ςλ)xy + (ρν + τλ)xz + (ςν + τµ)yz
−(hρ+ kλ)x− (hς + kµ)y − (hτ + kν)z = 1− hk. (90)

That is the equation of an ellipsoid, if and only if the Hessian matrix M of
the function of x, y and z on the left–hand side

M =


2
(

1
a2

+ ρλ

)
(ρµ+ ςλ) (ρν + τλ)

(ρµ+ ςλ) 2
(

1
b2

+ ςµ

)
(ςν + τµ)

(ρν + τλ) (ςν + τµ) 2
(

1
c2

+ τν

)

 (91)

is positive–definite, and 1− hk is sufficiently large5 (or -M is positive–definite,
and hk−1 is sufficiently large). Both conditions hold if the parameters ρ, ς, τ, k
have sufficiently small moduli, and also for some sets of parameters with larger
moduli.

The centre and the axes of that ellipsoid (90) can be found by the n–
dimensional analysis in Appendix A, and those axes can be taken as orthogonal
Cartesian axes. The ellipsoid (89) then has an equation (in the new coordi-
nates) of the standard form (2), and the areas of its segments by the plane (45)
(represented in the new coordinates) can be found as for E . Either of the seg-
ments of E could be joined to either of the segments of the other ellipsoid (89),
to give 4 figures whose surface area has been computed. The 2 surfaces which
are composed of segments of both ellipsoids on the same side of the plane (45)
are concave — the other 2 surfaces, which are composed of segments of both
ellipsoids on opposite sides of the plane (45), can be convex or concave.

5Details are given in Appendix A.
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5.3 Tangential ellipsoids

If k2 < a2ρ2 + b2ς2 + c2τ2, then (43) the plane

ρx+ ςy + τz = k (92)

intersects E in an ellipse of intersection. In that case, equation (89) holds on that
ellipse of intersection with (92). Thus, the quadric surface (89) then intersects
E in 2 ellipses of intersection, on the planes (45) and (92). If the plane (92)
approaches the plane (45), then the ellipse of intersection in the plane (92)
approaches the ellipse of intersection in the plane (45). Hence, for any real
parameter υ the quadric surface

x2

a2
+
y2

b2
+
z2

c2
+ υ(λx+ µy + νz − h)2 = 1 (93)

is tangential to the ellipsoid E on the ellipse of intersection in the plane (45).
Indeed, if υ > 0 then on that quadric surface (93),

x2

a2
+
y2

b2
+
z2

c2
= 1− υ(λx+ µy + νz − h)2 ≤ 1, (94)

with equality only on the ellipse of intersection. Hence, the quadric surface (93)
is contained in the ellipsoid E , and therefore it is an ellipsoid if υ > 0. And
similarly if υ < 0 then the quadric surface (93) is wholly outside E , except on
the ellipse of intersection.

Equation (93) may be rewritten as(
1
a2

+ υλ2

)
x2 +

(
1
b2

+ υµ2

)
y2 +

(
1
c2

+ υν2

)
z2

+2υ(λµxy + λνxz + µνyz)− 2υh(λx+ µy + νz) = 1− υh2 . (95)

Even for negative υ this represents an ellipsoid (at any rate, for sufficiently small
−υ), and the areas of its segments by the plane (45) can be computed, as for
the ellipsoid (89).

Either of the segments of E could be joined to either of the segments of the
other ellipsoid (95) to give 4 figures, whose surface area has been computed.
Those ellipsoids are tangential on the ellipse of intersection. Accordingly, if
a segment of E on one side of the plane (45) is joined to the segment of the
ellipsoid (95) on the other side of the plane then the compound figure is convex
and smooth, with the direction normal to the surface varying continuously over
the surface. But, if a segment of E on one side of the plane (45) is joined to the
segment of the ellipsoid (95) on the same side of the plane then the compound
figure is concave, with cusps everywhere on the ellipse of intersection.

5.4 Sets of intersecting ellipsoids

This process could be repeated, to build up the union of a set of ellipsoids, each
of which has plane intersection with at least one other ellipsoid. Also, no 3
ellipsoids have any interior point in common. (This latter condition could be
relaxed somewhat.) The area of each segment can be computed as above, and
added to give the area of the surface of the union of those ellipsoids.
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6 Surface Integrals

Consider a function f integrated with respect to the area of a surface K

Ψ def=
∫
K

f(x, y, z) dσ, (96)

where dσ is an element of area of that surface at (x, y, z).

6.1 Surface Integrals over Ellipsoid

Let the surface K be the entire ellipsoid E with semi–axes a, b, c, as in (2). The
coordinate axes can be named so that a ≥ b ≥ c, in which case 1 > δ ≥ ε ≥ 0.

An element of area dx dy in the xy plane is projected normally from that
plane onto a surface z = z(x, y), to give an element (9) of surface area

dσ =

√
1 +

(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy . (97)

For the ellipsoid E with z = ±u, where

u = c

√
1− x2

a2
− y2

b2
, (98)

this reduces (13) to

dσ =

√√√√√√√1− δ
x2

a2
− ε

y2

b2

1− x2

a2
− y2

b2

dy dx . (99)

Hence the integral of f over the entire surface of E is

Ψ =
∫
E

f dσ =
∫ ∫

[f(x, y, u)+f(x, y,−u)]

√√√√√√√1− δ
x2

a2
− ε

y2

b2

1− x2

a2
− y2

b2

dy dx , (100)

where the double integration is performed over the interior of the ellipse x2/a2+
y2/b2 = 1, with |y| < b

√
1− x2/a2. Therefore, the surface integral is

Ψ =
∫ a

−a

R(x) dx , (101)

where

R(x) def=
∫ b

√
1−x2/a2

−b
√

1−x2/a2

[
f(x, y, u) + f(x, y,−u)

]
√√√√√√√1− δ

x2

a2
− ε

y2

b2

1− x2

a2
− y2

b2

dy . (102)
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That integrand is singular on the bounding ellipse. To eliminate that singu-
larity, substitute x = as and y = bt

√
1− s2 with m = ε(1− s2)/(1− δs2) as in

(28) so that 0 ≤ m ≤ 1 , and similarly to (29) we get

R(x) = b
√

1− δs2
∫ 1

−1

[
f(x, y, u) + f(x, y,−u)

]√1−mt2

1− t2
dt . (103)

Substitute t = sin q, and this reduces to

R(x) = b
√

1− δs2
∫ π/2

−π/2

[
f(x, y, u) + f(x, y,−u)

]√
1−m sin2 q dq . (104)

If f varies smoothly over the surface this integrand is a smooth function of q,
and hence R(x) can be computed efficiently by Romberg integration.

And then the surface integral Ψ can be computed efficiently by Romberg
integration of R(x) over [−a, a].

6.2 Surface Integrals over Segment of Ellipsoid

Let the surface K be the (smaller) segment of E by the plane (45).
In (68), the element of area dx dy at L = (x, y) in the projected elliptical

disk is projected to an element of surface area

dσ =
h2 − a2λ2 − b2µ2 − c2ν2

ν
× (1− t)2

∆T Υ
dy dx (105)

at N = (x̄, ȳ, z̄) on the (smaller) segment of E . Hence, the integral of f over the
segment is

Ψ =
∫
K

f dσ =
h2 − a2λ2 − b2µ2 − c2ν2

ν

∫ ∫
f(x̄, ȳ, z̄)

(1− t)2

∆T Υ
dy dx , (106)

where the double integral is evaluated over the interior of the projected ellipse.
For computing this double integral, it is convenient to use coordinates (ϑ, u),

as in (74) and (82), so that

Ψ =
h2 − a2λ2 − b2µ2 − c2ν2

ν

∫ 2π

0

P (ϑ) dϑ , (107)

where

P (ϑ) =
∫ √

ρ

0

f(x̄, ȳ, z̄)(1− t)2(ρ− u2)
2u

∆T Υ
du , (108)

and x̄, ȳ, z̄, t, ∆, Υ are evaluated for polar coordinates r = ρ− u2 and ϑ.
Then P (ϑ) can efficiently be computed by Midpoint Romberg integration

over u, and the surface integral Ψ can efficiently be computed by Composite
Rectangular Rule integration of P (ϑ) over [0, 2π].

6.2.1 Bisected Ellipsoid

If the plane (45) passes through the centre of E , then h = 0 and we need to
specify which of the two segments is to be used in the surface integration.
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With h = 0 then λx + µy + νz = 0 on the plane (45), and it follows from
(57) that at N = (x̄, ȳ, z̄) on the chosen half of the ellipsoid surface (except on
the plane)

λx̄+ µȳ + νz̄ = λx+ µy + νz + (a2λ2 + b2µ2 + c2ν2)$
= (a2λ2 + b2µ2 + c2ν2)$ . (109)

This is positive, since $ > 0 from (63).
Hence, if the surface integral is required over the other half of the ellipsoid,

change the signs of the direction cosines λ, µ, ν.
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Appendices

A Ellipsoid Axes

Consider an ellipse in rectangular Cartesian coordinates

Ax2 +Bxy + Cy2 +Dx+ Ey = w. (110)

In particular, the projected ellipse (52) has w = −G = ν2c2 − h2.
If B = 0 (which happens for the projected ellipse if and only if either λ = 0

or µ = 0, or both), then this becomes

w = A

[
x2 +

Dx

A

]
+ C

[
y2 +

Ey

C

]
= A

[(
x+

D

2A

)2

−
(
D

2A

)2
]

+ C

[(
y +

E

2C

)2

−
(
E

2C

)2
]
. (111)

Define the new coordinates z1 = x+D/(2A), z2 = y +E/(2C), with a parallel
shift of axes to (u1, u2) = (−D/(2A),−E/(2C)), and this becomes

Az2
1 + Cz2

2 = f, (112)

where

f
def= w +

D2

4A
+
E2

4C
. (113)

That can be rewritten as
z2
1

d2
1

+
z2
2

d2
2

= 1 , (114)

where
d1

def=
√
f/A, d2

def=
√
f/C . (115)

This is the equation (in the shifted rectangular Cartesian coordinates z1, z2),
of an ellipse with axes parallel to the xy axes, and its semi–axes are d1 and d2.

Therefore, if B = 0 then the ellipse (110) has the area

K = πd1d2 =
πf√
AC

=
π

(
w +

D2

4A
+
E2

4C

)
√
AC

. (116)

But if B 6= 0, then it is convenient to apply the theory for general ellipsoids
in n dimensions, with n > 1.
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A.1 Axes Of Ellipsoids In n Dimensions

With rectangular Cartesian coordinates x1, x2, . . . , xn, the equation of a general
ellipsoid is

xT Mx + qT x = w, (117)

where M is a real symmetric positive–definite matrix of order n, the vector
x = [x1 x2 . . . xn]T , q is a real n–vector and w is a real scalar (which could be
0).

Substitute x = z + u, and this becomes

w = (z + u)T M(z + u) + qT (z + u)
= zT Mz + zT Mu + uT Mz + uT Mu + qT z + qT u . (118)

Now,
qT z =

(
qT z)T = zT q, (119)

and
uT Mz =

(
uT Mz

)T = zT MT u = zT Mu (120)

since M is symmetric. Therefore

zT Mu + uT Mz + qT z = zT (2Mu + q) . (121)

Solve the equation 2Mu + q = 0 for u by Cholesky factorization of M, so
that zT Mu + uT Mz + qT z = 0. Also,

qT u = −2uT MT u = −2uT Mu , (122)

and so (118) reduces to the equation

zT Mz = f , (123)

where
f = w + uT Mu . (124)

Make a parallel shift of the axes from x = 0 to u, with the coordinate vector
z = x - u. The ellipsoid is centred at that shifted origin, since if z satisfies (123)
then so does –z.

Since M is real–symmetric then MV = VΛ, where Λ = dλ1, λ2, . . . , λnc
is a diagonal matrix of the (positive) eigenvalues, and V is a real orthonormal
matrix of eigenvectors of M. Therefore VT V = I = VVT , M = VΛVT , and
in the shifted coordinates

f = zT Mz = zT VΛVT z = yT Λy, (125)

where y def= VT z, and hence x = Vy. The vector y can be used for coordinates,
as an alternative to the vector z, with the transformation z = Vy. This is an
orthogonal transformation which preserves lengths, since for all w and z,∥∥∥VT w−VT z

∥∥∥2

=
∥∥∥VT (w-z)

∥∥∥2

= (VT (w-z))T VT (w-z)

= (w− z)T VVT (w− z) = (w− z)T (w− z) = ‖w− z‖2
. (126)
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Hence, angles also are preserved. Then

f = yT Λy =
n∑

i=1

λiy
2
i . (127)

Thus the ellipsoid has the equation in the y coordinates

n∑
i=1

y2
i

d2
i

= 1, (128)

where di =
√
f/λi. Hence the di are the semi–axes of the ellipsoid.

The unit ball in n dimensions has volume [Smith & Vamanamurthy]

Ωn =
πn/2

Γ
(
1 + 1

2n
) . (129)

Thus,

Ω2 = π, Ω3 = 4
3π, Ω4 = 1

2π
2, Ω5 = 8

15π
2, Ω6 = 1

6π
3 et cetera. (130)

For each i = 1, 2, · · · , n, scaling the i-th semi-axis from 1 to di multiplies
the volume by di, and hence the ellipsoid (128) has the n–dimensional volume

K = Ωn d1d2d3 · · · dn = Ωn

√√√√ n∏
i=1

f

λi
. (131)

But λ1λ2 · · ·λn = det M, and hence the n–dimensional volume is

K = Ωn

√
fn

detM
. (132)

Note that the volume K can be computed without evaluating any eigenval-
ues. And if M is factorized by the rational version of Cholesky factorization to
compute u and detM, then only one square root needs to be extracted.

A.2 Area of Ellipse

We now consider the equation (110) of an ellipse with B 6= 0.
That is a 2-dimensional ellipsoid, and so its area K can be found from the

general result for n dimensions. Rewrite x and y as x1 and x2.
In matrix form, (110) becomes xT Mx + qT x = w, where

M =
[

A B/2
B/2 C

]
, x =

[
x1

x2

]
, q =

[
D
E

]
, w = −G, (133)

and detM = AC −B2/4 .
For the projected ellipse, in view of (53) this reduces to w = ν2c2 − h2, and

detM = AC − 1
4B

2 =
(
λ2a2 + µ2b2 + ν2c2

)ν2c2

a2b2
. (134)
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The ellipse is centred at u, where

2Mu = −q , (135)

and hence

u =


(
BE − 2CD
4AC −B2

)
(
BD − 2AE
4AC −B2

)
 . (136)

Hence,
uT Mu = Au2

1 +Bu1u2 + Cu2
2

=
A(BE − 2CD)2 +B(BE − 2CD)(BD − 2AE) + C(BD − 2AE)2

(4AC −B2)2
, (137)

and the constant term is
f = w + uT Mu . (138)

The eigenvalues of M are

λ1 =
1
2
(
A+C+

√
(A− C)2 +B2

)
, λ2 =

1
2
(
A+C−

√
(A− C)2 +B2

)
. (139)

The discriminant is positive, and hence λ1 > λ2 .
Each eigenvalue λj has eigenvector[

B
2(A− λj)

]
=

[
B

A− C ∓
√

(A− C)2 +B2

]
,

with normalizing factor ωj =
(
B2 + 4(A− λj)2

)−1/2, or

ω1 =
1√

2
(
A− C)2 +B2 − (A− C)

√
(A− C)2 +B2

) ,

ω2 =
1√

2
(
A− C)2 +B2 + (A− C)

√
(A− C)2 +B2

) . (140)

Thus, the orthonormalized matrix of eigenvectors is

V =
[

Bω1 Bω2

2ω1(A− λ1) 2ω2(A− λ2)

]
, (141)

and the coordinate systems are related by x = Vy + u.
The semi-axes of the ellipse are

d1 =
√

f

λ1
, d2 =

√
f

λ2
, (142)

with d1 < d2. The area of the ellipse (110) is

K(h) = Ω2

√
f2

detM
=

πf√
detM

=
πf√

AC −B2/4
. (143)

And if (110) is a projected ellipse, then the area of the ellipse of intersection
is L(h) = K(h)/ν.
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A.2.1 Circumference of Ellipse of Intersection

In the plane (45), construct orthogonal Cartesian axes centred at (x, y, z) =
(0, 0, h/ν), with η–axis parallel to the x–axis, and with ζ–axis in the plane (45)
orthogonal to the η–axis. Thus, each point (η, ζ) in the ellipse of intersection
projects to (x, y) = (η, νζ) in the projected ellipse (110).

Thus, in the plane (45), the ellipse of intersection has the equation

Aη2 + (Bν)ηζ + (Cν2)ζ2 +Dη + (Eν)ζ = w, (144)

which can be rewritten as

Âη2 + B̂ηζ + Ĉζ2 + D̂η + Êζ = ŵ. (145)

For this ellipse of intersection the eigenvalues λ̂1 > λ̂2 and the semi–axes
d̂1 < d̂2 ¿can be computed as above, for the projected ellipse (52). Then,
equation (26) gives the circumference of the ellipse of intersection as

C(d̂2, d̂1) = 4d̂2E

(
1− d̂2

1

d̂2
2

)
= 4d̂2E

(
1− λ̂2

λ̂1

)
. (146)

A.2.2 Plane Through Centre of Ellipsoid

If the plane (45) passes through the centre of E then h = 0, and accordingly
D = E = 0 in (53). Therefore u = 0 and f = w = ν2c2, and the area of the
projected ellipse is

K(0) =
πν2c2√

AC −B2/4
. (147)

And the area of the ellipse of intersection is

L(0) =
K(0)
ν

=
πνc2√

AC −B2/4
=

πabc√
a2λ2 + b2µ2 + c2ν2

. (148)

Note that the expression (148) is unchanged by any permutation of (a with λ),
(b with µ) and (c with ν).

B Singularity in Integrand

Consider an integral of the formQ(t) =
∫
R(t, y) dt, whereR is a general rational

function and y2 = P (t), where P is a polynomial. Any squared factor (t− w)2

in P (t) can be taken outside y =
√
P (t), and so without loss of generality P (t)

can be taken as the product of distinct linear factors. If P has degree 0, 1 or 2,
then Q(t) can be expressed in terms of elementary functions. If P has degree
3 or 4 , then Q(t) is defined as an elliptic integral; and if the degree is greater
than 4 then Q(t) is called a hyperelliptic integral.

The rational function R can be reduced to the form

R(t, y) =
K(t, y)
L(t, y)

,
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where K and L are polynomials in 2 variables. Wherever y occurs with power
greater than 1 in K(t, y) or L(t, y), then y2 can be replaced by P (t); and that
reduction can be repeated until R is reduced to the form

R(t, y) =
α(t) + β(t)

√
P (t)

γ(t) + δ(t)
√
P (t)

, (149)

where α, β, γ and δ are polynomials. That expression can be simplified further,
to

R(t, y) =

(
α(t) + β(t)

√
P (t)

)(
γ(t)− δ(t)

√
P (t)

)
(
γ(t) + δ(t)

√
P (t)

)(
γ(t)− δ(t)

√
P (t)

)
=

α(t) γ(t)− β(t) δ(t)P (t) + (β(t) γ(t)− α(t) δ(t))
√
P (t)

(γ(t))2 − (δ(t))2P (t)

= ε(t) + ζ(t)
√
P (t) , (150)

where ε(t) and ζ(t) are rational functions of t, each with denominator (γ(t))2−
(δ(t))2P (t) . Reduce each of these to lowest terms, by dividing numerator and
denominator by their gcd, if that is a polynomial of degree greater than 0.
Denote the reduced form of ζ(t) by ξ(t)/υ(t).

If w is a zero of the denominator of ε(t) then R(t, y) has a non–integrable
singularity at t = w, and Q(t) is singular there — unless that is cancelled by a
singularity of ζ(t). For example, if

R(t, y) = ε(t) + ζ(t)
√
P (t) =

1
tm

−
√

1− tn

tm
(151)

for positive integers m and n, then ε(t) has a non–integrable singularity at t = 0.
But

R(t, y) =
1−

√
1− tn

tm
=

(
1−

√
1− tn

)(
1 +

√
1− tn

)
tm
(
1 +

√
1− tn

)
=

tn

tm
(
1 +

√
1− tn

) =
tn−m

1 +
√

1− tn
. (152)

If m > n then R(t, y) has a non–integrable singularity at t = 0 and Q(0) does
not exist; but if m ≤ n then R(t, y) is integrable and Q(0) exists.

Otherwise, if υ(w) = 0 then R(t, y) has a non–integrable singularity at t = w,
andQ(t) is singular there; unless P (w) = 0 and w is a simple root of the equation
υ(w) = 0. In that case, then for all t we get P (t) ≡ (t − w)H(t) where H is a
polynomial with H(w) 6= 0, and υ(t) ≡ (t − w)M(t) where M is a polynomial
with M(w) 6= 0; and thus

R(t, y) = ε(t) +
ξ(t)

√
H(t)

√
t− w

M(t) (t− w)
= ε(t) + (t−w)−1/2 ξ(t)

√
H(t)

M(t)
. (153)

In that case R(t, y) has an integrable singularity at t = w, and Q(w) exists.
Thus, for any such function R(t, y), if w is an integrable singularity then it

must be of the form (153).
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B.1 Integrand for J(ϑ)

In the quadratic equation (60) for $, it follows from (61) that each of the
coefficients φ, ψ and χ is a quadratic function of x, y and z. In view of (71)
and (51), each of x, y and z is a linear function of r; and hence each of φ, ψ
and χ is a quadratic function of r. Thus, the discriminant

P (r) = h2ψ2 − φψ = (−ψ)(φ− h2ψ) (154)

in (60) is a quartic polynomial in r.
On the ellipsoid ψ = 0 and it is negative inside E , reaching a minimum of

-1 at the centre O. Hence, on the projected ellipse, for fixed ϑ both ψ and φ
are quadratic polynomials in r, with φ > 0 and with ψ(±ρ) = 0. Therefore,
−ψ(r) = k(ρ−r)(ρ+r) for some positive constant k, and q(r) def= φ(r)−h2ψ(r) is
a quadratic polynomial, which is positive for all r. Therefore P (r) = (ρ−r)H(r),
where H(r) = k(ρ+ r)q(r). And thus $ is a rational function of r and P (r).

Then x̄, ȳ and z̄) are linear functions of x, y, z and $, and hence they are
rational functions of r and P (r). Therefore ∆T Υ is a rational function of r and
P (r), times the normalizing factor ω. Thus, in view of (153), the integrand in
(75) has the form

(1− t)2

∆T Υ
r =

1
ω
R(r, P (r)) , (155)

where R is a rational function, and

1
ω

=

√( x̄
a2

)2

+
( ȳ
b2

)2

+
( z̄
c2

)2

. (156)

It follows from (153) that this reduces to

1
ω
R(r, P (r)) =

1
ω

(
ε(r) + (ρ− r)−1/2 ξ(r)

√
H(r)

M(r)

)
, (157)

where ε(r) and ξ(r) are rational functions which are continuous on the interval
[0, ρ]. And 1/ω is a positive function of r which is smooth, since M = (x̄, ȳ, z̄)
cannot get closer to (0,0,0) than the minimum of a, b and c.

Therefore, the integrand in (75) has the form

(1− t)2

∆T Υ
r = κ(r) + (ρ− r)−1/2σ(r), (158)

where κ(r) and σ(r) are smooth functions for r ∈ [0, ρ].
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