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HIGH DISTANCE HEEGAARD SPLITTINGS OF 3-MANIFOLDS

TATIANA EVANS

Abstract. J. Hempel [4] used the curve complex associated to the Heegaard
surface of a splitting of a 3-manifold to study its complexity. He introduced
the distance of a Heegaard splitting as the distance between two subsets of the
curve complex associated to the handlebodies. Inspired by a construction of T.
Kobayashi [7], J. Hempel [4] proved the existence of arbitrarily high distance
Heegaard splittings.

In this work we explicitly define an infinite sequence of 3-manifolds {Mn}
via their representative Heegaard diagrams by iterating a 2-fold Dehn twist
operator. Using purely combinatorial techniques we are able to prove that the
distance of the Heegaard splitting of Mn is at least n.

Moreover, we show that ⇡1(Mn) surjects onto ⇡1(Mn�1). Hence, if we
assume that M0 has non-trivial boundary then it follows that the first Betti
number �1(Mn) > 0 for all n � 1. Therefore, the sequence {Mn} consists of
Haken 3-manifolds for n � 1 and hyperbolizable 3-manifolds for n � 3.

1. Introduction

A Heegaard splitting (S;V1, V2) for a closed 3-manifold M is a representation
M = V1 [S

V2 where V1 and V2 are handlebodies and S = @V1 = @V2 = V1 \ V2.
The distance of a Heegaard splitting (S;V1, V2) is the length of a shortest path in
the curve complex of S which connects the subcomplexes K

V1 and K
V2 , where K

Vi

is the subcomplex consisting of all vertices that correspond to simple closed curves
bounding disks in V

i

for i = 1, 2.
In this paper we continue to analyze the correlation between subcomplexes of

the curve complex and the corresponding Heegaard splittings of 3-manifolds. In
particular, we construct a sequence of 3-manifolds (in fact Haken 3-manifolds) which
have arbitrarily large distance (see theorem 4.4 for a precise statement).

Theorem 1.1. Let S be an orientable surface of genus g � 2. Suppose X =
{x1, x2, ..., xg

} is a collection of standard meridians on S and y is a simple closed
curve on S. Let (S;X, y) describe a Heegaard diagram for a 3-manifold. Let Y 0 = y
and then iteratively define Y k = ⌧2

Y

k�1(X), k = 1, ..., n. If the curve y is su�ciently
complicated then dist(K

X

,K
Y

n) � n.

Here the notation ⌧2
Y

0(X) means the square of the Dehn twist operator of X
along Y 0 and d(K

X

,K
Y

n) denotes the distance of the Heegaard splitting defined
by the Heegaard diagram (S;X, Y n).

There have been several similar results in the past. J. Hempel [4] showed that
the set of distances of Heegaard splittings is unbounded for 3-manifolds obtained by
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2 TATIANA EVANS

using a construction of T. Kobayashi [7]. The proof proceeds by choosing a certain
pseudo-Anosov map h defined on a Heegaard surface corresponding to handlebodies
V1 and V2. For each n he then considers the manifold obtained by gluing V1 to V2

by the map hn. By analyzing the action of h on the space PML(S) of projective
measured laminations Hempel proves that the set of distances of these Heegaard
splittings is unbounded. A. Abrams and S. Schleimer [1] later showed that with
the same set up the distance of the splittings grows linearly with n using the result
of H. Masur and Y. Minsky [10] that the curve complex is Gromov hyperbolic.

Whereas the above results are existential our construction is explicit and purely
combinatorial.

In contrast to our theorem Schleimer [14] proved that each fixed 3-manifold has
a bound on distances of its Heegaard splittings. In particular this implies that our
sequence contains infinitely many non-homeomorphic 3-manifolds.

In Section 2, we introduce the necessary definitions and state a few of the main
theorems in the field as a form of motivation.

In section 3 we define the Dehn twist operator which is used iteratively to con-
struct a sequence of Heegaard diagrams. We prove that if we start with a manifold
with non-trivial boundary then the resulting sequence consists of closed 3-manifolds
each containing an incompressible surface.

In Section 4 we continue to analyze the set up introduced in Section 3 by proving
the main theorem. From the definition of the distance it follows that the constructed
3-manifolds are irreducible. Since we observed before that they each contain an
incompressible surface it follows that they are Haken 3-manifolds.

In section 5 we consider positive Heegaard diagrams of genus 2. It is relatively
easy to encode such diagrams in the form of vectors in Z5 and make conclusions
about the action of the Dehn twisting operator on the set of those vectors. Fi-
nally we show some examples of representative diagrams and make a few steps in
constructing the iterating sequence of hyperbolizable 3-manifolds.

2. Preliminaries

Throughout this work we will assume a basic familiarity with common notions
in 3-manifold topology, all of which can be found in [5] and [6].

2.1. The curve complex. Let us denote by S a closed, connected, orientable
surface of genus g � 2. The curve complex of S, denoted by C(S), is a simplicial
complex in which vertices are isotopy classes of essential simple closed curves on S,
and k+1 vertices determine a k-simplex if they are represented by pairwise disjoint
simple closed curves.

If we put a hyperbolic metric on S, then each isotopy class contains a unique
geodesic. Since two isotopy classes have disjoint representatives if and only if their
geodesic representatives are disjoint, we can think about C(S) as having geodesics
as its vertices and the corresponding collections of k + 1 pairwise disjoint simple
closed curves as its k-simplexes, and thus we can think of a k-simplex as a subset
of S.

A principal simplex of C(S) is a collection of 3g � 3 simple closed curves which
splits S into pairs of pants (thrice punctured 2-spheres). This is the maximum col-
lection of pairwise disjoint, non-isotopic simple closed curves on S up to homeomor-
phism. Hence, the maximal dimension of a simplex is 3g�4. So, dimC(S) = 3g�4.
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2.2. Heegaard splittings. In further considerations we will suppress the di↵er-
ence between simple closed curves and their isotopy classes.

Definition 2.1. A k-simplex X = (x0, x1, ..., xk

) 2 C(S) defines a compression
body as follows: start with S ⇥ [0, 1], attach 2-handles to S ⇥ {1} along the curves
of the collection X, and then fill in any resulting 2-sphere boundary components
with 3-cells. Denote the resulting space by

V
X

= S ⇥ [0, 1] [
X⇥1 2-handles [

S

23-handles.
S ⇥ 0 is called the outer boundary of V

X

and is naturally identified with S. The
second boundary component @V

X

�S⇥ 0 is called the inner boundary and may be
empty.

Definition 2.2. A compression body V
X

with an empty inner boundary is called
a handlebody.

Define
N

X

= normal closure of {x0, x1, ..., xk

} in ⇡1(S).
Then, N

X

= ker{⇡1(S) ! ⇡1(VX

)} determines V
X

up to homeomorphisms
which restrict to the identity on S.

Definition 2.3. A Heegaard splitting of a compact, orientable 3-manifold M is
a representation of M as the union of two compression bodies which intersect on
their outer boundaries. Thus, a pair X, Y of simplexes of the curve complex C(S)
determines a splitting (S;V

X

, V
Y

) of the 3-manifold

M
X,Y

= V
X

[
S

V
Y

The genus of the splitting is simply the genus g of the splitting surface S.

By assuming that the genus of S is � 2 we are excluding the standard genus
zero and genus one Heegaard splittings of S3, Lens spaces, and S2 ⇥ S1.

Note that a 3-manifold M is closed if and only if both V
X

and V
Y

are handle-
bodies in a Heegaard splitting M

X,Y

= V
X

[
S

V
Y

.

Definition 2.4. For a Heegaard splitting (S;V
X

, V
Y

) call the pair of simplexes
X, Y a Heegaard diagram and denote it by (S;X, Y ).

There are many simplexes of C(S) besides X which determine a fixed compres-
sion body V

X

.

Definition 2.5. The collection of all simplexes which determine the same com-
pression body defines a subcomplex of the curve complex. The collection of simple
closed curves bounding disks in V

X

is exactly the collection of vertices of this sub-
complex. Denote it by K

X

. We call K
X

the disk system subcomplex associated to
the compression body V

X

.

Theorem 2.6 (Feng Luo [9]). Two (3g � 4)-simplexes X, X 0 of C(S) determine
the same handlebody, (V

X

, S) = (V
X

0 , S), if and only if there is a sequence X =
X0, X1, ..., Xn

= X 0 of (3g � 4)-simplexes of C(S) such that X
i�1 \ X

i

is a full
(3g � 5)-face of each for i = 1, 2, ..., n.

Thus, the pair K
X

,K
Y

of subcomplexes of the curve complex describe all the
di↵erent Heegaard diagrams which determine the same Heegaard splitting.
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2.3. Irreducibility of Heegaard splittings. Recall that a closed 3-manifold M
is irreducible if every embedded 2-sphere in M bounds a 3-cell in M . Otherwise M
is reducible. Also, M is toroidal if M contains an incompressible torus. Otherwise,
M is called atoroidal. Moreover, a closed, orientable 3-manifold is Haken if it is
irreducible and contains a 2-sided incompressible surface.

The geometric intersection number of simple closed curves ↵1,↵2 on S is

i(↵1,↵2) = min{#(↵01 \ ↵02) where ↵0
i

isotopic to ↵
i

, i = 1, 2}.
We say that simple closed curves ↵,� meet e�ciently if they are in general

position and i(↵,�) = #(↵ \ �). This is equivalent to having no disk (or “bigon”)
D on S with D \ (↵ [ �) = @D = a [ b where a, b are arcs such that a ⇢ ↵ and
b ⇢ �.

Definition 2.7. A properly embedded disk D in a 3-manifold M is essential if @D
does not bound a disk in @M .

Definition 2.8. For a given Heegaard splitting (S;V
X

, V
Y

) define the disk system
D

X

to be the collection of proper isotopy classes of essential disks in V
X

. The disk
system D

Y

is defined similarly.

Definition 2.9. A Heegaard splitting (S;V
X

, V
Y

) is reducible if there are disks
A 2 D

X

and B 2 D
Y

such that @A = @B. If no such pair exists then the splitting
is irreducible.

This is a canonical definition, given the following lemma of Haken:

Lemma 2.10. If a 3-manifold M is reducible then every splitting of M is reducible.

Definition 2.11. A Heegaard splitting (S;V
X

, V
Y

) is stabilized if there are disks
A 2 D

X

and B 2 D
Y

which intersect transversely and ](@A \ @B) = 1.

Definition 2.12. A Heegaard splitting (S;V
X

, V
Y

) is weakly reducible if there are
disks A 2 D

X

and B 2 D
y

such that @A \ @B = ;. If no such pair exists then the
splitting is strongly irreducible.

The significance of this notion first comes from the following result:

Theorem 2.13 (Casson, Gordon [2]). A weakly reducible Heegaard splitting of a
3-manifold M is either reducible or M contains an incompressible surface.

2.4. Distance.

Definition 2.14. A distance function is defined on the 0-skeleton of C(S) by

d(x, y) = min{numbers of 1-simplexes in simplicial path joining x to y}

Hence,
d(x, y)  1 if and only if x \ y = ;

and
d(x, y)  2 if and only if there is some z such that x \ z = y \ z = ;. In other

words, x [ y does not fill S.

Theorem 2.15 (H. Masur and Y. Minsky [10]). The curve complex has infinite
diameter with respect to d.

Definition 2.16. A distance of the splitting is defined by

d(K
X

,K
Y

) = min{d(x, y), where x 2 K
X

and y 2 K
Y

}
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We can restate the above definitions in terms of the distance on C(S) as follows:
Suppose (S;V

X

, V
Y

) is a splitting of a closed, orientable 3-manifold.
Then,
d(K

X

,K
Y

) = 0 if and only if the splitting is reducible,
and

d(K
X

,K
Y

)  1 if and only if the splitting is weakly reducible.
If we are given a Heegaard diagram, there are some computable obstructions

that can be read o↵ the diagram that tell us that the corresponding splitting can
not be reducible, weakly reducible, or be a distance 2 splitting. Also, there are
obstructions for a 3-manifold to be Seifert fibered and contain an essential torus.
See [4] for details and proofs.

These conclusions arise from the consideration of a Heegaard diagram using
stacks which are unions of “squares” of S �X \ Y that share common edges (see
section 3.1). The stack intersection matrix provides information about the com-
plexity of the Heegaard splitting.

These ideas were first introduced by Casson and Gordon [2] and extended by
Kobayashi [7] to get an obstruction for being a weakly reducible splitting:

Theorem 2.17 (Casson-Gordon condition [7]). If every X-stack intersects every
Y -stack for a given Heegaard diagram then the corresponding splitting is not weakly
reducible.

3. The Dehn twist operator

In this Section we define a Dehn twist operator. Then, we construct a sequence
of Heegaard diagrams of 3-manifolds by considering the image of a given Heegaard
diagram under iterations of the Dehn twist operator. If the initial diagram cor-
responds to a 3-manifold with boundary then the resulting sequence consists of
diagrams of 3-manifolds which contain incompressible surfaces.

3.1. Definition of a Dehn twist operator. First we define the notion of “stacks”
on a surface S which is in some sense analogous to train tracks.

Suppose X, Y are simplexes of the curve complex C(S) such that they fill S.
Then, the components of S� (X [Y ) are polygonal cells, every point of X \Y is a
vertex of order 4 and every face has an even number of edges which lie alternately
in X and Y . Moreover, each polygon is at least a rectangle, since we are assuming
that all intersections of X and Y are e�cient, i.e. there are no “bigons”.

Observation (J.Hempel [4]) If X and Y are simplexes of C(S) with S � (X [ Y )
simply connected and having n

i

2i-gon components (i = 1, 2, ...), then

�(S) =
X

(1� i/2)n
i

.
Since n1 = 0 and �(S) < 0, the number of polygons with 6 or more edges is

bounded by |�(S)|. Therefore, in a case of “not very trivial” intersection of X and
Y , most of the complementary polygons will be rectangles with one pair of opposite
edges lying in X and the other in Y .

Definition 3.1. An X-stack is a maximal collection of rectangles which are ad-
jacent along common edges in X. The edges, which lie in large regions with � 6
edges, are called the top and the bottom edges of the X-stack. The union of all Y
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edges belonging to the X-stack defines the sides of the stack. There are, obviously,
two sides in each X-stack which either lie in di↵erent curves of Y , or possibly in
the same curve.

Every stack must have a top edge and bottom edge which do not coincide except
for the degenerate case when there is only one edge. The Y -stacks are defined by
interchanging the roles of X and Y .

The height of a stack is the number of its rectangles. A stack of height 0 consists
of the common edge of two large polygonal regions. 0-height stacks occur rarely
and throughout this work we almost always assume that intersection of curves of
X and Y are complicated enough to have stacks of height at least 2.

Definition 3.2. Suppose S is a genus g orientable surface. Let X = {x1, ..., xg

}
be a collection of pairwise disjoint simple closed curves on S. Call X = {x1, ..., xg

}
a collection of standard meridians on S if S �X is a sigle planar component.

If we attach a 2-handle along each x
i

and glue a 3-ball for each 2-sphere boundary
component we obtain the handlebody corresponding to the standard meridians. We
will call this handlebody V

X

.

The following definition is an extension of a notion of a standard Dehn twist
along a curve on a surface.

Definition 3.3. Suppose X = {x1, ..., xg

} and Y = {y1, ..., ys

} are collections of
simple closed curves such that x

i

\ x
j

= ;, y
i

\ y
j

= ; and X \ y
j

6= ; for all
i, j and all intersections of X with Y are e�cient. An image of a collection X
under the Dehn twist operator along a collection Y , denoted by ⌧

Y

(X), is the union
of images {⌧

Y

(x1), ..., ⌧Y (x
g

)} of {x1, ..., xg

} under compositions of standard Dehn
twists ⌧

y1 � ⌧y2 � ... � ⌧
ys .

The following describes how to obtain ⌧
Y

(X). For each j choose an annular
neighbourhood A

j

of y
j

so that A
i

\A
j

= ; for all i, j. The image of the collection
of g disjoint simple closed curves, X = {x1, x2, ...xg

}, under the homeomorphism
⌧
Y

is a collection of g disjoint simple closed curves. To obtain the image of some x
i

under the Dehn twist operator for each j = 1, ..., s replace each arc of A
j

\ x
i

by
an arc which circles around A

j

once and smooth to general position relative to X.
Alternatively ⌧

Y

(X) is the Haken sum (or oriented cut and paste) of a collection
X and k copies of a collection Y , where k = i(Y, X). That is for each y

j

take
k

j

parallel copies of y
j

, where k
j

= i(y
j

, X). Call this collection Ȳ . Denote an
annular neighbourhood of y

j

containing k
j

parallel copies by A
j

. Choose annular
neighbourhoods {[A

j

} so that they are pairwise disjoint. Then resolve each point
of intersection of Ȳ with X as shown in figure 1.

i

iix (x )
Y

Y
τ (x )

τ

jy

Figure 1. Resolution of a point of intersection

Note that the resolution of a point of intersection is independent of the orienta-
tion on the curves but is dependent on the orientation of S.
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Consider intervals of X�N(X \ Ȳ ). Call an interval small if it lies between two
parallel copies of some y

j

. Call all the other intervals which lie between di↵erent
components of Y large. Then ⌧

Y

(x
i

) contains almost all of each large interval in
x

i

except for the smoothed areas. As we continue along ⌧
Y

(x
i

) and exit a large
interval of x

i

, we enter some annular neighbourhood A
j

containing k
j

parallel copies
of some y

j

. Now, since we resolved points of intersection of all parallel copies of
y

j

with X we have to follow along the first copy of y
j

. As we circle this annulus,
each time we encounter X we switch to the next parallel copy of y

j

. By the time
we have circled around A

j

one full time we have switched over all k
j

copies of y
j

.
Therefore, we must exit to the next large interval of x

i

. See figure 2.

k

k old

old

old

old

old

old

small

τ (    )
Y

x
x

Y
τ (    )x

old

old

old

k

k

small

A

A

s

l

jx

x jx

y
l

ys

large

small
small

Figure 2. Construction of Dehn twist operator

Now consider the regions of S � (⌧
Y

(X) [ X). The regions are of two types.
The ‘old’ regions are essentially the regions of S� (Y [X). The ‘new’ regions form
partial X-stacks relative to ⌧

Y

(X) each of which begins at an old region on one side
of some A

j

, circles A
j

a total of (k
j

� 1)/k
j

-times and ends at an ‘old’ region on
the other side of A

j

. There are k
j

partial X-stacks relative to ⌧
Y

(X) in each A
j

.
Comparing X-partial stacks relative to ⌧

Y

(X) to X-partial stacks relative to ⌧
Y

(x
k

)
for some k, we note that there are fewer rectangles in X-partial stacks relative to
⌧
Y

(x
k

) and consequently there are fewer partial X-stacks relative to ⌧
Y

(x
k

) in A
j

.
Remark: If instead of k

j

parallel copies of y
j

we take n⇥ k
j

copies and proceed
as above, we obtain the image under n-fold Dehn twist operator, or ⌧n

Y

(X).

3.2. Properties of Dehn twist operator. Let X = {x1, ..., xg

} be a complete
set of standard meridians for a genus g surface S. Let V

X

be the corresponding
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handlebody. Let Y = {y1, ..., yk

} be a collection of essential, pairwise disjoint simple
closed curves in @V

X

= S such that X \ y
j

6= ; for all j and all intersections of Y
and X are e�cient.

We get a new collection Y 1 of simple closed curves by taking the image of X
under n-fold Dehn twist operator along Y , or Y 1 = ⌧n

Y

(X).

Theorem 3.4. Assuming the set up from the above let M be a 3-manifold deter-
mined by the Heegaard diagram (@V

X

;X, Y ), possibly with boundary (if k < g). Let
M1 be a 3-manifold determined by the Heegaard diagram (@V

X

;X, Y 1) where Y 1 =
⌧n

Y

(X). Then, id: ⇡1(VX

) ! ⇡1(VX

) extends to an epimorphism ⇡(M1) ! ⇡(M).

Proof. Given a Heegaard diagram (@V
X

;X, Y ), we can construct a presentation for
⇡1(M) as follows: Choose the free basis {X1, X2, ..., Xg

} for the free group ⇡1(VX

)
which is “dual to” {x1, ..., xg

}. For j = 1, ..., k let r
j

be a word in X1, X2, ..., Xg

representing the element of ⇡1(VX

) determined by y
j

. Note that r
j

is unique up
to inversion and conjugation. Then, it follows from Van Kampen’s Theorem that
< X1, ..., Xg

: r1, ..., rk

> is a presentation for ⇡1(M). Similarly, < X1, ..., Xg

:
r1
1, ..., r

1
k

> is a presentation for ⇡1(M1) where r1
j

represents an element of ⇡1(VX

)
determined by y1

j

= ⌧n

Y

(x
j

).
By construction it follows that y1

i

is homologous to x
i

+nk1y1+nk2y2+...+nk
k

y
k

where k
i

= i(X, y
i

). Since x
i

is null homotopic it follows that y1
i

is homotopic to
products of conjugations of powers of the {y

j

}. Denote by  : ⇡1(VX

) ! ⇡1(M)
and  1 : ⇡1(VX

) ! ⇡1(M1) canonical epimorphisms.
Then, Ker( 1) ⇢Ker( ).
Therefore, the diagram in figure 3 commutes giving the desired conclusion. ⇤

)1

)

1

ϕ

ψ ψ

(M (M )11π π

π 1 X(V

Figure 3. Commutative diagram

Corollary 3.5. If M has nontrivial boundary then M1 is a closed 3-manifold
containing an incompressible surface.

Proof. The fact that M1 is closed follows easily from the observation that the
image of the set of g standard meridians under compositions of homeomorphisms
is a collection of exactly g pairwise disjoint simple closed curves such that S � Y 1

is a single planar component.
If k < g then @M 6= ;, hence the first Betti number �1(M) > 0. Since ' :

⇡1(M1) ! ⇡1(M) is an epimorphism, it follows that �1(M1) > 0. The rest is given
by standard facts of 3-manifold topology. See J. Hempel [5] for details. ⇤
3.3. Waves.

Definition 3.6. Suppose X = {x
i

} and Y = {y
j

} are collections of simple closed
curves on a surface S determining a Heegaard diagram (S;X, Y ). A wave for the
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diagram which is relative to X is an arc in S whose endpoints lie in the same
component of X, whose interior misses X [ Y , which lies on the same side of X
near its endpoints, and which can not be isotoped to an arc in X.

Throughout this work we will be assuming that for a given Heegaard diagram
(S;X, Y ) there are no waves relative to X where X is a collection of standard
meridians. There is no harm in adding this assumption, since otherwise we can
always perform a surgery along a wave and reduce the complexity of the diagram.
See J. Hempel [4] for details.

Lemma 3.7. Assume the setup of section 3.2. Suppose (@V
X

;X, Y ) is a Heegaard
diagram for some 3-manifold M . Let M1 be a 3-manifold determined by the Hee-
gaard diagram (@V

X

;X, Y 1) where Y 1 = ⌧n

Y

(X). If there are no waves relative to
X for the diagram (@V

X

;X, Y ), then there are no waves relative to X and Y 1 for
the diagram (@V

X

;X, Y 1).

Proof. Assume there is a wave w relative to X or Y 1. Then, interior of w lies in
some “old” region of @V

X

� (X [Y 1). Consider the preimage of w under ⌧n

Y

. Since
“old”regions are unchanged we get a wave (⌧n

Y

)�1(w) for the diagram (@V
X

;X, Y ).
Hence, we reach the desired contradiction. ⇤

4. Main theorem

In this section we prove the main theorem which heavily relies on the proofs of
the following lemmas.

4.1. Lemmas.

Lemma 4.1. Let (S;X, Y ) describe a Heegaard diagram for a 3-manifold, where
S is a surface of genus g, X = {x1, ..., xg

} is a collection of standard meridians.
Let V

X

be the corresponding handlebody bounded by S. Assume Y is a collection
of pairwise disjoint simple closed curves such that Y intersects X nontrivially and
e�ciently and there are no waves relative to X. Let � be a simple closed curve
bounding a disk in V

X

, i.e. � 2 K
X

. Then � crosses some Y -stack.

Proof. Note that a curve crosses a Y -stack if it enters the stack through the top
(bottom) edge, crosses every rectangular region and exits through the bottom (top)
edge. A curve partially crosses a Y -stack if it enters the stack through the top
(bottom) edge, crosses some (possibly all) of the rectangular regions and exits
through the side of the stack, i.e. through an X-curve.

We assume that all intersections of � with X and Y curves are e�cient. We first
suppose that � \X = ;. If � \ Y = ; also then we may tube � to some component
of X to create a wave. Hence we reach a contradiction. Thus � \ Y 6= ;. Since
� \X = ;, by our observation above � cannot partially cross a Y -stack. Therefore
� crosses a Y -stack.

Let us now consider the case that � \X 6= ;. Denote by E a disk bounded by �
and denote by D

xi disks bounded by x
i

. Consider the arcs of E \ [D
xi assuming

that those intersections are e�cient, i.e. can not be isotoped o↵ E. Choose an
outermost arc of E \ [D

xi on E and call it e. The arc e cobounds a disk with a
subarc of �. Call the subarc f . See figure 4. We will show that f satisfies several
of the properties required by a wave. Firstly note that the endpoints of f lie on the
same component of X, say x

j

. Next observe that the interior of f lies on the same



10 TATIANA EVANS

side of x
j

near its endpoints. For assume otherwise and consider the homology of
V

X

relative its boundary S. Then e [ f can be adjusted in a neighborhood of x
j

on S so that a 1-cycle representing e [ f intersects a 2-cycle represented by D
xj

exactly once. Homology intersection number is a topological invariant, therefore
e[f can not be null homologous in H1(VX

;S). This contradicts the fact that e[f
is homotopically trivial in V

X

. Lastly observe that since the arc e intersects the
disk E e�ciently, it follows that f and a subarc of x

j

do not cobound a disk on S.
Therefore, the cobounded area must include some component x

k

.

f

e

Figure 4. Disk E bounded by �

We are now ready to show that f crosses a Y -stack. Assume otherwise. There
are two cases to consider.

The first case is that f \Y = ;. By our choice of arc f we have that the interior
of f is disjoint from X. Together with the properties of f noted above we conclude
that f is a wave, a contradiction.

j

kk

n -

-

-

+

+

+

n

n

n

nn
j

f

Y

Y

Y

Y

Y

YY

Y

ii
x x

x x

xx

Figure 5. S cut open along the collection X and � \X 6= ;

The second case to consider is that f \ Y 6= ; but every intersection of f with
a Y -stack is a partial crossing. If f partially crosses at least three Y -stacks then
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by our initial observation f has at least three points of intersection with X. In
particular this implies that the interior of f must have a point of intersection with
X contradicting our choice of f . If f partially crosses a Y -stack that doesn’t have
x

j

as a side then by our initial observation the interior of f must intersect X.
Again this gives a point of intersection of the interior of f with X, a contradiction.
Thus f partially crosses at most two Y -stacks each with x

j

as a side; denote these
Y -stacks by Y

f

. Note that there are at most two components of f \ Y
f

and each
component contains an endpoint of f . Modify f by ‘sliding’ each component of
f \ Y

f

o↵ Y
f

, keeping the endpoints within the curve x
j

. The resulting curve f 0

has no intersection with Y but retains the properties of f noted above. Thus f 0 is
a wave, a contradiction.

Figure 5 of the 2-sphere with 2g disks removed represents a surface S cut open
along a collection of g simple closed curves X = {x1, ..., xg

}; this demonstrates a
typical scenario for the various curves in this lemma. ⇤

Definition 4.2 ( Jason Leasure [8]). Suppose X = {x
i

} is a collection of pairwise
disjoint simple closed curves, y and � are simple closed curves which meet e�ciently
and nontrivially. Assume y intersects each component of X e�ciently and nontriv-
ially and � intersects X e�ciently. If y ⇢ � [ a where a is an arc of y �X then we
say that y is almost contained in � relative to X and denote this by y �

X

�.

This idea is most useful when y �
X

� and there is a curve �0 such that �\�0 = ;.
If this is the case, then �0 can intersect y in at most one arc of y �X, namely the
arc containing a. We say that y is almost disjoint from �0. See figure 6.

no X here

here

a

X

y
y

only

Figure 6. “almost contained” relation

Lemma 4.3. Let S be a genus g orientable surface. Suppose X = {x1, ..., xg

} is
a collection of standard meridians on S and Y = {[y

i

} is a collection of pairwise
disjoint simple closed curves on S such that i(x

i

, y
j

) � 2 for each i and j. Suppose
�0 is a simple closed curve on S that meets Y e�ciently. Let

Y 1 = ⌧2
Y

(X) where ⌧ is the Dehn twist operator.

Let � be a simple closed curve on S such that � \ �0 = ;. Assume � meets Y
e�ciently and nontrivially, and � intersects Y 1 and X e�ciently. If there exists a
component y1

k

of Y 1 such that y1
k

�
X

�0 then there exists a component y
l

of Y such
that � can be isotoped so that y

l

�
X

�.
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Proof. The image of the collection of g disjoint simple closed curves, X = {x1, x2, ...xg

},
under the homeomorphism ⌧2

Y

is the collection of g disjoint simple closed curves
Y 1. For 1  s  g let A

s

be an annular neighbourhood of the simple closed curve
y

s

from the collection Y . We require that the collection of annuli {A
s

} are pairwise
disjoint. Let k

s

= i(y
s

, X). To obtain one of the simple closed curves of Y 1 from
the simple closed curve x

i

of X, replace each arc of A
s

\ x
i

by an arc which circles
around A

s

twice and smooth to general position relative to X.

y

k

kj

τy
2 (X)

x

x

x

x j

i

x

k

k

rectangle D

second arc of

k
1y

i

x

x

x

first arc of y1
k

Figure 7. Arcs of y1
k

inside the annulus A
j

From the assumptions we have y1
k

�
X

�0, i.e. y1
k

⇢ �0 [ a where a is some arc of
y1

k

�X. Therefore, since � \�0 = ; it follows that � can intersect y1
k

only in the arc
a. By assumption � \Y 6= ;. Therefore there exists a component y

j

of Y such that
� \ @A

j

6= ;. Now consider y1
k

\ A
j

. Note, from the assumption i(y
j

, x
i

) � 2 for
any i, j and the observation that i(y1

i

, x
j

) = 2i(Y, x
i

) ⇥ i(Y, x
j

) where y1
i

denotes
the image of x

i

under ⌧2
Y

it follows that i(y1
i

, x
j

) � 2 for all i, j. This implies that
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there are at least two arcs of y1
k

\A
j

. The following situation represents the worst
possible case:

(1) there are only two arcs of y1
k

\ A
j

circle twice around A
j

(that happens
when i(y

j

, x
k

) = 2), and
(2) the ends of the two arcs are located in the ‘closest’ possible position i.e. if

y
k

is the image of x
k

under the square of the Dehn twist then |y
j

\ x
k

| = 2
and these points of intersection occur consecutively along x

k

. See figure 7.
In this worst possible case there are two X-partial stacks rel to y1

k

each of which
circles around A

j

slightly more than once. See section 3 for the detailed description
of stacks in A

j

.
We now analyse an arc of �\A

j

. In the worst case scenario � enters the annulus
A

j

inside of one of the X-partial stacks rel y1
k

.
There are two possibilities for �. Either � circles around A

j

inside the X-partial
stack rel y1

k

or � intersects y1
k

. Note that � can only intersect y1
k

once since �
intersects y1

k

in at most one arc a of y1
k

�X (see explanation above). In this latter
case � is forced to be inside the other X-partial stack rel y1

k

and must circle A
j

within that partial stack.
In either case there is a subarc b of � which circles around A

j

and comes back
to the same rectangle D of A

j

�X where it started . Hence, we can isotope � so
that b coincides with the core of the annulus everywhere except in the rectangle D.

x

x

x

x

k

k

rectangle D

- core
- isotopy

cc

c

k

second arc
y

ykfirst arc of

of 1

1

i

i

Figure 8. y
j

is almost contained in � after isotopy

Thus, y
j

= b[ c where c is the subarc of y
j

\D, i.e. c ⇢ D connects the ends of
the arc b. Thus y

j

�
X

�. See figure 8.
Note that the isotopy is supported inside of the annulus A

j

and is “perpendic-
ular” to the core of the annulus, i.e. each x

i

is fixed as a set. This isotopy simply
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moves points of � toward the core. Thus, we can assume that we are not introducing
ine�cient intersections of � and X. ⇤

Now we are ready to prove the main theorem.

4.2. Main Theorem.

Theorem 4.4. Let S be an orientable surface of genus g � 2. Suppose X =
{x1, x2, ..., xg

} is a collection of standard meridians on S and y is a simple closed
curve on S such that i(y, x

i

) � 2 and each Y -stack is of height at least 2. Let
(S;X, y) describe a Heegaard diagram for a 3-manifold. Assume there are no waves
relative to X. For any n � 1 let

Y 0 = y
Y 1 = ⌧2

Y

0(X)
...
Y n = ⌧2

Y

n�1(X).
Then dist(K

X

,K
Y

n) � n.

Proof. We proceed by contradiction. Suppose dist(K
X

,K
Y

n) = d for d  n � 1,
i.e. there exists a sequence of curves �0, �1, ..., �d

where �0 2 K
X

, �
d

2 K
Y

n and
�

i�1 \ �i

= ; for all i.
From the assumption that there are no waves relative to X and from the proper-

ties of the Dehn twist operator (see Lemma 3.7) it follows that there are no waves
for the diagram (S;X, Y n) relative to Y n.

By Lemma 4.1 �
d

2 K
Y

n either does not intersect Y n or has a subarc ↵ which is
based on some component yn

i0
of Y n and is not isotopic into yn

i0
relative to its base

points. In any case some subarc of � crosses some X-stack relative to Y n. Since ↵
is not isotopic into yn

i0
, there exists a component yn

j0
of Y n such that ↵ \ yn

j0
= ;

and ↵ crosses an X-stack relative to Y n with yn

j0
as a side of this stack.

Let us consider a di↵erent picture introduced in Lemma 4.3 where we look at
the collection of pairwise disjoint annuli {An�1

1 , An�1
2 , ..., An�1

g

} on the surface S

and partial X-stacks circling around those annuli. Recall that An�1
i

corresponds
to an annular neighbourhood of yn�1

i

. Since we assume i(y, x
i

) � 2 it follows that
any partial X-stack relative to Y n circles around any annulus An�1

i

at least once.
Since ↵ crosses the X-stack relative to Y n then ↵ has to intersect a large interval of
some x

i

and then follow the next rectangle which enters a partial X-stack relative
to Y n which is inside of some annulus, say An�1

l

. See figure 9.
Note that ↵ can not intersect Y n, therefore ↵ has to stay inside of that partial

X-stack relative to Y n. That means ↵ has to circle around the annulus An�1
l

and
come back to the same rectangle D of An�1

l

�X. Thus, we can isotope the subarc b

equal to ↵\(An�1
l

�D) to coincide with the core of the annulus which is yn�1
l1

. That
is possible to do everywhere except in the rectangle D. Then, connect the ends of
the isotoped b by an arc b0 ⇢ yn�1

l

that lies in the rectangle D. Therefore, after
ambient isotopy we have yn�1

l1
�

X

�
d

. We will isotope the curves {�
d�1, ..., �0} by

the same ambient isotopy. Continue to call the resulting curves {�
d

, �
d�1, ..., �0}.

Thus, the property �
i

\�
i�1 = ; is preserved. Note, this isotopy is supported inside

of the annulus An�1
l

and can be chosen so that each x
i

is fixed as a set. Therefore,
we are not introducing any ine�cient intersections of X and {�

d�1, ..., �0}. Also, we
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x

i

rectangle Dk

k

α

second arc

ny
k

y
k
nof

x i

x

x

first arc of

Figure 9. Arc ↵ inside of annulus An�1
j

can choose this isotopy so that �
d�i

intersects e�ciently Y n�j , ..., Y 0 for 1  i  d
and 2  j  n.

Applying Lemma 4.3 to yn�1
l1

and inducting using the set (�
d

, �
d�1, ..., �0) we

conclude that �0 can be isotoped so that

y
n�(d+1)
id+1

�
X

�0 where �0 2 K
X

(*)

Note: In order to apply Lemma 2 we need to assume that

�
d�k

\ Y n�(k+1) 6= ; for k = 1, ..., d (**)

Let us consider it later as a special case and for now let us assume that (**) holds.
From the assumptions and properties of the Dehn twist operator (see Lemma 3.7)

it follows that there are no waves relative to X for the diagram (S;X, Y n�(d+1)).
By lemma 4.1 either �0\X = ; or there exists an outermost subarc c of �0�X such
that c is based on the same component x

i

. In either case there is a subarc c which
crosses some Y n�(d+1)-stack. It follows from the assumption on y that y

n�(d+1)
id+1

has at least two arcs in that stack. Therefore, the subarc c must cross at least two
arcs of y

n�(d+1)
id+1

�X. It follows from (*) that only one arc of y
n�(d+1)
id+1

�X does not
lie in �0. Therefore �0 must be singular. Hence, we have reached a contradiction.

Let us show that for each inductive step (**) holds. That is, if we have found a
component yn�k

ik
of Y n�k with yn�k

ik
�

X

�
d�k+1 then �

d�k

\ Y n�(k+1) 6= ;. Now
suppose (**) does not hold, i.e. �

d�k

\ Y n�(k+1) = ;. If d � k > 1, then �
d�k

meets every component x
i

of X. Otherwise x
i

, �
d�k

, �
d�k+1, ..., �d

is a shorter path
connecting K

X

with K
Y

n . That contradicts our assumptions. In fact �
d�k

meets
each x

i

in at least two arcs of x
i

� Y n�(k+1), since it must go around an X-stack
relative to Y n�(k+1) and every X-stack contains at least two arcs of x

i

�Y n�(k+1).
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Since yn�k

ik
= ⌧2

Y

n�(k+1)(xi

), it follows that �
d�k

crosses yn�k

ik
in at least two

arcs of yn�k

ik
� X. Since yn�k

ik
�

X

�
d�k+1, we conclude that �

d�k

\ �
d�k+1 6= ;.

This contradicts our assumptions. The last case to consider is when d� k = 1. So
�1 \ Y n�d = ;. By assumption d < n, so n� d � 1. But then �1 bounds a disk in
V

Y

n�d . Therefore, the distance of (S;V
X

, V
Y

n�d) is  1, i.e. the splitting is weakly
reducible. However, in this diagram every X-stack meets every Y n�d-stack. This
is the Casson-Gordon condition that the splitting is not weakly reducible. Hence,
we have reached the desired contradiction. ⇤

5. Genus two Heegaard diagrams and examples

5.1. Positive Heegaard diagrams of genus two.

Definition 5.1. An oriented Heegaard diagram (S;X, Y ) is a Heegaard diagram
where X and Y are given specific orientations.

Let <,>: H1(S) ⇥ H1(S) ! Z denote the algebraic intersection number on
a surface S. So for oriented simple closed curves x, y on S meeting e�ciently,
< x, y >= i(x, y) means that the algebraic intersection number is +1 at each point
of x \ y.

Definition 5.2. A positive Heegaard diagram (S;X, Y ) is an oriented Heegaard
diagram where the algebraic intersection number < X,Y >

p

of X with Y is +1 at
each point p 2 X \ Y .

Every compact, oriented 3-manifold with no 2-sphere boundary components can
be represented by a positive diagram; see Hempel [5]. In this section we will be
focusing on genus two positive Heegaard diagrams.

For a given positive Heegaard diagram (S;X, Y ) we can construct a picture
by cutting S open along X. The result will be a 2-manifold S1 whose boundary
contains disjoint copies X+ and X� of X together with a map f : S1 ! S which
maps S1�X+[X� homeomorphically onto M �X and maps each of X+ and X�

homeomorphically onto X.
If the genus of S is two and X contains exactly two components x1 and x2, then

S1 is a four times punctured 2-sphere with the boundary components x+
1 , x�1 , x+

2 , x�2 .
The components of Y will be strands connecting x+

1 , x�1 , x+
2 , x�2 . See figure 10.

4
0

3
1

21

4

11

2

0

YY

Y

Y

-

3

10
9
8
7
6

512

11
10

9

8

12
5
67

-

22

11

+

+x

x x

x

Figure 10. S cut open along X
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Since we are assuming that the diagram is positive, it follows that the diagram
will be in a shape of a “square”, i. e. there are no strands connecting x+

i

with x+
j

and x�
i

with x�
j

.
Similarly we can construct an analogous picture by cutting S open along Y . In

this case we will call it a Y -side of the diagram.
Given such a picture, we need specific instructions how to recover the original

diagram. For that we need to describe how to glue back x+
1 with x�1 and x+

2 with
x�2 .

Definition 5.3. We define as the twist number from x+
i

to x�
i

for i = 1, 2 the
amount of twist used in gluing x+

i

back to x�
i

to reconstruct the original diagram.

Definition 5.4. For a positive Heegaard diagram (S;X, Y ) define a five-tuple
vector (p, q, r, n, m) by specifying the following:

p = number of Y strands from x+
1 to x�2

q = number of Y strands from x+
1 to x�1

r = number of Y strands from x+
2 to x�2

n = twist number from x+
1 to x�1

m = twist number from x+
2 to x�2

Thus, given this vector (p, q, r, n, m) we can draw the cut-open diagram for this
splitting. The values p, q, r allow us to draw the strands between each of the (cut-
open) components of X. We can then number the intersection points on x�1 and
x+

2 consecutively following the orientation, starting at an arbitrary point on each.
The twist numbers n and m then tell us how to label the points on x�1 and x�2 .
In our example in figure 10 the corresponding vector is (2, 3, 6, 3, 3) and represents
two disjoint simple closed Y -curves.

The following proposition follows immediately from the definition of the vector
(p, q, r, n, m).

Proposition 5.5. Suppose the vectors v(y1) = (p1, q1, r1, n1,m1) and v(y2) =
(p2, q2, r2, n2,m2) represent pairwise disjoint simple closed curves y1 and y2 re-
spectively. Then their union y = y1 [ y2 is represented by the vector v(y) =
(p1 + p2, q1 + q2, r1 + r2, n1 + n2,m1 + m2).

Next we will attempt to consider the action of Dehn twisting operator on five-
tuple vectors.

Let X = {x1, x2} be a set of oriented meridians for an oriented genus two
handlebody bounded by S and let Y = {y

i

}, i  2 be a collection of oriented
pairwise disjoint curves which meet X positively. Thus y

i

can be represented by a
vector v(y

i

) = (p
i

, q
i

, r
i

, n
i

,m
i

).
For a1, a2 2 Z+ let ⌧ = ⌧

a1y1+a2y2 = ⌧a1
y1
� ⌧a2

y2
be a the a1-fold Dehn twist

along y1 together with the a2-fold Dehn twist along y2. Let l
ij

=< x
j

, y
i

> and
l
i

= l
i1 + l

i2 =< X, y
i

>.

Proposition 5.6. v(⌧(x
j

)) = a1l1j

v(y1) + a2l2j

v(y2) + ✏
j

where

✏ =
⇢

(0, 0, 0, 1, 0) j=1
(0, 0, 0, 0, 1) j=2

Proof. For a detailed description of the image of X under the Dehn twist operator
along the collection of a1 parallel copies of y1 and a2 parallel copies of y2 see section
3.
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So, there are a1l1 + a2l2 strands of ⌧(x
j

)�X parallel to each strand of Y �X.
This establishes the first three coordinates of the proposition. Fix a homological
basis (x1, x2, X1, X2) where X

i

is a longitude meeting x
i

in a single point for i = 1, 2
so that < x

i

, X
i

>= +1. Then n
i

=< y
i

, X1 > and m
i

=< y
i

, X2 >.
Observe that ⌧(x

j

) is homologous to x
j

+ a1 < x
j

, y1 > y1 + a2 < x
i

, y2 > y2 =
x

j

+a1l1j

y1+a2l2j

y2. Thus < ⌧(x
j

), X1 >= �1j

+ l1j

n1+ l2j

n2 and < ⌧(x
j

), X2 >=
�2j

+ l1j

m1 + l2j

m2

where �
ij

=
⇢

1 i = j
0 i 6= j

⇤
Corollary 5.7. v(⌧(X)) = a1l1v(y1) + a2l2v(y2) + (0, 0, 0, 1, 1)

Proposition 5.8. Let M0,M be the 3-manifolds represented by positive Heegaard
diagrams (S;X, Y ) and (S;X, ⌧(X)) respectively. Then H1(M) is presented by the
matrix ✓

p1 + q1 p2 + q2

p1 + r1 p2 + r2

◆ ✓
a1 0
0 a2

◆ ✓
p1 + q1 p1 + r1

p2 + q2 p2 + r2

◆

where ✓
p1 + q1 p2 + q2

p1 + r1 p2 + r2

◆

presents H1(M0).

Proof. ✓
< x1, ⌧(x1) > < x1, ⌧(x2) >
< x2, ⌧(x1) > < x2, ⌧(x2) >

◆

presents H1(M).
Also, < x1, ⌧(xj

) >= p(⌧(x
j

) + q(⌧(x
j

)) and < x2, ⌧(xj

) >= p(⌧(x
j

) + r(⌧(x
j

)).
Similarly ✓

< x1, y1 > < x1, y2 >
< x2, y1 > < x2, y2 >

◆

presents H1(M0) where < x1, yj

>= p
j

+ q
j

and < x2, yj

>= p
j

+ r
j

. Since

l
ij

=< x
j

, y
i

>=
⇢

p
i

+ q
i

if j=1
p

i

+ r
i

if j=2
the result of the claim follows from direct calculation using the equalities:

p(⌧(x
j

)) = a1l1j

p1 + a2l2j

p2

q(⌧(x
j

)) = a1l1j

q1 + a2l2j

q2

r(⌧(x
j

)) = a1l1j

r1 + a2l2j

r2

⇤
Corollary 5.9. If Y has a single component (i.e. the 3-manifold M0 has non-trivial
boundary) then H1(M) is infinite.

Proof. Let P denote a representation matrix of H1(M). We can assume that a2 = 0.
Then by proposition 5.8 det(P ) = 0. ⇤

Note, this corollary follows from Theorem 3.4 as well.

Corollary 5.10. Suppose a1a2 6= 0, i.e. H1(M0) is finite and M0 is necessarily
closed then o(H1(M)) = a1a2 ⇥ o(H1(M0))2.
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5.2. Examples. Suppose Y has a single component y represented by the vector
v(y) = (2, 2, 2, 1, 2) on a genus two surface S which bounds a handlebody deter-
mined by standard meridians X = {x1, x2}. Let Y 0 = y and Y n = ⌧2

Y

n�1(X) for
n � 1. Then l1 =< y,X >= 8. Let a1 = 2.

By proposition 5.6 the image of X under 2-fold Dehn twisting operator is repre-
sented by v(Y 1) = (32, 32, 32, 17, 33). By Theorem 4.4 it follows that the 3-manifold
M1 determined by the Heegaard diagram (S;X, Y 1) is closed, irreducible, Haken
3-manifold and the distance of this splitting is � 1.

The next step in the iteration gives v(Y 2) = (4096, 4096, 4096, 2177, 4225). The
3-manifold M2 defined by the Heegaard diagram (S;X, Y 2) is again a closed, irre-
ducible, Haken 3-manifold and the distance of this splitting is � 2.

After iterating one more time we get

v(Y 3) = (67108864, 67108864, 67108864, 35667969, 69222401)

The 3-manifold M3 determined by the Heegaard diagram (S, X, Y 3) is closed, irre-
ducible, Haken and atoroidal since the distance of this splitting is � 3 (see Hempel
[5]). Thus by Thurston’s hyperbolisation theorem M3 admits a hyperbolic metric.

If we keep iterating we get an infinite sequence of hyperbolizable 3-manifolds
with arbitrarily large distance.
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