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Amblyopia is a neurodevelopmental disorder of the visual system that is associated with
disrupted binocular vision during early childhood. There is evidence that the effects of
amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-
striate visual cortex involved in visual integration. Here, we review the current literature on
global processing deficits in observers with either strabismic, anisometropic, or deprivation
amblyopia. A range of global processing tasks have been used to investigate the extent of
the cortical deficit in amblyopia including: global motion perception, global form perception,
face perception, and biological motion. These tasks appear to be differentially affected by
amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local
spatial processing and global tasks that require the segregation of signal from noise. In
bilateral cases, the global processing deficits are exaggerated, and appear to extend to
specialized perceptual systems such as those involved in face processing.
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INTRODUCTION
Amblyopia is a neurodevelopmental disorder of the visual system.
It is caused by abnormal visual experience during early childhood,
and it results in persistent deficits in cortical processing even when
normal input to the visual cortex is restored (see Wong (2012) and
Birch (2013) for recent reviews). Amblyopia is typically divided
into three categories based on the eye disorder responsible for
disrupting visual development. The most common amblyogenic
factors are strabismus or “squint” (misalignment of the visual axes
causing decorrelated input from the two eyes to the visual cortex),
anisometropia (unequal refractive error causing a blurred retinal
image) and deprivation (a physical obstruction, such as a cataract
or other media opacity preventing patterned visual input). Ambly-
opia associated with the presence of multiple amblyogenic factors
is known as mixed mechanism amblyopia, the most common
combination being strabismus and anisometropia. For review see
Simons (2005), Holmes and Clarke (2006), and Wu and Hunter
(2006).

Amblyopia associated with strabismus and/or refractive error
is typically unilateral with acuity loss in the amblyopic, but not
the non-amblyopic or “fellow” eye. In addition to acuity loss,
there are significant disruptions to binocular vision. For exam-
ple, stereoscopic depth perception is often impaired or absent
(Agrawal et al., 2006; Wallace et al., 2011b), binocular summation
is disrupted (Thompson et al., 2011; Pineles et al., 2013) and sup-
pression of inputs from the amblyopic eye may occur (Sireteanu
and Fronius, 1981; Sireteanu, 1982; Sengpiel et al., 2006; Mansouri
et al., 2008). Deprivation amblyopia can be unilateral or bilateral,
with acuity losses in one or both eyes despite resolution of ocu-
lar pathology. Less is known about the degree to which binocular
function is affected in deprivation amblyopia, although it is clear
that stereopsis is often compromised (for example, Tytla et al.,
1993).

Amblyopia is of interest both from a clinical and a neuroscien-
tific perspective (Thompson, 2012). Clinically, amblyopia caused
by strabismus, anisometropia, or both affects approximately 3%
of the population (Brown et al., 2000). Additionally, potentially
amblyogenic cataracts have an estimated incidence of 3–4.5 per
10,000 births (Holmes et al., 2003) which is likely to be higher
in low-income countries (Courtright, 2012). Unilateral ambly-
opia can be treated effectively in early childhood, when the visual
cortex is still developing, by providing best refractive correction
(Stewart et al., 2004; Cotter et al., 2012) followed by occlusion of
the fellow eye (Wallace, 2006; Wallace et al., 2011a). Although this
treatment improves amblyopic eye visual acuity, compliance can
be problematic (Smith et al., 1995; Loudon et al., 2006; Tjiam et al.,
2011), long treatment periods are often required (Awan et al.,
2010) and improvements in binocular visual function are lim-
ited (Wallace et al., 2011b). In addition, standard treatment has
traditionally been thought to be ineffective in older children and
adults due to insufficient visual cortex plasticity, meaning that
older patients with amblyopia are often left untreated. This tra-
ditional view, however, does not account for evidence that vision
can be recovered in at least a subset of adults with amblyopia
(Birnbaum et al., 1977; Vereecken and Brabant, 1984; Simmers
and Gray, 1999; El Mallah et al., 2000; Rahi et al., 2002). Lit-
tle is known about the treatment of deprivation amblyopia (for
example, Hatt et al., 2009) although similar strategies are often
employed.

From a neuroscientific perspective, experimentally induced
amblyopia is one of the most widely used animal models for inves-
tigating the mechanisms underlying visual cortex development
and plasticity. This is highlighted by the work of Nobel laureates
Wiesel and Hubel (1963, 1965), Hubel and Wiesel (1965). Ani-
mal models of amblyopia allow for the role of sensory experience
in cortical development to be explored, and enable investigations
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into the ability of environmental and pharmacological manipu-
lations to induce neuroplasticity in the adult brain (Vetencourt
et al., 2008; Montey and Quinlan, 2011; O’Leary et al., 2012; van
Versendaal et al., 2012; Duffy and Mitchell, 2013). Given the central
role of neuroplasticity in recovery from a wide range of neurolog-
ical and psychiatric disorders, studies using amblyopia as a model
have the potential to generate new intervention strategies that are
applicable to a wide range of disorders (for example, Cramer et al.,
2011; Maurer and Hensch, 2012).

Amblyopia is also relevant to cognitive neuroscience as human
amblyopia provides important insights into the role of coordi-
nated, binocular visual experience in visual development. Indeed,
psychophysical studies of amblyopia have revealed a broad range
of visual deficits associated with amblyopia that are not limited to
impaired visual acuity and binocular function. These can loosely
be grouped into impaired perception of individual elements within
the visual scene (“local processing”) and deficits affecting the
integration of multiple elements across space and time (“global
processing”; for a brief overview see Dakin, 2009). Impaired local
processing is often linked to abnormalities within the primary
visual cortex (V1) which contains cells that tend to have relatively
small receptive fields and therefore sample limited regions of the
retinal image. Global processing impairments, on the other hand,
are thought to involve extra-striate areas (cortical areas beyond
V1). These areas tend to have larger receptive fields, integrate sig-
nals emanating from earlier stages of the visual pathway, and play
a role in signal/noise segregation (for example, Born and Bradley,
2005).

Global processing has long been conceptualized in light of
the parallel processing hypothesis (Haxby et al., 1991; Goodale
and Milner, 1992; Van Essen and Gallant, 1994). This hypoth-
esis proposes that dorsal extra-striate visual areas, such as
motion-sensitive area V5/MT, are specialized for representing
the location and movement of objects and therefore provide a
foundation for visuomotor coordination. This processing path-
way is referred to as the “dorsal” or “vision for action” stream
and extends from the occipital to the parietal lobe. The sec-
ond pathway, known as the “ventral” or “vision for recognition”
stream, includes ventral regions of the occipital and tempo-
ral lobes and is thought to be specialized for the processing of
form which supports object recognition. The ventral stream is
interconnected with areas in the temporal lobe which deal with
non-visual functions, such as language and memory. The par-
allel processing hypothesis has provided a useful framework for
the investigation of global processing in visual development (for
example, Braddick et al., 2003; Parrish et al., 2005) and ambly-
opia (for example, Simmers et al., 2006; Husk and Hess, 2013)
although the extent of cross-talk between the two streams is
yet to be fully understood (Braddick et al., 2000; Schenk and
McIntosh, 2010; de Haan and Cowey, 2011; Gilaie-Dotan et al.,
2013).

While it is now well accepted that amblyopia results in global
processing deficits, a key question remains: are global process-
ing deficits simply an extension of local processing deficits or
is global processing impaired in its own right? Answering this
question will provide important insights into the role of sen-
sory experience in cortical development, plasticity, and the visual

deficits experienced by patients with amblyopia. Psychophysi-
cal studies of amblyopia in humans have addressed this issue
and are the focus of this review, which aims to (1) summa-
rize the psychophysical studies investigating local and global
processing in amblyopia, (2) assess whether global processing
deficits vary across the different sub-types of amblyopia, (psy-
chophysical studies tend to focus on unilateral strabismic and
anisometropic amblyopia, or visual deprivation due to childhood
cataract) and (3) consider the implications of global processing
deficits for the treatment of amblyopia. A summary figure is pro-
vided at the end of the review which is designed to identify key
themes.

LOCAL PROCESSING DEFICITS IN AMBLYOPIA
LOCAL SPATIAL PROCESSING
Amblyopia is primarily thought of as a disorder of spatial vision,
as reflected by the clinical emphasis on reduced visual acuity. Psy-
chophysical studies have shown that amblyopia affects multiple
aspects of spatial vision including contrast sensitivity, hyperacuity
(for example, vernier acuity), crowding, and second-order spatial
processing (see Figure 1A for schematic examples of the stimuli
commonly used in psychophysical and clinical studies of spatial
vision in amblyopia).

First-order spatial processing
Early psychophysical studies reported reduced contrast sensitiv-
ity for mid and high spatial frequencies in the amblyopic eyes

FIGURE 1 | Schematic examples of stimuli commonly used in studies

of local processing and visual acuity in amblyopia. Sinusoidal gratings
convolved with Gaussian spatial window (Gabor patches) allow for the
presentation of specific spatial frequencies (spatially narrowband).
First-order stimuli are defined by luminance, while second-order stimuli are
defined by something other than luminance, the example in the inset is of
variation in contrast. These stimuli can be modulated spatially or temporally.
(A) In addition to orientation, spatial processing measures can include
vernier, optotype, and crowded optotype acuities. Broadband examples are
shown as these stimuli are most often used in clinical settings (narrowband
stimuli can also be used). (B) Examples of temporal modulation are
luminance alterations (changing luminance over time, giving the impression
of a flicker), counterphase modulation (exchanging peak and trough
luminance over time, giving the impression of a flicker or a jump in
spacing), and drift (shifting the phase over time, allowing for the perception
of local motion). See text for more details.
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of observers with strabismic (Hess and Howell, 1977; Hess et al.,
1978a; Levi and Harwerth, 1978) and anisometropic (Freeman
and Thibos, 1975; Levi and Harwerth, 1978) amblyopia. Depriva-
tion amblyopia has also been found to impair contrast sensitivity
and these impairments can be severe (Hess and Howell, 1977;
Levi and Harwerth, 1980; Hess et al., 1981). Interestingly, the
contrast sensitivity and acuity deficits in eyes with deprivation
amblyopia tend to be more pronounced in unilateral then bilat-
eral cases (Birch et al., 1998; Ellemberg et al., 1999, 2000). However,
the extent of the vision loss is strongly tied to the age of onset
and duration of deprivation (Birch et al., 1993; Birch and Stager,
1996).

Hyperacuity and crowding
Spatial processing deficits in observers with amblyopia have also
been found for tasks involving hyperacuity and crowding. Hyper-
acuity refers to the ability to detect spatial details that are beyond
the resolution of the cone photoreceptor mosaic (Westheimer,
1975). An example is vernier acuity whereby normal observers
are able to identify offsets in alignment that are smaller in visual
angle than the resolution limit for sinusoidal gratings. Crowd-
ing, on the other hand, occurs in the normal periphery and
refers to impaired recognition or detection of a target when
it is flanked by distractors. For example, a letter presented in
isolation in the peripheral field is easier to identify than a let-
ter “crowded” by adjacent letters or bars (for an overview, see
Levi, 2011; Figure 1A). Observers with strabismic amblyopia
have been found to exhibit impaired vernier acuity (Levi and
Klein, 1982, 1985) and crowding in central vision (Stuart and
Burian, 1962). Similar results have been reported for observers
with anisometropic amblyopia; however, the deficits tend to be
less pronounced (Levi and Klein, 1982, 1985; Levi et al., 1987).
Spatial processing deficits of this type have been conceptual-
ized in terms of undersampling (insufficient cortical neurons;
Levi and Klein, 1986; Levi et al., 1987), spatial disarray (ele-
vated internal noise of cortical neurons; Hess and Field, 1993;
Demanins et al., 1999) and abnormal lateral interactions (Polat
et al., 1997; see Figure 2 for schematic representation of concepts).
These effects are thought to occur within V1. One or more of
these proposed deficits may contribute to “positional uncertainty”
when viewing through an amblyopic eye. Additional mechanisms
may also influence spatial processing in amblyopia. For example,
saccadic eye movements and attention that have recently been pro-
posed as a basis for crowding in normal vision (Nandy and Tjan,
2012).

The current literature suggests that a difference in blur between
the eyes during development (anisometropic amblyopia) creates
less positional uncertainty than decorrelated images (strabismic
amblyopia). However, the presence or absence of binocular vision
may be more important than the amblyogenic factor (Levi and
Klein, 1986; McKee et al., 2003). For example, McKee et al. (2003)
assessed a cohort of 427 participants which included patients
with strabismic, anisometropic, deprivation amblyopia, and non-
amblyopic participants, and found that those without binocular
function (most often those with strabismic amblyopia) exhibited
greater losses in optotype and vernier acuity relative to grating
acuity. A follow-up study found that crowding and the presence of

FIGURE 2 | Schematic overview of the different explanations for

positional uncertainty in amblyopia. (A) Gabor patches aligned in
position and orientation. (B) Spatial disarray due to jitter in topographical
position. (C) Spatial disarray due to jitter in orientation. (D) Undersampling
of the Gabor array. (E) A Gabor array that would engage multiple lateral
interactions between adjacent neurons. See text for more details.

stereopsis were strongly associated among a group of 72 observers
with anisometropic, strabismic, and mixed amblyopia and non-
amblyopic controls (Greenwood et al., 2012). Together, these
studies suggest that binocular input supports the development of
precise spatial signaling within V1. The effects of deprivation on
hyperacuity and crowding have not been investigated to the same
degree as in strabismic and anisometropic cases. However, as men-
tioned in section “Introduction,” measurable binocular function
(stereopsis) is uncommon in both unilateral and bilateral depri-
vation, particularly when cases are congenital (see Figure 3 for
an overview of stereopsis by amblyopia type). This suggests that
deficits related to hyperacuity and crowding may be impaired to a

FIGURE 3 | Proportion of participants with measurable stereopsis by

amblyopia type. Data were compiled from 12 studies within which
stereopsis was quantified for each participant. Measurable stereopsis was
defined as 800 s of arc or better as some studies did not measure coarser
thresholds. Where amblyogenic factors were mixed, designations were
made based on a hierarchical categorization in the following order:
deprivation, strabismic then anisometropic. The dark blue regions within
the deprivation datasets represent participants who had dense, congenital
cataracts. Data from the following studies were included: Anisometropic
(n = 55; Agrawal et al., 2006; Li et al., 2011; Narasimhan et al., 2012),
strabismic (n = 47; Agrawal et al., 2006; Hess et al., 2009; Dallala et al.,
2010; Narasimhan et al., 2012; Zhou et al., 2013), deprivation (unilateral
n = 38, of which 20 were congenital, and bilateral n = 68, of which 42 were
congenital; Tytla et al., 1993; Hwang et al., 1999; Zubcov et al., 1999;
Robbins et al., 2010, 2012; Ing, 2011; Jeon et al., 2012).
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greater extent than grating acuity, as is the case with non-binocular
anisometropic and strabismic amblyopes.

Second-order spatial processing
In addition to deficits in tasks requiring the local processing
of first-order (luminance defined) stimuli, as have been dis-
cussed so far, abnormal processing of second-order (for example,
contrast-defined) spatial stimuli has also been reported. Mansouri
et al. (2005) found that observers with unilateral strabismic and
anisometropic amblyopia were poorer than controls in judging
the orientation of second-order stimuli, when luminance-based
deficits were accounted for. Interestingly, they found that the
deficit was present for both the amblyopic and the fellow eye
implicating an impairment affecting the extra-striate visual cortex
where cells tend to be binocular.

LOCAL TEMPORAL PROCESSING
The effect of amblyopia on the detection and processing of local
changes over time (temporal vision) appears to be less pronounced
than the effect on spatial vision. This has been studied primar-
ily using counterphasing or drifting gratings, although a range
of other stimuli have been employed (see Figure 1B for exam-
ples of stimuli commonly used in studies of temporal vision in
amblyopia).

First-order temporal processing
Preliminary psychophysical work suggested that the detection of
counterphasing or drifting Gabors (see Figure 1B middle and
right for schematic examples of the stimuli) was not impaired
by strabismic amblyopia when deficits in spatial processing were
accounted for (Hess et al., 1978b; Hess and Anderson, 1993). Sub-
sequent studies have generally supported this finding whereby
many observers with strabismic and anisometropic amblyopia
have performed normally on temporal processing tasks that allow
for spatial deficits to be taken into account (Hess et al., 2006;
Qiu et al., 2007; Thompson et al., 2011). Deprivation cases with
more severe spatial deficits, however, do appear to show some
additional temporal processing abnormalities (Hess et al., 1981;
Birch et al., 1993). To separate spatial from temporal deficits in
deprivation amblyopia, Ellemberg et al. (1999, 2000) asked par-
ticipants to detect flicker in an unpatterned luminance patch (see
Figure 1B, left for a schematic example of the stimulus). They
found small deficits at low temporal frequencies, which were sim-
ilar for unilateral and bilateral cases (Ellemberg et al., 1999, 2000).
Similarly, when directional tasks were employed, deficits were
more pronounced at slow velocities (Ellemberg et al., 2002, 2005).
Taken together, local temporal and motion processing appear to
be largely intact, and certainly less impaired than local spatial pro-
cessing in all types of amblyopia. When moderate deficits have
been reported, they are in cases with severe local spatial deficits,
and are limited to low temporal frequencies and slow velocities.

Second-order temporal processing
Temporal processing of second-order stimuli shows a differ-
ent pattern. Simmers et al. (2011) found that perception of a
variety of second-order temporal stimuli (defined by contrast,
length, orientation, or polarity) was impaired in the amblyopic

eye of participants with strabismic amblyopia compared to con-
trols (first-order temporal processing was relatively unimpaired).
Variability was large between the three patients tested, but task
performance was not associated with deficits in spatial vision
suggesting the effect was not due to visibility of the stimuli.
Additionally, a deficit was also noted for the fellow eye of one par-
ticipant, again suggesting the involvement of extra-striate visual
areas. Comparable results have been reported for deprivation
amblyopia whereby direction discrimination for second-order
contrast-modulated gratings was impaired in amblyopic eyes rel-
ative to controls (Ellemberg et al., 2005), and a trend toward larger
deficits in unilateral cases was observed (Ellemberg et al., 2005).

SUMMARY
Amblyopia has a significant impact on cortical processing of local
spatial information. Unilateral amblyopia results in greater losses
in spatial vision in the affected eye than otherwise comparable
bilateral amblyopia. This additional deficit in unilateral cases likely
reflects competitive or inhibitory processes between inputs from
the two eyes during development (Birch et al., 1998). Deficits in
hyperacuity and crowding have also been linked to binocularity
with non-binocular observers demonstrating greater impairments
than would be expected based on their grating acuity. The effect
of amblyopia on local motion processing is less pronounced, with
only minor deficits reported for first-order stimuli in severe cases
of both unilateral and bilateral deprivation amblyopia. However,
perception of second-order spatial and temporal stimuli appears to
be poor across all types of amblyopia, with deficits present for both
amblyopic and fellow eyes. Processing of second-order motion
may rely, at least in part, on anatomical loci beyond V1 (for exam-
ple, Dumoulin et al., 2003). Therefore, it is possible that deficits
in processing second-order stimuli involve abnormal function of
extra-striate visual areas.

GLOBAL DEFICITS IN AMBLYOPIA
GLOBAL MOTION
Background
Sensitivity to motion is present throughout the visual pathway;
however, the accurate representation of complex, moving objects
or surfaces often requires integration across extended regions of
the visual field. This is due to a phenomenon known as the
aperture problem, whereby the motion direction of an edge
will always be seen as perpendicular to the orientation of the
edge when viewed through an aperture. Therefore, cells with
small receptive fields, which sample the retinal image through
small apertures, will often provide ambiguous motion direc-
tion signals. Integration across multiple small receptive fields
is required to recover the true motion of the stimulus being
observed (for example, Adelson and Movshon, 1982). Cells
within V1 are thought to signal ambiguous “local” or “inco-
herent” motion due to the aperture problem, and it has been
proposed that cells within dorsal extra-striate regions of the visual
cortex such as area V5 (in humans) or MT (in primates) inte-
grate these signals to reconstruct the “global” or “pattern” motion
of moving objects (Allman et al., 1985; Movshon et al., 1985;
Newsome and Pare, 1988; Rodman and Albright, 1989; Salz-
man et al., 1992; Heeger et al., 1999; Braddick et al., 2001). Areas
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downstream from V5/MT, such as MST, further support motion
integration for particularly complex patterns of local motion
such as those resulting from expansion, contraction, and rota-
tion (Saito et al., 1986; Tanaka et al., 1986, 1989; Tanaka and
Saito, 1989; Duffy and Wurtz, 1991; Britten and van Wezel,
1998).

Much of the evidence for the distinction between local and
global motion comes from studies that have used either global
dot motion or plaid stimuli to isolate motion integration mech-
anisms. Global dot motion tasks typically employ random dot
kinematograms (RDKs) which are made up of two populations of
moving dots; a “signal” and a “noise” population (Newsome and
Pare, 1988). Signal dots move in a common direction, whereas
noise dots move randomly. The observer’s task is to indicate the
direction of the signal dots. The ratio of signal-to-noise dots in
the stimulus is varied to measure a motion coherence threshold,
which provides an estimate of the signal-to-noise ratio required
for a particular level of task performance. Theoretically, cells
in V1 provide information relating to the motion of individual
dots, whereas cells within V5/MT are able to integrate informa-
tion from V1 to resolve the global motion of the stimulus. This
idea is supported by studies in primates demonstrating that MT
responds to the global motion of RDKs (Newsome et al., 1989;
Britten et al., 1992, 1993), that stimulation of MT can influence
the perceived direction of RDKs (Salzman et al., 1992) and that
MT lesions impair motion coherence thresholds (Rudolph and
Pasternak, 1999). Comparable results have been found in humans
(Braddick et al., 2001; Vaina et al., 2005; Thakral and Slotnick,
2011).

Plaid stimuli are constructed from two superimposed gratings
that drift in different directions (Adelson and Movshon, 1982). If
the low-level properties (spatial frequency, contrast, speed, etc.)
of the two “component” gratings are sufficiently similar, they will
cohere and generate the percept of a single surface moving in a
direction that can be distinct from either of the two component
grating directions. Cells that respond to the integrated, “coherent”
motion direction of plaid stimuli have been found in the pulvinar
(Merabet et al., 1998), V1 (Guo et al., 2004) and a number of extra-
striate areas (for example, Gegenfurtner et al., 1997); however,
MT appears to have a concentration of such cells suggesting that
this region has a particular specialization for motion integration
(Movshon et al., 1985; Rodman and Albright, 1989; Rust et al.,
2006). Brain imaging and brain stimulation studies in humans are
broadly consistent with the animal neurophysiology data (Castelo-
Branco et al., 2002; Huk and Heeger, 2002; Villeneuve et al., 2005,
2012; Thompson et al., 2009). See Figure 4 for examples of global
motion stimuli.

Unilateral amblyopia
Both RDKs and plaid stimuli have been used to investigate global
motion processing in observers with amblyopia. The first study
to explore global motion perception in patients with unilateral
strabismic and/or anisometropic amblyopia was conducted by
Simmers et al. (2003) using RDKs made up of first- or second-
order (contrast-defined) dots. To assess the relative effects of
contrast sensitivity and global motion deficits on motion coher-
ence thresholds, Simmers et al. (2003) measured thresholds across

FIGURE 4 | Schematic examples of stimuli commonly used in studies

of global motion perception in amblyopia. Stimuli on the top row require
integration of local motion, while the stimuli on the bottom row require
both integration and segregation from noise. Small black arrows represent
direction of signal elements (with prescribed motion trajectories), and gray
arrows represent direction of noise elements (with random motion
trajectories). The large black arrows depict the global motion direction. In a
plaid pattern, two drifting gratings with different trajectories (shown with
small black arrows) are combined to generate the percept of a new global
motion direction. In an RDK, the proportion of signal elements to noise
elements is varied. In mean array direction tasks, the mean direction of
signal elements and the standard deviation around the mean is varied.
These stimuli can be used with or without noise elements. RDK and mean
array examples are shown here with spatially broadband dots as the
elements, but dots can be substituted for narrowband elements. See text
for more details. Modified from Mansouri and Hess (2006), Newsome and
Pare (1988), and Thompson et al. (2008b).

a range of dot contrasts. Relative to controls, amblyopic eyes
exhibited elevated motion coherent thresholds that could not be
accounted for solely by a loss of contrast sensitivity. Although vari-
able across participants, on average this effect was moderate for
first-order dots (amblyopic eye thresholds ∼1.5 times poorer than
controls) and more pronounced for second-order dots (∼4 times
poorer than controls). These data provided evidence for a specific
deficit in global motion perception in amblyopia. Similar effects
were also found for the fellow eyes of amblyopes (thresholds ele-
vated by ∼1.4 times compared to controls). This finding further
supports the presence of an extra-striate deficit in global motion
processing that is independent of local processing deficits that may
affect the visibility of the stimulus elements.

A number of studies have built upon this original investigation
and found that the motion coherence threshold deficit in observers
with amblyopia extends to radial and rotational motion (Simmers
et al., 2006; Aaen-Stockdale et al., 2007). Furthermore, this deficit
is not reliant on the spatial properties of the dots within the RDKs
(Aaen-Stockdale and Hess, 2008) and is not dependent on the
relative spatial and temporal offsets of the dots (Knox et al., 2013).
A number of studies also observed deficits in fellow eyes relative
to control eyes supporting Simmers et al.’s (2003) original finding
(Ho et al., 2005; Aaen-Stockdale and Hess, 2008).

Complementary evidence for impaired extra-striate process-
ing of motion signals in patients with amblyopia has also been
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found using briefly presented, low-contrast drifting Gabor stim-
uli with an abrupt onset. Impaired spatial summation of these
stimuli that was independent of contrast sensitivity deficits was
found for the amblyopic eyes of observers with strabismic ambly-
opia (Thompson et al., 2011). Furthermore, reduced activation
within area MT/V5 has been reported for strabismic and ani-
sometropic amblyopic observers using functional MRI (fMRI;
Bonhomme et al., 2006; Ho and Giaschi, 2009) and impair-
ments in tasks requiring the processing of motion signals within
RDKs over large spatial offsets (maximum motion displacement
or “Dmax” thresholds) have also been reported. Depending on
the stimulus parameters, reduced Dmax thresholds for RDKs
may reflect impaired motion processing at early stages of the
visual pathway and/or abnormalities within higher level areas
such as area V5/MT and downstream areas of the posterior
parietal lobe that are involved in feature tracking (Ho et al.,
2005; Ho and Giaschi, 2007, 2009). Somewhat unexpectedly,
non-binocular amblyopes have been found to exhibit supe-
rior Dmax thresholds to binocular amblyopes (Ho and Giaschi,
2007).

On the basis of this evidence, it would appear that global
motion processing is selectively impaired in amblyopia. How-
ever, the deficits seen for motion coherence thresholds are not
apparent for tasks that target only the integration of local motion
signals. For example, Hess et al. (2006) found normal perfor-
mance for both amblyopic and fellow eyes when presented with
a task that required the integration of multiple motion trajecto-
ries. Specifically, observers viewed a field of moving dots within
which each dot had a slightly different motion direction and the
observer had to judge the average motion direction of the dot
field (a schematic is shown in Figure 4). The difficulty of the
task was varied by manipulating the standard deviation of the
individual motion directions. This task differed from the motion
coherence threshold tasks as it required only integration of multi-
ple motion signals and did not require segregation of signal from
noise. Similar results have been found for plaid stimuli, whereby
amblyopic and fellow eyes do not exhibit significant deficits in
integrating the two component gratings into the coherent percept
of a single moving surface (Thompson et al., 2008a; Tang et al.,
2012).

On balance, the current data suggest that global motion per-
ception is impaired in observers with amblyopia when measured
using tasks that require signal/noise segregation but not when
measured using tasks that only require integration such as plaids or
variable direction dot fields (Mansouri and Hess, 2006; Thomp-
son et al., 2008a). In other words, global motion processing (at
least that requiring signal from noise segregation) is not sim-
ply an extension of local processing deficits, but appears to be
impaired in its own right. This is consistent with neurophysiolog-
ical data from primates with experimentally induced amblyopia
(El-Shamayleh et al., 2011). Cells within MT were less toler-
ant of noise within RDKs when driven by the amblyopic eye
but no differences were found in the responses to plaid stim-
uli. It should be noted that comparisons were made between
amblyopic and fellow eyes in this study as this allowed for a
within-subjects design to be adopted. However, as described above,
both eyes can exhibit abnormal motion coherence thresholds in

amblyopic observers and a similar effect has been found for stra-
bismic (but not anisometropic) primates (Kiorpes et al., 2006).
Furthermore, the recordings were made under general anesthe-
sia, which is known to affect the response of cells to global
motion stimuli (Pack et al., 2001; Guo et al., 2004). Therefore, the
full extent of functional loss within MT may have been greater
for these animals than the amblyopic/fellow eye comparisons
suggest.

A recent, human fMRI study has provided preliminary data that
may help to place the pattern of global motion deficits and abilities
exhibited by observers with amblyopia within the broader con-
text of compensatory neural networks (Thompson et al., 2012).
In this study, control observers and observers with strabismic
or mixed strabismic/anisometropic amblyopia viewed coherent
plaids (perceived as a single moving surface) and incoherent plaids
(perceived as two gratings drifting over one another) during fMRI.
Importantly, the way in which the plaids were perceived did not
differ among control, fellow, and amblyopic eyes. For control
participants, regions throughout the extra-striate visual cortex
responded differentially to coherent and incoherent plaids, in
agreement with previous studies (Castelo-Branco et al., 2002; Huk
and Heeger, 2002; Villeneuve et al., 2012). Responses were sig-
nificantly weaker than controls when observers with amblyopia
viewed the stimuli through their fellow eye, although the general
pattern of activation was similar with area V5/MT exhibiting dif-
ferential responses for coherent compared to incoherent plaids.
However, when the stimuli were viewed through amblyopic eyes
the responses were weaker still and, most importantly; V5/MT was
not differentially activated. This suggests that other regions may
be involved in supporting normal perception of plaids viewed
with an amblyopic eye. Candidate areas identified in this study
included Ventral V3 and the pulvinar. Although the sample size
of this study was small (n = 6), the role of compensatory net-
works in supporting global processing in amblyopic is plausible.
In the case of global motion perception, lesions of V5/MT result
in elevated motion coherence thresholds but do not appear to
result in lasting impairments for tasks requiring motion inte-
gration in the absence of noise (Baker et al., 1991; Rizzo et al.,
1995; Rudolph and Pasternak, 1999). Presumably, the neural net-
works that compensate for lost V5/MT function after a lesion are
able to support motion integration but not the segregation of
signal from noise. A comparable situation may exist within the
visual cortex of patients with strabismic and/or anisometropic
amblyopia.

Comparison of unilateral to bilateral cases
Impaired motion coherence thresholds have also been found
for observers with deprivation amblyopia caused by congen-
ital cataracts that were present from birth (Ellemberg et al.,
2002; Constantinescu et al., 2005; Hadad et al., 2012). Observers
with unilateral deprivation amblyopia exhibited motion coher-
ence threshold elevations in both eyes that are comparable to
those reported by Simmers et al. (2003) for strabismic, ani-
sometropic, and mixed amblyopes (∼1.6 time poorer than normal;
Ellemberg et al., 2002). However, observers who had bilateral con-
genital cataracts had more profound deficits in performing motion
coherence tasks with thresholds in each eye being ∼5 times poorer
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than controls (Ellemberg et al., 2002). These deficits were inde-
pendent of low-level deficits such as visual acuity and contrast
sensitivity, implying an extra-striate locus for the deficit (Ellem-
berg et al., 2002; Constantinescu et al., 2005; Aaen-Stockdale et al.,
2007). Conversely, developmental cataracts which allow clear
vision early in life do not appear to elevate motion coherence
thresholds even when the cataracts are bilateral (Ellemberg et al.,
2002). This suggests that the development of global motion mech-
anisms within the extra-striate visual cortex requires a period
of visual input after birth and that some visual input (monoc-
ular congenital cataract) is better than none (bilateral congenital
cataract).

Use of global motion tasks in suppression measurements
Recently, RDKs have also been used to explore the role of inte-
rocular suppression in strabismic, anisometropic, and mixed
amblyopia. Mansouri et al. (2008) presented signal dots to one
eye of observers with strabismic amblyopia and noise dots to the
other to assess whether binocular combination was possible in
these patients. The rational was that motion coherence thresh-
olds would only be measurable under dichoptic (separate stimuli
to each eye) viewing conditions if the signal and noise dots were
combined within binocular areas of the visual pathway. When
dots of equal contrast were presented to the two eyes, motion
coherence thresholds were strongly biased toward the fellow eye
whereby thresholds were very low when signal was presented to
the fellow eye and noise to the amblyopic eye and very high or
unmeasurable when noise was presented to the fellow eye and
signal to the amblyopic eye. These results indicated suppression
of the amblyopic eye. However, by reducing the contrast of the
dots presented to the fellow eye, Mansouri et al. (2008) were
able to demonstrate normal binocular combination in strabis-
mic amblyopes, whereby motion coherence thresholds remained
the same irrespective of which eye saw signal and which eye saw
noise. In other words, binocular mechanisms were present in these
observers but suppressed under normal viewing conditions. Fur-
thermore, the contrast offset required to reach this “balance point”
between the two eyes varied across observers and provided an
objective measure of the extent to which the amblyopic eye was
suppressed.

Since Mansouri et al.’s (2008) original study, dichoptic RDKs
have been used to measure suppression in patients with stra-
bismic, anisometropic, and mixed amblyopia (Black et al., 2011,
2012; Li et al., 2011, 2013a,b; Narasimhan et al., 2012). The results
have shown that deeper suppression is related to poorer ambly-
opic eye acuity, poorer stereopsis, and less favorable outcomes
from occlusion therapy (Li et al., 2011, 2013b; Narasimhan et al.,
2012), although prospective studies are required to provide a
stronger test of this effect. Furthermore, training aimed at reduc-
ing suppression of the amblyopic eye using dichoptic RDKs or
modified dichoptic videogames has been found to improve both
stereopsis and monocular visual acuity in adults and children
with amblyopia (Hess et al., 2010a,b; Knox et al., 2011; To et al.,
2011; Birch, 2013; Li et al., 2013c). As a whole, this body of work
suggests that binocular interactions may play a key role in stra-
bismic and anisometropic amblyopia (Hess et al., 2011; Hess and
Thompson, 2013). This is consistent with a number of studies

reporting less pronounced elevations in monocular motion coher-
ence thresholds for amblyopic observers with residual binocular
function (Ho et al., 2005; Knox et al., 2013). The question of
whether suppression also plays a role in deprivation amblyopia
is still open; however, very recent measurements made in our
laboratory suggest that suppression is measureable in at least
some cases of deprivation amblyopia using the dichoptic RDK
technique.

GLOBAL FORM
Background
Similar to global motion, global form perception requires the inte-
gration of local cues. However, since there is no form equivalent
of the aperture problem, the distinction between V1 and extra-
striate processing is less clear. Converging evidence from animal
electrophysiology (Gallant et al., 1993, 1996; Pasupathy and Con-
nor, 1999, 2001; Nandy et al., 2013) and human fMRI (Braddick
et al., 2000; Wilkinson et al., 2000; Altmann et al., 2003; Conner
et al., 2007) suggests that integration of local form cues involves
V2 and V4, with V4 neurons signaling complex form informa-
tion such as curvature and hyperbolic shapes. Stronger responses
to stimuli containing forms compared to stimuli containing ran-
domly oriented elements have been found in V1, V2 (Conner et al.,
2007), VP, V4, and LOC (Altmann et al., 2003). This suggests that
form processing involves a distributed network of neural areas
which is likely to include feed-back and feed-forward connections
between the primary and ventral extra-striate visual cortex. These
concepts are under continued investigation (for example, Moratti
et al., 2013).

There are a number of ways in which global processing of form
has been assessed in amblyopia research. One approach involves
tasks that require the binding of elements over space. Contour
integration falls into this category and was a common paradigm
in early amblyopia research. In these tasks, Gabor patches are
oriented to produce paths or shapes that become apparent if the
stimulus elements are integrated across the visual system (Field
et al., 1993). Task difficulty is controlled by varying the alignment
of the signal patches that form the contour (jittering the position
or orientation), changing the density of the elements making up
the target, or adding randomly oriented patches (noise). (Note the
similarity to what we have described as local positional uncertainty,
overviewed in Figure 2.) In a related task, individual elements
(“inducers”) can be used to create illusory contours and shapes,
such as those described by Kanizsa (1976). Glass patterns (Glass,
1969) can also be used to assess form perception. These stimuli
are made up of pairs of dots or dipoles. A subset of the dipoles
(signal) can be aligned to form a coherent pattern, while another
subset of dipoles (noise) can be randomly oriented. In this task,
the proportion of signal to noise is adjusted to obtain a thresh-
old. Finally, as an alternative to tasks requiring the integration
of distinct elements, observers can be asked to detect perturba-
tions in simple forms such as circles. Such tasks typically employ
radial frequency patterns that allow for precise control over the
spatial frequency content of the stimulus and amount of form
perturbation (Wilkinson et al., 1998). Tasks involving Glass and
radial frequency patterns likely rely at least in part on ventral area
V4 (Wilkinson et al., 1998, 2000; Wilson and Wilkinson, 1998).
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More controversy exists about the anatomical basis for contour
integration and illusory contours, although they are generally
thought to rely on ventral extra-striate processing (Ffytche and
Zeki, 1996; Lee and Nguyen, 2001; Halgren et al., 2003; Robol
et al., 2012).

Although each of these tasks is thought to primarily rely on
global processes, it is difficult to separate local positional uncer-
tainty from the global form component. Mean orientation arrays
allow the spatial component to be minimized, while still requir-
ing global integration (Dakin, 2001). These tasks use a group
of elements (typically multiple Gabor patches) which are ori-
ented clockwise or anticlockwise (right or left) of the vertical
midline. Observers indicate whether the overall orientation is
clockwise or counter-clockwise of vertical and task difficulty is
manipulated by altering the mean and standard deviation of
the element orientations. More recently, there has been inter-
est in developing stimuli which allow for direct comparisons
between dorsal and ventral functions. Such stimuli typically
employ orientation or direction averaging, include noise and
have a temporal component to match parameters between form
and motion tasks (for example, Simmers et al., 2005; Mansouri
and Hess, 2006; Husk and Hess, 2013). Many other examples
of global form stimuli exist, but those described above are the
most commonly used in amblyopia research (see Figure 5 for a
summary).

The main challenge for measurements of global form per-
ception in amblyopia is to separate global processing deficits
from the rather extensive deficits in local spatial processing

FIGURE 5 | Schematic examples of stimuli commonly used in studies

of global form perception in amblyopia. Stimuli on the top row require
integration of orientation over space, while the stimuli on the bottom row
require both integration and segregation from noise. Contour integration,
mean array orientation, and radial frequency pattern examples are shown
here made up of spatially narrowband elements, whereas the glass pattern
and illusory contour examples are spatially broadband. The four examples
on the left (as well as the insert) require the observer to detect or
discriminate shapes or patterns, whereas in mean array orientation tasks,
the mean orientation of signal elements and the standard deviation around
the mean is varied, and observers are asked to judge the average
orientation. See text for more details. Modified from Mansouri and Hess
(2006), Levi et al. (2007), Lewis et al. (2002), Dallala et al. (2010), Mansouri
et al. (2004), Putzar et al. (2007).

including impaired acuity, contrast sensitivity, and positional
uncertainty. For example, Robol et al. (2012) have recently empha-
sized the importance of crowding in global tasks involving contour
detection in noise. Typically, acuity and contrast sensitivity are
accounted for by equating the individual elements for visibility
using the fellow eye or control eyes as a reference; however, deficits
relating to positional uncertainty are more difficult to control for.

Unilateral amblyopia
One of the first studies to investigate spatial integration in ambly-
opia measured the effect of flanking stimuli on the detection of
a centrally presented Gabor patch (Polat et al., 1997). Collinear
flankers facilitated task performance for controls; however, this
effect was absent or even reversed in observers with strabis-
mic and/or anisometropic amblyopia. This led to the suggestion
that global contour integration mechanisms may be abnormal
in amblyopia. Subsequent studies have supported this idea. For
example, experiments investigating contour detection in noise
found evidence for specific deficits in global integration rela-
tive to controls in strabismic (Kovács et al., 2000; Mussap and
Levi, 2000) and anisometropic amblyopes (Chandna et al., 2001)
as well as non-amblyopic participants with ocular misalign-
ment (Kovács et al., 2000). However, this is not a ubiquitous
finding. Hess et al. (1997) found that the deficits exhibited by
strabismic amblyopes on a contour detection task could be
accounted for by impairments in judging the local position of
the stimulus elements rather than global integration. Further-
more, this group reported almost no contour integration deficits
in observers with anisometropic amblyopia (Hess and Demanins,
1998).

Building on these earlier studies, Levi et al. (2007) assessed the
ability of observers with strabismic and anisometropic amblyopia
to discriminate between a circle and an ellipse made up of ori-
ented Gabor patterns. Position and radius of the shapes were
kept constant to minimize the requirement for positional accu-
racy. A mild deficit (∼1.4 times worse than controls) remained
when contrast sensitivity was carefully accounted for indicating
the presence of a measureable global form processing deficit for
this specific task. This effect was only present in the amblyopic eye,
was more pronounced for strabismic than anisometropic viewers
(which was related to the presence of binocularity), and was par-
ticularly evident when contours were presented in noise. Deficits
in global form perception relating to deficits in extracting signal
from noise have also been reported by studies employing Glass
patterns. In particular, abnormal perception of Glass patterns has
been reported for amblyopic eyes in both deprivation (Lewis et al.,
2002) and strabismic amblyopia (Rislove et al., 2010). Together,
it seems that normal binocular function may play a role in the
development of mechanisms involved in signal/noise segregation
for form.

However, signal/noise segregation is not sufficient to account
for all global form deficits reported for observers with ambly-
opia. For example, deficits in the perception of radial frequency
patterns have been reported in the amblyopic eyes of small
groups of adults (Hess et al., 1999; Dallala et al., 2010), and a
large group of children (Subramanian et al., 2012) with stra-
bismic amblyopia. A similar result was found for participants
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with deprivation amblyopia (Jeffrey et al., 2004). This supports
the idea that the processing of contours and shapes is influ-
enced by amblyopia even in the absence of noise, but does not
rule out positional uncertainty as the cause of the processing
deficit (Dallala et al., 2010). Positional uncertainty was accounted
for by Popple and Levi (2000) who showed that a variety of
global alignment illusions were not perceived in observers with
strabismic and anisometropic amblyopia indicating the pres-
ence of a global form deficit over and above local processing
abnormalities.

Performance in mean orientation tasks without noise ele-
ments have also been investigated for observers with amblyopia.
Simmers and Bex (2004) found that both the amblyopic and
the fellow eyes of observers with strabismic or anisometropic
amblyopia were impaired on a mean array orientation task rel-
ative to controls. This effect could not be replicated in controls
even if the number, visibility (contrast), and orientation vari-
ance of the elements were matched to the low-level deficits
shown by amblyopic observers. However, Mansouri et al. (2004)
used a similar task and found no integrative deficits. They cal-
ibrated the contrast of the Gabor patches displayed to each
eye to equate stimulus visibility and found no additional global
form deficit in either eye of observers with strabismic or ani-
sometropic amblyopia. This was also the case for a global form
task involving second-order elements (Mansouri et al., 2005).
Deficits for first-order orientation integration were later found
by this group only when randomly oriented noise elements were
added to the array (Mansouri and Hess, 2006) which resonates
with the pattern of deficits found for global motion process-
ing, and the idea of a generic signal/noise segregation deficit.
Recently, a comprehensive investigation of global orientation
coherence was conducted whereby observers judged the aver-
age orientation of fields of elements created by filtering white
noise to generate spatially narrowband oriented Gabor-like pat-
terns, with each element having a limited lifetime (Husk and
Hess, 2013). The stimuli contained both signal and noise ele-
ments. By varying both the signal-to-noise ratio within the stimuli
and the orientation bandwidth of the elements, Husk and Hess
(2013) revealed subtle deficits in both eyes of strabismic and
anisometropic amblyopes that were primarily due to deficits in
judging local orientation rather than abnormal global process-
ing. In general, therefore, it would appear that any specific global
form processing deficit in unilateral amblyopia is quite mild when
positional uncertainty and signal/noise segregation are taken into
account.

Comparison of unilateral to bilateral cases
There are fewer studies that have evaluated global form percep-
tion in cases of bilateral amblyopia. Lewis et al. (2002) found that
observers with a history of bilateral deprivation were poorer at
detecting global form in Glass patterns than controls (by a fac-
tor of ∼1.7), and those with unilateral deprivation amblyopia
(unilateral cases were ∼1.3 times worse than controls on the
same task). However, differences between observers with unilateral
and bilateral deprivation amblyopia were not apparent for a task
involving radial frequency patterns (Jeffrey et al., 2004). Another
group used an illusory contour task and found that although the

shapes “popped out” of the stimulus arrays for control observers
(indicating global from processing), patients with a history of
early bilateral deprivation appeared to process the stimuli in serial,
searching for four elements with inwardly facing cut outs (Putzar
et al., 2007). Putzar et al. (2007) did not include unilateral cases.
Overall, it would appear that bilateral deprivation does result in
global form processing deficits that may be more pronounced that
those caused by unilateral deprivation for particular form-based
tasks, such as those containing noise. However, as emphasized
by Lewis et al. (2002), it is notable that observers with bilateral
amblyopia exhibit more pronounced deficits for global motion
(∼5-fold elevations in threshold; Ellemberg et al., 2002) than
for global form (∼1.7-fold elevations in threshold; Lewis et al.,
2002).

Use of global form tasks in suppression measurements
As with global motion, global form tasks have also been used
to measure suppression and binocular combination in cases
of unilateral strabismic and/or anisometropic amblyopia with
signal elements presented to one eye and noise to the other
(Mansouri et al., 2008). Varying interocular contrast in favor
of the amblyopic eye allows for form information to be com-
bined between the two eyes as it does for RDKs, indicating
that suppression acts upon both form and motion process-
ing. A recent study directly compared “balance point” contrasts
for form and motion tasks and found that suppression was
more pronounced for motion than form processing (Zhou et al.,
2013). This may reflect a greater susceptibility of global motion
processing to suppression; however, a prospective compari-
son between monocular form and motion coherence thresholds
and the strength of suppression is required to address this
question.

SUMMARY OF GLOBAL MOTION AND FORM
Despite the use of varied paradigms, several patterns emerge from
studies investigating global form and motion perception in ambly-
opia. For global motion, there is compelling evidence for a specific
deficit in addition to those inherited from abnormal local pro-
cessing. For global form, the evidence is less convincing (for
example, Simmers et al., 2003, 2005; Husk and Hess, 2013). This
is particularly interesting in light of the evidence described above
which suggests that local temporal processing is less affected by
amblyopia than local spatial processing. For both global form
and motion perception, when deficits are measured which can-
not be accounted for by local spatial deficits, they appear to be
most pronounced for tasks that require the segregation of signal
from noise, suggesting that this process may be particularly sus-
ceptible to abnormal visual experience early in life (Mansouri and
Hess, 2006; although see Levi, 2007). In addition, a number of
studies have reported global processing deficits for both eyes of
observers with unilateral amblyopia, strongly implicating abnor-
malities affecting binocular regions of the striate and extra-striate
visual cortex. This effect is reported more often for global motion
than global form tasks. Although less widely studied, patients with
bilateral deprivation amblyopia appear to perform more poorly
than patients with unilateral deprivation amblyopia for global
tasks. This is the opposite of what one would expect based on the
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pattern of local processing deficits which are more severe in uni-
lateral deprivation (Ellemberg et al., 2002; Lewis et al., 2002) and
suggests that monocular input to extra-striate areas during early
infancy allows for more normal development of global processing
than no input at all.

FACE PERCEPTION
Background
Face perception is an interesting example of the interplay between
local and global cues in visual processing. Global processing
of faces is thought to take precedence over local processing of
individual features when observers are required to make refined
within-category distinctions, such as recognizing individuals or
expressions. These global processes can be disrupted by inverting
faces which results in significant impairments in face processing
and a reliance on local facial features (reviewed by Maurer et al.,
2002).

Face detection has been associated with the right inferior
temporal cortex (Haxby et al., 1991; Wilkinson et al., 2000), par-
ticularly the fusiform area (sometimes called the fusiform face
area or FFA). Additionally, the N170 component of the visual
evoked potential is thought to be face selective (Bentin et al.,
1996). Mooney faces (Mooney, 1957) are a set of stimuli com-
monly used for measuring face detection, and consistently activate
FFA and elicit an N170 response in controls. These stimuli are
high-contrast, black and white, spatially obscured images which
represent faces with varying levels of clarity.

Tasks designed to investigate discrimination of clearly visi-
ble faces typically fall into two broad categories; those targeting
“invariant” and those targeting “variant” aspects of face process-
ing (Bruce and Young, 1986; Haxby et al., 2000). Invariant cues
are those that remain constant, such as the spacing between the
eyes and the shape of a face. One way of measuring perception of
the invariant features of faces is to test sensitivity to the relative
position of features (for example, eye spacing, distance between
eyes and nose). The “Jane Task” (Mondloch et al., 2002) requires
observers to judge either the relative spacing of features or the
shape of individual features in a single face. Observes with normal
vision are more sensitive to the relative spacing of features when
they are presented upright compared to inverted, whereas sensi-
tivity to feature shape is similar regardless of orientation (Freire
et al., 2000).

Variant aspects of faces change within an individual, and
include the generation of speech sounds and emotional displays.
Tests of variant face processing typically involve faces with varying
patterns of facial-muscle activation (see Figure 6). These can be
dynamic, but are typically static images of transient states, such as
someone smiling, or mouthing the letter “o”. Variant and invariant
components of face perception may involve distinct regions of the
extra-striate visual cortex with invariant processing relying more
on FFA, and variant processing on the posterior region of the supe-
rior temporal sulcus (pSTS; Bruce and Young, 1986; Haxby et al.,
2000). This anatomical distinction has recently been supported by
a unique case of a patient who sustained a lesion that included her
right pSTS. She was subsequently unable to match facial expres-
sions, but had a generally preserved ability to identify faces (Fox
et al., 2011).

FIGURE 6 | Examples of stimuli commonly used in studies of face

perception in amblyopia. Mooney faces are high-contrast, black and
white images which represent faces with varying levels of clarity. The Jane
task allows for the global processing of feature spacing (top row) and the
local processing of feature shape (bottom row) to be tested independently.
Perception of facial expressions and speech postures is typically assessed
using static images; however, the stimuli vary considerably between
studies. See text for more details. Modified from Mooney (1957), Maurer
et al. (2002).

Unilateral amblyopia
Interest in the effect of amblyopia on the development face percep-
tion began in the early 2000s with compelling papers published in
Neuron (Lerner et al., 2003) and Nature (Le Grand et al., 2001).
Lerner et al. (2003) presented the striking fMRI finding that
although V1 activation remained relatively unchanged, fusiform
activation was severely attenuated when observers with unilat-
eral strabismic and anisometropic amblyopia viewed faces with
their amblyopic eye. This deficit was not measurable for non-
face categories (houses), and could not be replicated in control
subjects by degrading images to simulate the poorer acuity and
contrast sensitivity of amblyopic eyes (Lerner et al., 2003). Fur-
thermore, the fMRI result was supported by psychophysical data
showing significant deficits in the identification of famous faces,
and, more dramatically, facial expressions for the amblyopic com-
pared to the fellow eye (Lerner et al., 2003). Similar results have
recently been reported using electroencephalography (Bankó et al.,
2013a,b). However, a follow-up study by Lerner et al. (2006) found
that the functional deficit in extra-striate visual areas revealed by
fMRI was not face-specific and could be explained by weaker acti-
vation of the visual cortex when object identification relied on
foveal vision in the amblyopic eye. Therefore, the face processing
anomalies reported in their earlier paper are most easily explained
by deficits in the processing of local image features.

The link between deficits in local processing and impaired face
perception in unilateral strabismic amblyopia has recently been
investigated using psychophysics. Cattaneo et al. (2013) found no
deficits in the detection of Mooney faces in observers with stra-
bismic amblyopia but did find poorer performance on the “Jane”
task (which targets configural processing of facial features) for
amblyopic eyes. However, the deficit for this task was present
for both upright and inverted images. This is consistent with
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abnormal processing of individual local features rather than a spe-
cific impairment of configural face processing, which would not
be predicted to affect the processing of inverted faces.

In contrast to unilateral strabismic and anisometropic ambly-
opia, strong evidence for abnormal face processing has been
reported in cases of deprivation amblyopia. In unilateral cases,
deprivation affecting the left eye, but not the right eye, leads to
deficits in configural processing of faces that are specific to the
upright version of the “Jane” task (Le Grand et al., 2003). The
explanation provided for this rather unexpected phenomenon is
twofold. First, the right hemisphere is specialized for face pro-
cessing, and second, visual fields are restricted in infancy and
displaced temporally, creating a short period during which the left
eye conveys information to the right hemisphere only. Together,
Le Grand et al. (2003) suggest that visual input to the right hemi-
sphere in early infancy is essential for the normal development
of configural face processing. In summary, unilateral ambly-
opia does not appear to affect face processing beyond what is
expected from inherited local processing abnormalities, except in
the very specific case of left eye congenital cataract which is thought
to interfere with development of the right inferior temporal
cortex.

Comparison of unilateral to bilateral cases
As would be expected from the deficits in the Jane task in left
eye unilateral cataract described above, bilateral deprivation from
birth also results in attenuation of the upright advantage in con-
figural processing (Le Grand et al., 2001; Mondloch et al., 2010).
This appears to be specific to human faces, as the same cohort was
as sensitive as controls to feature spacing in houses and monkey
faces (Robbins et al., 2010). Recent work has supported the pres-
ence of configural face processing impairments in observers with
a history of bilateral deprivation and identified additional impair-
ments in face recognition and recall (De Heering and Maurer,
2014). However, the detection of Mooney faces appears to remain
intact (Mondloch et al., 2013) as has been reported for strabismic
amblyopia (Cattaneo et al., 2013). This may be because face detec-
tion is preserved regardless of early visual experience, although
additional investigation is required.

An early study bridged the gap between invariant and vari-
ant aspects of faces. Geldart et al. (2002) investigated a group
of 17 patients with a history of bilateral deprivation and found
that identification of faces was impaired when the stimuli were
presented with different head positions or expressions. However,
matching of expressions and the ability to lip read were unimpaired
(Geldart et al., 2002). A subsequent study corroborated the deficit
in varying head position and lighting conditions and revealed a
deficit for lip reading using a more complex task (Putzar et al.,
2010b). Specifically, Putzar et al. (2010b) investigated lip reading
with the McGurk effect, which relies on the integration of visual
and auditory speech cues. A follow-up study using fMRI found
that observers with amblyopia exhibited a different pattern of cor-
tical activation when lip reading. In particular, lip reading was
associated with strong activation in the superior temporal sulcus
(STS) for controls but not for patients (Putzar et al., 2010a).

As a whole, current evidence supports the presence of a specific
configural, or global, face processing deficit in cases of bilateral

amblyopia that may also be accompanied by abnormal face recall,
and perhaps abnormal processing of the variable aspects of faces.
However, evidence for face-specific deficits in unilateral strabis-
mic and anisometropic amblyopia is equivocal and is difficult to
separate from local processing impairments. This is similar to the
trend described for global form processing in the previous section
and, together, these results suggest that unilateral strabismic and
anisometropic amblyopia do not specifically impair the processing
of global spatial form.

BIOLOGICAL MOTION
Background
Biological motion perception refers to the ability to extract infor-
mation relating to gait, gender, and even emotional state from
the movements of other people. The stimuli most commonly
used in studies of biological motion perception are point light
walkers (Johansson, 1973), whereby moving dots are used to rep-
resent the motion patterns of the major joints of the body. Point
light walkers can be embedded in displays containing noise dots
to allow for task difficulty to be manipulated (Grossman and
Blake, 1999). As with variant aspects of face processing, biolog-
ical motion tasks typically exhibit an inversion effect (Troje and
Westhoff, 2006) suggesting that configural processing is involved,
and have been found to activate pSTS (Grosbras et al., 2012). The
precise mechanisms underlying biological motion perception are
still being investigated. However, biological motion is likely to rely
on a combination of motion integration, structure from motion
(the grouping together of elements based on common or related
motion trajectories) and, when noise dots are presented, sig-
nal/noise segregation. For example, biological motion perception
can remain intact in patients with brain lesions that significantly
impair global motion perception (Vaina et al., 1990; Jokisch et al.,
2005), suggesting that biological motion relies on multiple sources
of visual information, possibly from both dorsal and ventral areas
of the extra-striate visual cortex.

Unilateral amblyopia
Three studies have investigated biological motion in ani-
sometropic, strabismic, or mixed amblyopia. Both Neri et al.
(2007) and Thompson et al. (2008b) asked observers with strabis-
mic and/or anisometropic amblyopia to discriminate point light
displays in noise. Both studies found that biological motion per-
ception was intact in observers with amblyopia as evidenced by
the presence of normal inversion effects for point light stimuli.
Although amblyopic eyes did exhibit elevated thresholds rela-
tive to fellow eyes and controls, this could be attributed to a
greater sensitivity to the presence of noise dots rather than a
selective impairment in biological motion processing (Thomp-
son et al., 2008b). Recently, Luu and Levi (2013) used a different
approach to assess biological motion perception in observers
with strabismic and anisometropic amblyopia. They presented
point light stimuli representing two dancers and the observers
had to decide whether the dancers were moving in or out of
synchrony with one another. Task difficulty was controlled by
removing dots from the point light displays, not by adding
noise. Both controls and amblyopes were more sensitive to syn-
chronous displays indicating that biological motion processing
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was relatively robust to amblyopia. However, both the ambly-
opic and fellow eyes of observers with amblyopia required more
dots than controls to perform the task, a deficit that may have
been due to undersampling (Levi and Klein, 1986) of the stim-
uli by observers with amblyopia. Therefore, although only three
studies have been conducted to date, it would appear the bio-
logical motion perception is preserved in amblyopia and that
poorer performance by amblyopic eyes for biological motion
tasks can be attributed to signal/noise segregation or undersam-
pling.

Comparison of unilateral to bilateral cases
Biological motion perception also appears to be preserved in cases
of bilateral congenital deprivation, despite a substantial global
motion deficit in the same observers (Hadad et al., 2012). Surpris-
ingly, Hadad et al. (2012) found no differences between observers
with deprivation amblyopia and controls even when stimuli were
presented in noise.

One possible explanation for the preservation of biological
motion perception is that neural systems supporting structure
from motion, which are thought to combine information from
both dorsal and ventral processing streams, are not affected by
amblyopia. However, this does not appear to be the case. Perfor-
mance on structure from motion tasks requiring the detection
of non-biological objects is impaired in both the amblyopic
and fellow eyes of observers with strabismic and anisometropic
amblyopia (Wang et al., 2007; Hayward et al., 2011; Husk et al.,
2012). Furthermore, structure from motion deficits appears to
be independent from visual acuity losses (Giaschi et al., 1992)
and cannot be accounted for by impaired signal/noise segre-
gation (Husk et al., 2012). It has been proposed that structure
from motion tasks involve second-order motion and form pro-
cessing pathways which may explain the deficits exhibited by
observers with amblyopia (Hayward et al., 2011). Another poten-
tial explanation is that the integration of form and motion is
abnormal in amblyopia (Husk et al., 2012). Either way, it would
appear that the preservation of biological motion perception is
related to the biological nature of the task which may recruit
specialized and robust neural pathways (Troje and Westhoff,
2006).

THE EFFECTS OF BILATERAL LONG-TERM VISUAL DEPRIVATION ON
GLOBAL PROCESSING
Up until this point in the review, where deprivation amblyopia has
been discussed we have focussed on studies including observers
who had dense cataracts that were present within the first six
months of life, and treated during infancy. These studies are
often able to precisely quantify the onset, severity, and duration
of deprivation each of which can significantly alter the pattern of
impairment in global processing (for review, see Lewis and Mau-
rer, 2005, 2009; Maurer et al., 2007). However, there is a related
literature concerned with dramatic cases of patients who regain
sight after many years of bilateral deprivation. A detailed treat-
ment of this literature is beyond the scope of this review, but a brief
summary of the effects of long-term visual deprivation on global
processing is of interest as a comparison to the cases described so
far.

We have identified 8 peer reviewed case studies of extended
bilateral deprivation that included measurements of global pro-
cessing. The cases are quite varied and in some cases his-
tories are uncertain. Patients HD (Ackroyd et al., 1974), SC
(Carlson et al., 1986), and MM (Fine et al., 2003; Gregory, 2003)
had at least three years of visual experience followed by at least
20 years of deprivation. Patient SB had vision for approximately
10 months followed by 52 years of deprivation (Gregory and
Wallace, 1974), and PB, JA, SK, and SRD experienced depriva-
tion from birth lasting between 7 and 29 years (Ostrovsky et al.,
2006, 2009). The patients were assessed soon after the cause of the
deprivation was removed with the exception of SRD who had 20
years of normal visual experience before being formally assessed
(Ostrovsky et al., 2006). Across these cases, patients who had very
little early visual experience tended to have more severe impair-
ments in global tasks targeting the dorsal stream than patients
who had longer periods of visual experience prior to the onset of
deprivation. A different trend is apparent for global form tasks
targeting the ventral stream whereby extended bilateral depriva-
tion tends to result in persistent and functionally severe deficits
in object and face recognition irrespective of the age of onset.
This is highlighted in an fMRI study of patient MM who had
normal activity within V5 (Gregory, 2003) in response to global
dot motion but no activity within the inferior temporal cortex in
response to objects (Fine et al., 2003). On the basis of this small
number of cases, the development of global motion processing
seems to require only a short period of visual experience after
birth, whereas normal global form processing requires ongoing
visual experience.

DISCUSSION
The literature on global processing in amblyopia includes a range
of amblyopia sub-types and psychophysical tasks; however, a num-
ber of trends are apparent across studies. These are summarized
in Figure 7.

TRENDS FOR UNILATERAL AMBLYOPIA
The first trend relates to the differential effects of unilateral ambly-
opia on the local processing of spatial and temporal information.
Amblyopic eyes have impaired spatial acuity and contrast sensi-
tivity combined with crowding and impaired hyperacuity. These
effects have been linked to the concept of positional uncertainty,
which may reflect undersampling of the retinal image or dis-
array of retinotopic representations of space within the visual
cortex. Other factors such as fixation instability may also con-
tribute to these deficits in spatial vision. Conversely, the processing
of local temporal information appears to be relatively unaffected
by amblyopia (see Figure 7A-1). There is evidence that strabismic
and anisometropic amblyopia affect parvocellular inputs to the
visual cortex from the lateral geniculate nucleus more than mag-
nocellular inputs (Shan et al., 2000; Mizoguchi et al., 2005; Davis
et al., 2006; Hess et al., 2010c). In very general terms, the parvo-
cellular pathway (which feeds into the ventral processing stream)
is thought to primarily support spatial vision whereas the magno-
cellular pathway (which feeds into the dorsal processing stream)
primarily supports temporal vision. Therefore, a differential effect
of amblyopia on these two pathways would be consistent with the
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FIGURE 7 | Summary of local and global processing deficits in

unilateral and bilateral amblyopia. Panel (A) depicts general trends
relating to unilateral amblyopia and panel (B) shows additional trends for
bilateral amblyopia. In each panel, example stimuli are shown with spatial
(ventral) tasks presented to the left of each panel and temporal (dorsal)
tasks to the right. In panel (A) local tasks are shown at the top of the
panel, global tasks in the middle, and more complex tasks at the bottom.
In panel (B), all tasks are global with more complex global tasks shown
in the bottom row. Tasks with no highlighting are not specifically affected
by amblyopia. Yellow highlighting indicates a deficit for the amblyopic eye
only and green indicates a deficit for both eyes. The luminance of the
color (dark or light) indicates how consistent the specific deficit is across
studies, with darker colors representing consistent deficits. Three main
trends are notable in panel (A). (A1) Local spatial deficits are more
pronounced than local temporal deficits. These deficits are present in the
amblyopic, but generally not the fellow eye. (A2) Global motion tasks
requiring the segregation of signal from noise show more consistent
deficits in both the amblyopic and fellow eye when compared to global

form tasks. These deficits do not appear to be inherited from
abnormalities in the processing of local temporal information [cf. trend
(A1)] and the deficit does not extend to tasks requiring only motion
integration. (A3) Tasks which rely on second-order processing are
impaired, an effect seen in both the amblyopic and fellow eyes. Three
additional trends are apparent for bilateral cases represented in panel (B).
(B1) The dorsal stream deficit is exaggerated in bilateral cases. The bar
graph shows normalized data from two separate studies comparing
unilateral and bilateral amblyopia using Glass patterns for form, and RDKs
for motion (Ellemberg et al., 2002; Lewis et al., 2002). Larger values on
the Y -axis indicate a greater deficit for amblyopic eyes relative to controls.
While the global form deficits are similar between unilateral and bilateral
cases, the global motion deficits are much more pronounced for bilateral
cases. (B2) Some aspects of face processing are impaired in bilateral
amblyopia, for example, configural processing of identity. (B3) Biological
motion perception, and possibly some aspects of variable face processing
may be preserved after bilateral visual deprivation. See text for more
details.
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pattern of local processing deficits reported by the majority of
studies in the amblyopia literature.

Somewhat unexpectedly, the pattern of local processing deficits
in unilateral amblyopia is not reflected by global processing tasks
targeting extra-striate visual areas. Specifically, the deficit for
global motion perception is more pronounced than that for global
form (see Figure 7A-2). Deficits are present in global form tasks,
but they are small and inconsistent, possibly due to the already
extensive impairments present for the local processing of form.
Only a few studies have found a form processing deficit in both
fellow and amblyopic eyes. In these cases, the deficit is sub-
tle and typically only present in tasks that require segregation
of signal from noise. In comparison, the impairments reported
for global motion perception are more reliable across studies,
and present in both the amblyopic and fellow eyes implicating
an extra-striate deficit. This is particularly compelling given that
local processing and global integration are both largely preserved
for motion. This is generally consistent with the idea of dor-
sal stream vulnerability, which proposes that dorsal areas of the
extra-striate visual cortex are more susceptible to the effects of
abnormal development than ventral areas (Braddick et al., 2003).
The neural basis of this effect is not well understood and there
is considerable cross-talk between the putative dorsal and ventral
streams (de Haan and Cowey, 2011; Gilaie-Dotan et al., 2013),
but global motion impairments have been observed in a vari-
ety of neurodevelopmental conditions (for example, Taylor et al.,
2009). Dorsal stream vulnerability is typically linked, at least
theoretically, with compromised function of the magnocellu-
lar pathway. This is not consistent with the largely intact local
temporal processing in amblyopia. This conundrum is yet to
be resolved, although recent studies suggest that suppression of
amblyopic eye inputs is stronger within the dorsal than the ven-
tral stream (Zhou et al., 2013) which may play a role. What is
clear is that amblyopia differentially affects the global processing
of form and motion, demonstrating that these two visual domains
respond differently to abnormal sensory input during develop-
ment. From a functional perspective, abnormal function of the
dorsal processing stream may influence the development of visuo-
motor coordination resulting in inaccurate reaching and grasping
in patients with amblyopia (Niechwiej-Szwedo et al., 2011; Suttle
et al., 2011).

Interestingly, local second-order spatial or temporal tasks have
been found to be impaired in both amblyopic and fellow eyes.
A similar trend has been observed for form-from-motion tasks
which may also rely on second-order mechanisms (see Figure 7A-
3). Although the neural systems that allow for second-order
processing are not well understood, it has been suggested that
extra-striate areas are involved (for example, Dumoulin et al.,
2003). It is possible that second-order processing deficits in
amblyopia reflect a specific extra-striate vulnerability.

COMPARISON OF TRENDS BETWEEN UNILATERAL AND BILATERAL
CASES
The comparison of unilateral to bilateral amblyopia provides
further insights into the processes mediating visual cortex
development. Local spatial deficits, which are extensive in uni-
lateral amblyopia, are generally less pronounced in bilateral cases

with similar onset and duration. It appears that deprivation itself
impairs spatial vision, but that competition between the eyes in
unilateral cases results in additional deficits for the amblyopic
eye (Birch et al., 1998). A strong case has been made that sup-
pression of the weaker by the stronger eye plays an important
role in the local spatial losses associated with unilateral stra-
bismic and anisometropic amblyopia (Mansouri et al., 2008; Li
et al., 2011; Wong, 2011). However, impaired binocular inter-
actions appear to have some role to play in bilateral cases as
well. Stereopsis is generally poor in bilateral cases (see Figure 3),
and preliminary data suggest suppression is also a factor, albeit
to a lesser extent than in unilateral cases. The role of binocu-
lar function in bilateral cases is an interesting area for further
investigation.

Global processing in bilateral cases shows a similar trend
to unilateral amblyopia in that the dorsal stream shows more
pronounced deficits. However, this effect appears to be exag-
gerated. Specifically, bilateral cases show motion perception
deficits that are approximately four times greater than those
found in unilateral cases, whereas global form deficits are sim-
ilar in magnitude between unilateral and bilateral cases (see
Figure 7B-1). Additionally, there is converging evidence that
bilateral deprivation affects certain aspects of face processing,
particularly those of a global nature (for example, the config-
ural aspect of the Jane task – see Figure 7B-2). Together, this
suggests that bilateral deprivation results in more pronounced
global deficits than unilateral deprivation, particularly for global
motion tasks. Interestingly, the dorsal/ventral trend is switched
for amblyopia caused by extended bilateral deprivation after early
visual experience, with ventral stream deficits predominating.
Perhaps, early experience is both necessary and sufficient to
preserve the neural architecture for global motion perception
(Dormal et al., 2012), although more in-depth psychophysi-
cal evaluation of extended cases is necessary for an accurate
comparison.

PRESERVATION OF GLOBAL FUNCTIONS DESPITE ABNORMAL VISUAL
DEVELOPMENT
Global functions which are preserved despite abnormal visual
experience are equally valuable in helping to understand visual
circuitry. In addition to local motion processing and motion
intregration, biological motion and face detection are notable
examples of preserved function. Although it is not surpris-
ing that biological motion perception per se is generally intact
in unilateral amblyopia (this is broadly consistent with form
and face perception), it is compelling that these perceptual
skills appear to be preserved in cases of bilateral deprivation.
This suggests that certain aspects of complex processing may
be resilient to abnormal experience. In the case of biological
motion, perhaps this resilience is due to the use of multi-
ple sources of visual information from both the dorsal and
ventral streams, or perhaps because this visual ability fulfills
a particularly necessary function (Troje and Westhoff, 2006).
Whether or not variant aspects of facial processing are spared
in a similar way to biological motion and face detection is
still an open question, and it requires more investigation (see
Figure 7B-3).
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CONSIDERATIONS FOR FUTURE RESEARCH
Processing of the variant aspects of faces, such as emotional expres-
sions, is a good example of how the development and refinement
of psychophysical tasks would aid in the further elucidation of
extra-striate deficits in amblyopia. Along with new task devel-
opment, establishing standard protocols for global tasks would
allow for more direct comparisons between groups. A few pro-
tocols described in this review are beginning to be standardized
for possible clinical use. Examples are contour integration (Kovács
et al., 2000; Chandna et al., 2001), radial frequency deformations
(Subramanian et al., 2012), interocular suppression (Black et al.,
2011), and the Jane task (Mondloch et al., 2002). Further progress
in this area will help to improve our understanding of extra-striate
function in amblyopia.

Beyond variability in task parameters, another consideration
when interpreting studies in this area is the heterogeneity of the
patient population being investigated. Important sources of vari-
ability have been omitted from this review to allow for a focus
on the overarching themes. For example, the age at which the
amblyogenic factor started to affect the child’s vision, the com-
bination of amblyogenic factors involved, the age at which it
was resolved, and the degree to which vision was degraded in
the interim are all important factors. Similarly, whether or not
treatment for the resulting amblyopia was administered or suc-
cessful is an important source of heterogeneity. This variation
is likely to impact both local and global processing, particu-
larly for deprivation cases caused by cataract. In these cases,
vision degradation is very severe if the cataracts are dense and
present at birth, or quite mild if the cataracts are developmental
and diffuse, with a spectrum between the two. For this rea-
son, psychophysical studies of deprivation amblyopia are typically
selective for either congenital onset and early treatment, or long-
duration deprivation, and this division is reflected this review.
Finally, many studies of anisometropic and strabismic amblyopia
have small samples due to the extensive psychophysical testing
involved.

McKee et al. (2003) conducted one of the few studies in the
field with a large sample size and found that the presence or
absence of binocularity was a key factor in the pattern of visual
deficits experienced by patients. Recently, treatments for ambly-
opia focusing on improving binocular interaction have gained
momentum with improvements in amblyopic eye acuity and stere-
opsis being reported even for adult patients (Li et al., 2013c). This
approach to treatment involves the use of video games in which
different game components are shown to either the weaker or
stronger eye. Elements presented to the fellow eye are reduced
in contrast to overcome suppression and allow for information
to be combined between the two eyes as has been described in
the Section “Global Motion.” A randomized, placebo controlled,
clinical trial is currently underway to evaluate the efficacy of this
intervention.

A key question in light of this review is the impact of ambly-
opia treatment on extra-striate function. For example, do acuity
gains translate into improved motion perception? Very little
data are currently available to address this question in unilat-
eral amblyopia; however; initial unpublished findings suggest
that occlusion therapy in children with amblyopia can result in

improved in global motion perception (Anstice et al., 2013). One
study of interest for the potential to improve extra-striate func-
tion was undertaken in bilateral cases. Jeon et al. (2012) found
improvements in a number of global functions after 40 h of
video game play. This is promising; particularly as the avail-
ability of contrast-balanced dichoptic games which may have
even greater effects is increasing. The impact of amblyopia treat-
ment on extra-striate function is particularly relevant for early
and extended bilateral cases, for which the deficits are most
pronounced.

Pooling what is known about the local and global deficits in
the various types of amblyopia provides valuable insights into
how the visual system is organized, and how this organization
changes based on experience. It is becoming clear that the neu-
rodevelopmental changes associated with amblyopia have effects
that influence processing throughout the visual cortex and high-
light patterns of vulnerability and resilience within the developing
brain.
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