
Digital hyperplane recognition in arbitrary fixed dimension

Valentin E. Brimkov∗ Stefan S. Dantchev†

Abstract

We consider the following problem. Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn, decide
whether M is a portion of a digital hyperplane and, if so, determine its analytical formulation.
In our setting p1, p2, . . . , pm may be arbitrary points (possibly, with rational and/or irrational
coefficients) and the dimension n may be any arbitrary fixed integer. We provide an algorithm that
solves the problem with O (m log D) arithmetic operations, where D is a bound on the value of
the digital plane coefficients. The solution is based on reducing the digital hyperplane recognition
problem to an integer linear programming problem of fixed dimension within an algebraic model
of computation.

Keywords: digital hyperplane, digital plane recognition, integer programming

1 Introduction

Digital plane segment (DPS) recognition is a basic problem in image analysis, attracting a lot of
interest in recent years. Several algorithms for this problem have been proposed. (See the recent
survey [5] by Brimkov, Coeurjolly, and Klette). [23] suggests an algorithm based on convex hull
separability. Algorithm involving plane characterization by evenness in grid adjacency models is
discussed in [25]. [9] proposes an approach based on tests for existence of lower and upper supporting
(“oblique”) planes for the given set of points. [13] suggests recognition by least-square optimization.
See also [26] for further contributions. A number of algorithms exploit the idea to reduce the problem
to a relevant linear program and solve it by employing existing methods from linear programming.
[10] suggests a method by converting DPS to a system of m2 linear inequalities, where m is the
cardinality of the given set of points. The system is solved by the Fourier elimination algorithm.
One can also apply Fukuda’s CDD algorithm for solving systems of linear inequalities by successive
intersection of half-spaces defined by the inequalities. An efficient incremental algorithm based on
a similar approach is proposed in [14]. In [8] Buzer presents an incremental linear time algorithm
based on solving a linear program by appropriate modification of Megiddo’s algorithm [17]. Most of
the above-mentioned algorithms perform well in practice. However, with a few exceptions (e.g., [8]),
rigorous time complexity analysis is not available.

In the present theoretical work we consider somewhat more general version of the DPS recog-
nition problem: Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn, decide whether M is a portion of

∗Fairmont State University, Fairmont, WV 26554, USA. E-mail: vbrimkov@fairmontstate.edu.
†University of Durham, Science Labs, South Road, Durham DH1 3LE, England. E-mail: s.s.dantchev@durham.ac.uk.

1

a digital hyperplane and, if so, determine that analytical digital hyperplane. Here p1, p2, . . . , pm may
be arbitrary points, possibly with integer and/or irrational coefficients. Such kind of data may result,
e.g., from certain computational processes. The considerations take place in an arbitrary dimension n,
provided that n is fixed (i.e., bounded by an arbitrary constant). We provide an algorithm that solves
the above problem with O (m log D) arithmetic operations, where D is a bound on the size of the do-
main elements. Our theoretical results are somewhat in the spirit of Buzer’s results [8] (first reported
at DGCI’02). Our solution is based on reducing the digital hyperplane recognition problem to an
integer linear programming problem of a fixed dimension within an algebraic model of computation.
This last problem is solved by a (theoretically) efficient algorithm based on a number of well-known
results from theory of algorithms and complexity (some of them earlier authors’ contributions). The
algorithm works on input data that are arbitrary real numbers. In particular, it applies to problems
with integer or rational data.

To our knowledge of the available literature, this is the first integer programming based algorithm
for a DPS recognition problem. The reason for absence of other similar methods is that ILP was
believed to be inapplicable to DPS recognition due to its NP-hardness (see, e.g., related discussion
in [8]). The present paper illustrates that from a theoretical point of view, for fixed dimensions,
an integer linear program is almost as easy to solve as a linear program. Moreover, in some cases
the proposed integer programming approach may have certain advantages over a linear programming
approach, especially in avoiding very large integers that may result from a LP formulation. It also
seems to us that our algorithm is the first one for DPS in higher dimensions, whose description is
accompanied with rigorous complexity analysis. Another purpose of this work is to demonstrate the
wealth of applying knowledge and results from other branches of theoretical computer science (such
as theory of algorithms and complexity) to problems of digital geometry.

The paper is organized as follows. In Section 2 we recall some basic definitions from the theory
of arithmetic planes and obtain the integer linear program corresponding to the considered problem.
In Section 3 we present an integer programming algorithm that solves any integer program of the
considered type. We conclude with some remarks in Section 4.

2 Feasible digital plane recognition

In order to make our further considerations clearer, we first consider the 2D version of the DPS recogni-
tion problem, that is, a digital line segment recognition. Here we are given a set M = {p1, p2, . . . , pm}
of integer points in the plane, and we look for a digital line that contains these points.

Several equivalent definitions of a digital line are known (see the survey by Klette and Rosenfeld
[21].) Here we conform to the analytical definition proposed by Reveillès [20].

A (naive) digital line1 is a set of pixels L(a1, a2, b,max(|a1|, |a2|)) = {(x1, x2) ∈ Z2|0 ≤ a1x1 +
a2x2 + b + �max(|a1|, |a2|)/2� < max(|a1|, |a2|)}, where a1, a2, µ ∈ Z. L(a1, a2, b,max(|a1|, |a2|))
can be considered as a discretization of a straight line with equation ax1 + ax2 + b = 0. It in-
volves all pixels (unit squares centered at integer points of the plane) whose centers fall in be-
tween two parallel boundary straight lines a1x1 + a2x2 + b + �max(|a1|, |a2|)/2� = 0 and a1x1 +

1also called “arithmetic line.”

2

(b)(a)

p
1

p
3

p
4

p
5

p
6

p
7

p
8

p
2

Figure 1: Illustrations to the notions of feasibility. a) Feasible region related to a digital line. b)
Feasible parts of pixels forming the feasible set of a digital line.

a2x2 + b + �max(|a1|, |a2|)/2� = max(|a1|, |a2|).2 We will call the strip F (a1, a2, b) = {(x1, x2) ∈
R2|0 ≤ a1x1 + a2x2 + b + �max(|a1|, |a2|)/2� < max(|a1|, |a2|)} a feasible region of R2 relative to
L(a1, a2, b,max(|a1|, |a2|)). See Fig. 1a.

Now consider a pixel p ∈ L(a1, a2, b,max(|a1|, |a2|)). As Fig. 1b suggests, a part of p is inside
the feasible region F (a1, a2, b), while the rest of it is outside F (a1, a2, b). The former will be called the
feasible part of p relative to the line L(a1, a2, b,max(|a1|, |a2|)) and denoted Fa1,a2,b(p). The points of
Fa1,a2,b(p) will be referred to as feasible points of p. Finally, the union of all feasible parts of all pixels
in a segment of a digital line L will be called the feasible set of the digital line segment and denoted
FL(a1, a2, b) (see Fig. 1b).

All above definitions and notions trivially extend to arbitrary dimension n. Thus a (naive)
digital hyperplane is a set of n-cells3

H(a1, a2, . . . , an, b, |a|max) =

=
{

(x1, x2, . . . , xn) ∈ Z
n|0 ≤ a1x1 + a2x2 + · · · + anxn + b +

⌊ |a|max

2

⌋
< |a|max

}
,

where |a|max = max(|a1|, |a2|, . . . , |an|). (See [1, 2] for basic definitions and facts and [4] for further
studies.) Its feasible region is

F (a1, a2, . . . , an, b) =

=
{

(x1, x2, . . . , xn) ∈ R
n|0 ≤ a1x1 + a2x2 + · · · + anxn + b +

⌊ |a|max

2

⌋
< |a|max

}
.

A feasible part Fa1,a2,...,an,b(p) of an n-cell p and a feasible set FH(a1, a2, . . . , an, b) of a digital hyper-
plane H are defined analogously to the 2D case.

With this preparation, we are able to state the following generalization of a digital hyperplane
segment recognition problem, which we call the feasible digital hyperplane segment recognition problem
and abbreviate FeasDHS.

2Because of the strict right inequality in the definition, pixels’ centers cannot lie on the second line.
3n-dimensional counterparts of pixels.

3

FeasDHS recognition:

Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn, decide whether M is included in the feasible
part FH(a1, a2, . . . , an, b) of some digital hyperplane H(a1, a2, . . . , an, b, |a|max), and, if so, determine
its coefficients a1, a2, . . . , an, b.

Note that in this setting more than one point pi may belong to the same pixel of the discrete
space. Moreover, a point pi may have irrational coordinates, such as the point p2 in Fig. 1b.

We now obtain formulation of FeasDHS in terms of an integer programming program.
It is not hard to realize that an element pi of M is a feasible point of some n-cell v (i.e.,

pi ∈ Fa1,a2,...,an,b(v)) if and only if there exist integers a1, a2, . . . , an, and b, such that the following
conditions are met:

1. 0 ≤ a1p
i
1 + a2p

i
2 + · · · + anpi

n + b +
⌊ |a|max

2

⌋
< |a|max, and

2. 0 ≤ a1

⌈
pi
1

⌋
+ a2

⌈
pi
2

⌋
+ · · · + an

⌈
pi

n

⌋
+ b +

⌊ |a|max

2

⌋
< |a|max.

(�.� denotes the operator “the closest integer” to a given real number.)

The first condition causes pi to belong to the feasible region relative to a digital hyperplane with
coefficients a1, a2, . . . , an and b, while the second one ensures that pi belongs to an n-cell from the
same digital hyperplane. Note that both conditions are essential: If Condition 1 is missing, then pi

may be outside the feasible region. If Condition 2 does not hold, then pi may not belong to all n-cells
from the digital hyperplane with coefficients a1, a2, . . . , an, b.

When i runs from 1 to m, we get an integer linear problem with n + 1 unknowns and 4m linear
constraints.

As already mentioned, we will deal with the case when the dimension n is an arbitrary fixed
integer. We will also suppose that the coefficients a1, a2, . . . , an, b are bounded in size. In the next
section we will see that this condition is dictated by the very nature of the problem, especially by
the fact that some of the coefficients may be irrational numbers. From a practical point of view,
this condition does not restrict the generality, as we can always suppose that the absolute value
of the largest coefficient is bounded by, e.g., the largest positive integer that we may use in practice.
Moreover, by assuming bounds on the plane coefficients one can avoid occurrance of very large numbers
in the problem solution.

3 Algorithm for integer programming of fixed dimension

In this section we describe an efficient algorithm for integer linear programming programs as those
corresponding to FeasDHS. Consider the following integer linear program:4

(ILP) Given a matrix A ∈ Rm×n and vectors b ∈ Rm, d ∈ Rn,

decide whether there is x ∈ Zn such that Ax ≤ b,where 0 ≤ x ≤ d.

4In the feasDHS formulation we have certain rounding operations. It is well-known [3] that rounding of a real number

x can be performed in log |x| basic arithmetic operations. Thus the coefficients of the second inequality in the feasDHS

definition can be computed in O(m log |x|max) time overall, where |x|max = max(|x1|, |x2|, . . . , |xn|).

4

The input entries are arbitrary real numbers and the adopted model of computation is a an algebraic
computation model. This kind of model has been traditionally used in scientific computing, algebraic
complexity, computational geometry, and (although not explicitly) numerical analysis (see, e.g., [18,
19, 24]). In that model, the assumption is that all the real numbers in the input have unit size,
and the basic algebraic operations +,−, ∗, / and the relation ≤ are executable at unit cost. Thus
the algebraic complexity of a computation on a problem instance is the number of operations and
branchings performed to solve the instance.

At this point it is important to mention that the requirement in the ILP formulation for bounded
domain (i.e., 0 ≤ x ≤ d) is essential and predetermined by the intrinsic nature of the problem, namely
by the fact that the coefficients may be irrational numbers. In such a case, a problem with unbounded
domain may be, in general, undecidable, as shown in [6].

In the rest of this paper we present an algorithm for ILP when the value of n is fixed. The
algorithm consists of two stages: a reduction of the given real input to an integer input determining
the same admissible set, followed by an application of Lenstra’s algorithm [15]. The first stage in-
volves simultaneous Diophantine approximation techniques, while the second employs two well-known
algorithms: the Lovász’ basis reduction algorithm [16] and the Hermite normal form algorithm (see,
e.g., [12]).

3.1 Subroutines to the main algorithm

3.1.1 Lovász lattice basis reduction algorithm.

The input to Lovász algorithm consists of linearly independent vectors b1, b2, . . . bn ∈ Qn, considered
as a basis for a lattice L. The algorithm transforms them iteratively. At the end, they form a basis
for L which is reduced in the Lovász sense. First we recall some definitions, then describe the Lovász
lattice basis reduction algorithm itself, following [11].

With a basis b1, b2, . . . bn, we associate the orthogonal system b∗1, b∗2, . . . b∗n, where b∗i is the com-
ponent of bi which is orthogonal to b1, b2, . . . bi−1. The vectors b∗1, b

∗
2, . . . b

∗
n can be computed by

Gram-Schmidt orthogonalization:

b∗1 = b1, b∗i = bi −
∑i−1

j=1 µi,jb
∗
j , 2 ≤ i ≤ n, µi,j =

〈
bi, b

∗
j

〉/∥∥∥b∗j∥∥∥2
.

The basis b1, b2, . . . bn is size-reduced if all |µi,j| ≤ 1
2 . Given an arbitrary basis b1, b2, . . . bn, we

can transform it into a size-reduced basis with the same Gram-Schmidt orthogonal system, as follows:

For every i from 2 to n; For every j from i − 1 to 1;
Set bi := bi − �µi,j� bj and update µi,k for 1 ≤ k ≤ i − 1, by setting µi,k = µi,k − �µi,j�µj,k.

We outline a variant of the Lovász lattice basis reduction algorithm next.

1. Initiation. Compute the Gram-Schmidt quantities µi,j and b∗i for 1 ≤ j < i ≤ n. Size-reduce the
basis.

2. Termination condition. If ‖b∗i ‖2 ≤ 2
∥∥b∗i+1

∥∥2 for 1 ≤ i ≤ n − 1, then stop.

3. Exchange step. Choose the smallest i such that ‖b∗i ‖2 > 2
∥∥b∗i+1

∥∥2. Exchange bi and bi+1. Update
the Gram-Schmidt quantities. Size-reduce the basis. Go to 2.

5

Gram-Schmidt quantities in Step 3 are updated as follows:
‖b∗i ‖2

new =
∥∥b∗i+1

∥∥2 + µ2
i+1,i ‖b∗i ‖2,

∥∥b∗i+1

∥∥2

new
= ‖b∗i ‖2

∥∥b∗i+1

∥∥2
/
‖b∗i ‖2

new

µnew
i+1,i = µi+1,i ‖b∗i ‖2

/
‖b∗i ‖2

new(
µnew

i,j

µnew
i+1,j

)
=

(
µi+1,j

µi,j

)
for 1 ≤ j ≤ i − 1(

µnew
j,i

µnew
j,i+1

)
=

(
1 µnew

i+1,i

0 1

)(
0 1
1 −µi+1,i

)(
µj,i

µj,i+1

)
for i + 2 ≤ j ≤ n.

The other ‖b∗i ‖2’s and µi,j’s do not change.
After termination of the above algorithm, we have a size-reduced basis for which ‖b∗i ‖2 ≤

2
∥∥b∗i+1

∥∥2, 1 ≤ i ≤ n − 1. We call such a basis reduced in the Lovász sense. The following lemma was
proved in [7].

Lemma 1 The algebraic complexity of Lovász’ basis reduction algorithm applied to an n× n rational
matrix with entries of size O(S), is O(Sn5 log n), and the bit-size of the entries in the reduced basis is
O(Sn3).

3.1.2 Hermite normal form algorithm.

In the algorithm’s description we follow [22]. The input for the algorithm is an m×n (m ≤ n) integer
matrix A of full rank. The algorithm uses a matrix of the form A′ = (A|diag(M)), where M is the
absolute value of some nonsingular m × m minor of A. A′ has the same Hermite normal form as A.
The algorithm consists of the following five steps:

1. Cause all the entries of the matrix A to fall into the interval [0,M), by adding to the first n

columns of A′ proper integer multiples of the last n columns;

2. For k from 1 to m do 3-4;

3. If there are i 	= j, k ≤ i, j ≤ n + k, such that a′k,i ≥ a′k,j > 0, then subtract from the ith column

the jth one multiplied by
⌊

a′
k,i

a′
k,j

⌋
. Then reduce the ith column modulo M . Go to 3;

4. Exchange the kth column and the only column with a′k,i > 0;

5. For every i from 2 to n; for every j from 1 to i − 1, add an integer multiple of the ith column
to the jth one, to get a′i,i > a′i,j ≥ 0.

We have the following lemma [7].

Lemma 2 Let A be an m × n (m ≤ n) integer matrix of full rank with entries of size O(S). Then
the algebraic complexity of the Hermite normal form algorithm that reduces A into its Hermite normal
form, is O(m2n(log m + S)), and the bit-size of all resulting integers is O(Smn).

6

3.2 Simultaneous Diophantine approximation

Our algorithm employs in one of its steps the well-known algorithm for finding a simultaneous Dio-
phantine approximation to a given rational vector. Specifically, we will use the following lemma.

Lemma 3 (see, e.g., [22, Corollary 6.4c]) There exists a polynomial algorithm which, given a vector
a ∈ Qn and a rational number ε, 0 < ε < 1, finds an integral vector p and an integer q such that
||a − 1

qp|| < ε/q, and 1 ≤ q ≤ 2n(n+1)/4ε−n.

We will also need an algorithm that reduces the constraints with real coefficients to constraints
with integer coefficients, determining the same admissible set. The first phase of this reduction is
a substitution of a given real vector with an appropriate rational vector, justified by the following
lemma.

Lemma 4 Given a vector α ∈ Rn with |αj | ≤ 1, j = 1, 2, . . . , n, and D ∈ Z+, there exists an
O(n4 log n(n + log D)) algorithm that finds p ∈ Zn and q ∈ Z+ such that |αj − pj/q| < 1/(qD),
j = 1, 2, . . . , n, and 1 ≤ q ≤ �2n(n+5)/4Dn�.

The required p ∈ Zn and q ∈ Z+ can be found as follows.

Diophantine approximation to a real vector

1. For each αj, 1 ≤ j ≤ n, find the closest rational fraction aj with denominator G = �2n(n+5)/4Dn+1�.
2. Apply the algorithm of Lemma 3 with input a = (a1, . . . , an) ∈ Qn and ε = 1/(2D). �

By Lemma 3, the output is a vector p ∈ Zn and an integer q ∈ Z+ with ||a− (1/q)p|| < 1/(2qD)
and 1 ≤ q ≤ �2n(n+5)/4Dn�. Clearly, |αj − aj | ≤ 1/(2G). Then we have

∣∣∣αj − pj

q

∣∣∣ ≤ |αj − aj| +∣∣∣aj − 1
qpj

∣∣∣ ≤ |αj − aj |+
∥∥∥a − 1

qp
∥∥∥ < 1

2G + 1
2qD ≤ 1

2.�2n(n+5)/4Dn�.D + 1
2qD ≤ 1

qD , i.e., the obtained vector
p and integer q are as desired.

Consider first Step 1. For a given real number αj , the closest rational fraction with denominator
G = �2n(n+5)/4Dn+1� can be found in time O(log G) = O(n2 + n log D). Thus the overall time
complexity of Step 1 is O(n3 + n2 log D).

Step 2 involves the simultaneous Diophantine approximation algorithm applied to the particular
class of inputs a ∈ Qn, ε = 1/(2D) obtained in Step 1. As a matter of fact, this is a specialization of
the Lovász basis reduction algorithm, applied to a certain matrix. It has been proved in [6, Lemma 4.4]
that the number of iterations performed in this step is O(n4 log n(n + log D)). Then the overall time
complexity of the algorithm of Lemma 4 is O(n4 log n(n + log D)), as well.

The algorithm of Lemma 4 can be used to substitute any real constraint ax ≤ b with an integer
one, preserving the same admissible integer points x with 0 ≤ x ≤ d, d ∈ Rn. More precisely, we have
the following lemma.

Lemma 5 Let T = {x ∈ Zn : ax ≤ b;0 ≤ x ≤ d}, where a ∈ Rn, b ∈ R, d ∈ Zn
+. Then there exists an

algorithm which finds a vector r ∈ Zn and a number r0 ∈ Z such that T = {x ∈ Zn : rx ≤ r0;0 ≤ x ≤
d}. The algorithm involves at most n applications of the algorithm from Lemma 4, with D = ||d||.

7

Proof of the above fact is available in [6, Lemma 5.1]. Now we are able to complete the algebraic
complexity analysis of integer programming of fixed dimension, which we do in the next section.

3.3 Algorithm for ILP

In this section we use the results from the previous section to obtain an O(m log ||d||) algorithm for
ILP, where ||d|| is defined in Lemma 5. As already mentioned, the algorithm consists of two stages. In
the first stage, it reduces the constraints with real coefficients to constraints with integer coefficients
which determine the same admissible set of integer points. In the second stage, the Lenstra’s algorithm
[15] is applied to the integer data problem obtained as an output of the first stage.

From Lemmas 4 and 5, we obtain that the overall time complexity of the reduction stage is
O(mn5 log n(n + log ||d||)). Furthermore, the bit-size of the generated integers is O(n2(n + log ||d||)).
Therefore, the overall bit-size of the reduced problem is O(mn3(n + log ||d||)).

We now complete the complexity analysis of the second stage of the algorithm. That stage is
an application of the Lenstra’s [15] algorithm to the integer linear problem obtained as output of
the first stage. A recursive step of Lenstra’s algorithm reduces an n-dimensional problem to a set of
subproblems of dimension n − 1, whose number is exponential but depending only on n. The basic
algorithms used in this reduction are the Lovász basis reduction algorithm and the Hermite normal
form algorithm. In addition, in order to compute a homothetic approximation to the underlying
polyhedron with constant homothety ratio, a number of linear programming problems of dimension
(m + 2n) × n have to be solved. The Lovász basis reduction algorithm and the Hermite normal form
algorithm are both applied to matrices of dimension depending only on n. Moreover, all entries of
these matrices are of bit-size O(log ||d||), as the value of n is fixed. Then, by Lemmas 1 and 2, the
complexity of the two algorithms as well as the bit-size of the integers they generate, are bounded by
O(log ||d||).

During the execution of the Lenstra’s algorithm, there are O(log ||d||) linear programming prob-
lems to be solved. Each of them can be solved in time O(m+n) (i.e., linear in m) using the well-known
Megiddo’s algorithm [17]. Hence, if n is fixed, the overall complexity of this stage is O(m log ||d||).
This completes the proof of the following theorem.

Theorem 1 There is an O(m log ||d||) algorithm for ILP with a fixed number of variables.

4 Concluding remarks

We have presented an O(m log ||d||) algorithm for solving the digital hyperplane segment recognition
problem in arbitrary fixed dimension and with domain elements bounded by ||d||. The input may be
a set of points with arbitrary real coordinates. The algorithm also applies to to classical digital plane
recognition where the given points have integer coefficients.

The algorithm works on an integer linear program formulation and solves it theoretically effi-
ciently. We believe that this result, together with some other theoretical results, will contribute to the
better understanding structural, algorithmic, and complexity issues of digital plane recognition.

8

References

[1] Andres, E., Modélisation Analytique Discrète d’Objets Géométriques, Thèse de habilitation à
diriger des recherches, Universit‘’e de Poitiers, Poitiers, France, 2001

[2] Andres, E., R. Acharya, C. Sibata, Discrete analytical hyperplanes, Graphical Models Image
Processing 59, 302–309 (1997)

[3] Blum, L., M. Shub, S. Smale, On a Theory of Computation and Complexity over the Real
Numbers: NP-Completeness, Recursive Functions and Universal Machines, Bull. Amer. Math.
Soc. (NS) 21, 1–46 (1989)

[4] Brimkov, V.E., E. Andres, R.P. Barneva, Object Discretizations in Higher Dimensions, Pattern
Recognition Letters, 23, 623–636 (2002)

[5] Brimkov, V.E., D. Coeurjolly, R. Klette, Digital Planarity - A Review, CITR-TR 142, 2004

[6] Brimkov, V.E., S.S. Danchev, Real Data – Integer Solution Problems within the Blum-Shub-
Smale Computational Model, J. of Complexity 13, 279–300 (1997)

[7] Brimkov, V.E., S.S. Dantchev, On the Complexity of Integer Programming in the Blum-Shub-
Smale Computational Model, In: Theoretical Computer Science. Exploring New Frontiers of
Theoretical Informatics, van Leeuwen, J., O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito (Eds.),
LNCS-1872, 286-300 (2000)

[8] Buzer, L., A Linear Incremental Algorithm for Naive and Standard Digital Dines and Planes
Recognition, Graphical Models 65 61–76 (2003)

[9] Debled-Rennesson, I., J.-P. Reveillès, A new Approach to Digital Planes, Vision Geometry III,
SPIE-2356, 12–21 (1994)

[10] Françon, J., J.M. Schramm, M. Tajine, Recognizing Arithmetic Straight Lines and Planes, 6th
Int. Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-1176, 141–150 (1996)

[11] Hastad, J., B. Just, J.C. Lagarias, C.P. Schnoor, Polynomial Time Algorithms for Finding Integer
Relations among Real Numbers, SIAM J. Comput. 18, 859–881 (1989)

[12] Kannan, R., A. Bachem, Polynomial Algorithms for Computing the Smith and Hermite Normal
Forms of an Integer Matrix, SIAM J. Comput. 8, 499–507 (1979)

[13] Klette, R., I. Stojmenović, J. Žunić, A Parametrization of Digital Planes by Least Square Fits
and Generalizations, Graphical Models Image Processing 58, 295–300 (1996)

[14] Klette, R., H.-J. Sun, Digital Planar Segment Based Polyhedrization for Surface Area Estimation,
In: Arcelli, C., L.P. Cordella, and G. Sanniti di Baja, editors, Visual Form 2001, Springer, Berlin,
pages 356–366 (2001)

9

[15] Lenstra, H.W., Jr., Integer Programming with a Fixed Number of Variables, Math. Oper. Res. 8,
538–548 (1983)

[16] Lenstra, A.K., H.W. Lenstra, Jr., L. Lovász, Factoring Polynomials with Rational Coefficients,
Math. Ann. 261, 515–534 (1982)

[17] Megiddo, N., Linear Programming in Linear Time when the Dimension is Fixed, J. of ACM 31
(1), 114–127 (1984)

[18] Novak, E., The Real Number Model in Numerical Analysis, J. of Complexity 11, 57–73 (1994)

[19] Preparata, F.P., M.I. Shamos, Computational Geometry, Springer-Verlag, Berlin Heidelberg New
York, 1985

[20] Reveillès, J.-P., Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique, Thèse d’état,
Univ. Louis Pasteur, Strasbourg, 1991

[21] Rosenfeld, A., R. Klette, Digital Straightness, In: Electronic Notes in Theoretical Computer
Science 46 (2001)

[22] Schrijver, A., Theory of Linear and Integer Programming, Wiley, Chichester New York Brisbane
Toronto Singapore, 1986

[23] Stojmenović, I., R. Tosić, Digitization Schemes and the Recognition of Digital Straight Lines,
Hyperplanes and Flats in Arbitrary Dimensions, Vision Geometry, Contemporary Mathematics
Series, 119 197–212 (1991)

[24] Strassen, V., Algebraic Complexity Theory, In: van Leeuwen, J. (Ed.), Handbook of Theoretical
Computer Science, Vol. A, Elsevier, Amsterdam, 633–672 (1990)

[25] Veelaert, P., Digital Planarity of Rectangular Surface Segments, IEEE Pattern Analysis and
Machine Int, 16, 647–652 (1994)

[26] Vittone, J., J.-M. Chassery, Recognition of Digital Naive Planes and Polyhedrization, 9th Int.
Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-1953, 296–307 (2000)

10

