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Abstract. Several authors have proposed algorithms for curve parti-
tioning using the arc-chord distance formulation, where a chord whose
associated arc spans k pixels is moved along the curve and the distance
from each border pixel to the chord is computed. The scale of the corners
detected by these algorithms depends on the choice of integer k. With-
out a priori knowledge about the curve, it is difficult to choose a k that
yields good results. This paper presents a modified method of this type
that can tolerate the effects of an improper choice of k to an acceptable
degree. The new algorithm seems to yield generally good results.
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1 Introduction

A critical problem in machine vision is how to breakup (partition) the perceived
world into coherent or meaningful parts prior to knowing the identity of these
parts [9]. In particular, the problem of partitioning digital planar curves has
been a subject of intense investigation since the earliest days of machine vision.
Some of the more immediate applications include data compression (by using
the partitioning points as the basis for regenerating a curve by straight line
or spline interpolation), and matching or recognition (by using the partitioning
points and/or the partitioned curve segments).

Several authors have studied methods of curve partitioning using the arc-
chord distance formulation. A polygonal approximation of the digital curve is
then generated by connecting the attained partitioning points - also referred to
as corners in the literature- with straight lines.

In the arc-chord distance method, a chord whose associated arc spans k pixels
(i.e., a k-point arc of the curve) is moved along the curve and the distance from
each pixel on the k-point arc to the chord is computed. A significance (also
called cornerity) measure is formulated using these distances (e.g., maximum,
distance-accumulation etc.) and processed in order to define corners of the curve.

Ramer’s algorithm [1] recursively partitions an arc at the point whose dis-
tance from the chord is a maximum.



Rutkowski [2] computes the maximum distance of each point p on the curve
from any chord having a given arc length and having p on its arc, and partitions
the curve at local maxima of this distance.

The algorithm of Fischler and Bolls [3] labels each point on a curve as belong-
ing to one of three categories: 1) a point in a smooth interval, 2) a critical point,
or 3) a point in a noisy interval. To make this choice, the algorithm analyzes the
deviations of the curve from a chord or “stick” that is iteratively advanced along
the curve. If the curve stays close to the chord, points in the interval spanned by
the chord will be labeled as belonging to a smooth section. If the curve makes
a single excursion from the chord, the point in the interval that is farthest from
the chord will be labeled a critical point (actually, for each placement of the
chord, an accumulator associated with the farthest point will be incremented by
the distance between the point and the chord). If the curve makes two or more
excursions, points in the interval will be labeled as noise points.

Phillips and Rosenfeld [4] presented a modified version of the algorithm pre-
sented in [2]. They also suggested an approach to choosing good values of k in
a given part of the curve. To find a good value of k, they determined the best
fit straight line for each k-point arc of the curve, and computed the RMS error
corresponding to this fit. This process is repeated for a sequence of arc lengths,
producing a sequence of fit measures for each border point. In a given part of
the border “good” values of k are taken as those which produce local minima in
the fit measure.

Han [5] proposed a method similar to that of Fischler and Bolls [3] but used
the signed distance to the chord. The algorithm keeps two separate accumulators
for the positive and negative arc-chord distances to distinguish between concave
and convex corners. For a given chord-length L, a line is drawn from point pi

to point pi+L on the curve. The signed distances from all points p1, . . . , pL−1 to
this line are calculated. The point with positive maximum distance is defined as
p+, and the point with the negative minimum distance is defined as p− . If the
absolute value of the maximum (minimum) distance exceeds a given threshold
Dmin , the counter (h(p+)/h(p−)), associated with the point that corresponds to
the maximum (minimum) is incremented (decremented). The line is advanced
by one pixel and the process is repeated until the entire curve is scanned. In
other words, this algorithm counts how many times each border point happened
to be the farthest point from the line pipi+L. At the end of the calculation, the
points whose accumulator value exceeds a given threshold Hmin are marked as
concave (convex) points.

Lin, Dou and Wang [6] proposed a new shape description method termed
the arc height function and used it to detect the corners of the border. A chord
that joins border points pi and pi+k is advanced along the curve, one pixel at
a time. A straight-line perpendicular to the chord passing through its center pc

intersects the border at point px. The distance between pc and px is the arc
height, which, when computed for all positions of the chord gives the arc height
function. The corner points of the border correspond to the local maxima of the
arc height function.



The algorithm of Aoyama and Kawagoe [7] starts by finding all occurrences of
digital straight-line patterns and marking their endpoints as candidate vertices.
The best approximating straight-lines are determined by considering the ratio
between the height H and the length L of the chord, which is termed the pseudo
curvature G. Two modifications were made to the calculation of H and G. First,
the pseudo curvature calculation was modified in such a way to prevent a long
straight-line from being approximated as an inclined line. Second, the distance
calculation was modified to take into account cases where the perpendicular line
does not intersect the line segment.

Wu and Wang [8] combined corner detection and polygonal approximation.
For a given parameter k, a significance measure is assigned to each border point
pi as the ratio di

Li
, where di is the distance between point pi and the chord

(pi−k, pi+k)), and Li is the length of the chord. Local maxima points whose
significance is greater than a threshold were taken as potential corners and used
as the starting points for polygonal approximation. The border points within
each segment (between two corners) are sorted according to their significance
(most significant first). The sorted points are tested sequentially by calculating
their distance to the chord that joins the end points of the segment; if this
distance exceeds a given threshold, the corresponding point is marked as a corner.

The work of Fischler and Wolf [9] extends the technique of [3]. An important
contribution of their work over [3] is a major revision of the approach to filter-
ing the critical points, based on comparisons at a given scale as well as across
different scales (i.e., different values of the input parameter k). In addition, the
sign of the computed saliency measure is taken into consideration.

Han and Poston [10] proposed an enhanced version of the algorithm presented
in [5]. Here, instead of incrementing a counter when the distance exceeds a
threshold as in [5], the actual signed Euclidean distance is accumulated.

In this work, we propose a new algorithm based on the work of Phillips
and Rosenfeld [4] that can tolerate the effect of an improper choice of k to an
acceptable degree. In Section 2 we will review the algorithm of [4] and highlight
the major observations that led to the development of the new algorithm. The
new algorithm will be presented in Section 3 and the experimental results will
be given in Section 4.

2 The Method of Phillips and Rosenfeld

The algorithm is illustrated with the aid of Figure 1. Let p be a point on the
curve and let k be the chosen arc length. For each chord C whose arc has length
k and has p in its interior, let d(p, C) be the perpendicular distance from p to
C. Let M(p, C) be the maximum of these distances for all such chords. Point p
is called a partition point if the value of M(p, C) is a local maximum (for the
given k) and also exceeds a threshold t = k/5 ∼= (k/2) cos(135◦/2), which is the
altitude of an isosceles triangle whose vertex angle is 135◦ and whose equal sides
have lengths k/2. Point p is considered a local maximum point if the following



Fig. 1. Illustration of the Phillips and Rosenfeld algorithm.

Fig. 2. Arc-chord distance measure and the corners detected by the Phillips-Rosenfeld
algorithm using k = 6.

condition is satisfied:

M(p, C) ≥ M(px, C), for all px ∈ {pi−(k/2), . . . , pi+(k/2)}

To demonstrate the effect of thresholding, the Semicircles shape [11] and its
associated arc-chord distance for k = 6 are shown in Figure 2. It is clear from
this example that we cannot expect the suggested threshold of k/5 to work in all
cases. Although lowering the threshold value will enable us to detect the missed
corners in this example, it may result in many spurious corners for other test
shapes.

A potential problem with the local maximum determination scheme is il-
lustrated in Figure 3, which shows an isolated corner model1 and its arc-chord
distance using k = 6. In this example, peak A will be suppressed by some points
in its neighborhood with higher significance although non-of these points satisfy
the local maximum criterion.

Figure 4 demonstrates that the inclusion of the sign information in the defi-
nition of the arc-chord distance can prevent some peaks from being masked by
1 A synthetic curve segment with a single corner. Thus, there are no near by corners

that may affect the resulting arc-chord distance measure.



Fig. 3. An isolated corner model (a) and its associated (b) arc-chord distance using
k = 6.

other neighboring peaks of opposite concavity (convexity). This figure shows an
isolated corner model and its associated signed and unsigned arc-chord distance
measures using k = 6. While peak B in the unsigned measure of Figure 4(a) will
be discarded by the non-maximum suppression scheme, it has a better chance
of being detected if the signed measure of Figure 4(b) is used instead. In addi-
tion, the inclusion of the sign information provides valuable evidence about the
concavity and convexity of the curve without introducing any overhead on the
subsequent calculations.

Figure 5 demonstrates that the height of a peak is not sufficient by itself to
quantify the peak. In this example, although peak A is more visually prominent,
it may be suppressed by peak B whose height is larger than that of peak A. This
suggests that other criteria should be considered to quantify the strength of the
peaks.

The final issue that was not explicitly discussed in [4] is that of plateaus. It is
possible to have adjacent curve points with equal arc-chord distances, and trying
to resolve these ties arbitrarily may result in detecting false corners. Although
this may not cause noticeable problems for real borders, a properly designed
algorithm should be able to handle these cases at least systematically.

Fig. 4. An isolated corner model (a) and its associated unsigned (b) and signed (c)
arc-chord distance measure using k = 6.



Fig. 5. The height of a peak is not indicative of its prominence.

Fig. 6. Semicircles shape used to illustrate the new algorithm. Border points have been
numbered for convenience.

3 The new algorithm

The steps of the new algorithm will be described below and will be illustrated
with the aid of the Semicircles shape shown in Figure 6.

Fig. 7. Signed arc-chord distance for the Semicircles shape using k = 6.



Fig. 8. The functions d+(p) and d−(p) for the Semicircles shape using k = 6.

1. Compute the arc-chord distance for each border point using the method of
Phillips and Rosenfeld. Here however, we use the signed distance from the
point to the chord instead of the absolute distance value. For the Semicircles
shape, this measure is shown in Figure 7 using k = 6.

2. Separate the signed arc-chord distance function d(p) into two functions d+(p)
and d−(p) as follows

d+(p) =
{

d(p), if d(p) ≥ 0
0 otherwise and d−(p) =

{
| d(p) |, if d(p) < 0
0 otherwise

Figure 8 shows these two functions for the measure of Figure 7.
3. The signals d+(p) and d−(p) are processed separately where a search proce-

dure is applied to detect the local maximum points. For each point pi, we
attempt to find the largest possible window that contains pi such that the
significance of all of the points in that window to both the left and right
of pi is strictly decreasing. If such a window exists, then pi is considered a
local maximum point, and the leftmost PL(pi) and rightmost PR(pi) points
of that window are recorded. For example, in Figure 8 (d−(p)), point 28 is
a local maximum point with PL(pi) = 24 and PR(pi) = 29.
The two endpoints of valid plateaus are handled differently. A plateau whose
leftmost and rightmost end points are, respectively, px and py, is considered
to be valid if d(px) > d(px − 1) and d(py) > d(py + 1). In this case, we
set PR(px) = PR(py) and PL(py) = PL(px). This is illustrated in Figure 9,
which represents a segment of the function of Figure 8. In this example,
PL(py) = PL(px) = 52 and PR(px) = PR(py) = 58.

4. The significance of each local maximum point pi found in the previous step is
evaluated as the area of the triangle whose vertices are the points (px, d±(px))



where px = [PL(px), PR(px)]. This is shown in Figure 10 for the Semicircles
shape.

5. The mean significance µ is calculated for all the local maximum points. In
the above example (for instance) we have 40 local maximum points whose
mean significance evaluates to 1.39 (see Figure 10).

6. All local maximum points whose significance value is greater than or equal
to the average µ are marked as candidate corners. For the Semicircles test
shape, this results in the following 18 points: 11, 17, 32, 34, 36, 38, 40, 43,
53, 57, 67, 70, 72, 74, 76, 78, 93, and 99.

7. The remaining local maxima points are sorted according to their significance
in descending order (most significant first) and processed sequentially. For
every local maximum point pi, we consider the two candidate corners that
proceed and succeed pi; denote these two points by pl and pr, respectively,
as shown in Figure 11.
Then pi is considered a candidate corner if

d ≥ 1 and
d

L
≥ d1d2

L2
sinα

where α is set to 155◦. The first condition is based on the fact that a slanted
straight line is quantized into a set of horizontal and vertical line segments
separated by one-pixel steps. In addition, we assume that the “border noise”
is no more than one pixel, and if the noise level is known a priori, this
threshold can be adjusted accordingly. The second condition allows us to
detect the vertex of a triangle whose vertex angle is less than α. In order
to preserve the symmetry of the shape, all local maxima points with equal
significance level are processed in the same iteration.
For the Semicircles shape, the first iteration examines points 49, 51, 59 and 61
(since all of them have the same significance); all these points satisfy the two
conditions and are hence marked as candidate dominant points. The second
iteration examines points 8, 20, 28, 82, and 90; none of these points satisfy
the two conditions. The process continues until all local maxima points are
examined. The output of this step is shown in Figure 12.

8. Because in step 6 we added all the peaks with ”above-average” significance
without paying attention to their proximity (in terms of border pixels), it

Fig. 9. Handling plateaus.



Fig. 10. Significance measure for the Semicircles shape using k = 6.

is reasonable to believe that some of the marked candidate corners do not
correspond to true corners of the curve. The purpose of the current step is
to suppress the false corners (if any). First, we calculate the ratio d/L (see
Figure 11) for all candidate corners and sort these corners in ascending or-
der (lowest first). Candidate corners with d < 1 are considered insignificant
and marked for deletion. Here also, we process all points with identical d/L
value in the same iteration. The final result after this step is shown in Fig-
ure 13. The figure also shows the corners detected by the Phillips-Rosenfeld
algorithm.

4 Experimental results

To see the difference between the new algorithm and the Phillips-Rosenfeld algo-
rithm, the scale space map for the Semicircles shape is shown in Figure 14 using
k values in the range [3, 10(= N/10)]. Note that the Phillips-Rosenfeld algo-
rithm did not detect any corners for the curve segment [43, 67] for several scales
whereas the results of the new algorithm were consistent to within a tolerance
of 1− 2 pixels. In fact, the polygon generated by the new algorithm did provide
a visually pleasing approximation of the shape for all the considered values of k.

The results of the new algorithm for some test shapes are shown in Figure 15.
In all cases, we used a value of k = N/15, were N is the number of border points.

Fig. 11. Conditions for testing local maximum point pi.



Fig. 12. Candidate corners after processing all local maxima points.

5 Conclusions

We have described a new algorithm for curve partitioning using the arc-chord
distance formulation. The algorithm can tolerate the effect of the scale parameter
k to an acceptable degree.
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Fig. 15. Results of testing the new algorithm on test shapes.


