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Abstract. We consider simple cube-curves in the orthogonal 3D grid of
cells. The union of all cells contained in such a curve (also called the tube
of this curve) is a polyhedrally bounded set. The curve’s length is defined
to be that of the minimum-length polygonal curve (MLP) fully contained
and complete in the tube of the curve. So far, only a ”rubber-band al-
gorithm” is known to compute such a curve approximately. We provide
an alternative iterative algorithm for the approximative calculation of
the MLP for curves contained in a special class of simple cube-curves
(for which we prove the correctness of our alternative algorithm), and
the obtained results coincide with those calculated by the rubber-band
algorithm.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve
is, for example, the result of a digitization process which maps a curve-like
object into a union S of face-connected closed cubes. The computation of the
length of a cube-curve was the subject in [3], and the suggested local method
has its limitations if studied with respect to multigrid convergence. [1] presents
a rubber-band algorithm for an approximative calculation of a minimum-length
polygonal curve (MLP) in S. So far it was still an open problem to prove whether
results of the rubber-band algorithm always converge to the exact MLP or not.
In this paper we provide a non-trivial example where the rubber-band algorithm
is converging against the MLP. So far, MLPs could only be tested manually for
”simple” examples.

This paper also presents an algorithm for the computation of approximate
MLPs for a special class of simple cube-curves. (The example for the rubber-band
algorithm is from this class.)

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2



(mod n + 1), if ci

⋂
ck 6= φ then either |i− k| ≥ 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff it
has a nonempty intersection with every cube contained in g. Following [4, 5], we
define:

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is
a shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P ) of an MLP of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [4, 5]). If contained in one layer, then the MLP is
uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 1 shows all the critical edges
of a simple cube-curve.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called a critical line of e in g or critical line for short.

Definition 3. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i 6= j. If the
x-coordinates (y-coordinates, or z-coordinates) of two vertices (i.e., end points)
of e1 and e3 are equal when e2 is parallel to the x-axis (y-axis, or z-axis), we
say that e1, e2 and e3 form an end angle, and g has an end angle, denoted by
∠(e1, e2, e3); otherwise we say that e1, e2 and e3 form a middle angle, and g has
a middle angle.

Fig. 1. Example of a first-class simple cube-curve which has middle and end angles.



Figure 1 shows a simple cube-curve which has 5 end angles ∠(e21, e0, e1),
∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16)), ∠(e16, e17, e18), and many middle an-
gles (e.g., ∠(e0, e1, e2), ∠(e1, e2, e3), and ∠(e2, e3, e4)).

Definition 4. A simple cube-curve g is called first class iff each critical edge of
g contains exactly one vertex of the MLP of g.

This paper focuses on first-class simple cube-curves which have at least one
end angle (as the one in Figure 1).

Definition 5. Let S ⊆ R3. The set {(x, y, 0) : ∃z(z ∈ R ∧ (x, y, z) ∈ S)} is the
xy-projection of S, or projection of S for short. Analogously we define the yz-
or xz-projection of S.

The paper is organized as follows: Section 2 describes theoretical fundamen-
tals for the length calculation of first-class simple cube-curves. Section 3 presents
our algorithm for length computation. Section 4 gives experimental results of an
example and a discussion of results obtained by the rubber-band algorithm for
this particular input. Section 5 gives the conclusions.

2 Basics

We provide mathematical fundamentals used in our algorithm for computing the
MLP of a first-class simple cube-curve. We start with citing a basic theorem
from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

This theorem is of fundamental importance for both the rubber-band algo-
rithm and our algorithm (to be defined later in this paper). Let de(p, q) be the
Euclidean distance between points p and q.

Let e1, e2, and e3 be three (not necessarily consecutive) critical edges in a
simple cube-curve, and let l1, l2, and l3 be the corresponding three critical lines.
We express a point p2(t2) = (x2 + kx2t2, y2 + ky2t2, z2 + kz2t2) on l2 in general
form, with t2 ∈ R. Analogously, let p1(t1), p3(t3) be points on l1, l3, respectively.

Lemma 1. Let d2(t1, t2, t3) = de(p1, p2) + de(p2, p3). It follows that ∂2d2
∂t22 > 0.

Proof. Let the coordinates of pi be (xi + kxiti, yi + kyiti, zi + kziti), where i
equals 1 or 3. Since pi ∈ ei ⊂ li, and ei is a critical edge which is an edge of an
orthogonal grid, only one of the values kxi

, kyi
and kzi

can be 1 and the other
two must be zero. Let us look at one of these cases where the coordinates of p1

be (x1 + t1, y1, z1), the coordinates of p2 be (x2, y2 + t2, z2), and the coordinates
of p3 be (x3, y3, z3 + t3). Then d2 = de(p1, p2) + de(p2, p3) =

=
√

(t2 − (y1 − y2))2 + (x1 + t1 − x2)2 + (z1 − z2)2

+
√

(t2 − (y3 − y2))2 + (x3 − x2)2 + (z3 + t3 − z2)2



This can be written as d2 =
√

(t2 − a1)2 + b2
1 +

√
(t2 − a2)2 + b2

2, where b1 and
b2 are functions of t1 and t3. Then we have

∂d2

∂t2
=

t2 − a1√
(t2 − a1)2 + b2

1

+
t2 − a2√

(t2 − a2)2 + b2
2

(1)

and

∂2d2

∂t2
2 =

1√
(t2 − a1)2 + b2

1

− (t2 − a1)2

[(t2 − a1)2 + b2
1]3/2

+
1√

(t2 − a2)2 + b2
2

− (t2 − a2)2

[(t2 − a2)2 + b2
2]3/2

This simplifies to

∂2d2

∂t2
2 =

b2
1

[(t2 − a1)2 + b2
1]3/2

+
b2
2

[(t2 − a2)2 + b2
2]3/2

> 0 (2)

All other cases follow analogously. ut

Let li be a critical line, pi ∈ li, where i = 0, 1, 2, . . . , n. Let d(t0, t1, . . . , tn) =∑n−1
i=0 de(pi, pi+1). Assume n + 1 reals ti0 (i = 0, 1, . . . , n) which define a mini-

mum d(t00 , t10 , . . . , tn0) of function d(t0, t1, . . . , tn). By Lemma 1 we immediately
obtain

Lemma 2. For any two reals ti1 and ti2 , we have

d(t00 , . . . , ti0 , . . . , tn0) < d(t00 , . . . , ti1 , . . . , tn0) < d(t00 , . . . , ti2 , . . . , tn0)

if ti0 < ti1 < ti2 , and

d(t00 , . . . , ti1 , . . . , tn0) > d(t00 , . . . , ti2 , . . . , tn0) > d(t00 , . . . , ti0 , . . . , tn0)

if ti1 < ti2 < ti0 .

Let e1, e2, and e3 be three critical edges, and let l1, l2, and l3 be their critical
lines, respectively. Let p1, p2, and p3 be three points such that pi belongs to li,
where i = 1, 2, 3. Let the coordinates of p2 be (x2 + kx2t2, y2 + ky2t2, z2 + kz2t2).
Let d2 = de(p1, p2) + de(p2, p3).

Lemma 3. The function f(t2) = ∂d2
∂t2

has a unique real root.

Proof. Examine the proof of Lemma 1. Without loss of generality, we can assume
that a1 ≤ a2. Then by Equation (1) we have f(a1) ≤ 0 as well as f(a2) ≥ 0. The
lemma follows with Equation (2). ut

Let li be a critical line, pi ∈ li, the coordinates of pi be (xi + kxi
ti, y2 +

kyi
ti, zi + kzi

ti), where i = 1, 2, . . . , n. Let d(t0, t1, . . . , tn) =
∑n−1

i=0 de(pi, pi+1).



Theorem 2. There is a unique (n+1)-tuple of reals ti0 (i = 0, 1, . . . , n) defining
the minimum d(t00 , t10 , . . . , tn0) of d(t0, t1, . . . , tn), with ∂d

∂ti
(t00 , t10 , . . . , tn0) = 0,

for i = 0, 1, . . . , n.

Proof. From the proof of Lemma 1 we know that there are two reals ai1 and ai2

such that ai1 ≤ ai2 and

∂d

∂ti
=

ti − ai1√
(ti − ai1)2 + bi1

2
+

ti − ai2√
(ti − ai2)2 + bi2

2

for every i ∈ {0, 1, . . . , n}. By Lemma 3, there is a unique real root ti0 ∈ [ai1 , ai2 ]
for ∂d

∂ti
= 0, where -∞ < ti < ∞. On the other hand, if there are m reals ti = t′i0

(i = 0, 1, . . . , n) such that d(t′00
, t′10

, . . . , t′n0
) is a minimum of d(t0, t1, . . . , tn)

then ∂d
∂ti

(t′i0) = 0. ut

Let e1, e2 and e3 be three consecutive critical edges of a simple cube-curve
g. Let D(e1, e2, e3) be the dimension of the linear space generated by e1, e2 and
e3. Let l13 be a line segment with its two end points at e1 and e3. Let deiej

be Euclidean distance between ei and ej (i.e., the minimum distance between
points p on ei and q on ej), where i, j = 1, 2, 3.

Lemma 4. The line segment l13 is not completely contained in g if D(e1, e2, e3)
= 3, min{de1e2 , de2e3} ≥ 1 and max{de1e2 , de2e3} ≥ 2, or if D(e1, e2, e3) ≤ 2 and
min{de1e2 , de2e3} ≥ 2.

Proof. Case 1. Let D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1 and max{de1e2 , de2e3}
≥ 2. We only need to prove that the conclusion is true when min{de1e2 , de2e3} = 1
and max{de1e2 , de2e3} = 2. In this case, the parallel projection (denoted by
g′(e1, e2, e3)) of all of g’s cubes contained between e1 and e3 is illustrated in
Figure 2, where AB is the projective image of e1, EF that of e3, and C that of
one of the end points of e2. Note that line segment AF must intercept grid edge
BC at a point G, and intercept grid edge CD at a point H. And note that line
segment GH is not completely contained in g′(e1, e2, e3). Therefore, if l13 is a

Fig. 2. Illustration of Case 1 in the proof of Lemma 4.



Fig. 3. Illustration of Case 2.1 in the proof of Lemma 4.

line segment with its two end points are on e1 and e3 respectively. Then l13 is
not completely contained in g.

Case 2. Let D(e1, e2, e3) = 2 and min{de1e2 , de2e3} ≥ 2. Without loss of
generality, we can assume that e1 ‖ e2.

Case 2.1. e1 and e2 are on the same grid line; we only need to prove that
the conclusion is true when de1e2 = 2 and de2e3 = 2. In this case, the projective
image (denoted by g′(e1, e2, e3)) of all of g’s cubes contained between e1 and e3

is illustrated in Figure 3.
Case 2.1.1. g′(e1, e2, e3)) is as on the left in Figure 3, where A and B are

the projective images of either one end point of e1 or e2, respectively, and CD
that of e3. Note that line segment AD must intercept grid edge EC at a point
F . Also note that line segments AD and AC are not completely contained in
g′(e1, e2, e3). Therefore, if l13 is a line segment where one end point is on e1, and
the other on e3, then l13 is not completely contained in g. Similarly, we can show
that the conclusion is also true for Case 2.1.2, with g′(e1, e2, e3)) as illustrated
on the right in Figure 3.

Case 2.2. Assume that e1 and e2 are on different grid lines. We only need
to prove that the conclusion is true when de1e2 =

√
5 and de2e3 = 2. In this

case, the projective image (denoted by g′(e1, e2, e3)) of all of g’s cubes contained
between e1 and e3 is illustrated in Figure 4, where A (B) is the projective image
of one end point of e1 (e2), and CD that of e3. Note that line segment AD must

Fig. 4. Illustration of both subcases of Case 2.2 in the proof of Lemma 4.



Fig. 5. Illustration of both subcases of Case 3 in the proof of Lemma 4.

intercept grid edge EC at a point E. Also note that line segments AD and AC
are not completely contained in g′(e1, e2, e3). Therefore, if l13 is a line segment
with one end point on e1, and one on e3, then l13 is not completely contained in
g.

Case 3. Let D(e1, e2, e3) = 1 and min{de1e2 , de2e3} ≥ 2. Without loss of
generality, we can assume that e1 ‖ e2.

Case 3.1. e1 and e2 are on the same grid line. We only need to prove that
the conclusion is true when de1e2 = 2 and de2e3 = 2. In this case, the projective
image (denoted by g′(e1, e2, e3)) of all of g’s cubes contained between e1 and e3

is illustrated on the left of Figure 5, where A, B, and C are projective images of
one end point of e1, e2, and e3, respectively. Note that line segment AC is not
completely contained in g′(e1, e2, e3). Therefore, if l13 is a line segment with an
end point on e1 and another one on e3, then l13 is not be completely contained
in g.

Case 3.2. Now assume that e1 and e2 are on different grid lines. We only
need to prove that the conclusion is true when de1e2 =

√
5 and de2e3 = 2. In this

case, the projective image (denoted by g′(e1, e2, e3)) of all of g’s cubes contained
between e1 and e3 is illustrated on the right in Figure 5, where A,B,and C are
the projective image of one end point of e1, e2, and e3, respectively. Note that
line segment AC is not completely contained in g′(e1, e2, e3). Therefore, if l13
is a line segment with end points on e1 and e3, then l13 is not be completely
contained in g. ut

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2 and e3 do satisfy that either D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By
Lemma 4, we immediately obtain

Lemma 5. Every critical edge of g contains at least one vertex of g’s MLP.

Let g be a simple cube-curve, and assume that every critical edge of g contains
at least one vertex of the MLP. Then we also have the following:

Lemma 6. Every critical edge of g contains at most one vertex of g’s MLP.



Proof. Assume that there exists a critical edge e such that e contains at least
two vertices v and w of the MLP P of g. Without loss of generality, we can
assume that v and w are the first (in the order on P ) two vertices which are on
e. Let u be a vertex of P , which is on the previous critical edge of P . Then line
segments uv and uw are completely contained in g. By replacing {uv, uw} by
uw we obtain a polygon of length shorter than P , which is in contradiction to
the fact that P is an MLP of g. ut

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2, and e3 do satisfy that either D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By
Lemma 5 and Lemma 6, we immediately obtain

Theorem 3. The specified simple cube-curve g is first class.

Let e1, e2, and e3 be three consecutive critical edges of a simple cube-curve
g. Let p1, p2, and p3 be three points such that pi ∈ ei, for i = 1, 2, 3. Let the
coordinates of pi be (xi +kxiti, y2 +kyiti, zi +kziti), where kxi , kyi , kzi are either
0 or 1, and 0 ≤ ti ≤ 1, for i = 1, 2, 3. Let d2 = de(p1, p2) + de(p2, p3).

Theorem 4. ∂d2
∂t2

= 0 implies that we have one of the following representations
for t3: we can have

t3 =
−c2t1 + (c1 + c2)t2

c1
(3)

if c1 > 0; we can also have

t3 = 1−

√
c2
1(t2 − a2)2

(t2 − t1)2
− c2

2 or (4)

t3 =

√
c2
1(t2 − a2)2

(t2 − t1)2
− c2

2 (5)

if a2 is either 0 or 1, and c1 and c2 are positive; and we can also have

t3 = 1−

√
(t2 − a2)2[(t1 − a1)2 + c2

1]
(t2 − b1)2

− c2
2 or (6)

t3 =

√
(t2 − a2)2[(t1 − a1)2 + c2

1]
(t2 − b1)2

− c2
2 (7)

if a1, a2, and b1 are either 0 or 1, and c1 and c2 are positive reals.

Proof. We have that the coordinates of pi are (xi + kxi
ti, y2 + kyi

ti, zi + kzi
ti),

with kxi
, kyi

, kzi
equals 0 or 1, and 0 ≤ ti ≤ 1, for i = 1, 2, 3. Note that only one

of values kxi
, kyi

, kzi
can be 1, and the other two must be 0. It follows that for

every i, j ∈ {1, 2, 3}, de(pi, pj) =
√

(tj − ti)2 + c2 or
√

(ti − a)2 + (tj − b)2 + c2,
where a, b are 0 or 1, and c > 0. We have c 6= 0 because otherwise e1 and e2 would



be on the same line, and that is impossible. Let d2 = de(p1, p2) + de(p2, p3). We
have three possible cases:

Case 1. d2 = =
√

(t2 − t1)2 + c2
1 +

√
(t2 − t3)2 + c2

2, with ci > 0, for i = 1, 2.
Then we have

∂d2

∂t2
=

t2 − t1√
(t2 − t1)2 + c2

1

+
t2 − t3√

(t2 − t3)2 + c2
2

and equation ∂d2
∂t2

= 0 implies the form of Equation (3).
Case 2. d2 = =

√
(t2 − t1)2 + c2

1 +
√

(t2 − a2)2 + (t3 − b2)2 + c2
2, with a2, b2

equals 0 or 1, and ci > 0, for i = 1, 2. Then we have

∂d2

∂t2
=

t2 − t1√
(t2 − t1)2 + c2

1

+
t2 − a2√

(t2 − a2)2 + (t3 − b2)2 + c2
2

and equation ∂d2
∂t2

= 0 implies the form of Equations (4) or (5).
Case 3. d2 =

√
(t2 − a1)2 + (t1 − b1)2 + c2

1 +
√

(t2 − a2)2 + (t3 − b2)2 + c2
2,

with ai, bi equals 0 or 1, and ci > 0, for i = 1, 2. Then we have

∂d2

∂t2
=

t2 − a1√
(t2 − a1)2 + (t1 − b1)2 + c2

1

+
t2 − a2√

(t2 − a2)2 + (t3 − b2)2 + c2
2

.

and equation ∂d2
∂t2

= 0 implies the form of Equations (6) or (7). ut

The proof of Case 3 of Theorem 4 and Lemma 3 show the following:

Lemma 7. Let g be a first class simple cube-curve. If e1, e2 and e3 form a
middle angle of g then the vertex of the MLP of g on e2 can not be an endpoint
(i.e., a grid point) on e2.

Lemma 8. Let f(x) be a continuous function defined on interval [a, b], and
assume f(ξ) = 0 for some ξ ∈ (a, b). Then, for every ε > 0, there exist a′ and b′

such that for every x ∈ [a′, b′] we have |f(x)| < ε.

Proof. Since f(x) is continuous at ξ ∈ (a, b), so limn→ξ f(x) = f(ξ) = 0. Then
for every ε > 0, there exists δ > 0 such that for every x ∈ (ξ − δ, ξ + δ) we have
|f(x)| < ε. Let a′ = ξ − δ

2 and b′ = ξ + δ
2 . Then for every x ∈ [a′, b′] we have

|f(x)| < ε. ut

Lemma 9. Let f(x) be a continuous function on an interval [a, b], with f(ξ) = 0
at ξ ∈ (a, b). Then for every ε > 0, there are two integers n > 0 and k > 0 such
that for every x ∈ [ (k−1)(b−a)

n , k(b−a)
n ], we have |f(x)| < ε.

Proof. By Lemma 8, for every ε > 0, there exist a′ and b′ such that for every
x ∈ [a′, b′] we have |f(x)| < ε. Select an integer n ≥ 2(b−a)

b′−a′ . Then b−a
n ≤

b′−a′

2 ≤ b′ − a′. So there is an integer j (where j = 1, 2, . . . , n − 1), such that
a′ ≤ j(b−a)

n ≤ b′. If j(b−a)
n ≤ b′−a′

2 , then a′ ≤ j(b−a)
n ≤ (j+1)(b−a)

n ≤ b′. If
j(b−a)

n ≥ b′−a′

2 , then a′ ≤ (j−1)(b−a)
n ≤ j(b−a)

n ≤ b′. ut



3 Algorithm

This section contains main ideas and steps of our algorithm for computing the
MLP of a first class simple cube-curve which has at least one end angle.

3.1 Basic Ideas

Let pi be a point on ei, where i = 0, 1, 2, . . . , n. Let the coordinates of pi be
(xi + kxi

ti, y2 + kyi
ti, zi + kzi

ti), where i = 0, 1, . . . , and n. Then the length of
the polygon p0p1 . . . pn is d = d(t0, t1, . . . , tn) =

∑n
i=0 de(pi, pi+1). If the polygon

p0p1 . . . pn is the MLP of g, then (by Theorem 2) we have ∂d
∂ti

= 0, where
i = 0, 1, . . . , n.

Assume that ei, ei+1, and ei+2 form an end angle, and also ej , ej+1, and
ej+2, and no other three consecutive critical edges between ei+2 and ej form an
end angle, where i ≤ j and i, j = 0, 1, 2, . . . , n. By Theorem 4 we have ti+3 =
fi+3(ti+1, ti+2), ti+4 = fi+4(ti+2, ti+3), ti+5 = fi+5(ti+3, ti+4), . . . , tj , and tj+1 =
fj+1(tj−1, tj). This shows that ti+3, ti+4, ti+5, . . . , tj , and tj+1 can be represented
by ti+1, and ti+2. In particular, we obtain an equation tj+1 = f(ti+1, ti+2), or

g(tj+1, ti+1, ti+2) = 0, (8)

where tj+1, and ti+1 are already known, or

g1(ti+2) = 0. (9)

Since ei, ei+1, and ei+2 form an end angle it follows that ei+1 ⊥ ei+2. By Theo-
rem 4 we can express ∂d2

∂ti+2
either in the form

ti+2 − ti+1 − a1√
(ti+2 − ti+1 − a1)2 + b2

1

+
ti+2 − a2√

(ti+2 − a2)2 + (ti+3 − b2)2 + c2
2

(10)

or in the form
ti+2 − b1√

(ti+1 − a1)2 + (ti+2 − b1)2 + c2
1

+
ti+2 − a2√

(ti+2 − a2)2 + (ti+3 − b2)2 + c2
2

(11)

If ti+2 satisfies Equation (10), then ∂d2
∂ti+2

(a′1) < 0, and ∂d2
∂ti+2

(a′2) > 0, where a′1 =
min{ti+1 + a1, a2}, and a′2 = max{ti+1 + a1, a2}. It follows that Equation (10)
has a unique real root between a′1 and a′2. If ti+2 satisfies Equation (11), then
Equation (11) has a unique real root between a2 and b1. In summary, there are
two real numbers a and b such that Equation (11) has a unique root in between a
and b. If g1(a)g1(b) < 0, then we can use the bisection method (see [2, page 49])
to find an approximate root of Equation (11). Otherwise, by Lemma 9 (see also
Appendix A), we can also find an approximate root of Equation (11). Therefore
we can find an approximate root for ∂d

∂tk
= 0, where k = i+2, i+3, . . . , and j, and

an exact root for ∂d
∂tk

= 0, where k = i + 1 and j + 1. In this way we will find an
approximate or exact root tk0 for ∂d

∂tk
= 0, where k = 1,2, . . . , and n. Let t′k0

= 0
if tk0 < 0 and t′k0

= 1 if tk0 > 1, where k = 1, 2, . . . , n. Then (by Theorem 2) we
obtain an approximation of the MLP (its length is d(t′10

, t′20
, . . . , t′i0 , . . . , t

′
n0

)) of
the given first class simple cube-curve.



3.2 Main Steps of the Algorithm

The input is a first class simple cube-curve g with at least one end angle. The
output is an approximation of the MLP and a calculated length value.

Step 1. Represent g by the coordinates of the endpoints of its critical edges
ei, where i = 0, 1, 2, . . . , n. Let pi be a point on ei, where i = 0, 1, 2, . . . , n. Then
the coordinates of pi should be (xi + kxi

ti, y2 + kyi
ti, zi + kzi

ti), where only one
of the parameters kxi , kyi and kzi can be 1, and the other two are equal to 0, for
i = 0, 1, . . . , n.

Step 2. Find all end angles ∠(ej , ej+1, ej+2),∠(ek, ek+1, ek+2), . . . of g. For
every i ∈ {0, 1, 2, . . . , n}, let di+1 = de(pi, pi+1) + de(pi+1, pi+2). By Lemma 3,
we can find a unique root t(i+1)0

of equation ∂di+1
∂ti+1

= 0 if ei, ei+1 and ei+2 form
an end angle.

Step 3. For every pair of two consecutive end angles ∠(ei, ei+1, ei+2) and
∠(ej , ej+1, ej+2) of g, apply the ideas as described in Section 3.1 to find the root
of equation ∂dk

∂tk
= 0, where k = i + 1, i + 2, . . . , and j + 1.

Step 4. Repeat Step 3 until we find an approximate or exact root tk0 for
∂d
∂tk

= 0, where d = d(t0, t1, . . . , tn) =
∑n−1

i=1 di, for k = 0, 1, 2, . . . , n. Let t′k0
= 0

if tk0 < 0, and t′k0
= 1 if tk0 > 1, for k = 0, 1, 2, . . . , n.

Step 5. The output is a polygonal curve p0(t′10
)p1(t′20

) . . . pn(t′n0
) of total

length d(t′10
, t′20

, . . . , t′i0 , . . . , t
′
n0

), and this curve approximates the MLP of g.
We give an estimate of the time complexity of our algorithm in dependency

of the number of end angles m and the accuracy (tolerance ε) of approximation.
Let the accuracy of approximation be 1

2k . By [2, page 49], the bisection
method needs to know the initial end points a and b of the search interval
[a, b]. In the best case, if we can set a = 0 and b = 1 to solve all the forms of
Equation (9) by the bisection method, then the algorithm completes each run in
O(mk2) time. In the worst case, if we have to find out the values of a and b for
every of the forms of Equation (9) by the bisection method, then by Lemma 9,
and let us assume that we need 2k0 steps to find out the values of a and b, the
algorithm completes each run in O(mk22k0) time.

4 Experiments

We provide one example where we compare results obtained with our algorithm
with those of the rubber-band algorithm as described in [1].

4.1 The Example

We approximate the MLP of the first-class simple cube-curve of Figure 1.
Step 1. See Table 1 which lists the coordinates of the critical edges e0, e1, . . . , e21

of g. Let pi be a point on the critical line of ei, where i = 0, 1, . . . , 21.



Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 1 4 7 2 4 7
e1 2 4 5 2 5 5
e2 4 5 4 4 5 5
e3 4 7 4 5 7 4
e4 5 7 2 5 8 2
e5 7 8 1 7 8 2
e6 7 10 2 8 10 2
e7 8 10 4 8 11 4
e8 10 10 4 10 10 5
e9 10 8 5 11 8 5
e10 11 7 7 11 8 7
e11 12 7 7 12 7 8
e12 12 5 7 12 5 8
e13 10 4 8 10 5 8
e14 9 4 10 10 4 10
e15 9 2 10 9 2 11
e16 7 1 10 7 2 10
e17 6 2 8 7 2 8
e18 6 4 7 6 4 8
e19 4 4 7 4 4 8
e20 3 2 7 3 2 8
e21 2 2 7 2 2 8

Table 1. Coordinates of endpoints of critical edges in Figure 1.

Step 2. We calculate the coordinates of pi, where i = 0, 1, . . . 21, as follows:
(1 + t0, 4, 7), (2, 4 + t1, 5), (4, 5, 4 + t2), (4 + t3, 7, 4), (5, 7 + t4, 2), (7, 8, 1 + t5) . . .
(2, 2, 7 + t21).

Step 3. Now let d = d(t0, t1, . . . , t21) =
∑21

i=0 de(pi, pi+1(mod 22)). Then we
obtain

∂d

∂t0
=

t0 − 1√
(t0 − 1)2 + t221 + 4

+
t0 − 1√

(t0 − 1)2 + t21 + 4
(12)

∂d

∂t1
=

t1√
(t0 − 1)2 + t21 + 4

+
t1 − 1√

(t1 − 1)2 + (t2 − 1)2 + 4
(13)

∂d

∂t2
=

t2 − 1√
(t1 − 1)2 + (t2 − 1)2 + 4

+
t2√

t22 + t23 + 4
(14)

∂d

∂t3
=

t3√
t22 + t23 + 4

+
t3 − 1√

(t3 − 1)2 + t24 + 4
(15)

∂d

∂t4
=

t4√
(t3 − 1)2 + t24 + 4

+
t4 − 1√

(t4 − 1)2 + (t5 − 1)2 + 4
(16)

and
∂d

∂t5
=

t5 − 1√
(t4 − 1)2 + (t5 − 1)2 + 4

+
t5 − 1√

(t5 − 1)2 + t26 + 4
(17)



By Equations (12) and (17) we obtain t0 = t5 = 1.

Similarly, we have t7 = t15 = 0, and t16 = 1. Therefore we find all end
angles as follows: ∠(e21, e0, e1), ∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16), and
∠(e15, e16, e17).

By Theorem 4 and Equations (13), (14), (15) it follows that

t2 = 1−

√
(t1 − 1)2[(t0 − 1)2 + 4]

t21
− 4 (18)

t3 =

√
t22[(t1 − 1)2 + 4]

(t2 − 1)2
− 4 (19)

and

t4 =

√
(t3 − 1)2[t22 + 4]

t23
− 4 (20)

By Equation (16) we have

t24[(t5 − 1)2 + 4] = (t4 − 1)2[(t3 − 1)2 + 4]

Let
g1(t1) = t24[(t5 − 1)2 + 4]− (t4 − 1)2[(t3 − 1)2 + 4] (21)

By Equation (18) we have t1 ∈ (0, 0.5), g1(0.4924) = 3.72978 > 0, and also
g1(0.4999) = −51.2303 < 0. By Theorem 2 and the Bisection Method we obtain
the following unique roots of Equations (21), (18), (19), and (20):

t1 = 0.492416, t2 = 0.499769, t3 = 0.499769, and t4 = 0.507584,

with error g1(t1) = 4.59444×10−9. These roots correspond to the two consecutive
end angles ∠(e21, e0, e1) and ∠(e4, e5, e6) of g.

Step 4. Similarly, we find the unique roots of equation ∂d
∂ti

= 0, where i =
6, 7, . . . , 21. At first we have t6 = 0.5, which corresponds to the two consecutive
end angles ∠(e4, e5, e6) and ∠(e6, e7, e8); then we also obtain

t8 = 0.492582, t9 = 0.494543, t10 = 0.331074, t11 = 0.205970, t12 = 0.597034, t13 =
0.502831, t14 = 0.492339, which correspond to the two consecutive end angles
∠(e6, e7, e8) and ∠(e14, e15, e16); followed by t15 = 0, t16 = 1, which corre-
spond to the two consecutive end angles ∠(e14, e15, e16) and ∠(e15, e16, e17);
and finally t17 = 0.501527, t18 = 0.77824, t19 = 0.56314, t20 = 0.32265, and
t21 = 0.2151, which correspond to the two consecutive end angles ∠(e15, e16, e17)
and ∠(e21, e0, e1).

Step 5. In summary, we obtain the values shown in the first two columns of Ta-
ble 2. The calculated approximation of the MLP of g is p0(t′10

)p1(t′20
) . . . pn(t′n0

),
and its length is d(t′10

, t′20
, . . . , t′i0 , . . . , t

′
n0

) = 43.767726, where t′i0 = ti0 for i lim-
ited to the set {0, 1, 2, . . . , 21}.



Critical points ti0 (our algorithm) ti0 (Rubber-Band Algorithm)

p0 1 1
p1 0.492416 0.4924
p2 0.499769 0.4998
p3 0.499769 0.4998
p4 0.507584 0.5076
p5 1 1
p6 0.5 0.5
p7 0 0
p8 0.492582 0.4926
p9 0.494543 0.4945
p10 0.331074 0.3311
p11 0.205970 0.2060
p12 0.597034 0.5970
p13 0.502831 0.5028
p14 0.492339 0.4923
p15 0 0
p16 1 1
p17 0.501527 0.5015
p18 0.77824 0.7789
p19 0.56314 0.5641
p20 0.32265 0.3235
p21 0.2151 0.2157

Table 2. Comparison of results of both algorithms.

4.2 Comparison with Rubber-Band Algorithm

The Rubber-Band Algorithm [1] calculated the roots of Equations (12) through
(17) as shown in the third column of Table 2. Note that there is only a finite
number of iterations until the algorithm terminates. No threshold needs to be
specified for the chosen input curve.

From Table 2 we can see that both algorithms converge to the same values.

5 Conclusions

We designed an algorithm for the approximative calculation of an MLP for a
special class of simple cube-curves (first-class simple cube-curves with at least
one end angle). Mathematically, the problem is equivalent to solving equations
with one variable each. Applying methods of numerical analysis, we can compute
their roots with sufficient accuracy. We illustrated by one non-trivial example
that the Rubber-Band Algorithm also converges to the correct solution (as cal-
culated by our algorithm).
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A Algorithm 1 (n-section method)

The following C++ code is used to find a root of f(x) = 0, where f(x) is a
continuous function on [a, b], with f(a)f(b) > 0. The input are endpoints a and
b, a tolerance TOL, and the maximum number N of iterations. The output is
an approximate root p, or a fail-message.

int main( void )
{

long int i=0;
for(i =0;i <N;i++){
if(function(i*(b-a)/N) < TOL){
cout << "approximate root p = " << i*(b-a)/N << endl;
return 0;

}
}
//fail message
cout <<"N is too small! N = "<< N << endl;
cout <<"Try a bigger number!" << endl;

return 0;
}
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