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Abstract. We consider selected geometric properties of 2D or 3D sets,
given in form of binary digital pictures, and discuss their estimation.
The properties examined are perimeter and area in 2D, and surface area
and volume in 3D. We evaluate common estimators in stereology and
digital geometry according to their multiprobe or multigrid convergence
properties, and precision and efficiency of estimations.
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1 The Estimation Problem

A digital picture is a set of 2D or 3D digital data resultant from a process of
digitization. Unlike sets in a continuous space, 2D or 3D data in digital pictures
are presented in discrete form by a finite set of independent pixels or voxels.
Perimeter and area in 2D, and surface area and volume in 3D are basic geomet-
ric properties which often need to be calculated. It is in general impossible to
measure exact values (defined by sets in continuous space) of these properties if
only a digital 2D or 3D picture is available. The precision of property estimators
is important, and decisions need to be made about the type of estimator to be
applied.

[10] reviews the history and methods in the field of picture-based property es-
timators. However, it does not discuss in detail how stereology methods relate to
methods popular in digital geometry. Gauss (1777-1855) studied the estimation
of area by counting grid points, and this method is actually applied in stereology
as well as in digital geometry. Thompson (1930) and Glagolev (1993) are cited
in [14] for the origins of the point count method in quantitative microscopic
analysis which is a predecessor of stereology.

Both stereology as well as digital geometry are mainly oriented towards prop-
erty estimations. Stereologists estimate geometric properties based on stochastic
geometry and probability theory [13]. Key intentions are to ensure isotropic,
uniform and random (IUR) object-probe interactions to ensure the unbias of
estimations. The statistical behavior of property estimators is also a subject in
digital geometry. But it seems that issues of algorithmic efficiency and multigrid
convergence became more dominant in digital geometry.



Both disciplines attempt to solve the same problem, and sometimes they fol-
low the same principles, and in other cases they apply totally different methods.
In this paper, a few property estimators of stereology and digital geometry are
comparatively evaluated, especially according to their multiprobe or multigrid
convergence behavior, precision and efficiency of estimations.

2 Stereology and Digital Geometry

Digital geometry is the study of geometric properties of subsets of digital pic-
tures. It includes ways of digitizing objects and also the estimation of their
geometric properties based on the results of digitization (discrete data instead
of continuous Euclidean data).

Stereology is a way of estimating geometric properties of objects in a multi-
dimensional space by observing its lower dimensional structures [15]. It is used
broadly in some fields such as material science, biology and biomedicine for
examining the microstructure of objects such as materials [14], biological tissues
[13], and human organs.

There are a number of commercial groups targeting computerized stereology
to solve real-world problems, such as MicroBrightField Inc., Olympus Denmark
(recently merged with Visiopharm), Kinetic Imaging Ltd., SPA Inc., R & M
Biometrics Inc. These companies have made computer-based stereology systems
(Stereo Investigator, CAST, Digital Stereology, Stereologer, Stereology Toolkit)
either as a complete package, including advanced hardware (like a light micro-
scope), accompanying software, or software toolkits for supporting stereological
analysis.

Since these systems are also computer-based, digital techniques must be used.
The data which they process are digitized and discontinuous. The digitization
model used in stereology may vary, but it is always within the scope of digital
geometry. To the best of the author’s knowledge, no wide-scale comparison has
ever been made so far in public for comparing accuracy or efficiency of stereology
or digital geometry methods.

From the theoretical point of view, one opportunity for comparison is to
study how testing probe and resolution affect the accuracy of estimations. We
define multiprobe convergence in stereology analogously to multigrid conver-
gence in digital geometry. Both definitions can be generalized to cover not only
the estimation of a single property such as length, but also of arbitrary geometric
properties, including area in 2D, and surface area and volume in 3D.

2.1 Stereology

Measurements follow stereological formulas, which connect the measurements
obtained using different probes with the sought properties.Table 1 contains basic
stereological formulas using standard notion of stereology (see, e.g., [7, 13, 15, 17]
and further below for definitions of these notations).

We define multiprobe convergence in stereology analogously to multigrid con-
vergence in digital geometry.



Property Basic formulas Derived formulas

Perimeter PL = 2
π
· LA; PL = P

LT
LA = π

2
· PL; L̂ = LA · LT

Area AA = PP Â = AA · P
Surface area SV = 2 · PL

LT
Ŝ = SV · VT

Volume VV = PP V̂ = VV · VT

Table 1. Basic stereological formulas.

Definition 1. Let Q be the object of interest for estimation, and assume we
have a way of obtaining discrete testing probes about Q. Consider an estimation
method E which takes testing probes as input and estimates a geometric property
X(Q) of Q. Let XE(Tn) be the value estimated by E with input Tn, where Tn

contains exactly n > 0 testing probes. The method E is said to be multiprobe
convergent iff it converges as the number n of testing probes tends to infinity
(i.e., limn→∞XE(Tn) = c, c ∈ R2), and it converges to the true value (i.e.,
c = X(Q)).

Testing probes are measured at, along or within points, lines, planes, disectors
and so forth. The geometric property X(Q) might be the length (e.g., perime-
ter), area, surface area, or volume, and we write L, A, S, or V for these, respec-
tively. (Note that the true value X(Q) is typically unknown in applications.)
The method E can be defined by one of the stereological formulas.

2.2 Digital Geometry

The grid resolution h of a digital picture is an integer specifying the number of
grid points per unit. There are different models of digitizing sets Q for analyzing
them based on digital pictures. Grid squares in 2D or grid cubes in 3D have
grid points as their centers. The Gauss digitization G(Q) is the union of the grid
squares (or grid cubes) whose center points are in Q. The study of multigrid
convergence is a common approach in digital geometry [10]. However, we recall
the definition:

Definition 2. Let Q be the object of interest for estimation, and assume we have
a way of digitizing Q into a 2D or 3D picture Ph using grid resolution h. Consider
an estimation method E which takes digital pictures as input and estimates a
geometric property X(Q) of Q. Let XE(Ph) be the value estimated by E with
input Ph. The method E is said to be multigrid convergent iff it converges as the
number h of grid resolution tends to infinity (i.e., limn→∞XE(Ph) = c, c ∈ R2),
and it converges to the true value (i.e., c = X(Q)).

For simplicity we assume that our 2D digital pictures Ph are of size h × h,
digitizing always the same unit square of the real plane. Analogously, we have
h×h×h in the 3D case.) An estimation method in digital geometry is typically
defined by calculating approximative geometric elements (e.g. straight segments,



surface patches, surface normals) which can be used for subsequent property
calculations.

3 Estimators

The estimators of our experimental evaluation fall the stereology or digital ge-
ometry category, and they may have varying definitions within their category,
for example, by the different use of probes or by different bases.

Perimeter and surface area estimators in stereology and in digital geometry
are totally different by applied method. In stereology, for example a line testing
probe (a set of parallel straight lines in 2D or 3D space) is used, and the perimeter
or surface area of an object is approximated by applying stereological formulas
with the count of object-line intersections. A testing probe for a surface area
estimator may be formed by a set of cycloids, and must be used with vertical
uniform random (VUR) segments [1].

In digital geometry, estimators for measuring perimeter or surface area can
be classified as being either local or global (see, e.g., [4, 9, 10]). [16] suggested
using a fuzzy approach for perimeter and area estimations in gray level pictures.
The chosen perimeter estimator for our evaluation (for binary pictures) is global
and based on border approximations by subsequent digital straight segments
(DSS) of maximum length.

The surface area can be estimated for “reasonable small” 3D objects by us-
ing time-efficient local polyhedrizations such as weighted local configurations
[12]. For higher picture resolutions it is recommended to apply multigrid conver-
gent techniques. For example, [10] illustrates that local polyhedrizations such as
based on marching cubes are not multigrid convergent. Global polyhedrization
techniques (e.g., using digital planar segments) or surface-normal based methods
can be applied to ensure multigrid convergence. Because of the space constraint,
none of these surface area estimators are covered in this paper. The 2D area and
volume estimators of stereology and those of digital geometry follow the same
point-count principle. In stereology, a point probe (a set of systematic or random
points) is placed in 2D or 3D space, the points within the object are counted,
and the stereology formulas are applied to estimate the area or volume of an
object of interest. (The proportion of points within an object reflects the area
or volume density of the object.)

The Cavalieri principle was defined for volume estimations in stereology. Fol-
lowing this, a point probe is used on a set of parallel planes intersecting the 3D
object. The product of the sum of the estimated area of object segments and the
distances between planes approximates the volume of a 3D object. Both volume
estimators (using a 3D point probe or a 2D plane probe with a point probe on
every plane) are merging into one methods when the distance between planes is
equal to a regular interspacing between points in 2D which are placed on these
planar sections.

In digital geometry, a common estimator of area is pixel counting, whereas
that of volume is voxel counting. These two estimators are also a special case



Fig. 1. 8-border pixels are labeled by 2, and 8-inner pixels by 1.

of point counting in stereology where a set of pixel or voxel centers is used
as the point probe. Because the resolution directly relates to the number of
pixels or voxels in the digital picture, it will consequently affect the precision of
estimations if the stereological formulas are applied.

The performance of estimators is discussed under the condition that cost of
digitization is excluded.

3.1 Perimeter and Surface Area

Line intersection count method (LICM) is a common stereology estimator for 2D
perimeter and 3D surface area. This estimator involves four steps: generate a line
probe, find object border in a digital picture, count object-probe intersections,
and apply stereological formulas to obtain an estimation of the property.

The line probes in 2D or 3D may be a set of straight or circular lines (see,
e.g., [7, 13, 15]), or made up of cycloid arcs [1]. Since a set of straight lines can be
easily represented by general straight line functions, we use them as the testing
probe of both perimeter and surface area estimations.

There are many possible ways of defining a digital line (see, e.g., [10]). In this
paper, a 2D or 3D straight line in digital pictures is represented as a sequence of
pixels or voxels whose coordinates are the closest integer values to the real ones.
The integer coordinates of line pixels can be calculated using the midpoint line
scan-conversion algorithm in [6], which is based on the Bresenham algorithm [2].
The length of a 2D [3D] digital line segment is the Euclidean distance between
its start point (x0, y0) [(x0, y0, z0)] and end point (x1, y1) [(x1, y1, z1)]. There
exist different options for defining borders of objects in 2D or 3D pictures. In
this paper, in 2D the 8-border of Q is used to observe intersections between Q
and the line probe, whereas in 3D the 26-border of Q is used (for definitions
of 8-border or 26-border see, for example, [10]). Isotropic, uniform, and random
(IUR) object-probe intersections are required for obtaining unbiased estimation
results. Digital lines are ordered by scanning direction. Figure 1 shows a 45◦



Fig. 2. Screen shots of pivot lines of the LICM estimator using line probes of 16 (left)
and 32 (right) directions.

digital line intersecting the 8-border of Q in a 16 × 16 picture. Note that any
digital line (which is an 8-curve) intersects an 8-border (which is a 4-curve) if it
“passes through”.

Definition 3. A pixel (voxel) visited along a digital line is an intersection iff it
is an 8-border pixel (26-border voxel) of the object Q and successor (along the
line) is a non-border pixel (voxel).

Since the objects of interest are general (not specified as a certain type), they
may not be IUR in 2D or 3D space. To ensure IUR object-probe intersections,
either the object or the probe must be IUR, or the combination of both must
be isotropic [13]. In the experiments we attempt to generate an IUR straight
line probe for the stereology estimator (LICM) to produce unbiased results for
perimeter and surface area measurements.

Perimeter The perimeter estimators examined are the stereology estimator
(LICM) and the digital geometry estimator based on maximum length digital
straight segments (DSS).

Fig. 3. Assume h = 8 (i.e., an 8 × 8 picture). Left: in horizontal direction we have a
total of h lines. Middle: in vertical direction, we also have a total of hlines. Right: in
any other direction (i.e. not equal to 0◦ or 90◦) we have a total of 2h− 1 lines.



The stereology estimator corresponds to the stereological formula

LA =
π

2
· PL =

π

2
· P

LT

which is basically the calculation of perimeter density (length per unit area) of
a 2D object. P is the number of intersections between line probe and (border
of the) object Q. LT is the total length of the testing line probe, and PL is the
point count density (intersections per unit length). As a corollary of this, the
perimeter of an object can be estimated by multiplying LA by the total area AT

that the line probe occupies:

L̂ = LA ·AL =
π

2
· P

LT
·AT

At the beginning of our experiments we consider how the estimation precision
is influenced by an increase in the number of directions n of line probes. The
direction of line probes are selected by dividing 180◦ equally by n. For instance,
if there are 4 directions required, then lines of slopes 0◦, 45◦, 90◦, and 135◦ are
generated. Figure 2 illustrates the lines for 16 or 32 directions. Note that only
one “pivot line” per direction is shown in this figure.

To avoid errors or a bias caused by direction or position of line probes, every
pivot line of one direction is shifted along the x and y axes by just one pixel; see
Figure 3. Assume that the pivot line which is incident with (0, 0) (i.e., the left
lower corner of a picture) intersects the frontier of the unit square [0, 1]× [0, 1]
again at point p, with an Euclidean distance L between (0, 0) and p. The total
length of a line probe in direction 0◦, 45◦ or 90◦ is hL, and equal to

3h− h tanα

2
L

where α is the smaller angle between 0◦ and 45◦ defined by the pivot line in our
unit square.

However, a stereological bias [13] can not be avoided in this case due to the
preselection of start position and direction of line probes for perimeter estima-
tion of non-IUR objects. Therefore, we also include an estimator which uses lines
at random directions, generated using a system function rand() (which is sup-
posed to generate uniformly distributed numbers in a given interval). Although
a random number generator is used, the generated line probes are not necessarily
isotropic in 2D space. (An improved IUR direction generator is left for future
research.) For the digital geometry estimator DSS, we start at the clockwise
lower-leftmost object pixel and segment a path of pixels into subsequent DSSs
of maximum length. Debled-Rennesson and Reveillès suggested an algorithm in
[5] for 8-curves, and earlier Kovalevsky suggested one in [11] for 4-curves. In our
evaluation, both methods have been used, but we only report on the use of the
second algorithm (as implemented for the experiments reported in [8]) in this
paper.

The DSS estimator is multigrid convergent, whereas the multiprobe conver-
gent behavior of the LICM estimator depends on the used line probe. If the



line probe is a family of sets of parallel straight lines at equal distances, each
set for a different direction, then the LICM estimator appears to be multiprobe
convergent.

The digital geometry estimator DSS is time-efficient because it traces only
borders of objects, and used one of the linear on-line DSS algorithms.

The time-efficiency of the stereology estimator LICM depends on the number
of line pixels involved, since it checks every pixel in a line probe to see whether
there is an intersection. In both implementations of LICM (i.e., n directions by
equally dividing 180◦, and random directions generated by the system function
rand()), every pivot line into one direction is translated along x- and y-axes at
pixel distance (as shown in Figure 3), which results into multiple tests (inter-
section?) at all pixels just by considering them along different lines. In case of
pictures of “simple objects” we can improve the efficiency by checking along
borders only instead of along all lines. However, normally we can not assume
that for pictures in applications.

Surface Area We tested speed and multiprobe convergence of the stereology
estimator LICM for surface area measurements, using the stereological formula

SV = 2 · IL = 2 · PL

LT

where IL is the density of intersections of objects with the line probe, and this is
equal to the result of the line intersection count PL divided by the total length
LT of the line probe.

Consequently, the surface area of Q can be estimated by multiplying its
surface density (obtained from the previous relationship) by the total volume of
the testing space VT (i.e., h3, which is the occupied volume of a 3D picture),
Ŝ = SV · VT .

Similar to the stereology estimator of perimeter measurement, a way of cre-
ating an IUR straight line probe in 3D is required for unbiased surface area
estimations. The LICM estimator may not be multiprobe convergent because of
the used line probes. The efficiency of the estimator depends on the total number
of line voxels.

3.2 Area and Volume

The stereology estimator for both 2D area (3D volume) measurements counts
2D (3D) points which are within the object of interest. When the point probes
used are the centers of all pixels (voxels) of a given picture, then this estimator
coincides with the method used in digital geometry.

Basic stereological formulas (see, e.g., [7]) such as

Â = AP · P =
AT

PT
· P = ∆x ·∆y · P



are applied for 2D area estimation. The area of an object A can be estimated
by multiplying the number of incident points P by the area AP per point. In
other words, the area occupied by all incident points approximates the area of
the measured object. The area AP per point is the total area AT of the picture
(i.e., width ∆x times height ∆y) divided by the total number PT of points of
probe T .

The principle of Bonaventura Cavalieri (1598-1647), see [3], is suggested for
estimating the volume of an object Q in 3D space in stereology books such as
[7, 13, 15]. [13] combines the Cavalieri principle with the point count method. A
series of parallel 2D planes is used as test probe, where a set of points is placed
into each plane to obtain the intersected area of the plane with the object. If there
are m planes used in the process, the volume of the object V can be estimated
by multiplying the distance θ between the planes by the sum of the intersected
areas A1, A2, A3, . . . , Am of all planes, V̂ = θ · (A1 + A2 + A3 + · · · Am).

Russ and Dehoff use a set of 3D points as the test probe in [15] to estimate
the volume fraction VV from calculating a point fraction PP , the ratio of incident
points P (with the object) to the population of points PT , VV = PP = P

PT
. As

a corollary of this, the volume V of the object is equal to the product of the
volume fraction and the total volume occupied by the testing probe VT (i.e., h3

in an h× h× h picture), which can be calculated by multiplying the number of
incident points by the volume per point VP ,

V̂ = VV · VT =
P

PT
· h3 = P · VP

The results of both methods are identical when all the 2D planes are coplanar
at equal distances, the set of points chosen in every plane is uniform, and the
interspacing between these 2D points equals to the distance between planes.

For area and volume estimations, since the estimators in both fields follow the
same point count principles, the choice of point probes will definitely influence
the performance of the algorithm. If a point probe is randomly picked from
regular 2D or 3D grid points, and the chosen number of points is less than the
total number of pixels or voxels in the picture, then the method is (trivially)
more time-efficient than the digital geometry approach.

Area and volume estimators are “very precise”, suggesting a fast multiprobe
convergence (see experiments in Section 4); they have been widely used in re-
search and commercial fields. The digital geometry estimators (i.e., considering
all pixels or voxels) are known [10] to be multigrid convergent (e.g., for particular
types of convex sets).

4 Evaluation

We tested 2D perimeter and area estimators by using six objects shown in Fig-
ure 4. For the area of the lunula we used the formula b · r − a(r − h) for the
area of the “removed” segment of the disk, with arc length b = 2πr · α/360 (us-
ing integral part α = 139 of the estimate α = 139.0253698 . . .), segment height
h = 0.26, and a = 2 ·

√
0.1404.



Fig. 4. Six pictures suggested as test data in [8].

In case of 3D objects, we used a cylinder, sphere, cube, and an ellipsoid
for volume estimation, and the first three objects are also used for surface area
estimation.

The relative error Er of experiments is a percentage, it is equal to the absolute
value of the estimated value Ve minus the true value Vt, divided by the true value,
then multiplied by 100, Er = |Ve−Vt|

Vt
· 100.

4.1 Perimeter and Surface Area

We compare results of the DSS estimator, the LICM estimator with four pres-
elected directions (which are 0◦, 45◦, 90◦, and 135◦), and the LICM estimator
with four random directions (called LICM R; generated using the system func-
tion rand()), see Figure 5.

The obtained results show that the precision of the DSS estimator is the best
of these three estimators, whereas the precision of the LICM estimator with four
preselected directions is better than that of LICM R. Multiprobe or multigrid
convergence is apparent in most of the diagrams. Obviously, four random num-
bers are not “able” to define an IUR direction generator. (The figure shows
results for directions 151.23◦, 70.99◦, 140.96◦ and 143.72◦; LICM R appears to
be not multiprobe convergent on the circle, lunula, and square rotated 22.5◦ for
these values.) Figure 6 illustrates the relative errors averaged over all six test



Fig. 5. Comparison of DSS, LICM (4 directions) and LICM R (LICM with 4 random
directions) on six test objects.

objects. The obtained LICM R errors are slightly increasing between resolution
256 and 1024.

We also tested the multiprobe behavior for an increase in numbers of direc-
tions (up to 128 different directions in experiments). Surprisingly, results did not
steadily improve by increasing the number of directions for LICM or LICM R,
and in some cases the error even increased for larger numbers of directions. See



Fig. 6. Comparison of average relative errors over all the six test objects, for DSS,
LICM and LICM R.

Figure 7 for the example of a disk, where the error is smallest in general for just
4 directions! A possible explanation is that more directions increase the number
of lines which do not intersect the circle at all.

The surface area of 3D objects is estimated using the LICM R estimator with
digital rays in 3D space starting at random positions, and into random directions
(generated by the system function rand(). (We tested up to a picture resolution
of 128. Rays are only traced within the space of the picture.) Now, in 3D space
we generated every ray individually (i.e., not shifting pivot lines or rays anymore
as in 2D). So, the number of rays is now reduced to be equal to the number of
directions!

Figure 8 shows results for a constant resolution (h = 128) and increases
in numbers of directions (i.e., numbers of rays). Figure 9 shows results for a

Fig. 7. LICM-estimation of the perimeter for the disk using different numbers of di-
rections.



Fig. 8. LICM R-estimation of surface area for the cube, cylinder, and sphere using a
128× 128 picture.

constant number of directions (100), and an increase in picture resolution. The
results indicate relatively large errors. (Obviously, this is certainly related to the
smaller number of rays compared to the number of lines in 2D.) However, it can
be seen that the results for the sphere are better than those for the cube and
cylinder in both Figures.

4.2 Area and Volume

The results shown in Figure 10 are using the pixel count estimator which checks
all 2D grid points of the picture. They are very precise on all six test objects,
always with less than 0.1 percent error from the true area when the picture
resolution is 1024.

Fig. 9. LICM R-estimation of surface area for the cube, cylinder, and sphere using 100
lines at different picture resolutions.



Fig. 10. Area estimation for the six test objects using the point count method with
regular (grid-point) point probes.

Trends for circle and yinyang are similar due to the yinyang shape being
formed by circular curves. The estimation for the square rotated 22.5◦ converges
fastest, with an error of a bit more than 0.0001 percent at resolution 1024.

We also estimated volumes of 3D objects using the voxel count method with
regular (grid-point) point probes, which is equivalent to applying the Cavalieri
principle for a very special case (see discussion above).

The results in Figure 11 indicate reasonably small errors, which are all below
0.1 percent at picture resolution 1024. They all reflect multigrid and multiprobe
convergent behavior (both are theoretically known) of the voxel count estimator
on ellipsoid, cylinder, sphere and cube.

Fig. 11. Volume estimation for sphere, cube, ellipsoid, and cylinder using the Cavalieri
principle in a special form (probes at all grid points in the 3D picture).



5 Conclusions

The point count estimators in stereology and digital geometry are different by
motivation. Because a point is zero-dimensional, estimations using randomly
chosen 2D or 3D points, or all pixels or voxels of the picture are unbiased and
precise. Because estimators which use all pixel or voxel centers are very pre-
cise, there is no need to apply a random point generator for area and volume
estimations.

If using the LICM for estimating perimeter or surface area, the IUR object-
probe interaction must be guaranteed in order to make an unbiased observation
of the object structure. Position or direction of the line probe cannot be pre-
selected in this case to avoid bias. However, in our experiments a bias could not
be totally removed even if lines of random directions are used (using a uniform
number generator). It might be worth to spend more efforts on building an IUR
line generator for the unbiased estimation of perimeter or surface area. Without
such an ideal IUR line generator, the DSS-estimator appears to be the more
time-efficient and faster converging method for perimeter estimations instead of
the stereology estimator LICM.

The pixel and voxel count estimators for 2D area and volume are theoretically
known to be multiprobe or multigrid convergent. Results for the DSS-estimator
for length also corresponded to its known multigrid convergence, whereas the
multiprobe convergence of the LICM estimator for length depends on the chosen
line probes.

In practice, when the segmented objects are “complicated and irregular by
shape”, such as biological tissues and material microstructure, the stereology
estimator LICM may be more efficient than the digital geometry estimator DSS
as we do not need to trace all borders in the picture. In future experiments, more
shapes generated randomly in size and position should be used and the average
over all results of shapes should be considered.

Acknowledgement: The authors thank the reviewers of IWCIA for their
valuable comments.
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