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Abstract

The life-and-death problem in Go is a basic and essential problem to be
overcome in implementing a computer Go program. This paper proposes
a new heuristic searching model which can reduce the branching factor in
a game tree. For constructing the first level of a game tree, we implement
pattern clustering and eye shape analysis to get the set of the first moves,
thereby reducing the branching factor of the game tree. The empirical
result for game tree searching with these methods is promising. We also
suggest several problems to address for making game tree searching more
robust, such as: coping with situations where the number of legal moves
in the surrounded group is more than 8, creating an accurate heuristic
evaluation function, and dealing with ko fighting.

1 Introduction

In the game of Go, the life-and-death problem is a fundamental problem to be
overcome when implementing a computer Go program. The life-and-death prob-
lem is a local problem in which the attacker tries to kill an opponent’s group
[19]. In the middle game and the end game, life-and-death problems usually
happen as the game unfolds. In the life-and-death problem, there are two main
techniques [10, 16] for the defender to make two eyes needed to attain life for the
surrounded group: enlarging the base or playing at a vital point. Conversely,
the attacker also has two main techniques [10, 16] to attack a surrounded group:
reducing the base of a group or playing on a vital point. Intuitively most Go
players select the first move in a few seconds, which may be a candidate vital
move to kill the surrounded group, by comparing it to the similar patterns which
they have remembered. And then they play out a sequence of moves to kill the
surrounded group.

Figure 1(a) shows a life-and-death problem that does not have a completely
defined boundary between the black and white groups (there are gaps at the
edges of the board). Each commercial computer Go program has its own veiled
algorithms. Most of them use tactical searching, which is selective goal-oriented
searching [3]. The simplest method for solving the life-and-death problem is to
explore all the possible (legal) moves until all terminal moves are encountered,
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Figure 1: Illustration of the correct and an incorrect move sequence to attack the
white group. (a) A life-and-death problem. (b) The white group is alive because of
black’s incorrect move sequence. (c¢) The white group is dead because of black’s correct
move sequence.

and then to determine the best move sequence for both players by a heuris-
tic evaluation function. This approach requires enormous computing time, and
thus we cannot use this kind of exhaustive searching in reality.

2 Experimental approach

In the game of Go, similar life-and-death problems (patterns) often have similar
solutions, i.e. a similar first move to kill the surrounded group. There are two
methods we could use to categorize patterns: pattern classification and pattern
clustering. In general, pattern classification is used to classify similar patterns.
There is a difference between pattern classification and pattern clustering. Pat-
tern classification is a process of assigning a new input pattern into a predefined
cluster (class, group or category), and pattern clustering aims to group the input
patterns into different clusters without having any predefined clusters [1, 5, §].
The drawback of pattern classification is that we could encounter new input
patterns that are not members of any predefined cluster. Pattern clustering,
however, generates new cluster dynamically when new input pattern cannot be
classified into the existing clusters.

We chose pattern clustering method because there were no predefined pattern
clusters. With pattern clustering, similar patterns are grouped into the same
cluster, which keeps a set of first moves extracted from each pattern. The main
reason to apply pattern clustering is to use the cluster’s first moves to kill the
surrounded group as the candidate first moves. After classifying a new input
pattern we can use the cluster’s candidate first moves for game tree searching.

Another approach for solving life-and-death problems is to analyze the eye shape



of the surrounded group and then to find the vital first move to kill it. An eye
shape is the shape of the empty board space that is completely surrounded, by
stones that are all connected [10]. In life-and-death problems, the eye shape
of the surrounded group contributes to determining whether the group is alive,
dead or unsettled. Alive means that the surrounded group does not need to be
defended because it cannot be killed, i.e. it is unnecessary (indeed pointless)
to play a stone in the surrounded area to secure (or to attack) the surrounded
group. Unsettled is a situation where, if the owner of the surrounded group
does not play a stone in the surrounded area, the group can be killed by the
opponent. Dead is a situation in which the surrounded group cannot survive,
even by playing a friendly stone in the surrounded area. If an eye shape cannot
be reduced to fewer than seven points, we will assume that the group has secure
territory rather than an eye shape [10]. The main reasons for analyzing the eye
shape of the surrounded group are: (1) to find to what extent the surrounded
group is dead or unsettled, and then (2) to generate possible vital moves to
compensate for the weakness of pattern clustering by adding the possible vital
moves to the candidate moves generated by pattern clustering.

Figure 2 shows the two basic steps to getting a sequence of best moves: (1)
move generation, and (2) game tree searching. Pattern clustering and eye shape
analysis were used for the move generation, and game tree searching was used
for finding the best sequence of moves in a game tree. When a new pattern is
input as a life-and-death problem, the pattern classifier in Figure 2(I) generates
a set of candidate first moves from the selected cluster.

For constructing a classification (or clustering) engine, either unsupervised or
supervised learning may be used. Since Kohonen’s self-organizing maps have
become a promising clustering technique [1, 12], we implemented Kohonen Neu-
ral Network (KNN) based clustering for unsupervised learning. For supervised
learning, Kuclidean distance based clustering and vector product based cluster-
ing were implemented.

Before analyzing the eye shape of the surrounded group, the eye shape analyzer
in Figure 2(II) had to create a virtual boundary to distinguish the surrounded
group from the surrounding group. Contour tracing with in fluence was used
for creating a virtual boundary, and then the in fluence function calculated the
influence value at each point in the surrounded group. Finally, the in fluence
value determined the eye shape of the surrounded group to determine whether
the group was alive, dead or unsettled. When the surrounded group was unset-
tled, the eye shape analyzer generated a set of possible vital moves as the first
moves to kill the surrounded group.

Figures 1(b) and 1(c) show how the first move and the sequence of moves are
important to solve the life-and-death problem in Figure 1(a). Two first moves,
such as black 1 in Figures 1(b) and 1(c), may be generated by the pattern clas-
sifier and the eye shape analyzer. Based on the generated first moves, finding
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Figure 2: Basic components of a local problem solver.

the move sequence in the game tree is the role of game tree searching in Figure
2(IIT). As Minimax searching with a-8 pruning has been used as a standard
searching algorithm for two-person zero-sum games with perfect information
[2], Negamax searching was used for finding the sequence of best moves for both
players, and the a-3 pruning algorithm was used for cutting off nodes in a game
tree.

3 Pattern classifier

Move generation is a part of a computer Go engine that mainly includes board
representation, position (move) evaluation and searching. We explained that
the first move and the next move sequence are very important when attacking a
surrounded group in life-and-death problems. To generate a set of first moves,
we implemented three learning methods and then compared them to find which
method is the most suitable for solving life-and-death problems.

Clustering is a prior step to classifying data, and aims to group (cluster) the in-
put data into sets that have strong internal similarity [11]. Clustering has been
emphasized as an important part in data mining, machine learning, computer
vision, and other engineering disciplines. Different clustering methods analyz-
ing the same data set can yield very different results. Furthermore, a clustering
algorithm which works well on one specific data set may have very poor results



with another data set [14, 20].

We implemented Euclidean distance based clustering and vector product based
clustering for supervised learning, and KNN based clustering for unsupervised
learning. Each clustering method was applied to the original data set and the
transformed data set generated by Principal Component Analysis (PCA). This
is because the transformed data set, rather than the original data set, has been
used extensively to measure the similarity and the dissimilarity among the input
patterns [9].

3.1 Euclidean distance based clustering

As a supervised learning method, Euclidean distance based clustering was ap-
plied. The basic idea is to calculate distances between the input pattern and
the weighted center of each cluster, and then find the closest cluster within the
range of the threshold p. Figures 3 and 4 show that the accuracy of clustering
is dependent on the threshold p.
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Figure 3: A pattern set clustered by Euclidean distance based clustering (p = 3).
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Figure 4: A pattern set clustered by Euclidean distance based clustering (p = 9).

For instance, Figure 4(f) slightly differs from the patterns in Figure 3. That is,
with a low threshold, the extent of similarity within each cluster is high and the
input patterns are likely to be split into a large number of different clusters. On
the other hand, with a high threshold, the extent of similarity is low and the
input patterns gather into a few different clusters.

We tested the Euclidean distance based clustering method with the original
input data set (N = 588) and its transformed data set, and then found the



number of clusters is 196 for the original set and 201 for the transformed set
(p = 11). We also found the percentage of the patterns clustered differently by
each data set is less than 3% when p = 11.

3.2 Vector product based clustering

As a non-distance metric and a supervised learning model, the vector product
(centroid) based clustering method was implemented. The method for comput-
ing similarity is similar to the Euclidean distance based clustering method. The
similarity degree (cosfl) between an instance vector and the centroid vector of
each cluster measures the similarity between two vectors. That is, if cosf = 1,
then the two vectors are exactly the same. Meanwhile, if cosf = -1, then the
two vectors are totally different.

Like Euclidean distance based clustering, we applied vector product based clus-
tering to the original data set and the transformed data set. The number of
clusters with the original data set was 202 (cosf = 0.65) and 220 for the trans-
formed data set (cosé = 0.55). Figure 5 shows the clustered patterns in a cluster
from the original data set and Figure 6 from the transformed data set.
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Figure 5: A pattern set clustered from the original data set (cosf = 0.65).
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Figure 6: A pattern set clustered from the transformed data set (cosf = 0.55).

From Figures 5 and 6, we can see the outcome of vector product based cluster-
ing is very similar for the two data sets, and vector product based clustering is
sensitive to the threshold (the similarity degree), as in Euclidean distance based
clustering.



3.3 Kohonen neural network based clustering

As an unsupervised learning method, we used the Kohonen Neural Network
(KNN) which is based on the concept of self-organizing maps (SOM) and retains
the topology of a multidimensional representation within a two-dimensional
(plane) array of neurons [5, 21]. The basic idea of the KNN is to select the
winning neuron, which is the neuron in the active output layer that is the
closest to the input vector. Then the weights of the winning neuron and its
neighboring neurons are updated inversely proportional to their distance from
the winning neuron.

To apply the KNN, we constructed a two-layered network: an input layer and
an output layer. In the input layer, we provided two sets of 121 attributes,
representing black and white stones. For the output layer, we constructed 900
neurons (in a 30x30 grid) so that it was large enough to cover the worst sit-
uation where each of the input patterns is in a different cluster. We split the
original 588 patterns into the 500 training patterns (the actual number of the
training patterns was 1,000 by reversing the colors) and the 88 validation pat-
terns for performing the cross validation. We trained and generalized the KNN
with an early stopping method using cross validation to avoid overfitting to the
training set. After 190 epochs, the 1,000 training patterns were clustered into
the 219 different clusters.

We classified 88 validation patterns with the trained network to get a set of
the first moves. Among the 88 patterns, 78 patterns (88.7%) were classified into
25 different clusters created from the training patterns and 10 patterns (11.3%)
were not classified. The main reason why there were unclassified patterns was
that the domain size (the 11x11 attributes) was to some extent too large. We
then checked to what extent the 78 classified patterns had correct first moves,
which were extracted from the first move set retained in the clusters, as first
moves for attacking the surrounded group. The accuracy of selecting the first
move for the test patterns was 62.8% as shown in Table 1. We compared this
result with the experimental results found by Sasaki et al. [19] as shown in
Table 1. They trained a supervised neural network with the 2,000 patterns and
then extracted a set of first moves for each of 1,000 test patterns. The resulting
accuracy (34.9%) in Table 1 is the value when we only consider the highest
output value in the output layer. When we consider the first 5 highest output
values, the resulting accuracy is 65.0%.

Table 1 shows that KNN based clustering is a promising method for picking
first moves for solving life-and-death problems. We found that (1) the KNN as
unsupervised learning ideally finds a set of first moves if we train the network
with plentiful training patterns, and (2) the pattern clustering method with the
KNN can compete with the pattern matching method performed by supervised
learning with a neural network.



Network type Back-propagation KNN
neural network

Domain size 9x9 11x11
Learning type Supervised Unsupervised
Applied methodology Pattern matching Pattern clustering
Number of training data 2,000 1,000
Number of test data 1,000 88
Accuracy of picking 34.9% (first answer only) 62.8%

the correct first moves

Table 1: Comparison of the performance between supervised learning with a neural
network conducted by [19] and unsupervised learning with a KNN.

Using the original 588 input patterns, we then compared the accuracy of KNN
based clustering with the result of Euclidean distance based clustering. Since
Euclidean distance based clustering is dependent on the threshold value p, we
set the threshold value to 15, which generated 191 clusters. This number of
clusters was similar to the number of clusters (194) created with 25x25 output
neurons in the output layer of the KNN. Figures 7 shows the similarity of the
clustered patterns in a cluster generated by KNN based clustering. We cannot
see a clear similarity among the clustered patterns. Since there were some pat-
terns that should not be clustered in the same cluster, we conclude that KNN
based clustering is, to some extent, not adequate to be applied to generating
the candidate first moves.
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Figure 7: A pattern set clustered by the KNN on (25x25) output neurons.



3.4 Experimental results in the pattern classifier

For solving even a local Go problem, an important consideration is how to tackle
the huge branching factor and the depth in the game tree. We need a heuris-
tic method to tackle these problems. Since similar patterns have a similar first
move in life-and-death problems, clustering (or classification) is a useful method
for reducing the initial branching factor. The set of first moves, which are rec-
ognized by the pattern classifier, contributes to solving life-and-death problems.
Our goal was to find to what extent the pattern clustering methods are able to
be applied in the real game of Go.

Our empirical result showed that there is no real advantage in using KNN
based clustering; rather, Euclidean distance clustering is more suitable when
the threshold value is reasonably adjusted. For example, Figure 8 shows a
very similar pattern set clustered by the Euclidean distance clustering method,
whereas the three patterns in Figures 9(a), 9(f) and 9(g) have little similarity
in the cluster created by the KNN based clustering method.
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Figure 8: A pattern set clustered by Euclidean based clustering with the transformed
data set (p = 3).
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Figure 9: A pattern set clustered by KNN based clustering with the transformed data
set (projected on 50x50 output neurons).

In conclusion, when pattern clustering method is applied for solving life-and-
death problems, it is recommended that Euclidean distance based clustering
be used with a low threshold value (e.g. < 3) and with transformed data sets
generated by PCA.



4 Eye shape analyzer

We applied a novel method, eye shape analysis with a heuristic in fluence func-
tion, to generate the candidate first moves. The main objective of analyzing
the eye shape of a surrounded group with a heuristic in fluence function was to
find in a short time whether the surrounded group is alive, dead or unsettled. If
there is a high possibility that the surrounded group is dead or unsettled, then
we can generate the possible vital points (moves) to save enormous amounts
of computing time in searching for the best sequence of moves in the complete
game tree.

4.1 Eye shape

A typical Go board can be represented as a 19x19 array of intersections. Each
intersection is a vertex (from now on called a point) of the board graph. There
is an edge which connects two neighboring intersections vertically or horizon-
tally (not diagonally). That means a point cannot have more than 4 edges.
When two points are connected by an edge, we call them neighbors, which share
in fluence. The arrangement of the set of empty neighbors in a life-and-death
problem shows the eye shape of the board graph, and can be represented as a
quadruple (a,b,c,d), where a is the number of points with 4 neighbors, b for 3
neighbors, ¢ for 2 neighbors, and d for 1 neighbor [17]. In Figure 10, the points
A and B have one neighbor, the point C' has 4 neighbors, the points D, F and
F have 2 neighbors, and thus the graph is represented by (1,0,3,2).

D E

Figure 10: Neighbors in a graph. The points A, B, D and F are neighbors of the
point C, E is not.

The set of neighbors determines whether the eye shape is alive, dead or unset-
tled. In life-and-death problems, the numbers of points of concern are 3, 4, 5
and 6. An eye shape which has less than 3 points is unconditionally dead. An
eye shape of more than 6 is alive when all stones are solidly connected [10].
Figure 11 shows eye shapes categorized by the number of points: three-point,
four-point, five-point and six-point.

We represented the eye shape of the surrounded group as (a,b,c,d:e), where a
indicates the number of points with 4 neighbors, b for 3 neighbors, ¢ for 2 neigh-
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Figure 11: The main eye shapes concerning life-and-death problems with the name
(above) assigned to each. The notation (a,b,c,d:e) shows the number of points which
have specific numbers of neighbors and the life-and-death status of the shape.

bors, and d for 1 neighbor. And e is represented by A when the eye shape is
alive, D for dead, and U for unsettled. Table 2 shows the relationship between
the number of points, the number of types, and the life-and-death status of the
eye shapes.

Generally, the status of three-point eye shapes is unsettled, and the four-point
eye shapes are all alive except the T-bent four (unsettled) and the square four
(dead). Meanwhile, in the five-point eye shapes, all except the radial five (un-
settled) and the cross five (unsettled) are alive. All six-point eye shapes are
alive except the flower siz (unsettled). All eye shapes having seven or more
points are alive [10]. In four-point eye shapes, there is one exception when de-
termining the life-and-death status of an eye shape: L-bent four. If the L-bent
four is formed in the corner of a Go board, the shape is an unsettled shape.

4.2 Heuristic influence function

When a group of stones is surrounded, we assume that the surrounding group
radiates strong in fluence into the open surrounded area, and meanwhile the
surrounded group radiates very weak in fluence to the surrounding group. That
means in fluence of the surrounding group is not diminished by the surrounded
group, except in some special cases (e.g. a point which becomes an eye using
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Number of | Number of Representative
points types eye shapes
1 1 (0,0,0,0:D)
2 1 (0,0,0,2:D)
3 1 (0,0,1,2:U)
4 3 (0,0,2,2:A) (0,0,4,0:D) (0,1,0,3:U)
5 4 (0,0,3,2:A4) (0,1,1,3:4) (0,1,3,1:U) (1,0,0,4:U)
6 8 (0,0,4,2:4) (0,1,4,1:A) (0,1,2,3:4) (0,2,0,4:A)
(0,2,2,2:A) (0,2,4,0:4) (1,0,1,4:4) (1,0,3,2:U)

Table 2: Eye shapes varying with the number of points.

a tiger’s mouth, which is a set of three stones of the same color in a V-shape
around an empty point).

When solving life-and-death problems, we did not consider the connection prob-
lem between the surrounded group and other allied groups nearby (to which it
might be able to connect in order to live). We also did not consider life-and-
death problems where the surrounded group already had an eye. Figure 12(b)
shows the resulting in fluence of the life-and-death problem in Figure 12(a). Fig-
ure 12(c) shows the calculated eye shape of the surrounded group, (0,0,1,2:U).
Figure 12(d) illustrates the best move sequence; black 1 is the vital point of the
eye shape in Figure 12(c), to attack the surrounded group.

There are two steps for finding the eye shape of the surrounded group: (1)
calculating influence of the surrounding group and then (2) calculating the
number of neighbors of the zero in fluence points. Firstly, the virtual boundary
is necessary to completely surround the surrounded group, because the sur-
rounded group is loosely enclosed by the surrounding group. Initially, we set
the outer boundary to 9 for the surrounding group and to -9 for the surrounded
group, as in Figure 12(b). We then calculated in fluence from the surrounding
boundary, which includes the surrounded stone group and the virtual boundary,
to the surrounded area using the contour tracing method. The contour tracing
method is a technique for finding boundaries in digital images and is also known
as border tracking. As an algorithm, we used the radial sweep algorithm [6],
which is similar to the Moore-Neighbor tracing algorithm.

We tested to what extent the heuristic in fluence function can correctly de-
termine the life-and-death status of 30 problems in [13]. Table 3 summarizes
the calculated eye shapes compared to the solutions given in [13]. The results
of the calculated eye shapes are classified as alive, unsettled and dead. The
result (36.7% correct) shows that the eye shape analyzer with a simple heuristic
in fluence function can contribute to quickly finding the life-and-death status
of the surrounded group.

12
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Figure 12: The influence map and the calculated eye shape. (a) A life-and-death
problem. (b) Generated influence values with the virtual boundary. The black stones
are represented as 8 and white stones as -8. Generated in fluence values are repre-
sented as between 7 and 4. The set of points with zero in fluence in the surrounded
group determines the formation of the eye shape. (¢) The number of neighbors at
each point within the eye shape. (d) The actual move sequence to kill the surrounded
group as the solution.

Correct status Calculated eye shape status Percentage
(number of problems) (number of problems) correct
Alive (1) Unsettled (1) 0.0%
Unsettled (29) Alive (14), Unsettled (11), Dead (4) 37.9%
’ Total (30) \ Correct answer (11) [ 36.7% |

Table 3: Results of applying eye shape analysis to 30 life-and-death problems. Cal-
culated eye shapes were the shapes calculated by the heuristic in fluence function.
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4.3 Experimental results in the eye shape analyzer

We analyzed the eye shape in surrounded groups to determine the life-and-
death status of each group. With a heuristic in fluence function, we tested
30 life-and-death problems with problem domain sizes of about 10 or less, and
where the boundaries between the surrounded and surrounding groups were not
completely blocked. We found that from the calculated eye shape, which is
the set of points having zero in fluence in the surrounded group, we can deter-
mine correct point to play to capture the surrounded group with 36.7% accuracy.

That is, the eye shape analyzer with a heuristic in fluence function can quickly
assess the life-and-death status of the surrounded group to some extent. The
vital points generated by the eye shape analyzer contribute to a set of possible
correct moves to reduce the branching factor in a game tree, and the draw-
back (low accuracy) of the eye shape analyzer is compensated by the pattern
clustering method.

5 Game tree searching

A game tree is composed of a set of all legal moves in a hierarchical data struc-
ture. To find the best sequence of moves, one method is to search all nodes
in the entire search domain. Another method is to analyze the situations to
a limited depth in the tree, to reduce the enormous computing resources (e.g.
computing time and memory space). But this method has no guarantee of tack-
ling the horizon effect such as the ladder problem in Go.

In general, even local Go problems (such as simple life-and-death problems)
need a complicated searching method to find an accurate solution. We tried to
solve life-and-death problems using a conventional searching method, Negamax
searching with o-( pruning. The important matters to consider in game tree
searching are deciding (1) where to start, (2) when to stop, (3) how to evaluate
and (4) how to search the game tree.

5.1 Where to start

Human players select a few possible vital points in a few seconds by intuition,
which is learnt from experience. And then they deeply examine the best se-
quence of moves for both players based on the possible vital point.

Using the pattern clustering and the eye shape analysis, we can extract a set
of first moves. The set of first moves is composed of both candidate first moves
from pattern classification and possible vital moves from eye shape analysis, and
contributes to reducing the branching factor at the first level in the game tree.
Note that we applied the set of first moves only at the first level, not throughout
the entire depth of the tree. Figure 13 shows a life-and-death problem and a set
of first moves generated by the pattern classifier and the eye shape analyzer.

14
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Figure 13: Illustration of a life-and-death problem and a set of first moves. (a) A
life-and-death problem. (b) Candidate first moves. (c) Possible vital moves. (d) A
set of first moves for game tree searching. (e) The correct sequence of moves to kill
white’s group.

The pattern classifier compares an input pattern (a life-and-death problem)
with the representative pattern of each cluster, and then classifies the input
pattern into the cluster which has the closest similarity with the input pattern.
Figure 13(b) shows the two points which are the candidate first moves in the
selected cluster. Meanwhile, the eye shape analyzer generates a set of possible
vital moves. Figure 13(c) shows the three points which are the set of possible
vital moves generated by the heuristic in fluence function. The combined set
of candidate first moves and possible vital moves becomes a set of first moves
in Figure 13(d), for solving the life-and-death problem in Figure 13(a). Figure
13(d) illustrates the set of first moves to create the nodes in the first level of the
game tree. These moves contribute to reducing computing time and memory
space in searching and generating the game tree.

5.2 When to stop

When playing Go, there are two restrictions on placing stones on the board:
suicide and ko. Suicide does not allow one to play on a point which causes an
ally string to have no liberty (except the situation where it captures one or more
stones by playing at that point). Ko means you cannot instantly put a stone
on the point where the opponent player has just captured a single stone. After
playing a stone elsewhere, you can return to the ko to capture that stone [7].
To generate the nodes in the game tree, we applied these two basic restrictions
to explore all the possible (legal) next moves.

Furthermore, if the eye shape of a surrounded group had more than 6 points
or two eyes, we stopped generating nodes and regarded the current node as a
terminal node. Meanwhile, if the points in the eye shape were between 3 and
6 points, we analyzed the eye shape and then generated nodes with all legal
moves until encountering terminal conditions as: alive, ko, seki and dead. Note
that we assumed that black plays first. In Figure 14, we can see four terminal
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conditions that stop the generation of nodes, with the numbered stones denoting
the move sequence for both players.

s o ; :

-19 14 0 22 020

(a) White alive (b) Ko (c) Seki (d) White dead

Figure 14: Tllustration of terminal conditions representing terminal nodes in a game
tree. The evaluation value of each terminal node is illustrated below the Go board
from black’s perspective.

5.3 How to evaluate

The next matter for managing a game tree is to create an evaluation function
for evaluating terminal nodes. We categorized the results of the terminal eye
shapes as alive, ko, seki and dead. Ko is difficult to evaluate in computer Go.
We could not evaluate the absolute outcome of ko. Instead we stopped gener-
ating next nodes when we encountered ko, and then calculated the evaluation
value of current terminal node. That is, we did not calculate the outcome of
retaining the initiative (sente) or losing the initiative (gote) resulting from the
ko. The evaluation function is extremely important in searching for the best
sequence of moves in a game tree. If the evaluation value is not accurate, we
cannot expect to find the best sequence of moves for solving life-and-death prob-
lems.

Since there is no evaluation function for evaluating the board position, we set
a simple evaluation function that only depends on the size of territory and the
number of captured stones. Let us assume that black surrounds a white group
and that the white group finally dies. Then we calculate the evaluation value
of a terminal node with the following evaluation function:

Bevai = Dw x2+ E+Cw — Cp

where B.,q means the evaluation value to black, Dy, is the number of dead
white stones remaining on the board, E is the number of empty points in the
surrounding group at the terminate node, and Cyy and C'p denote the number
of captured white and black stones, respectively.

Meanwhile, if the white group finally lives, the evaluation value to black with
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the evaluation function as follows:
Beval = 7AW x2—FE+Cw—Cg
where Ay is the number of alive white stones in the surrounded group.

In Figure 14, evaluation values are illustrated below each diagram, and are
shown as positive for black and negative for white.

5.4 How to search

Game tree searching works by taking the root node (or usually the current
node) and then generating all possible child nodes by applying legal moves un-
til encountering terminal conditions. The terminal nodes generated by terminal
conditions are each assigned an evaluation value, based upon an evaluation func-
tion, and then these values are filtered back up the tree toward the root node
to find the best sequence of moves for both players [4]. The simplest way to
search the game tree is the Minimax searching method. This method searches
all terminal nodes in a game tree, calculates all resulting evaluation values, and
then uses these values to work back from the terminal nodes to the root node.
The number of nodes to explore in a game tree increases exponentially by the
number of legal moves and the depth. Without applying a pruning method, it
is intractable to apply it even in a small local domain.

Minimax searching without pruning has the disadvantage of needing to examine
all nodes in a game tree. For solving a simple life-and-death problem, Figure
15(a) for instance, which has 6 legal moves, we have to generate approximately
b? (i.e. 65=46,656) nodes where b and d are the number of legal moves and the
depth, respectively. That is, the size of the tree will grow enormously when the
search domain (the number of legal moves) increases. For solving life-and-death
problems, we need very deep searching to find a very accurate solution. Mini-
max searching without pruning does not allow very deep searching because there
is a memory space problem in the computer system caused by the extremely
high branching factor and depth. That means we need a pruning method to
reduce the branching factor and depth. We thus used a-3 pruning which does
not affect the accuracy of naive Minimax (or Negamax) searching.

5.5 Experimental results in game tree searching

So far, we have seen four important matters to consider for dealing with the
game tree: where to start, when to stop, how to evaluate and how to search.
That is, for handling the game tree, we generated a set of first moves for where
to start, set terminal conditions for when to stop, built up an evaluation func-
tion for how to evaluate, and used Negamax searching with a-3 pruning for how
to search.
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Figure 15: Tllustration of a life-and-death problem and move sequences. The value
above the Go board denotes the evaluation value. (a) A life-and-death problem. (b)
An incorrect move sequence and the evaluation value generated by game tree searching.
(c) The correct move sequence and the same evaluation value.

Table 4 gives a performance comparison between searching with candidate first
moves and searching with the entire set of next moves, when the initial number
of legal moves in the life-and-death problem is 6. We can see that the game
tree searching with candidate first moves is better than the game tree searching
without candidate first moves, in terms of computing time and the number of
generated nodes.

Comparison With candidate | Without candidate
items first moves first moves
Computing time (seconds) <1 ~ 3
Generated nodes 614 3,574
Pruned nodes 608 3,568
Existing nodes 6 6

Table 4: Comparison of the searching performance with and without candidate first
moves after applying the pruning method to Figure 15(a).

For life-and-death problems that had a complete boundary between black and
white, the generated move sequence was almost correct, except that it did not
deal with ko fighting. Meanwhile, the game tree searcher did not generate a
correct sequence of best moves for problems that had an incomplete boundary
between black and white. We realized how important the evaluation function
is, and that dealing with ko fighting is also important to pick the correct move
sequence in life-and-death problems. Figure 15(b) shows an example of an incor-
rect move sequence generated by the game tree searcher. Most cases of finding
an incorrect move sequence were caused by an inaccurate evaluation function.

18



6 Conclusion

If there are b legal moves and the depth is d in the problem domain, the state-
space complexity for game tree searching is roughly O(b?) [15, 18]. Without
initially reducing the branching factor, generating an entire game tree and ap-
plying a brute-force searching method is intractable for solving life-and-death
problems. Furthermore, if the number of legal moves in a life-and-death prob-
lem domain is greater than about 8 or 9, the problem of searching the game
tree gets considerably more onerous.

To reduce the branching factor at the first level of the game tree, we imple-
mented pattern clustering and eye shape analysis to get a set of first moves for
game tree searching.

e Firstly, the basic idea of pattern clustering is that similar patterns have
similar solutions (first moves). We suggest implementing Euclidean dis-
tance based clustering (a supervised learning method) with the trans-
formed data set rather than KNN based clustering (an unsupervised learn-
ing method) for solving life-and-death problems.

e Secondly, the eye shape in the surrounded group determines whether the
surrounded group is alive, dead or unsettled. To get the eye shape in
the surrounded group, we implemented the eye shape analysis method
with a heuristic in fluence function. We showed that possible vital moves
generated by the eye shape analyzer contribute to finding the life-and-
death status of the surrounded group in a short time.

e Finally, we generated the game tree with the first moves generated by
pattern clustering and eye shape analysis. During game tree generation,
we applied terminal conditions and Negamax searching with a-0 pruning
to cut off the nodes in the game tree, and then found a sequence of moves
for both players to solve life-and-death problems.

When there is a complete boundary between black and white, the sequence of
moves generated for both players was almost always correct, except that it did
not deal well with ko fighting. Meanwhile, game tree searching usually did not
generate a correct sequence of moves for life-and-death problems that had an
incomplete boundary between black and white. We suggest several problems to
address for making game tree searching more robust, such as: (1) coping with
situations where the number of legal moves in the surrounded group is more
than 8, (2) creating an accurate heuristic evaluation function and (3) dealing
with ko fighting.
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