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Abstract—IEC 61499 enables component-oriented descriptions5
of complex industrial processes facilitating model-driven engineer-6
ing. One aspect that is lacking, however, is the ability to directly7
express Statecharts-like hierarchy and concurrency within basic8
function blocks (BFBs). Such features can significantly enhance9
function blocks and help create more succinct and readable10
specifications. We propose a new syntactic extension to the stan-11
dard called hierarchical and concurrent execution control chart12
(HCECC). A major roadblock for any suggested changes to the13
standard is the need for compliance. Our approach extends the14
synchronous execution semantics of IEC 61499, where HCECCs15
are purely syntactic sugar. Using a revised synchronous semantics,16
our compiler generates standard compliant C code from HCECCs.17
Benchmarking and usability studies reveal the relative superiority18
of the proposed approach over existing approaches.19

Index Terms—Execution semantics, hierarchical state20
machines, IEEE 61499, parallel execution, statecharts.21

I. INTRODUCTION22

T HE INCREASING size and complexity of industrial con-

Q1

23

trol systems have motivated the development of new24

design paradigms to aid system designers. The IEC 6149925

standard [1], [2] proposes component-oriented models called26

function blocks for developing distributed control systems. A27

function block describes both control and data flow within a28

single module. By providing a graphical specification frame-29

work, the standard simplifies system design with a top-down30

approach and encourages the reuse of function blocks.31

The unit of execution in IEC 61499 is a basic function block32

(BFB), which executes a finite state machine (FSM) known as33

an execution control chart (ECC) that describes the control flow34

of the block. ECCs are flat Moore-machines that allow mod-35

eling of only sequential behaviors. Therefore, a basic block36

cannot model concurrent behaviors. In addition, ECCs do not37

allow users to separate high-level behavior such as initialization38
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and error handling of a block. As a result, more states and tran- 39

sitions are required to describe the same behavior compared to 40

other graphical formalisms. 41

The standard also provides CFBs that are networks of 42

interconnected function block instances. Networks model con- 43

currency and structural hierarchy that basic blocks cannot 44

handle efficiently. However, networks can easily get very com- 45

plex, making them difficult to design, understand, and main- 46

tain. Moreover, in networks containing many function block 47

instances, a significant amount of execution time is required 48

for the flow of events and data between instances. Not only do 49

such complex networks require a long time to design manually, 50

network behavior becomes nonobvious and there is a higher 51

chance of software bugs. 52

This issue has been noted in Annex E.1 of the IEC 53

61499 draft standard [3] as well as recent scholarly work 54

[2], [4]. These works highlight the urgent need to intro- 55

duce statecharts-like [5] hierarchy and parallelism within basic 56

blocks. Statecharts are extensions of FSMs that allow a single 57

FSM to contain concurrent or parallel as well hierarchical or 58

refined behaviors. Statecharts have found popular use in the 59

design of distributed control software [6]. Unfortunately, stat- 60

echarts semantics [4] are incompatible with the IEC 61499 61

standard (e.g., it does not handle data flow modeling, unlike 62

IEC 61499), and currently no extension of BFBs to model 63

Statecharts exists. 64

This paper proposes the first Statecharts-like extensions 65

of IEC 61499 called hierarchical and concurrent ECCs 66

(HCECCs), which allow explicit modeling of hierarchy and 67

concurrency within a BFB using two operators: 1) parallel; and 68

2) refinement. Any nesting of these operators can be resolved 69

to a standard CFB, making HCECCs completely compliant to 70

the standard. A synchronous execution semantics [7], [8] for 71

HCECCs is proposed, which allows a complete deterministic 72

execution of HCECCs as well as standard function blocks. The 73

main contributions of this paper are formalizing IEC 61499 74

function blocks syntax and presenting a simplified synchronous 75

semantics for the execution of function blocks, formulating 76

the HCECC framework by introducing the parallel and refine- 77

ment operators, and showing how HCECCs execute using the 78

proposed simplified synchronous semantics, and presenting a 79

sound translation of HCECCs into standard-compliant CFBs. 80

This paper is organized as follows. Section II presents a 81

review of related works. Section III introduces a formalism for 82

IEC 61499 and a description of the semantics for basic and 83

CFBs. HCECCs are introduced in Section IV, and Section V 84

describes their transformation to standard-compliant composite 85

1551-3203 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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blocks. Section IV reports experimental results and Section VII86

provides concluding remarks and future directions.87

II. LITERATURE REVIEW88

Model-driven engineering as expounded by IEC 61499 is89

founded on models of computation. The standard allows model-90

ing control flow using events and state machines within function91

blocks, and data flow using variables and algorithms. More92

recently, researchers have employed more expressive models93

such as statecharts [9] and synchronous data flow [10], and94

communicating sequential processes [11] for modeling control95

flow in industrial strength systems. Similarly, extending data96

flow modeling in industrial control systems has also been stud-97

ied extensively [12]. Some formalisms like *charts (pronounced98

starcharts) [13] have been used to combine control and data99

flow models. However, for IEC 61499 systems, it is not possible100

to modify the standard.101

The existing pool of statecharts-based frameworks serves as102

the logical starting point to build IEC 61499 compatible models103

to capture concurrency and hierarchy. Statecharts extend FSMs104

and allow parallelism using state diagrams with broadcast-105

based communication and hierarchy using a nested structure106

of states. statecharts are used in a wide range of applica-107

tion domains for modeling complex systems, and have been108

extended to generate popular modeling frameworks such as109

UML statecharts [14]. Unfortunately, statecharts and current110

variants cannot be used in IEC 61499 because model only111

control flow and do not capture data flow.112

The need to introduce statecharts-like extensions within113

basic blocks is well documented [2]–[4]. Comparative stud-114

ies between IEC 61499 and other frameworks like UML-115

statecharts [15], [16] help highlight this gap. Unfortunately,116

existing solutions to introduce statecharts-like extensions in117

IEC 61499 have limited scope. In [17], component interaction118

diagrams are proposed to allow modeling UML-statecharts like119

hierarchy within function block applications. However, these120

diagrams do not allow designers to embed concurrency and121

hierarchy within a single function block. In [4], ECCs within122

BFBs are extended based on the Monaco domain-specific123

language, which models a subset of statecharts. However,124

the authors discard this extension because of an inability to125

retrieve hierarchy from flattened ECCs, and the associated126

re-engineering and refactoring costs. On the other hand, the127

proposed framework is not domain specific, and hierarchi-128

cal and concurrent behaviors can be automatically translated129

to networks of function blocks. In [18] and [19], informal130

statecharts-based extensions to basic blocks are proposed. In131

all cases, the issue of complying to the standard is overlooked.132

Many different execution semantics of IEC 61499 have133

been proposed [1], [2], [20]. As compared to other semantics,134

the synchronous semantics developed in [7] excels in many135

respects. Synchronous systems execute in logical time instances136

called ticks. During each tick, a system reads inputs, pro-137

cesses them, and then emits outputs. A tick or macro-step is138

atomic and instantaneous. Internally though, macro-steps are139

usually sequenced into micro-steps. A micro-step pertains to140

a reaction of an individual component or the propagation of141

information within the system. Synchronous systems may suf- 142

fer from causality cycles caused by inter-dependent micro-steps 143

[8]. In [7], causality cycles are avoided by introducing a one- 144

tick delay in communications between the blocks in a network, 145

which slows down event propagation in large networks. The 146

semantics proposed in this paper avoids causality cycles and 147

propagation by using a static schedule for executing blocks in a 148

network, following the semantics of PRET-C [21]. 149

HCECCs allow the inclusion of concurrent and hierarchical 150

behaviors within basic blocks, and are a subset of Statecharts 151

without inter-level transitions. The simplified synchronous 152

semantics for IEC 61499 ensure that programs can never have 153

causality cycles. The proposed HCECC syntax and semantics 154

allow translating HCECCs into standard IEC 61499 function 155

block networks, making them fully standard compliant. 156

III. FORMALIZATION OF IEC 61499 157

This section presents the syntax and simplified syn- 158

chronous semantics of IEC 61499. A baggage handling system 159

(BHS) containing many baggage entry and exit points con- 160

nected via a network of conveyor belts is used as an illustrative 161

example. 162

A. Syntax 163

The following key concepts and notations are used in this 164

paper. A set A = {a1, . . . , an} is a totally ordered set iff for 165

any two distinct elements ai, aj ∈ A, ai<Aaj if i < j or other- 166

wise aj<Aai. <A is the antisymmetric and transitive ordering 167

relation for set A. The subscript A of <A is omitted when the 168

context is clear. The linear sum C = A⊕B of two ordered and 169

disjoint sets A and B is the union of A and B, with A’s ele- 170

ments ordered as in A and B’s elements ordered as in B, and 171

a<Cb for every a ∈ A and b ∈ B. 172

1) Interface: All function blocks have interfaces. 173

Definition 1 (Function block interface): A function block 174

interface is a tuple I = 〈EI , VI , αI , EO, VO, αO〉 where EI , 175

VI , EO, and VO are finite sets of input events, input vari- 176

ables, output events and outputs variables, respectively. αI ⊆ 177

EI × VI and αO ⊆ EO × VO are the sets of input and output 178

associations. 179

Fig. 1 shows the interface for Conveyor_Photoeyes_ 180

Model, which is used in the BHS to control a conveyor belt. The 181

input events and variables appear on the left side, and outputs 182

appear on the right side. Events are transient and are present in 183

time instants when they are fired and absent otherwise. This is 184

based on the well-known synchronous approach [8]. Variables 185

have persistent values. Variables are sampled or updated every 186

time an associated event is present. For example, in Fig. 1, 187

event Init is associated with the variable ConvLength. Hence, 188

ConvLength is sampled whenever Init is present. 189

2) Basic Function Block: 190

Definition 2 (BFB): BFB is a tuple 〈I, L, ECC〉 with inter- 191

face I. The local declarations L = 〈VL, AL〉 contain an internal 192

variables set VL and a set of algorithms AL. ECC = 〈S, s0, λ, T 〉 193

is an ECC with a finite set of states S, initial state s0 ∈ S, an 194

action function λ : S → (AL ∪ EO)
∗ mapping states to a finite 195
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Fig. 1. Function block interface.F1:1

Fig. 2. ECC.F2:1

sequence of algorithm executions and/or output event emis-196

sions, and the transition function T : S → 2(EI∪{1})×B(V̂ )×S .197

Here, V̂ refers to the set of all combinations of valid val-198

ues of internal, input and output variables, and B(V̂ ) refers199

to all Boolean expressions over V̂ . The transition function is200

restricted such that for any s ∈ S, T (s) is totally ordered.201

BFB has an interface, local declarations (internal variables202

and algorithms), and an ECC. The Conveyor_Photoeyes_203

Model block has the interface shown in Fig. 1, three internal204

variables BagModel, BagExited, and BagDiverted, and the set205

of algorithms AL = {INIT, TICK,CheckDiverters,Bag206

Exited,BagDiverted,BagIn,BagMerge1}. Algorithms207

are written using any PLC or standard languages such as C or208

Java.209

Fig. 2 shows the ECC of Conveyor_Photoeyes_Model.210

The ECC in Fig. 2 contains eight states with START as the initial211

state (highlighted with a bold outline). Each state has associated212

actions or a sequence of algorithm executions and output event213

emissions. For state INIT, the actions λ(INIT) = INIT.InitO214

correspond to executing the algorithm INIT and emitting the215

event InitO. For any state s, an outgoing transition t ∈ T (s) 216

is described as (e, b, s′) (or s
e,b−−→ s′ in short-hand), where e 217

is either a triggering input event or 1 (no triggering event), 218

b is a Boolean expression evaluated on the values of inter- 219

nal, input and output variables, and s′ is the destination state. 220

For example, consider the transition START
Init,true−−−−−→ INIT. The 221

triggering event is Init, the Boolean condition is true, and the 222

destination state is INIT. For any state s the set of transitions 223

T (s) is totally ordered. Transition order is shown in Fig. 2 224

using the labels 〈0〉, 〈1〉, . . . For example, the first transition 225

from state IDLE is to state Tick (labeled with 〈0〉). The order is 226

omitted when a state only has one outgoing transition. 227

3) Composite Function Block: CFB contains a network of 228

interconnected function block instances. Fig. 3 combines two 229

basic blocks into a CFB. 230

Function block instances: An instance is to a function block 231

what an object is to a class in Java or C++: the former is a named 232

instance of the latter type. An instance fb = 〈name, FBT 〉 233

is called name and has the type FBT (which can be a basic 234

or composite block). The composite block in Fig. 3 contains 235

two function block instances: BeltModel of type Conveyor_ 236

Belt_Model, and PhotoeyeModel of type Conveyor_ 237

Photoeyes_Model. Instances allow easy reuse of function 238

blocks. The interface of an instance is used to connect it 239

into a network. The notation 〈name〉. 〈event/variable name〉 240

refers to the inputs or outputs (events/variables) of an instance 241

fb. For example, the output variable PEDetects of instance 242

PhotoeyeModel is written as PhotoeyeModel.PEDetects. The 243

instances of a composite block network are contained in a 244

totally ordered set FBs. 245

Event connections: A CFB network contains the following 246

types of event connections (the short-hand s 	→ d represents an 247

event connection from s to d). 248248

1) Input to input connections CEI2I : Inputs of the CFB’s 249

interface may connect to inputs of instances in the net- 250

work. For example, Tick 	→ BeltModel.TICK, as per 251

Fig. 3. 252

2) Output to input connections CEO2I : Output events of one 253

instance may be read as inputs by another. For example, 254

BeltModel.CNF 	→ PhotoEyeModel.Tick A feedback 255

connection connects the output of an instance appearing 256

later in FBs (an ordered set) to the input of an earlier 257

instance in FBs. For example, PhotoEyeModel.Cnf 	→ 258

BeltModel.Tick 259

3) Output to output connections CEO2O: Output events of 260

instances in the network may connect to output events of 261

the CFB’s interface. For example, PhotoEyeModel.Cnf 262

	→ T ickO. 263

Variable connections: Composite blocks have three types of 264

variable connections, as illustrated in Fig. 3. 265265

1) Input to input connections CV I2I connect input variables 266

of the interface to the input variables of the FB instances 267

in the network, e.g., Accel 	→ BeltModel.Accel. 268

2) Output to input connections CV O2I connect the output 269

variable of one FB instance to the input of another, e.g., 270

BeltModel.EncCount 	→ PhotoEyeModel.EncCount. 271
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Fig. 3. Network of blocks within the conveyor model CFB.F3:1

3) Output to output connections CV O2O connect an output272

variable of an instance to an output of the interface, such273

as PhotoEyeModel.PEDetects 	→ PEDetects.274

IEC 61499 restricts variable connections such that only a sin-275

gle source can be connected to a destination variable in a CFB.276

Moreover, only variables of the same type can be connected277

together. This paper omits this aspect for the sake of readability278

but without sacrificing expressiveness.279

Definition 3 (CFB): A CFB is a tuple 〈I, FBNetwork〉280

with interface I = 〈EI , VI , αI , EO, VO, αO〉, and a net-281

work FBNetwork = 〈FBs, Cevents, Cvar〉, where FBs = {fb1,282

fb2, . . . fbn} is a finite and totally ordered set of func-283

tion block instances of size n. Each fbi (i ∈ [1, n]) is284

a FB instance 〈namei, FBTi〉, with name namei and a285

function block (type) FBTi with the interface Ii = 〈EI i,286

VI i, αI i, EOi, VOi, αOi〉. The event connections set Cevents =287

CEI2I ∪ CEO2I ∪ CEO2O (as per Section III-A3). The set288

of variable connections Cvar = CV I2I ∪ CV O2I ∪ CV O2O (as289

per Section III-A3). For any two variable connections290

(src1, dest1), (src2, dest2) ∈ Cvar, dest1 
= dest2.291

B. Synchronous Semantics for IEC 61499292

The proposed synchronous semantics for IEC 61499 is sim-293

ilar to the semantics of PRET-C [21], and guarantees the294

absence of causality cycles due to a static ordering of execu-295

tion. Execution of blocks is divided into logical time instants296

called ticks or macro-steps. During each tick, a predefined and297

ordered sequence of micro-steps is followed. This semantics298

differs from the synchronous semantics proposed in [7], where299

the order of execution of blocks may change between different300

ticks, and blocks can only read inputs generated in the previ-301

ous tick. The proposed semantics does not require this delayed302

propagation of events used in [7].303

1) Execution Semantics of BFBs: Each BFB initializes in304

its start state s0. Each tick, its execution follows four steps. In305

step 1, the block samples input events (EI ) from the environ-306

ment, and updates input variables (in VI ) when associated input307

Fig. 4. Execution semantics for composite blocks. F4:1

events are present. In step 2, the outgoing transitions of the 308

current state s are evaluated in order and the first enabled tran- 309

sition is taken. A transition is enabled when the related event is 310

present and the Boolean condition evaluates to true. For exam- 311

ple, if the ECC shown in Fig. 2 is in state START, and input 312

event Init is present, the lone transition START
Init,true−−−−−→ INIT 313

fires. If no outgoing transition is enabled, the current tick ter- 314

minates. In step 3, after a transition to a destination state s′ 315

has fired, the actions λ(s′) are executed. For example, if state 316

INIT is entered, the block executes algorithm INIT and emits 317

the event InitO. Finally, in step 4, output variable values are 318

updated if associated output events were emitted in step 3. 319

Thanks to the explicit ordering of ECC transitions, basic blocks 320

execute deterministically, as in step 2, only the highest priority 321

transition that is enabled fires. 322

2) Execution Semantics of Composite Blocks: A CFB is ini- 323

tialized with all instances in its network in their initial states. 324

Each tick, the following sequence is executed. Fig. 4 illustrates 325

this sequence for the CFB shown in Fig. 3. In step A, interface 326

input events are sampled, and associated input variable values 327

are updated. In step B, all FB instances in the network execute 328

as per their order in the set FBs. For example, BeltModel exe- 329

cutes before PhotoeyeModel. The execution of each instance 330

involves two substeps. In step B1, input events are sampled and 331
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Fig. 5. HCECC examples. (a) Parallel HCECC. (b) Refined HCECC.F5:1

associated input variables are updated. For example, the input332

event BeltModel.TICK is present if any of the source events333

Tick of the block’s interface or PhotoeyeModel.Cnf is present.334

For feedback connections, such as PhotoeyeModel.Cnf 	→335

BeltModel.TICK, the presence or absence of the source event336

in the previous tick is considered. Then, in step B2, each FB337

instance is executed, based on its semantics (basic or compos-338

ite). Fig. 4 shows how both steps B1 and B2 are repeated for the339

two instances in the CFB of Fig. 3. Finally, in step C, outputs of340

the CFB interface are updated. An output event is set to present341

if a source event connected to it is present during the current342

tick. All output variables associated with emitted output events343

are also updated.344

We can recursively substitute composite block instances with345

their networks to translate a CFB network into a network of346

basic block instances. Under the proposed semantics, CFBs can347

be mapped to PRET-C programs with well-formed semantics348

[21]. It can then be shown that CFB execution is deterministic349

and reactive under the proposed semantics.350

IV. HCECCS351

HCECCs introduce parallel and refined block types to allow352

statecharts-like concurrency and hierarchy in basic blocks.353

A. Syntax354

Parallel HCECCs allow concurrency within a single block.355

Fig. 5(a) shows a parallel HCECC, which has an interface356

and local declarations. However, unlike a basic block, the357

HCECC contains two ECCs that share the interface and local358

declarations.359

Definition 4 (parallel HCECC): A parallel HCECC HCECC‖360

is a tuple 〈I, L, ECCs〉, with interface I, local declarations L,361

and a finite ordered set ECCs = {ECC1, . . . , ECCn} of ECCs.362

Refined HCECCs allow nesting of parallel ECCs within363

ECC states. Fig. 5(b) shows a refined HCECC containing an364

ECC with two states: START and RefinedState. The state 365

RefinedState is refined and contains two concurrent ECCs: 366

Para1 and Para2. The top-level ECC is the refined ECC, 367

RefinedState is the refined state, and Para1 and Para2 are 368

the refining behaviors. All refined and refining ECCs share the 369

interface and local declarations of the block. 370

Definition 5 (refined HCECC): A refined HCECC HCECC� 371

is a tuple 〈I, L, ECC, ECCs, �〉 containing an interface I, local 372

declarations L, a top-level refined ECC ECC, and a set ECCs 373

of refining ECCs. The state-refinement function � : S → 2ECCs 374

(S is the set of states in ECC) maps states in ECC to an ordered 375

subset of refining ECCs in ECCs. 376

For the refined HCECC shown in Fig. 5(b), ECCs = 377

{Para1, Para2}, and �(START) = ∅ (nonrefined state) and 378

�(RefinedState) = {Para1, Para2}. Def. 5 defines refined 379

HCECCs with a single level of refinement, but HCECCs can 380

have nested refinement, as discussed in the next section. 381

B. Synchronous Semantics for HCECCs 382

1) Execution Semantics of Parallel HCECCs: A parallel 383

HCECC executes using the following sequence every tick. In 384

step A, the block samples input events and updates input vari- 385

ables. In step B, ECCs contained in ECCs execute in order. 386

For example, the HCECC in Fig. 5(a) executes ECC1 and then 387

ECC2. Finally, in step C, an output event is emitted once if it is 388

emitted by any ECC. Associated output variables are updated to 389

the latest values assigned to them in the current tick following 390

the order of execution of ECCs in B. 391

Variable updates propagate from the first ECC to the last 392

ECC every tick. For example, for the HCECC in Fig. 5(a), if 393

ECC1 updates any internal variables, ECC2 uses the updated 394

values while executing in the same tick. ECC1 can read updates 395

by ECC2 only in the next tick. The fixed order of execution 396

ensures deterministic execution without causality issues. This 397

semantics where a block is invoked only once relative to an 398

event occurrence is fully compliant to ver. 2 of the IEC 61499 399

standard [1]. In ver. 1, a block can be invoked multiple times rel- 400

ative to an event occurrence, leading to ambiguities in execution 401

semantics. Stability research can address such issues to ensure 402

deterministic execution [22], [23]. However, stability research 403

is not required for the proposed semantics. 404

2) Execution Semantics of Refined HCECCs: Every tick, 405

a refined HCECC executes as follows. If the current state 406

is not a refined state (case 1), the HCECC executes like a 407

BFB (see Section III-B1). For example, the HCECC shown in 408

Fig. 5(b) executes like a BFB when it is in state Start. If, dur- 409

ing the current tick, a transition to a refined state is taken, the 410

actions of the refined state, and the initial states of all refin- 411

ing behaviors are executed in order. For example, if a transition 412

from state Start to the refined state RefinedState is taken, 413

the block emits the output X (action of RefinedState), fol- 414

lowed by executing the actions of the initial states S1 and T1 of 415

the refining ECCs. 416

If the HCECC is in a refined state (case 2), it first samples 417

the interface inputs and updates variables (step A). Then, in 418

step B, the outgoing transitions of the refined state are eval- 419

uated. For example, if the HCECC from Fig. 5(b) is in state 420
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Fig. 6. Overview of HCECC translation.F6:1

Fig. 7. Parallel ECCs flattened to a function block network.F7:1

RefinedState and the outgoing transition to state Start is421

enabled, execution is identical to case 1 above. In step C, if no422

transition fires in step B, the HCECC executes like a parallel423

HCECC (see Section IV-B1)—ECCs refining the current state424

execute in order. Finally, in step D, interface output events are425

emitted (if emitted by any of the ECCs), and output variable426

values are updated.427

Refined HCECCs execute deterministically because in every428

tick, they follow the deterministic execution semantics of basic429

blocks (case 1) or parallel HCECCs (case 2).430

V. TRANSLATING HCECCS TO IEC 61499431

As refined HCECCs execute like parallel HCECCs, and the432

semantics of parallel HCECCs are based on composite blocks,433

it is possible to create a sound translation from HCECCs to434

equivalent IEC 61499 function blocks as shown in Fig. 6.435

Detailed proofs can be found at http://tinyurl.com/hcecc2015.436

A. Parallel HCECC to CFB Conversion437

Algorithm 1 converts a parallel HCECC into a CFB by438

first creating multiple FB instances, and then connecting them.439

These steps are illustrated by transforming the parallel HCECC440

in Fig. 5(a) to the CFB network in Fig. 7.441

Creating FB instances: Algorithm 1 transforms each ECC442

in the parallel HCECC into an instance of a newly created BFB443

(lines 1–22). The newly created instances are ordered in the444

same manner as the ECCs in the parallel HCECC (lines 8–21)445

and are contained in the set FBs.446

The newly created instances have the same interface I ′447

(line 6) which has the same input and output events as the448

HCECC interface, and additional input and output events PARI449

and PARO (line 3). These additional events propagate updated450

variable values within the network (described in the next para-451

graph). I ′ has input variables corresponding to all input, output,452

Algorithm 1. Algorithm Par2CFB

Input: Parallel HCECC 〈I, L, ECCs〉
Output: CFB CFB

1 //Create FB instances;
2 Ordered set FBs = ∅;
3 EI

′ = EI ∪ {PARI}; EO
′ = EO ∪ {PARO};

4 VI
′ = VI ∪ VL ∪ VO; VO

′ = VL ∪ VO;
5 αI

′ = αI ∪ {(PARI, vI)|vI ∈ VL ∪ VO};
αO

′ = αO ∪ {(PARO, vO)|vO ∈ VO};
6 I ′ = 〈EI

′, VI
′, αI

′, EO
′, VO

′, αO
′〉;

7 L′ = 〈∅, AL ∪ {UpdateOutputs}〉;
8 for each ECC = 〈S, s0, λ, T 〉 ∈ ECCs do
9 S′ = S; s′0 = s0; Initialize λ′, T ′;

10 for each s ∈ S do
11 λ′(s) = λ(s)⊕ {UpdateOutputs, PARO};
12 T ′(s) = T (s);

13 if there is no transition s
1−→ s1 then

14 Loop state sl; S′ = S′ ∪ {sl};
15 λ′(sl) = {UpdateOutputs, PARO};

16 T ′(s) = T ′(s)⊕ {s 1−→ sl};
17 T ′(sl) = {sl e,b−−→ s1|s e,b−−→ s1};
18 end
19 end
20 ECC′ = 〈S′, s′0, λ

′, T ′〉; BFB′ = 〈I ′, L′, ECC′〉;
21 fb = 〈namei, BFB

′〉; FBs = FBs⊕ {fb};
22 end
23 //Create connections;
24 n = |FBs|; Cevents = ∅; Cvar = ∅;
25 for each i ∈ [1, n] do
26 Select the i-th FB instance fbi ∈ FBs;
27 Cevents = Cevents ∪ {(eI 	→ fbi.eI)|eI ∈ EI};
28 Cevents = Cevents ∪ {(fbi.eO 	→ eO)|eO ∈ EO};
29 if i = 1: Cvar = Cvar ∪ {(vI 	→ fbi.vI)|vI ∈ VI};
30 if i = n: Cvar = Cvar ∪ {(fbi.vO 	→ vO)|vO ∈ VO};
31 if i < n then fbj = fbi+1 else fbj = fb1;
32 Cevents = Cevents ∪ {(fbi.PARO 	→ fbj .PARI)};
33 Cvar = Cvar ∪ {(fbi.vL 	→ fbj .vL|vL ∈ VL};
34 Cvar = Cvar ∪ {(fbi.vO 	→ fbj .vO|vO ∈ VO};
35 end
36 //Create CFB;
37 FBNetwork = 〈FBs, Cevents, Cvar〉;
38 CFB = 〈I, FBNetwork〉;
39 return CFB;

and local variables of the parallel HCECC, and its output vari- 453

ables correspond to all local and output variables of the parallel 454

HCECC (line 4). I ′ retains the input and output associations 455

of the original HCECC. In addition, PARI and PARO are asso- 456

ciated with each input and output variable of I ′, respectively. 457

The local declarations L′ for each instance contains no internal 458

variables and has local versions of all algorithms of the paral- 459

lel HCECC (line 7). A new algorithm UpdateOutputs is used 460

to ensure that each basic block instance propagates output data 461

forward in every tick. 462

Events PARI and PARO replicate the communication 463

between the ECCs of the parallel HCECC (using internal 464
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Fig. 8. Parallel ECCs equivalent to refinement in Fig. 5(b)F8:1

variables) in the (to be created) CFB network by explicit prop-465

agation of data between the corresponding instances. Each466

instance emits PARO every tick, forcing an update of all out-467

put variables using algorithm UpdateOutputs (line 11). The468

PARO output of a FB instance is connected to the PARI input469

of the next FB instance in the network (lines 31–35), allowing470

a forward propagation of data from each instance.471

Each ECC in the HCECC is converted into an ECC′ of a472

corresponding BFB instance BFB′ (lines 8–22). ECC′ initially473

contains the same states and initial state as ECC (line 9) and474

each state s from ECC retains all original actions and transi-475

tions in ECC′, but also has two new actions—the execution of476

the algorithm UpdateOutputs and the emission of the event477

PARO for forward data propagation.478

Lines 13–18 create additional loop states in ECC. Loop states479

are needed to ensure that in any tick, if none of the origi-480

nal transitions inherited by the current state in ECC′ are taken,481

a transition to a loop state will ensure that the instance will482

still correctly propagate variable values through the network by483

doing actions UpdateOutputs and PARO. Therefore, for every484

state s that does not have an always-true transition (line 13),485

a corresponding loop state sl in ECC′ is introduced (line 14).486

Also, each state has an additional always-true but lowest prior-487

ity transition to its corresponding loop state (line 16). The loop488

state itself has the same transitions as its corresponding state s489

(line 17).490

Creation of connections: The event and variable connections491

for each FB instance are created as follows (the ith FB instance492

in FBs is noted as fbi).493493

1) All input/ output events of the CFB interface I are con-494

nected to corresponding input and output events of fbi495

(lines 27, 28).496

2) If fbi is the first or last FB instance in the CFB network,497

all input or output variables (respectively) of the HCECC498

interface I are connected to the corresponding input or499

output variables (respectively) of fbi (lines 29, 30).500

3) The PARO output event of fbi is connected to the PARI501

input event of the next instance fbj (line 32). fbj is502

the next instance fbi+1 after fbi in FBs, or if fbi is503

the last element of FBs, then fbj is the first element504

fb1 of FBs (line 31). For example, in Fig 7, PARO of505

ParallelECC1 connects to PARI of ParallelECC2 and506

PARO of ParallelECC2 connects to PARI of instance507

ParallelECC1. The output variables of fbi correspond-508

ing to the internal and output variables of the parallel509

HCECC are connected to corresponding input variables510

of fbj (line 33).511

Algorithm 2. Algorithm RemoveRefinement

Input: I, L = 〈VL, AL〉, ECC = 〈S, s0, λ, T 〉, s ∈ S, ECCss
Output: Pair (ECCs�, L�)

1 //Modify locals;
2 Variable set VL′ = VL ∪ {s�_Disabled} (s�_Disabled is of

type Boolean);
3 Algorithm set AL

′ = AL ∪ {s�_Enable, s�_Disable};
4 //Create new local declarations;
5 L� = 〈VL′, AL

′〉;
6 //Create ECCs�;
7 Initialize ordered set of ECCs ECCs� = ∅;
8 //Modify ECC;
9 Initialize empty action map λ0;

10 //Modify states;
11 for each state s ∈ S do
12 if s = s� then
13 λ0(s) = λ(s)⊕ {s�_Enable};
14 end
15 else if s� has a transition (in T ) to s then
16 λ0(s) = λ(s)⊕ {s�_Disable}
17 end
18 else
19 λ0(s) = λ(s);
20 end
21 end
22 ECC0 = 〈S, s0, λ0, T 〉;
23 ECCs� = ECCs� ⊕ {ECC0};
24 //Modify ECCs in ECCss;
25 for each ECCi = 〈Si, s0i , λi, Ti〉 ∈ ECCss do
26 Create set of states S�i = Si ∪ {Disabled};
27 Set state s0�i = Disabled;
28 if s� = s0 then
29 s0�i = s0i ;
30 end
31 Initialize action map λ�i = λi;
32 Add λ�i(Disabled) = ∅;
33 Initialize transition function T�i = Ti;
34 for each s ∈ S�i do
35 if s = Disabled then
36 T�i(s) = {s 1,!s�_Disabled−−−−−−−−−→ s0i};
37 else
38 T�i(s) = {s 1,s�_Disabled−−−−−−−−−→ Disabled} ⊕ Ti(s);
39 end
40 end
41 Create ECC ECC�i = 〈S�i, s0�i , λ�i, T�i〉;
42 ECCs� = ECCs� ⊕ {ECC�i};
43 end
44 return Pair (ECCs�, L�);

A proof by induction shows that the CFB generated from 512

Algorithm 1 has the same behavior the source parallel HCECC. 513

B. Refinement to Parallel Conversion 514

AlgorithmRemoveRefinement (Algorithm 2) translates 515

the refinement of a single state in a refined HCECC into 516

parallel ECCs. For the HCECC in Fig. 5(b), the algorithm 517
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TABLE IT1:1
HCECC AND ECC SIZE COMPARISONT1:2

produces the parallel ECCs shown in Fig. 8. The algorithm518

executes as follows. Lines 1–5 of Algorithm 2 modify the local519

declarations, adding a new internal variable (s�_Disabled)520

and two new algorithms (lines 2–3). The new algorithms521

(s�_Enable, s�_Disable) clear and set the s�_Disabled vari-522

able respectively.523

The first step in constructing the set ECCs� of parallel ECCs524

involves modifying the main ECC (lines 8–22). An algo-525

rithm s�_Enable is added to the actions of s� (line 13), so526

that whenever state s� is reached, the variable s�_Disabled527

is cleared (allowing refining ECCs to execute). Similarly, in528

every state s to which s� has an outgoing transition, an algo-529

rithm s�_Disable is added to the actions to set the variable530

s�_Disabled and to stop the refining ECCs from executing.531

For example, for the parallel ECCs in Fig. 8, the action map of532

the first ECC is changed as follows. λ0(Start) takes the value533

{RefinedState_Disable}, and λ0(RefinedState) takes the534

value {RefinedState_Enable,X}, where X was part of the535

original refined HCECC. The modified main ECC is inserted as536

the first element into the set ECCs�. It, therefore, executes first,537

and may enable or disable other ECCs.538

Lines 24–43 modify each refining ECC, adding a new state539

Disabled (line 26) to model the disabled behavior when the540

refined ECC is not in state s�. Fig. 8 shows the Disabled state541

for each of the modified refining ECCs (Para1 and Para2).542

Disabled is set as the initial state of each refining ECC (line543

27). However, if the refined state s� is the initial state of the544

refined ECC, refining ECCs’ original initial states are retained545

(line 29). The modified refining ECC states retain their actions546

from the original refining ECC (line 31) and state Disabled has547

no actions (line 32).548

The transition function for the modified refining ECC retains549

all original transitions (line 33). New transitions are added550

to model the enabled/disabled behavior, based on the value551

of the variable s�_Disabled. All states have a highest pri-552

ority transition to Disabled when s�_Disabled is true (line553

38). Disabled has a single outgoing transition to the orig-554

inal initial state of the refining ECC (line 36). For exam-555

ple, each state in ECC Para1 in Fig. 8 has a transition556

to Disabled when RefinedState_Disabled is true, and557

Disabled has a transition to the original initial state S1 when558

RefinedState_Disabled is false. Finally, line 41 constructs559

the modified refining ECC and adds it to ECCs� on line 42.560

After all refining ECCs have been processed in this way, line561

44 returns ECCs� and modified local declarations L�.562

A refined HCECC containing multiple (m) refined states is563

transformed into a parallel HCECC by applying Algorithm 2564

TABLE II T2:1
DEVELOPMENT TIME (TIME IN MINUTES) T2:2

m times (once for each refined state). HCECCs with nested 565

refinement are processed in a depth-first fashion starting from 566

the inner-most HCECC, until the block is reduced to a refined 567

HCECC with only single-level refinement. A proof of sound- 568

ness of the proposed transformations can be done by induc- 569

tion, showing equivalence between the execution of a refined 570

HCECC, the corresponding parallel HCECC, and the corre- 571

sponding IEC 61499 program, under the proposed synchronous 572

semantics. 573

VI. RESULTS 574

A qualitative and quantitative evaluation of HCECCs was 575

done using the Auckland Function Block Benchmark [24], 576

which contains designs varying in size and complexity of algo- 577

rithms. Each benchmark was reimplemented using HCECCs, 578

and subsequently compared to the original model. All bench- 579

marks are available at http://tinyurl.com/hcecc2015. 580

Table I compares the sizes of the standard and HCECC ver- 581

sions of each benchmark. Columns 2–5, respectively, show the 582

numbers of basic blocks, connections, states and transitions 583

in the standard version. Columns 5–8, respectively, show the 584

numbers of blocks, connections, states, and transitions in the 585

HCECC version. For each benchmark, the size of the HCECC 586

version was either smaller than or the same as the standard 587

version. Most compression was achieved when refinement was 588

used because enforcing refinement-like hierarchy in standard 589

function blocks requires many more transitions and states. 590

Table II shows the times taken by three developers to develop 591

the benchmarks shown in Table I. Developer A was an expert 592

in HCECC design, developer B had some experience with 593

statecharts and a working knowledge of IEC 61499, and devel- 594

oper C was completely new to both HCECCs and IEC 61499. 595

Overall, all developers took significantly lesser amount of time 596

to develop HCECCs. While these results are promising, a wider 597

usability study is beyond the scope of this paper. 598
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Fig. 9. Multilevel refinement example.F9:1

Fig. 10. Benchmark code size comparison.F10:1

HCECCs can model complex behaviors that cannot be easily599

created in standard function blocks. Fig. 9 shows the HCECC600

for a conveyor controller (algorithms omitted for readability).601

This model may react to up to three different events in a sin-602

gle tick. Modeling such behaviors using standard (flat) ECCs603

results in exponentially more states and transitions, requires604

extra effort in creating multiple blocks and connecting them,605

and takes longer to design and maintain.606

We extended the function block compiler (FBC) [7] to cre-607

ate FBC-HCECC, a compiler to compile HCECCs into C code608

using the proposed synchronous semantics. Fig. 10 compares609

code sizes produced by FORTE v1.7.1, FBRT v20081003,610

FBC, and FBC-HCECC. For FBRT code, the Java virtual611

machine (JVM) size was removed for a fair comparison. Code612

generated by FBC-HCECC was on average 1.18 times smaller613

than FBC, which in turn produced much smaller code than614

FORTE and FBRT. In some cases, like benchmark B4, FBC-615

HCECC generated code was 1.70 times smaller than FBC. The616

reduction in code size comes from HCECCs allowing the same617

functionality within smaller models, as per Table I.618

Code for each benchmark from different compilers was run619

on a windows PC with an Intel Core i7 920 processor and 18GB620

RAM. Java v7 (JDK and JRE) was used to compile and run621

FBRT-generated code. 4DIAC and FBDK front-ends were used622

to design and run FORTE and FBRT programs, respectively. C623

code from FBC and FBC-HCECC was compiled using Visual624

Studio’s C compiler with the -O2 optimization switch. Each625

TABLE III T3:1
PERFORMANCE COMPARISON (TIME IN MILLI-SECONDS) T3:2

program was then executed with a common test-file containing 626

a sequence of one million input vectors. Each vector contained 627

a random event and random values for variables. A compari- 628

son of the execution times is shown in Table III. FBC-HCECC 629

programs executed 1.3 to 3.1 times faster than FBC programs, 630

with an average speedup of 2.3 possibly due to smaller model 631

sizes. FBC-HCECC programs ran on average 3.8 and 42.7 632

times faster than FBRT and FORTE programs, which required 633

additional runtimes. 634

Overall, HCECCs enable more compact designs that are 635

faster to develop, smaller in code size, and execute faster 636

than standard IEC 61499 designs. A side-effect of using the 637

proposed semantics is that a fixed ordering of blocks within 638

composite blocks (and also parallel and refined HCECCs) must 639

be defined. The FBC-HCECC compiler uses the ordering as 640

per XML descriptions, which is standard practice. Designers 641

can change this ordering by editing the XML descriptions. 642

HCECCs can increase cohesion and reduce coupling between 643

blocks in some cases, such as exceptional handling scenarios. 644

However, it is possible to misuse this framework and integrate 645

loosely coupled blocks, reducing maintainability. 646

VII. CONCLUSION 647

This paper introduces HCECCs, consisting of hierarchi- 648

cal and concurrent operators for IEC 61499 ECCs, inspired 649

by statecharts. Refined HCECCs efficiently model exception 650

handling and other hierarchical behaviors, whereas parallel 651
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HCECCs simplify the modeling of concurrent processes and652

enable the monitoring of simultaneous events in a single block.653

A synchronous semantics for IEC 61499 and HCECCs is654

proposed under which HCECCs can be translated to CFBs.655

Benchmarking results show that HCECCs provide reduced656

model sizes, which helps reduce development time, com-657

piled code size, and execution time. Future directions include658

using HCECCs under other IEC 61499 semantics, optimiz-659

ing HCECC to network translation, studying how HCECCs660

affect cohesion and coupling as well as code maintainability661

or reusability, and providing tool-support for HCECCs.662
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Abstract—IEC 61499 enables component-oriented descriptions5
of complex industrial processes facilitating model-driven engineer-6
ing. One aspect that is lacking, however, is the ability to directly7
express Statecharts-like hierarchy and concurrency within basic8
function blocks (BFBs). Such features can significantly enhance9
function blocks and help create more succinct and readable10
specifications. We propose a new syntactic extension to the stan-11
dard called hierarchical and concurrent execution control chart12
(HCECC). A major roadblock for any suggested changes to the13
standard is the need for compliance. Our approach extends the14
synchronous execution semantics of IEC 61499, where HCECCs15
are purely syntactic sugar. Using a revised synchronous semantics,16
our compiler generates standard compliant C code from HCECCs.17
Benchmarking and usability studies reveal the relative superiority18
of the proposed approach over existing approaches.19

Index Terms—Execution semantics, hierarchical state20
machines, IEEE 61499, parallel execution, statecharts.21

I. INTRODUCTION22

T HE INCREASING size and complexity of industrial con-

Q1

23

trol systems have motivated the development of new24

design paradigms to aid system designers. The IEC 6149925

standard [1], [2] proposes component-oriented models called26

function blocks for developing distributed control systems. A27

function block describes both control and data flow within a28

single module. By providing a graphical specification frame-29

work, the standard simplifies system design with a top-down30

approach and encourages the reuse of function blocks.31

The unit of execution in IEC 61499 is a basic function block32

(BFB), which executes a finite state machine (FSM) known as33

an execution control chart (ECC) that describes the control flow34

of the block. ECCs are flat Moore-machines that allow mod-35

eling of only sequential behaviors. Therefore, a basic block36

cannot model concurrent behaviors. In addition, ECCs do not37

allow users to separate high-level behavior such as initialization38
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and error handling of a block. As a result, more states and tran- 39

sitions are required to describe the same behavior compared to 40

other graphical formalisms. 41

The standard also provides CFBs that are networks of 42

interconnected function block instances. Networks model con- 43

currency and structural hierarchy that basic blocks cannot 44

handle efficiently. However, networks can easily get very com- 45

plex, making them difficult to design, understand, and main- 46

tain. Moreover, in networks containing many function block 47

instances, a significant amount of execution time is required 48

for the flow of events and data between instances. Not only do 49

such complex networks require a long time to design manually, 50

network behavior becomes nonobvious and there is a higher 51

chance of software bugs. 52

This issue has been noted in Annex E.1 of the IEC 53

61499 draft standard [3] as well as recent scholarly work 54

[2], [4]. These works highlight the urgent need to intro- 55

duce statecharts-like [5] hierarchy and parallelism within basic 56

blocks. Statecharts are extensions of FSMs that allow a single 57

FSM to contain concurrent or parallel as well hierarchical or 58

refined behaviors. Statecharts have found popular use in the 59

design of distributed control software [6]. Unfortunately, stat- 60

echarts semantics [4] are incompatible with the IEC 61499 61

standard (e.g., it does not handle data flow modeling, unlike 62

IEC 61499), and currently no extension of BFBs to model 63

Statecharts exists. 64

This paper proposes the first Statecharts-like extensions 65

of IEC 61499 called hierarchical and concurrent ECCs 66

(HCECCs), which allow explicit modeling of hierarchy and 67

concurrency within a BFB using two operators: 1) parallel; and 68

2) refinement. Any nesting of these operators can be resolved 69

to a standard CFB, making HCECCs completely compliant to 70

the standard. A synchronous execution semantics [7], [8] for 71

HCECCs is proposed, which allows a complete deterministic 72

execution of HCECCs as well as standard function blocks. The 73

main contributions of this paper are formalizing IEC 61499 74

function blocks syntax and presenting a simplified synchronous 75

semantics for the execution of function blocks, formulating 76

the HCECC framework by introducing the parallel and refine- 77

ment operators, and showing how HCECCs execute using the 78

proposed simplified synchronous semantics, and presenting a 79

sound translation of HCECCs into standard-compliant CFBs. 80

This paper is organized as follows. Section II presents a 81

review of related works. Section III introduces a formalism for 82

IEC 61499 and a description of the semantics for basic and 83

CFBs. HCECCs are introduced in Section IV, and Section V 84

describes their transformation to standard-compliant composite 85

1551-3203 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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blocks. Section IV reports experimental results and Section VII86

provides concluding remarks and future directions.87

II. LITERATURE REVIEW88

Model-driven engineering as expounded by IEC 61499 is89

founded on models of computation. The standard allows model-90

ing control flow using events and state machines within function91

blocks, and data flow using variables and algorithms. More92

recently, researchers have employed more expressive models93

such as statecharts [9] and synchronous data flow [10], and94

communicating sequential processes [11] for modeling control95

flow in industrial strength systems. Similarly, extending data96

flow modeling in industrial control systems has also been stud-97

ied extensively [12]. Some formalisms like *charts (pronounced98

starcharts) [13] have been used to combine control and data99

flow models. However, for IEC 61499 systems, it is not possible100

to modify the standard.101

The existing pool of statecharts-based frameworks serves as102

the logical starting point to build IEC 61499 compatible models103

to capture concurrency and hierarchy. Statecharts extend FSMs104

and allow parallelism using state diagrams with broadcast-105

based communication and hierarchy using a nested structure106

of states. statecharts are used in a wide range of applica-107

tion domains for modeling complex systems, and have been108

extended to generate popular modeling frameworks such as109

UML statecharts [14]. Unfortunately, statecharts and current110

variants cannot be used in IEC 61499 because model only111

control flow and do not capture data flow.112

The need to introduce statecharts-like extensions within113

basic blocks is well documented [2]–[4]. Comparative stud-114

ies between IEC 61499 and other frameworks like UML-115

statecharts [15], [16] help highlight this gap. Unfortunately,116

existing solutions to introduce statecharts-like extensions in117

IEC 61499 have limited scope. In [17], component interaction118

diagrams are proposed to allow modeling UML-statecharts like119

hierarchy within function block applications. However, these120

diagrams do not allow designers to embed concurrency and121

hierarchy within a single function block. In [4], ECCs within122

BFBs are extended based on the Monaco domain-specific123

language, which models a subset of statecharts. However,124

the authors discard this extension because of an inability to125

retrieve hierarchy from flattened ECCs, and the associated126

re-engineering and refactoring costs. On the other hand, the127

proposed framework is not domain specific, and hierarchi-128

cal and concurrent behaviors can be automatically translated129

to networks of function blocks. In [18] and [19], informal130

statecharts-based extensions to basic blocks are proposed. In131

all cases, the issue of complying to the standard is overlooked.132

Many different execution semantics of IEC 61499 have133

been proposed [1], [2], [20]. As compared to other semantics,134

the synchronous semantics developed in [7] excels in many135

respects. Synchronous systems execute in logical time instances136

called ticks. During each tick, a system reads inputs, pro-137

cesses them, and then emits outputs. A tick or macro-step is138

atomic and instantaneous. Internally though, macro-steps are139

usually sequenced into micro-steps. A micro-step pertains to140

a reaction of an individual component or the propagation of141

information within the system. Synchronous systems may suf- 142

fer from causality cycles caused by inter-dependent micro-steps 143

[8]. In [7], causality cycles are avoided by introducing a one- 144

tick delay in communications between the blocks in a network, 145

which slows down event propagation in large networks. The 146

semantics proposed in this paper avoids causality cycles and 147

propagation by using a static schedule for executing blocks in a 148

network, following the semantics of PRET-C [21]. 149

HCECCs allow the inclusion of concurrent and hierarchical 150

behaviors within basic blocks, and are a subset of Statecharts 151

without inter-level transitions. The simplified synchronous 152

semantics for IEC 61499 ensure that programs can never have 153

causality cycles. The proposed HCECC syntax and semantics 154

allow translating HCECCs into standard IEC 61499 function 155

block networks, making them fully standard compliant. 156

III. FORMALIZATION OF IEC 61499 157

This section presents the syntax and simplified syn- 158

chronous semantics of IEC 61499. A baggage handling system 159

(BHS) containing many baggage entry and exit points con- 160

nected via a network of conveyor belts is used as an illustrative 161

example. 162

A. Syntax 163

The following key concepts and notations are used in this 164

paper. A set A = {a1, . . . , an} is a totally ordered set iff for 165

any two distinct elements ai, aj ∈ A, ai<Aaj if i < j or other- 166

wise aj<Aai. <A is the antisymmetric and transitive ordering 167

relation for set A. The subscript A of <A is omitted when the 168

context is clear. The linear sum C = A⊕B of two ordered and 169

disjoint sets A and B is the union of A and B, with A’s ele- 170

ments ordered as in A and B’s elements ordered as in B, and 171

a<Cb for every a ∈ A and b ∈ B. 172

1) Interface: All function blocks have interfaces. 173

Definition 1 (Function block interface): A function block 174

interface is a tuple I = 〈EI , VI , αI , EO, VO, αO〉 where EI , 175

VI , EO, and VO are finite sets of input events, input vari- 176

ables, output events and outputs variables, respectively. αI ⊆ 177

EI × VI and αO ⊆ EO × VO are the sets of input and output 178

associations. 179

Fig. 1 shows the interface for Conveyor_Photoeyes_ 180

Model, which is used in the BHS to control a conveyor belt. The 181

input events and variables appear on the left side, and outputs 182

appear on the right side. Events are transient and are present in 183

time instants when they are fired and absent otherwise. This is 184

based on the well-known synchronous approach [8]. Variables 185

have persistent values. Variables are sampled or updated every 186

time an associated event is present. For example, in Fig. 1, 187

event Init is associated with the variable ConvLength. Hence, 188

ConvLength is sampled whenever Init is present. 189

2) Basic Function Block: 190

Definition 2 (BFB): BFB is a tuple 〈I, L, ECC〉 with inter- 191

face I. The local declarations L = 〈VL, AL〉 contain an internal 192

variables set VL and a set of algorithms AL. ECC = 〈S, s0, λ, T 〉 193

is an ECC with a finite set of states S, initial state s0 ∈ S, an 194

action function λ : S → (AL ∪ EO)
∗ mapping states to a finite 195
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Fig. 1. Function block interface.F1:1

Fig. 2. ECC.F2:1

sequence of algorithm executions and/or output event emis-196

sions, and the transition function T : S → 2(EI∪{1})×B(V̂ )×S .197

Here, V̂ refers to the set of all combinations of valid val-198

ues of internal, input and output variables, and B(V̂ ) refers199

to all Boolean expressions over V̂ . The transition function is200

restricted such that for any s ∈ S, T (s) is totally ordered.201

BFB has an interface, local declarations (internal variables202

and algorithms), and an ECC. The Conveyor_Photoeyes_203

Model block has the interface shown in Fig. 1, three internal204

variables BagModel, BagExited, and BagDiverted, and the set205

of algorithms AL = {INIT, TICK,CheckDiverters,Bag206

Exited,BagDiverted,BagIn,BagMerge1}. Algorithms207

are written using any PLC or standard languages such as C or208

Java.209

Fig. 2 shows the ECC of Conveyor_Photoeyes_Model.210

The ECC in Fig. 2 contains eight states with START as the initial211

state (highlighted with a bold outline). Each state has associated212

actions or a sequence of algorithm executions and output event213

emissions. For state INIT, the actions λ(INIT) = INIT.InitO214

correspond to executing the algorithm INIT and emitting the215

event InitO. For any state s, an outgoing transition t ∈ T (s) 216

is described as (e, b, s′) (or s
e,b−−→ s′ in short-hand), where e 217

is either a triggering input event or 1 (no triggering event), 218

b is a Boolean expression evaluated on the values of inter- 219

nal, input and output variables, and s′ is the destination state. 220

For example, consider the transition START
Init,true−−−−−→ INIT. The 221

triggering event is Init, the Boolean condition is true, and the 222

destination state is INIT. For any state s the set of transitions 223

T (s) is totally ordered. Transition order is shown in Fig. 2 224

using the labels 〈0〉, 〈1〉, . . . For example, the first transition 225

from state IDLE is to state Tick (labeled with 〈0〉). The order is 226

omitted when a state only has one outgoing transition. 227

3) Composite Function Block: CFB contains a network of 228

interconnected function block instances. Fig. 3 combines two 229

basic blocks into a CFB. 230

Function block instances: An instance is to a function block 231

what an object is to a class in Java or C++: the former is a named 232

instance of the latter type. An instance fb = 〈name, FBT 〉 233

is called name and has the type FBT (which can be a basic 234

or composite block). The composite block in Fig. 3 contains 235

two function block instances: BeltModel of type Conveyor_ 236

Belt_Model, and PhotoeyeModel of type Conveyor_ 237

Photoeyes_Model. Instances allow easy reuse of function 238

blocks. The interface of an instance is used to connect it 239

into a network. The notation 〈name〉. 〈event/variable name〉 240

refers to the inputs or outputs (events/variables) of an instance 241

fb. For example, the output variable PEDetects of instance 242

PhotoeyeModel is written as PhotoeyeModel.PEDetects. The 243

instances of a composite block network are contained in a 244

totally ordered set FBs. 245

Event connections: A CFB network contains the following 246

types of event connections (the short-hand s 	→ d represents an 247

event connection from s to d). 248248

1) Input to input connections CEI2I : Inputs of the CFB’s 249

interface may connect to inputs of instances in the net- 250

work. For example, Tick 	→ BeltModel.TICK, as per 251

Fig. 3. 252

2) Output to input connections CEO2I : Output events of one 253

instance may be read as inputs by another. For example, 254

BeltModel.CNF 	→ PhotoEyeModel.Tick A feedback 255

connection connects the output of an instance appearing 256

later in FBs (an ordered set) to the input of an earlier 257

instance in FBs. For example, PhotoEyeModel.Cnf 	→ 258

BeltModel.Tick 259

3) Output to output connections CEO2O: Output events of 260

instances in the network may connect to output events of 261

the CFB’s interface. For example, PhotoEyeModel.Cnf 262

	→ T ickO. 263

Variable connections: Composite blocks have three types of 264

variable connections, as illustrated in Fig. 3. 265265

1) Input to input connections CV I2I connect input variables 266

of the interface to the input variables of the FB instances 267

in the network, e.g., Accel 	→ BeltModel.Accel. 268

2) Output to input connections CV O2I connect the output 269

variable of one FB instance to the input of another, e.g., 270

BeltModel.EncCount 	→ PhotoEyeModel.EncCount. 271
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Fig. 3. Network of blocks within the conveyor model CFB.F3:1

3) Output to output connections CV O2O connect an output272

variable of an instance to an output of the interface, such273

as PhotoEyeModel.PEDetects 	→ PEDetects.274

IEC 61499 restricts variable connections such that only a sin-275

gle source can be connected to a destination variable in a CFB.276

Moreover, only variables of the same type can be connected277

together. This paper omits this aspect for the sake of readability278

but without sacrificing expressiveness.279

Definition 3 (CFB): A CFB is a tuple 〈I, FBNetwork〉280

with interface I = 〈EI , VI , αI , EO, VO, αO〉, and a net-281

work FBNetwork = 〈FBs, Cevents, Cvar〉, where FBs = {fb1,282

fb2, . . . fbn} is a finite and totally ordered set of func-283

tion block instances of size n. Each fbi (i ∈ [1, n]) is284

a FB instance 〈namei, FBTi〉, with name namei and a285

function block (type) FBTi with the interface Ii = 〈EI i,286

VI i, αI i, EOi, VOi, αOi〉. The event connections set Cevents =287

CEI2I ∪ CEO2I ∪ CEO2O (as per Section III-A3). The set288

of variable connections Cvar = CV I2I ∪ CV O2I ∪ CV O2O (as289

per Section III-A3). For any two variable connections290

(src1, dest1), (src2, dest2) ∈ Cvar, dest1 
= dest2.291

B. Synchronous Semantics for IEC 61499292

The proposed synchronous semantics for IEC 61499 is sim-293

ilar to the semantics of PRET-C [21], and guarantees the294

absence of causality cycles due to a static ordering of execu-295

tion. Execution of blocks is divided into logical time instants296

called ticks or macro-steps. During each tick, a predefined and297

ordered sequence of micro-steps is followed. This semantics298

differs from the synchronous semantics proposed in [7], where299

the order of execution of blocks may change between different300

ticks, and blocks can only read inputs generated in the previ-301

ous tick. The proposed semantics does not require this delayed302

propagation of events used in [7].303

1) Execution Semantics of BFBs: Each BFB initializes in304

its start state s0. Each tick, its execution follows four steps. In305

step 1, the block samples input events (EI ) from the environ-306

ment, and updates input variables (in VI ) when associated input307

Fig. 4. Execution semantics for composite blocks. F4:1

events are present. In step 2, the outgoing transitions of the 308

current state s are evaluated in order and the first enabled tran- 309

sition is taken. A transition is enabled when the related event is 310

present and the Boolean condition evaluates to true. For exam- 311

ple, if the ECC shown in Fig. 2 is in state START, and input 312

event Init is present, the lone transition START
Init,true−−−−−→ INIT 313

fires. If no outgoing transition is enabled, the current tick ter- 314

minates. In step 3, after a transition to a destination state s′ 315

has fired, the actions λ(s′) are executed. For example, if state 316

INIT is entered, the block executes algorithm INIT and emits 317

the event InitO. Finally, in step 4, output variable values are 318

updated if associated output events were emitted in step 3. 319

Thanks to the explicit ordering of ECC transitions, basic blocks 320

execute deterministically, as in step 2, only the highest priority 321

transition that is enabled fires. 322

2) Execution Semantics of Composite Blocks: A CFB is ini- 323

tialized with all instances in its network in their initial states. 324

Each tick, the following sequence is executed. Fig. 4 illustrates 325

this sequence for the CFB shown in Fig. 3. In step A, interface 326

input events are sampled, and associated input variable values 327

are updated. In step B, all FB instances in the network execute 328

as per their order in the set FBs. For example, BeltModel exe- 329

cutes before PhotoeyeModel. The execution of each instance 330

involves two substeps. In step B1, input events are sampled and 331
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Fig. 5. HCECC examples. (a) Parallel HCECC. (b) Refined HCECC.F5:1

associated input variables are updated. For example, the input332

event BeltModel.TICK is present if any of the source events333

Tick of the block’s interface or PhotoeyeModel.Cnf is present.334

For feedback connections, such as PhotoeyeModel.Cnf 	→335

BeltModel.TICK, the presence or absence of the source event336

in the previous tick is considered. Then, in step B2, each FB337

instance is executed, based on its semantics (basic or compos-338

ite). Fig. 4 shows how both steps B1 and B2 are repeated for the339

two instances in the CFB of Fig. 3. Finally, in step C, outputs of340

the CFB interface are updated. An output event is set to present341

if a source event connected to it is present during the current342

tick. All output variables associated with emitted output events343

are also updated.344

We can recursively substitute composite block instances with345

their networks to translate a CFB network into a network of346

basic block instances. Under the proposed semantics, CFBs can347

be mapped to PRET-C programs with well-formed semantics348

[21]. It can then be shown that CFB execution is deterministic349

and reactive under the proposed semantics.350

IV. HCECCS351

HCECCs introduce parallel and refined block types to allow352

statecharts-like concurrency and hierarchy in basic blocks.353

A. Syntax354

Parallel HCECCs allow concurrency within a single block.355

Fig. 5(a) shows a parallel HCECC, which has an interface356

and local declarations. However, unlike a basic block, the357

HCECC contains two ECCs that share the interface and local358

declarations.359

Definition 4 (parallel HCECC): A parallel HCECC HCECC‖360

is a tuple 〈I, L, ECCs〉, with interface I, local declarations L,361

and a finite ordered set ECCs = {ECC1, . . . , ECCn} of ECCs.362

Refined HCECCs allow nesting of parallel ECCs within363

ECC states. Fig. 5(b) shows a refined HCECC containing an364

ECC with two states: START and RefinedState. The state 365

RefinedState is refined and contains two concurrent ECCs: 366

Para1 and Para2. The top-level ECC is the refined ECC, 367

RefinedState is the refined state, and Para1 and Para2 are 368

the refining behaviors. All refined and refining ECCs share the 369

interface and local declarations of the block. 370

Definition 5 (refined HCECC): A refined HCECC HCECC� 371

is a tuple 〈I, L, ECC, ECCs, �〉 containing an interface I, local 372

declarations L, a top-level refined ECC ECC, and a set ECCs 373

of refining ECCs. The state-refinement function � : S → 2ECCs 374

(S is the set of states in ECC) maps states in ECC to an ordered 375

subset of refining ECCs in ECCs. 376

For the refined HCECC shown in Fig. 5(b), ECCs = 377

{Para1, Para2}, and �(START) = ∅ (nonrefined state) and 378

�(RefinedState) = {Para1, Para2}. Def. 5 defines refined 379

HCECCs with a single level of refinement, but HCECCs can 380

have nested refinement, as discussed in the next section. 381

B. Synchronous Semantics for HCECCs 382

1) Execution Semantics of Parallel HCECCs: A parallel 383

HCECC executes using the following sequence every tick. In 384

step A, the block samples input events and updates input vari- 385

ables. In step B, ECCs contained in ECCs execute in order. 386

For example, the HCECC in Fig. 5(a) executes ECC1 and then 387

ECC2. Finally, in step C, an output event is emitted once if it is 388

emitted by any ECC. Associated output variables are updated to 389

the latest values assigned to them in the current tick following 390

the order of execution of ECCs in B. 391

Variable updates propagate from the first ECC to the last 392

ECC every tick. For example, for the HCECC in Fig. 5(a), if 393

ECC1 updates any internal variables, ECC2 uses the updated 394

values while executing in the same tick. ECC1 can read updates 395

by ECC2 only in the next tick. The fixed order of execution 396

ensures deterministic execution without causality issues. This 397

semantics where a block is invoked only once relative to an 398

event occurrence is fully compliant to ver. 2 of the IEC 61499 399

standard [1]. In ver. 1, a block can be invoked multiple times rel- 400

ative to an event occurrence, leading to ambiguities in execution 401

semantics. Stability research can address such issues to ensure 402

deterministic execution [22], [23]. However, stability research 403

is not required for the proposed semantics. 404

2) Execution Semantics of Refined HCECCs: Every tick, 405

a refined HCECC executes as follows. If the current state 406

is not a refined state (case 1), the HCECC executes like a 407

BFB (see Section III-B1). For example, the HCECC shown in 408

Fig. 5(b) executes like a BFB when it is in state Start. If, dur- 409

ing the current tick, a transition to a refined state is taken, the 410

actions of the refined state, and the initial states of all refin- 411

ing behaviors are executed in order. For example, if a transition 412

from state Start to the refined state RefinedState is taken, 413

the block emits the output X (action of RefinedState), fol- 414

lowed by executing the actions of the initial states S1 and T1 of 415

the refining ECCs. 416

If the HCECC is in a refined state (case 2), it first samples 417

the interface inputs and updates variables (step A). Then, in 418

step B, the outgoing transitions of the refined state are eval- 419

uated. For example, if the HCECC from Fig. 5(b) is in state 420
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Fig. 6. Overview of HCECC translation.F6:1

Fig. 7. Parallel ECCs flattened to a function block network.F7:1

RefinedState and the outgoing transition to state Start is421

enabled, execution is identical to case 1 above. In step C, if no422

transition fires in step B, the HCECC executes like a parallel423

HCECC (see Section IV-B1)—ECCs refining the current state424

execute in order. Finally, in step D, interface output events are425

emitted (if emitted by any of the ECCs), and output variable426

values are updated.427

Refined HCECCs execute deterministically because in every428

tick, they follow the deterministic execution semantics of basic429

blocks (case 1) or parallel HCECCs (case 2).430

V. TRANSLATING HCECCS TO IEC 61499431

As refined HCECCs execute like parallel HCECCs, and the432

semantics of parallel HCECCs are based on composite blocks,433

it is possible to create a sound translation from HCECCs to434

equivalent IEC 61499 function blocks as shown in Fig. 6.435

Detailed proofs can be found at http://tinyurl.com/hcecc2015.436

A. Parallel HCECC to CFB Conversion437

Algorithm 1 converts a parallel HCECC into a CFB by438

first creating multiple FB instances, and then connecting them.439

These steps are illustrated by transforming the parallel HCECC440

in Fig. 5(a) to the CFB network in Fig. 7.441

Creating FB instances: Algorithm 1 transforms each ECC442

in the parallel HCECC into an instance of a newly created BFB443

(lines 1–22). The newly created instances are ordered in the444

same manner as the ECCs in the parallel HCECC (lines 8–21)445

and are contained in the set FBs.446

The newly created instances have the same interface I ′447

(line 6) which has the same input and output events as the448

HCECC interface, and additional input and output events PARI449

and PARO (line 3). These additional events propagate updated450

variable values within the network (described in the next para-451

graph). I ′ has input variables corresponding to all input, output,452

Algorithm 1. Algorithm Par2CFB

Input: Parallel HCECC 〈I, L, ECCs〉
Output: CFB CFB

1 //Create FB instances;
2 Ordered set FBs = ∅;
3 EI

′ = EI ∪ {PARI}; EO
′ = EO ∪ {PARO};

4 VI
′ = VI ∪ VL ∪ VO; VO

′ = VL ∪ VO;
5 αI

′ = αI ∪ {(PARI, vI)|vI ∈ VL ∪ VO};
αO

′ = αO ∪ {(PARO, vO)|vO ∈ VO};
6 I ′ = 〈EI

′, VI
′, αI

′, EO
′, VO

′, αO
′〉;

7 L′ = 〈∅, AL ∪ {UpdateOutputs}〉;
8 for each ECC = 〈S, s0, λ, T 〉 ∈ ECCs do
9 S′ = S; s′0 = s0; Initialize λ′, T ′;

10 for each s ∈ S do
11 λ′(s) = λ(s)⊕ {UpdateOutputs, PARO};
12 T ′(s) = T (s);

13 if there is no transition s
1−→ s1 then

14 Loop state sl; S′ = S′ ∪ {sl};
15 λ′(sl) = {UpdateOutputs, PARO};

16 T ′(s) = T ′(s)⊕ {s 1−→ sl};
17 T ′(sl) = {sl e,b−−→ s1|s e,b−−→ s1};
18 end
19 end
20 ECC′ = 〈S′, s′0, λ

′, T ′〉; BFB′ = 〈I ′, L′, ECC′〉;
21 fb = 〈namei, BFB

′〉; FBs = FBs⊕ {fb};
22 end
23 //Create connections;
24 n = |FBs|; Cevents = ∅; Cvar = ∅;
25 for each i ∈ [1, n] do
26 Select the i-th FB instance fbi ∈ FBs;
27 Cevents = Cevents ∪ {(eI 	→ fbi.eI)|eI ∈ EI};
28 Cevents = Cevents ∪ {(fbi.eO 	→ eO)|eO ∈ EO};
29 if i = 1: Cvar = Cvar ∪ {(vI 	→ fbi.vI)|vI ∈ VI};
30 if i = n: Cvar = Cvar ∪ {(fbi.vO 	→ vO)|vO ∈ VO};
31 if i < n then fbj = fbi+1 else fbj = fb1;
32 Cevents = Cevents ∪ {(fbi.PARO 	→ fbj .PARI)};
33 Cvar = Cvar ∪ {(fbi.vL 	→ fbj .vL|vL ∈ VL};
34 Cvar = Cvar ∪ {(fbi.vO 	→ fbj .vO|vO ∈ VO};
35 end
36 //Create CFB;
37 FBNetwork = 〈FBs, Cevents, Cvar〉;
38 CFB = 〈I, FBNetwork〉;
39 return CFB;

and local variables of the parallel HCECC, and its output vari- 453

ables correspond to all local and output variables of the parallel 454

HCECC (line 4). I ′ retains the input and output associations 455

of the original HCECC. In addition, PARI and PARO are asso- 456

ciated with each input and output variable of I ′, respectively. 457

The local declarations L′ for each instance contains no internal 458

variables and has local versions of all algorithms of the paral- 459

lel HCECC (line 7). A new algorithm UpdateOutputs is used 460

to ensure that each basic block instance propagates output data 461

forward in every tick. 462

Events PARI and PARO replicate the communication 463

between the ECCs of the parallel HCECC (using internal 464
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Fig. 8. Parallel ECCs equivalent to refinement in Fig. 5(b)F8:1

variables) in the (to be created) CFB network by explicit prop-465

agation of data between the corresponding instances. Each466

instance emits PARO every tick, forcing an update of all out-467

put variables using algorithm UpdateOutputs (line 11). The468

PARO output of a FB instance is connected to the PARI input469

of the next FB instance in the network (lines 31–35), allowing470

a forward propagation of data from each instance.471

Each ECC in the HCECC is converted into an ECC′ of a472

corresponding BFB instance BFB′ (lines 8–22). ECC′ initially473

contains the same states and initial state as ECC (line 9) and474

each state s from ECC retains all original actions and transi-475

tions in ECC′, but also has two new actions—the execution of476

the algorithm UpdateOutputs and the emission of the event477

PARO for forward data propagation.478

Lines 13–18 create additional loop states in ECC. Loop states479

are needed to ensure that in any tick, if none of the origi-480

nal transitions inherited by the current state in ECC′ are taken,481

a transition to a loop state will ensure that the instance will482

still correctly propagate variable values through the network by483

doing actions UpdateOutputs and PARO. Therefore, for every484

state s that does not have an always-true transition (line 13),485

a corresponding loop state sl in ECC′ is introduced (line 14).486

Also, each state has an additional always-true but lowest prior-487

ity transition to its corresponding loop state (line 16). The loop488

state itself has the same transitions as its corresponding state s489

(line 17).490

Creation of connections: The event and variable connections491

for each FB instance are created as follows (the ith FB instance492

in FBs is noted as fbi).493493

1) All input/ output events of the CFB interface I are con-494

nected to corresponding input and output events of fbi495

(lines 27, 28).496

2) If fbi is the first or last FB instance in the CFB network,497

all input or output variables (respectively) of the HCECC498

interface I are connected to the corresponding input or499

output variables (respectively) of fbi (lines 29, 30).500

3) The PARO output event of fbi is connected to the PARI501

input event of the next instance fbj (line 32). fbj is502

the next instance fbi+1 after fbi in FBs, or if fbi is503

the last element of FBs, then fbj is the first element504

fb1 of FBs (line 31). For example, in Fig 7, PARO of505

ParallelECC1 connects to PARI of ParallelECC2 and506

PARO of ParallelECC2 connects to PARI of instance507

ParallelECC1. The output variables of fbi correspond-508

ing to the internal and output variables of the parallel509

HCECC are connected to corresponding input variables510

of fbj (line 33).511

Algorithm 2. Algorithm RemoveRefinement

Input: I, L = 〈VL, AL〉, ECC = 〈S, s0, λ, T 〉, s ∈ S, ECCss
Output: Pair (ECCs�, L�)

1 //Modify locals;
2 Variable set VL′ = VL ∪ {s�_Disabled} (s�_Disabled is of

type Boolean);
3 Algorithm set AL

′ = AL ∪ {s�_Enable, s�_Disable};
4 //Create new local declarations;
5 L� = 〈VL′, AL

′〉;
6 //Create ECCs�;
7 Initialize ordered set of ECCs ECCs� = ∅;
8 //Modify ECC;
9 Initialize empty action map λ0;

10 //Modify states;
11 for each state s ∈ S do
12 if s = s� then
13 λ0(s) = λ(s)⊕ {s�_Enable};
14 end
15 else if s� has a transition (in T ) to s then
16 λ0(s) = λ(s)⊕ {s�_Disable}
17 end
18 else
19 λ0(s) = λ(s);
20 end
21 end
22 ECC0 = 〈S, s0, λ0, T 〉;
23 ECCs� = ECCs� ⊕ {ECC0};
24 //Modify ECCs in ECCss;
25 for each ECCi = 〈Si, s0i , λi, Ti〉 ∈ ECCss do
26 Create set of states S�i = Si ∪ {Disabled};
27 Set state s0�i = Disabled;
28 if s� = s0 then
29 s0�i = s0i ;
30 end
31 Initialize action map λ�i = λi;
32 Add λ�i(Disabled) = ∅;
33 Initialize transition function T�i = Ti;
34 for each s ∈ S�i do
35 if s = Disabled then
36 T�i(s) = {s 1,!s�_Disabled−−−−−−−−−→ s0i};
37 else
38 T�i(s) = {s 1,s�_Disabled−−−−−−−−−→ Disabled} ⊕ Ti(s);
39 end
40 end
41 Create ECC ECC�i = 〈S�i, s0�i , λ�i, T�i〉;
42 ECCs� = ECCs� ⊕ {ECC�i};
43 end
44 return Pair (ECCs�, L�);

A proof by induction shows that the CFB generated from 512

Algorithm 1 has the same behavior the source parallel HCECC. 513

B. Refinement to Parallel Conversion 514

AlgorithmRemoveRefinement (Algorithm 2) translates 515

the refinement of a single state in a refined HCECC into 516

parallel ECCs. For the HCECC in Fig. 5(b), the algorithm 517
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TABLE IT1:1
HCECC AND ECC SIZE COMPARISONT1:2

produces the parallel ECCs shown in Fig. 8. The algorithm518

executes as follows. Lines 1–5 of Algorithm 2 modify the local519

declarations, adding a new internal variable (s�_Disabled)520

and two new algorithms (lines 2–3). The new algorithms521

(s�_Enable, s�_Disable) clear and set the s�_Disabled vari-522

able respectively.523

The first step in constructing the set ECCs� of parallel ECCs524

involves modifying the main ECC (lines 8–22). An algo-525

rithm s�_Enable is added to the actions of s� (line 13), so526

that whenever state s� is reached, the variable s�_Disabled527

is cleared (allowing refining ECCs to execute). Similarly, in528

every state s to which s� has an outgoing transition, an algo-529

rithm s�_Disable is added to the actions to set the variable530

s�_Disabled and to stop the refining ECCs from executing.531

For example, for the parallel ECCs in Fig. 8, the action map of532

the first ECC is changed as follows. λ0(Start) takes the value533

{RefinedState_Disable}, and λ0(RefinedState) takes the534

value {RefinedState_Enable,X}, where X was part of the535

original refined HCECC. The modified main ECC is inserted as536

the first element into the set ECCs�. It, therefore, executes first,537

and may enable or disable other ECCs.538

Lines 24–43 modify each refining ECC, adding a new state539

Disabled (line 26) to model the disabled behavior when the540

refined ECC is not in state s�. Fig. 8 shows the Disabled state541

for each of the modified refining ECCs (Para1 and Para2).542

Disabled is set as the initial state of each refining ECC (line543

27). However, if the refined state s� is the initial state of the544

refined ECC, refining ECCs’ original initial states are retained545

(line 29). The modified refining ECC states retain their actions546

from the original refining ECC (line 31) and state Disabled has547

no actions (line 32).548

The transition function for the modified refining ECC retains549

all original transitions (line 33). New transitions are added550

to model the enabled/disabled behavior, based on the value551

of the variable s�_Disabled. All states have a highest pri-552

ority transition to Disabled when s�_Disabled is true (line553

38). Disabled has a single outgoing transition to the orig-554

inal initial state of the refining ECC (line 36). For exam-555

ple, each state in ECC Para1 in Fig. 8 has a transition556

to Disabled when RefinedState_Disabled is true, and557

Disabled has a transition to the original initial state S1 when558

RefinedState_Disabled is false. Finally, line 41 constructs559

the modified refining ECC and adds it to ECCs� on line 42.560

After all refining ECCs have been processed in this way, line561

44 returns ECCs� and modified local declarations L�.562

A refined HCECC containing multiple (m) refined states is563

transformed into a parallel HCECC by applying Algorithm 2564

TABLE II T2:1
DEVELOPMENT TIME (TIME IN MINUTES) T2:2

m times (once for each refined state). HCECCs with nested 565

refinement are processed in a depth-first fashion starting from 566

the inner-most HCECC, until the block is reduced to a refined 567

HCECC with only single-level refinement. A proof of sound- 568

ness of the proposed transformations can be done by induc- 569

tion, showing equivalence between the execution of a refined 570

HCECC, the corresponding parallel HCECC, and the corre- 571

sponding IEC 61499 program, under the proposed synchronous 572

semantics. 573

VI. RESULTS 574

A qualitative and quantitative evaluation of HCECCs was 575

done using the Auckland Function Block Benchmark [24], 576

which contains designs varying in size and complexity of algo- 577

rithms. Each benchmark was reimplemented using HCECCs, 578

and subsequently compared to the original model. All bench- 579

marks are available at http://tinyurl.com/hcecc2015. 580

Table I compares the sizes of the standard and HCECC ver- 581

sions of each benchmark. Columns 2–5, respectively, show the 582

numbers of basic blocks, connections, states and transitions 583

in the standard version. Columns 5–8, respectively, show the 584

numbers of blocks, connections, states, and transitions in the 585

HCECC version. For each benchmark, the size of the HCECC 586

version was either smaller than or the same as the standard 587

version. Most compression was achieved when refinement was 588

used because enforcing refinement-like hierarchy in standard 589

function blocks requires many more transitions and states. 590

Table II shows the times taken by three developers to develop 591

the benchmarks shown in Table I. Developer A was an expert 592

in HCECC design, developer B had some experience with 593

statecharts and a working knowledge of IEC 61499, and devel- 594

oper C was completely new to both HCECCs and IEC 61499. 595

Overall, all developers took significantly lesser amount of time 596

to develop HCECCs. While these results are promising, a wider 597

usability study is beyond the scope of this paper. 598
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Fig. 9. Multilevel refinement example.F9:1

Fig. 10. Benchmark code size comparison.F10:1

HCECCs can model complex behaviors that cannot be easily599

created in standard function blocks. Fig. 9 shows the HCECC600

for a conveyor controller (algorithms omitted for readability).601

This model may react to up to three different events in a sin-602

gle tick. Modeling such behaviors using standard (flat) ECCs603

results in exponentially more states and transitions, requires604

extra effort in creating multiple blocks and connecting them,605

and takes longer to design and maintain.606

We extended the function block compiler (FBC) [7] to cre-607

ate FBC-HCECC, a compiler to compile HCECCs into C code608

using the proposed synchronous semantics. Fig. 10 compares609

code sizes produced by FORTE v1.7.1, FBRT v20081003,610

FBC, and FBC-HCECC. For FBRT code, the Java virtual611

machine (JVM) size was removed for a fair comparison. Code612

generated by FBC-HCECC was on average 1.18 times smaller613

than FBC, which in turn produced much smaller code than614

FORTE and FBRT. In some cases, like benchmark B4, FBC-615

HCECC generated code was 1.70 times smaller than FBC. The616

reduction in code size comes from HCECCs allowing the same617

functionality within smaller models, as per Table I.618

Code for each benchmark from different compilers was run619

on a windows PC with an Intel Core i7 920 processor and 18GB620

RAM. Java v7 (JDK and JRE) was used to compile and run621

FBRT-generated code. 4DIAC and FBDK front-ends were used622

to design and run FORTE and FBRT programs, respectively. C623

code from FBC and FBC-HCECC was compiled using Visual624

Studio’s C compiler with the -O2 optimization switch. Each625

TABLE III T3:1
PERFORMANCE COMPARISON (TIME IN MILLI-SECONDS) T3:2

program was then executed with a common test-file containing 626

a sequence of one million input vectors. Each vector contained 627

a random event and random values for variables. A compari- 628

son of the execution times is shown in Table III. FBC-HCECC 629

programs executed 1.3 to 3.1 times faster than FBC programs, 630

with an average speedup of 2.3 possibly due to smaller model 631

sizes. FBC-HCECC programs ran on average 3.8 and 42.7 632

times faster than FBRT and FORTE programs, which required 633

additional runtimes. 634

Overall, HCECCs enable more compact designs that are 635

faster to develop, smaller in code size, and execute faster 636

than standard IEC 61499 designs. A side-effect of using the 637

proposed semantics is that a fixed ordering of blocks within 638

composite blocks (and also parallel and refined HCECCs) must 639

be defined. The FBC-HCECC compiler uses the ordering as 640

per XML descriptions, which is standard practice. Designers 641

can change this ordering by editing the XML descriptions. 642

HCECCs can increase cohesion and reduce coupling between 643

blocks in some cases, such as exceptional handling scenarios. 644

However, it is possible to misuse this framework and integrate 645

loosely coupled blocks, reducing maintainability. 646

VII. CONCLUSION 647

This paper introduces HCECCs, consisting of hierarchi- 648

cal and concurrent operators for IEC 61499 ECCs, inspired 649

by statecharts. Refined HCECCs efficiently model exception 650

handling and other hierarchical behaviors, whereas parallel 651
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HCECCs simplify the modeling of concurrent processes and652

enable the monitoring of simultaneous events in a single block.653

A synchronous semantics for IEC 61499 and HCECCs is654

proposed under which HCECCs can be translated to CFBs.655

Benchmarking results show that HCECCs provide reduced656

model sizes, which helps reduce development time, com-657

piled code size, and execution time. Future directions include658

using HCECCs under other IEC 61499 semantics, optimiz-659

ing HCECC to network translation, studying how HCECCs660

affect cohesion and coupling as well as code maintainability661

or reusability, and providing tool-support for HCECCs.662
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