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Abstract. In this paper we propose several equivalent definitions of
digital curves and hypersurfaces in arbitrary dimension. The definitions
involve properties such as one-dimensionality of curves and (n — 1)-
dimensionality of hypersurfaces that make them discrete analogs of corre-
sponding notions in topology. Thus this work appears to be the first one
on digital manifolds where the definitions involve the notion of dimen-
sion. In particular, a digital hypersurface in nD is an (n — 1)-dimensional
object, as it is in the case of continuous hypersurfaces. Relying on the ob-
tained properties of digital hypersurfaces, we propose a uniform approach
for studying good pairs defined by separations and obtain a classification
of good pairs in arbitrary dimension.
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1 Introduction

A regular orthogonal grid subdivides R™ into n-dimensional hypercubes (e.g.,
unit squares for n = 2) defining a class (CSLH). Let (Cﬁ{“) be the class of all k-
dimensional facets of n-dimensional hypercubes, for 0 < k < n. The grid-cell
space C,, is the union of all these classes (C%k), for 0 <k <n.

In this paper we study digital curves, hypersurfaces, and good pairs of ad-
jacency relations in grid-cell spaces C,, (n > 2), equipped with adjacencies A,
(e.g., « = 0,1 for n = 2, and a = 0,1,2 for n = 3)>. A good pair* combines
two adjacency relations on C,,. The reason for introducing the first good pairs
(e, B) in [8], with («, 3) equal to (1,0) or (0,1), were observations in [28]. (A, is
the adjacency relation for 1s, which are the pixels with value 1, and Ag is the
adjacency relation for 0s.) The benefit of two alternative adjacencies was then

3 In 2D, 0- and 1-adjacency correspond to 8 and 4-adjacency, respectively, while in
3D, 0-, 1-, and 2-adjacency correspond to 26-, 18- and 6-adjacency, respectively. The
latter are traditionally used within the grid-point model on Z".

4 The name was created for the oral presentation of [15]. Note that the same term has
been used already with different meaning in topology.



formally shown in [25]: (1,0) or (0,1) define region adjacency graphs for binary
pictures which form a rooted tree. This simplifies topological studies of binary
pictures.

Good pairs may induce a digital topology® on (Cg”) (and not vice-versa in
general). For example, using the good pair (1,0) (or (0,1)) is equivalent to re-
garding 1-components of 1s as open regions and 0-components of 0s as closed
regions in C{" (or vice versa). [9] shows that there are two digital topologies
on Cy (where one corresponds to (1,0) or (0,1)), five on Cs, and [16] shows that
there are 24 on C4 (all up to homeomorphisms). This paper provides a complete
characterization of good pairs, showing that there are 2n — 1 good pairs on C,,.

The study of good pairs is directed on the understanding of separability
properties: which sets defined by one type of adjacency allow to separate sets
defined by another type of adjacency. These separating sets can be defined in
the form of digital curves in 2D, or as digital surfaces in 3D. In this way, studies
of good pairs and of (separating) surfaces are directly related to one-another.
Topology of incidence grids is one possible approach: frontiers of closed sets of
n-cells define hypersurfaces, consisting of (n — 1)-cells.

Digital surfaces have been studied under different points of view. The approx-
imation of n-dimensional manifolds by graphs is studied in [29, 30], with a spe-
cial focus on topological properties of such graphs defined by homotopy and on
homology or cohomology groups. [13] defined digital surfaces in Z® based on ad-
jacencies of 3-cells. The approximation of boundaries of finite sets of grid points
(in n dimensions) based on “continuous analogs” was proposed and studied in
[20]. [12] discusses local topologic configurations (stars) for surfaces in incidence
grids. Digital surfaces in the context of arithmetic geometry were studied in [4].

A Jordan surface theorem for the Khalimsky topology is proved in [18]. For
discrete combinatorial surfaces, see [10]. For obtaining a-surfaces by digitization
of surfaces in R?, see [6]. It is proved in [21] that there is no local characterization
of 26-connected subsets S of Z2 such that its complement S consists of two 6-
components and every voxel of S is adjacent to both of these components. [21]
defines a class of 18-connected surfaces in Z3, proves a Jordan surface theorem
for these surfaces, and studies their relationship to the surfaces defined in [22].
[3] introduces a class of strong surfaces and proves that both the 26-connected
surfaces of [22] and the 18-connected surfaces of [21] are strong. For 6-surfaces,
see [5].

Frontiers in cell complexes (and related topological concepts such as compo-
nents and fundamental group) were studied in [1]. For characterizations of and
algorithms for curves and surfaces in frontier grids, see [11,19,27,31]. G.T. Her-
man and J.K. Udupa used frontiers in the grid cell model, and V. Kovalevsky
generalized these studies using the model of topologic abstract complexes, that
can also be modelled by incidence grids. [7] define curves in incidence grids.

In this paper we present alternative definitions of digital hypersurfaces, par-
tially following ideas already published in the cited references above, and prove

5 A digital topology on C™ is defined by a family of open subsets that satisfy a
number of axioms (see, e.g., Section 6.2 in [14]).



their equivalence. In short, a digital a-hypersurface is composed by (closed)
a-curves; two of such curves are either disjoint and non-adjacent, or disjoint
but adjacent, or they have overlapping portions. The main contributions of this
paper are as follows (n > 2):

— We define digital manifolds in arbitrary dimensions, as the definitions in-
volve the notion of dimension of a digital object [23]. Thus a digital curve is
a one-dimensional digital manifold, while a digital hypersurface in nD is an
(n — 1)-dimensional manifold, in conformity to topology (see, e.g., the topo-
logical definitions of curves by Urysohn and Menger, as discussed in [14]).
To our knowledge of the available literature, this is the first work involving
dimensionality in defining these notions in digital geometry.

— We show that there are two and only two basic types of a-hypersurfaces,
one for « =n — 1 and one for « =n — 2.

e For @ = n — 2, the hypersurface S has (n — 2)-gaps which appear on
(n — 2)-curves that build S and, possibly, between adjacent pairs of such
(n — 2)-curves.

e For a = n— 1, the hypersurface S is (n — 2)-gapfree,® but may still have
0,1,...,(n—4) or (n—3)-gaps, which may appear between adjacent pairs
of (n—1)-curves rather than on the curves themselves. The last possibility
is when an (n — 1)-hypersurface is i-gapfree for any 0 < i <n — 2.

— We investigate combinatorial properties of digital hypersurfaces, showing
that any digital hypersurface defines a matroid.

— Relying on the obtained properties of digital hypersurfaces, we define and
study good pairs of adjacency relations in arbitrary dimension. We define
nD good pairs through separation by digital hypersurfaces and show that
there are exactly 2n — 1 good pairs of adjacency relations. We also provide
a short review and comments on some other approaches for defining good
pairs which have been communicated elsewhere.

Some of the proofs of results reported in this paper follow directly from the
definitions, while others are technical and rather lengthy, and cannot be reported
in this brief conference submission. Complete proofs will be included in a full-
length journal version of this paper.

2 Preliminaries

We start with recalling basic definitions; notations follow [14]. In particular, the
grid point space Z™ allows a refined representation by an incidence grid defined
on the cellular space C,, (as defined above).

5 This was also called “tunnel-free” in earlier publications (e.g., in [2,24]). The Betti
number 3; defines the number of tunnels in topology. Informally speaking, the loca-
tion of a tunnel cannot be uniquely identified in general; there is only a unique way
to count the number of tunnels. Locations of gaps are identified by defining sets.
However, our hypothesis is that tunnel-freeness (i.e., f1 = 0) and gap-freeness (in
the sense of [2,24]) are equivalent concepts.



2.1 Some Definitions

Elements in (Cﬁ are k-cells, for 0 < k < n. An m-dimensional facet of a k-cell
is an m-cell, for 0 < m < k — 1. Two k-cells are called m-adjacent if they share
an m-cell. Two k-cells are properly m-adjacent if they are m-adjacent but not
(m + 1)-adjacent.

A digital object S is a finite set of n-cells. An m-path in S is a sequence of
n-cells from S such that every two consecutive n-cells are m-adjacent. The length
of a path is the number of n-cells it contains. A proper m-path is an m-path in
which at least two consecutive n-cells are not (m + 1)-adjacent. Two n-cells of
a digital object S are m-connected (in S) iff there is an m-path in S between
them. A digital object S is m-connected iff there is an m-path connecting any
two n-cells of S. S is properly m-connected iff it contains two n-cells such that
all m-paths between them are proper. An m-component of S is a maximal (i.e.,
non-extendable) m-connected subset of S.

Let M be a subset of a digital object S. If S\ M is not m-connected then the
set M is said to be m-separating in S. (In particular, the empty set m-separates
any set S which is not m-connected.) Let a digital object M be m-separating
but not (m — 1)-separating in a digital object S. Then M is said to have k-gaps
for any k < m. A digital object without any m-gaps is called m-gapfree.

Although the above definition has been used in a number of papers by dif-
ferent authors, one can reasonably argue that it requires further refinement.
Consider, for instance, the following example.

Let My and M; be two digital objects that are subsets of a superset .S, and
assume that My N My = (0 (we may think that M; and M, are “far away”
from each other). In addition, assume that M has a k-gap with respect to an
adjacency relation A, while M5 is a closed digital hypersurface that k-separates
S. Then it turns out that the digital set M7 U Ma, that consists of (at least) two
connected components, has no k-gap with respect to A,.

Despite such kind of phenomena, the above definition is adequate for the
studies that follow. Further work by authors will be aimed at contributing to a
more restrictive definition which will exclude “counterintuitive” examples as the
one above. For this, one can take advantage of some of the results presented in
the subsequent sections.

Let M be an m-separating digital object in S such that S\ M has exactly
two m-components. An m-simple cell in M (with respect to S) is an n-cell ¢
such that M \ {c} is still m-separating in S. An m-separating digital object in
S is m-minimal (or m-irreducible) if it does not contain any m-simple cell (with
respect to S).

For a set of n-cells S, by S we denote the complement of S to the whole
digital space C%") of all n-cells.

JT(A) is the outer Jordan digitization (also called supercover) of a set A C
R™, which consists of all n-cells intersected by A.

By B, (c) we denote the unit a-ball with center ¢ consisting of all a-neighbors
of ¢. Furthermore, let B (c) = B, (c) \ {c}.



For a given set M = {ci,¢a,...,cm}t C ci™ of n-cells, we define its a-
adjacency graph G¢,(V, E) with a set of vertices V' = {vy,v2,..., v} and a set
of edges E = {(v;,v;) : ¢; and ¢; are o — adjacent}. (In the above definition a
graph vertex v; corresponds to the element ¢; € M.)

2.2 Dimension

Mylopoulos and Pavlidis [23] proposed definition of dimension of a (finite or
infinite) set of n-cells S with respect to an adjacency relation A, (for its use
see also [14]). Let B,(c) be the union of B,(c) with all n-cells ¢’ for which
there exist ¢y, ¢y € By(c) such that a shortest a-path from ¢; to ¢z not passing
through ¢ passes through ¢. For example, B1(c) = By(c) = By(c) for n = 2, and
Bs(c) = Bi(c) = Bi(c) and By(c) = By(c) for n = 3.

In what follows we will use the definition of dimension from [23]. Let S be
a digital object in C%") and A, an adjacency relation on C%"). The dimension
dim, (S) is defined as follows:

(1) dimy(S) = —1if S =10,

(2) dim,(S) = 01if S is a totally a-disconnected nonempty set (i.e., there is
no pair of cells ¢, ¢’ € S such that ¢ # ¢’ and {¢, ¢’} is a-connected),

(3) dim,(S) =1 if card(B*(c) N S) < 2 for all ¢ € S, and there is at least
one ¢ € S with card(B*(c) N S) > 0,

(4) dim,(S) = max dim (B(c) N S) + 1 otherwise.

If in the last item of the definition the maximum is reached for an n-cell c,
we will also say that S is dim, (.5)-dimensional at c.

An elementary grid triangle in (C(QQ) isaset T ={(i,7), (i+1,7),(4,j+1)}, or
a 90, 180, or 270 degree rotation of such a T'. A 0-connected set M C Céz) is two-
dimensional with respect to adjacency relation Ay iff it contains an elementary
grid triangle as a proper subset. Similarly, a 1-connected set M C (CéQ) is two-
dimensional with respect to adjacency relation A; iff it contains as a proper
subset a 2 x 2 square of grid points. See [14]. These properties generalize to an
arbitrary dimension n, as follows.

Lemma 1. (a) An a-connected set M C (C%"), 0 < a < n—2, is two-dimensional
iff it contains as a proper subset an elementary grid triangle consisting of three
cells c1,co, c3, such that any two of them are a-adjacent.

(b) An (n—1)-connected set M C c™ is two-dimensional iff it contains as a
proper subset an elementary grid square consisting of four cells c1, ca, c3, c4 with
coordinates ¢1 = (i,4,...,4,1), coa = (i + 1,4,...,4,4), cg = (1 + L, i+ 1,...,4,4),
ey = (i,i+1,...,4,1), for some i € Z.

3 Digital Curves and Hypersurfaces

In what follows we consider digital analogs of simple closed curves and of hyper-
surfaces that separate the superspace (C%n). We will consider analogs of either



bounded closed Jordan hypersurfaces or unbounded hypersurfaces (such as hy-
perplanes) that separate R™. (The latter can also be considered as “closed” in
the infinite point.) We will not specify whether we consider closed or unbounded
hypersurfaces whenever the definitions and results apply to both cases and no
confusions arise. We also omit the word “digital” where possible.

The considerations take place in the n-dimensional space Cg,") of n-cells. We
allow adjacency relations A, as defined above. We are interested to establish
basic definitions for this space that:

— reflect properties which are analogous to the topological connectivity of
curves or hypersurfaces in Euclidean topology,

— reflect the one- or (n — 1)-dimensionality of a curve or hypersurface, respec-
tively, and

— characterize hypersurfaces with respect to gaps.

A digital curve (hypersurface), considered in the context of an adjacency

relation A,, will be called an a-curve (a-hypersurface).

3.1 Digital Curves

A set 7 C cﬁ{” is an a-curve iff it is a-connected and one-dimensional with
respect to A,. (Note that Urysohn-Menger curves in R™ are defined to be one-

dimensional continua.) Figure 1 presents examples and counterexamples for Cég).

Fig. 1. Examples of a 1-curve (left), 0-curve (middle), and two 0-connected sets in the
digital plane that are neither 0- nor 1-curves (right).

In the rest of this section we define and study digital analogs of simple closed
curves (i.e., those that have branching index 2 at any point). The following lemma
provides necessary and sufficient conditions for a set of n-cells to be connected
and a loop with respect to adjacency relation A,.



Lemma 2. Let p = {c1,ca,...,c1} be a set of n-cells. The following properties
are equivalent:

(A1) ¢; is a-adjacent to c¢; iff i = j £ 1(modulo ).

(A2) p is a-connected and ¥V ¢ € p, card(B%(c)Np) = 2.

(A3) The a-adjacency graph G4 (V, E) is a simple loop.

The following lemma provides conditions which are equivalent to the one-
dimensionality of a set of n-cells.

Lemma 3. Let p = {c1,¢a,...,c} be a set of n-cells. The following properties
are equivalent:

(B1) p is one-dimensional with respect to A,.

(B2) If 0 < o < m — 1, then p does not contain as a proper subset an
elementary grid triangle such that any two of its n-cells are a-adjacent; if o =
n — 1, then p does not contain as a proper subset an elementary grid square.

(B3) Vc € p, the set Bi(c) Np is totally disconnected.

‘We list one more condition.
B4) If0<a<mn-—1,thenl>4;if a =n—1, then ! > 8.

Lemma 4. Let p = {c1,¢a,...,¢1} be a set of n-cells. Then all property pairs
((AQ), (Bj)), for 1 <i<3 and 1< j <4, are equivalent.

Thus we are prepared to give the following general definition, summarizing
twelve equivalent ways for defining a simple a-curve.

Definition 1. A simple a-curve (0 < a < n — 1) of length | is a set p =
{e1,¢9,...,¢} C (C%n), satisfying properties (Ai) and (Bj), for some pair of in-
dexes 1,7, with 1 <i<3 and 1 <j <A4.

Note that for any n < 2, four n-cells whose centers form a 1 x 1 square do
not form a digital curve, since such a set of cells would be two-dimensional.

A simple a-curve will also be called a one-dimensional a-manifold. In (Céz)
we have the following:

Proposition 1. A finite set p of pizels is a simple a-curve in (ng) (a=0,1)
iff it is a-minimal in (ng).

Note that this last result does not generalize to higher dimensions since a
one-dimensional digital object cannot separate (Cgl") ifn> 2.

A simple a-curve p (0 < o < n — 1) is a proper a-curve (or a proper one-
dimensional a-manifold), if it is not an (a + 1)-curve.

Example 1. A proper 0-curve in (Cg) is a O-curve which is not a l-curve (see
Figure 2, left) It follows that any closed O-curve is a proper O-curve.

A proper O-curve in (C:(,)S) is a O-curve which is not a 1- or 2-curve, and a proper
1-curve is a 1-curve which is not a 2-curve.



Fig. 2. A proper O-curve in 2D (left) and an improper 0-curve in 3D (right).

Any 1-curve is a proper l-curve. This follows from the facts that the curve
is closed and one-dimensional with respect to 1-adjacency. If we assume the
opposite, we will obtain that the curve is either an infinite sequence of voxels
(e.g., of the form (0,0,1),(0,0,2),(0,0,3),...) or that it is two-dimensional.

However, a closed 0-curve does not need to be proper (see Figure 2, right).

A simple a-arc o is an a-connected proper subset of a simple a-curve. It
contains exactly two n-cells ¢, ¢ such that card(B%(c)Np) = card B (<) Np) = 1.

3.2 Digital Hypersurfaces

We consider digital analogs of hole-free hypersurfaces. Accordingly, we are inter-
ested in hypersurfaces without (n—1)-gaps, although the theory can be extended
to cover this case, as well. However, in the framework of our approach, a hyper-
surface with (n — 1)-gaps can be an (n — 2)-dimensional set of n-cells, while we
want a digital hypersurface to be (n — 1)-dimensional, in conformity with the
continuous case.

We give the following recursive definition.

Definition 2. (i) M is a 1-dimensional (n — 1)-manifold in C™ if it is an
(n — 1)-curve in cm.
M is a k-dimensional (2 < k <n—1) (n — 1)-manifold in c™ if
(1) M is (n— 1)-connected (or, equivalently, M consists of a single (n —1)-
component), and
(2) for any x € M the set Bi(x)NM is a (k—1)-dimensional (n—1)-manifold
in C.

(ii) M is a k-dimensional a-manifold (0 < o <n —2) in ci if
(1) M is a-connected (or, equivalently, M consists of a single a-component),
and
(2) for any x € M the set Bi(x) N M is a (k — 1)-dimensional a-manifold
in C but is not a (k — 1)-dimensional (a + 1)-manifold in cm.
(Such an a-manifold will also be called proper.)



In the particular case when S is an (n — 1)-dimensional a-manifold in c for
a =n—2orn—1, wesay that S is a digital a-hypersurface. S is a proper
a-hypersurface for a = n — 2 if it is not an (n — 1)-hypersurface for a« =n — 1.

It is also clear that any proper one-dimensional a-manifold is an a-curve.

We remark that if Condition (1) is missing, then S may have more than one
connected component. In such a case Condition (2) implies that any connected
component of S is an a-hypersurface.

Note that in the definition of an a-hypersurface we use the ball Bj(z) rather
than B (x), since the latter could cause certain incompatibilities. This can be
easily seen in the 3D case: if we use B3 to define a 2-surface, Bj(xz) NS may
be a 1-curve rather than a 2-curve. Similarly, if we use Bf to define a 1-surface,
Bj(z) N S may be a 0-curve rather than a 1-curve. This is avoided by using Bj
in all cases.

The so defined digital hypersurfaces have the following properties, among
others.

Proposition 2. An a-hypersurface S is (n — 1)-dimensional at any n-cell in S
with respect to adjacency relation Ag,.

Proposition 3. (a) An (n— 2)-hypersurface S has (n — 2)-gaps and is (n —1)-
gapfree. Moreover, it is (n — 1)-minimal.

(b) An (n — 1)-hypersurface S is (n — 2)-gapfree. Note that S may have or
may not have k-gaps for 0 <k <n—3. If S has k-gaps but no (k + 1)-gaps for
0<k<n-—3,then S is (k+ 1)-minimal. If S is k-gapfree for 0 < k <n — 3,
then S is 0-minimal.

Part (b) of this last proposition suggests to distinguish n — 1 types of hyper-
surfaces: those that are 0-gapfree, those with 0-gaps but with no 1-gaps, etc., up
to those with (n — 2)-gaps but with no (n — 1)-gaps.

We label them as (n — 1)), (n — 1)(1),. - -,(n — 1) (n—2)-hypersurfaces.

In fact, the concept of minimality itself can provide a complete characteriza-
tion of a digital hypersurface, as follows.

Definition 3. A set S C (Cg,") is a k*-hypersurface, for k =0,1,2,...,n—1, if
S is k-minimal in C,.

Theorem 1. (a) S is an (n — 1) -hypersurface (0 < i < n — 2) iff it is an
1" -hypersurface.
(b) S is an (n — 2)-hypersurface iff it is an (n — 1)*-hypersurface.

We remark that a k*-hypersurface cannot have “singularities,” which may
appear, e.g., in case of a 3D “pinched sphere” or a “strangled torus.” In fact,
surfaces of that kind would either be non-simple or three-dimensional or both,
so they would not satisfy our definition of surface.

In summary, we have two types of hypersurfaces: (n — 1) and (n — 2) hy-
persurfaces, as the (n — 1) hypersurfaces can be classified (with respect to their
gaps) as (n — 1)-hypersurfaces of types 0,1,2,...,n — 2, respectively.



Indeed, one can consider more general digital hypersurfaces which are not
covered by the above definitions. If, for instance, we do not require in Definition
2 the manifold Bf(z) N S to be proper, we may have a hypersurface where
subsets can be of varying hypersurface type. We are interested (see next section)
in combinatorial properties of the considered hypersurfaces. More general digital
hypersurfaces would be just “mixtures” of patches of hypersurfaces of some of
the considered types, and their combinatorial study would lose its focus.

Now let I" be a closed surface in R™ and J T (I") its outer Jordan digitization.

Definition 4. Let Dy(I") be the family of all subsets of J*(I') that are k-
minimal, for some 0 < k < n — 1. We call a set of n-cells Dy(I") € Dy(I")
a k-digitization of I' if the Hausdorff distance Hy(I', V(D (I"))) is minimal,
over all the elements of Dy (I).

Proposition 4. Any k*-hypersurface is a k-digitization of certain hypersurface
I.

Examples of k-digitization (and thus of k*-hypersurfaces) were actually al-
ready provided by the following theorem from [4]:

Theorem 2. A digital hyperplane P* defined by P* = P*(b,ay,as,...,a,,w) =
{rezZr-% < bJrZ?:laixi <gh wherew:Z?zkHai, 0<k<n-—1,isa
k-digitization of the hyperplane v : b+ a1x1 + agxs + ... + apxy, = 0.

The above result is related to a theorem from [2] that characterizes the gaps of
analytically defined digital hyperplanes. Specifically, let P* be a digital hyper-
plane as in Theorem 2. If w < a,,, then P* has (n — 1)-gaps; for 0 < k < n, if
D1 @ S w < Y0 aj, then P* has (k — 1)-gaps and is k-separating; and if
w> 3" a;, P*is gapfree.

3.3 Hypersurface Digitization Matroid

In this section we briefly investigate the structure of digital hypersurfaces from
a combinatorial point of view.

Let E be a finite set and F a family of subsets of E. Recall that (E,F) is a
matroid” if the following axioms are satisfied:

(1) 0eF,

(2) if F5» € F and Fy C F5, then F} € F,

(3) if Fy, Fy» € F and card(Fy) < card(F3), then there is an element z € Fy
such that Fy U{z} € F.

The last condition can be substituted by the following:
(3') all maximal elements of F have the same cardinality.

" For getting acquainted with matroid theory the reader is referred to the monograph
by Welsh [32].



Theorem 3. For a given k, 0 < k < n — 1, all k-digitizations of a closed
hypersurface I' and their subsets form a matroid.

We call it the hypersurface digitization matroid. This theorem demonstrates in
particular the possibility to generate closed digital hypersurfaces by greedy-type
algorithms.

4 Good pairs

As already mentioned, studies on digital surfaces naturally interfere with studies
on good pairs of adjacency relations. An important motivation for studying good
pairs is seen in the possibility that some results of digital topology may hold
uniformly for several pairs of adjacency relations. Thus one could obtain a proof
which is valid for all of them by proving a statement just for a single good pair
of adjacencies.

4.1 Variations of the Notion “Good Pair”

Different approaches in the literature lead to diverse proposals of good pairs
(note: they may be called differently, but address the same basic concept). It
seems to be unrealistic to define good pairs in such a way that this will cover all
previous studies. Therefore, instead of looking for a universal definition, it might
be more reasonable and useful to propose and study a number of definitions
related to the fundamental concepts of digital topology. The rest of this section
reviews several possible approaches.

Good pairs in terms of strictly normal digital picture spaces have been con-
sidered in [17]. In that framework, it is shown that adjacencies (1,0) and (0,1) in
2D, and (2,0), (0,2), (2,1) and (1,2) in 3D define strictly normal digital picture
spaces, while (1,1) and (0,0) in 2D and (2,2), (1,1), (0,0), (1,0) and (0,1) in 3D
do not.

In [14] good pairs have been defined for 2D as follows: (1, (2) is called a
good pair in the 2D grid iff (for (i,k) € {(1,2),(2,1)}) any simple §;-curve
Br-separates its (at least one) Si-holes from the background and any totally [;-
disconnected set cannot [i-separate any (g-hole from the background. It follows
that (1,0) and (0,1) are good pairs, but (1,1) and (0,0) are not. [14] does not
generalize this definition to higher dimensions, but suggests the use of («, 3)-
separators for the case n = 3. (M C Z3 is called an («, 3)-separator iff M is
a-connected, M divides Z3\ M into (exactly) two 3-components, and there exists
ap € M such that Z3\ (M \ {p}) = (Z*\ M) U {p} is B-connected.) («, 3)-and
(8, a)-separators exist for (a, 8) = (0,2),(2,0), (1,2), (2,1), and (1,1). However,
there are some difficulties with the case (o, 8) = (1,1), as an example from [14]
illustrates. Further “strange” examples of separators in Z* suggest to refine this
notion.

Another approach is based on the following digital variant of the Jordan
curve theorem due to A. Rosenfeld [26].



Theorem 4. If C is the set of points of a simple closed I1-curve (0-curve)

and card(C) > 4 (card(C) > 3), then C has exactly two 0-components (1-
components).

This theorem defines good pairs of adjacency relations in 2D, as follows. (a, () is
a 2D good pair if for a simple closed a-curve C, C has exactly two B-components.
It follows that (1,0) and (0, 1) are good pairs. It is also easy to see that (1,1)
and (0,0) are not good pairs.

This above definition can be extended to 3D, as follows: (a, 3) is a 3D good
pair if for a simple closed a-surface S, S has exactly two [3-components. We
remark that in view of the definition of an a-surface from Section 3.2, a 0-digital
surface would not be a true surface and should not be called “surface” since it
would have 2-gaps. In fact, 3D digital surfaces need to be at least 1-connected.
Thus (0,2) would not be a good pair in the framework of the Jordan surface
theorem approach.

Another approach is based on separation through surfaces (see, e.g., [11, 14]).

Theorem 5. A simple closed 1-curve (0-curve) vy 0-separates (1-separates) all
pizels inside v from all pizels outside v. More precisely, we have that a simple
closed 1-curve has exactly one 0-hole and a simple closed 0-curve has exactly one
1-hole. A simple closed 1-curve 0-separates its 0-hole from the background and
a simple closed 0-curve 1-separates its 1-hole from the background.

Based on this last theorem, we can give the following definition: («, ) is
called a 2D good pair if any simple closed a-curve (-separates its 3-holes from
the background.

Clearly, (1,0) and (0,1) are good pairs, while (0,0) is not a good pair. Note
that here also (1,1) is a good pair, as distinct from the case of good pairs defined
trough Jordan curve theorem.

Let us mention that in a definition from [14] both (a, ) and (8, «) are
required to satisfy the conditions of a good pair. To avoid confusion, we suggest
to treat this case as a special event: («, 3) is called a perfect pair in 2D if any
simple closed a-curve 3-separates its B-holes from the background and any simple
closed B-curve a-separates its a-holes from the background.

In what follows we consider good pairs defined by this last approach that
seems the most reasonable to the authors.

4.2 Good Pairs for the Space of n-Cells

Definition 5. (a, ) is called a good pair of adjacency relations in C;”) if any
closed a-hypersurface 3-separates its (3-holes from the background.

Here « is a (possibly composite) label of the hypersurface type in accordance
with our hypersurface classification above, while § is an integer representing an
adjacency. More precisely, « = (n — 1), 0 < i <n—2or a = n — 2, and
0<p<n—1.



Theorem 6. There are 2n — 1 good pairs in the n-dimensional digital space:
((n = 1)@),d) for0 <i <n—2, (n—1)u,n—1) for 0 <i < n—2, and
(n — 2,n — 1), where the first component of such a pair labels the type of the
hypersurface and the second is an adjacency relation.

Alternatively, the good pairs are (i*,i) for 0 <i<mn—1, and (i*,n —1) for
0<i1<n—2.

Note that in a pair of the form ((n —1)(;),7), 0 <4 < n — 1 the first component
also specifies an adjacency relation corresponding to the type of the hyperplane.

We illustrate the last theorem for n = 2 and n = 3. For n = 2, the good pairs
are (1(0y,0), (1), 1), and (0%,1), which correspond to (1,0), (1,1), and (0,1),
respectively. See Figure 3.

Fig. 3. Illustration to good pairs in 2D: (0, 1) (left), (1,1) (middle), and (1, 0) (right).

For n = 3 the good pairs are (2(,0), (2(1),1), (2(0),2), (201),2), and (1*,2),
which correspond to (2,0), (2,1), (2,2), (2,2), and (1,2), respectively. Note that
pair (2,2) is counted twice since there are two different structures corresponding
to it.

5 Concluding Remarks

In this paper we proposed several equivalent definitions of digital curves and
hypersurfaces in arbitrary dimension. The definitions involve properties (such as
one-dimensionality of curves and (n — 1)-dimensionality of hypersurfaces) that
characterize them to be digital analogs of definitions for Euclidean spaces. Fur-
ther research may pursue designing efficient algorithms for recognizing whether
a given set of n-cells is a digital curve or hypersurface.

We also proposed a uniform approach to studying good pairs defined by
separation and, in that framework, obtained a classification of good pairs in
arbitrary dimension. A future task is seen in extending the obtained results
under other reasonable definitions of good pairs.
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