
A revision of a 3D Skeletonization algorithm

Mian Pan and Gisela Klette

Department of Computer Science University of Auckland
Centre of Image Technology and Robotics (CITR)

Tamaki Campus, Morrin Road, Building 731, Glen Innes,Auckland
New Zealand

Abstract

This report is about a project that started with studying and testing an existing
program by K.Palagyi et al. published in [4]. It provides several combinations
of preprocessing steps with the traditional thinning approach. This study lead
to a proposal of a new characterization of non-simple voxels, which has been
implemented and proved to be efficient for reducing the running time of the
algorithm. Altogether, we suggest a revision of the test of voxels to be simple
in the discussed 3D skeletonization algorithm.

1 Introduction

Modern imaging techniques allow the generation of large 3D volume data sets,
captured at high resolution, such as MRI and CT data. New ways must be
found to maximize the information acquired from data sets while minimizing
the cost of interacting with it. Skeletonization of such a 3D volume is a well-
known preprocessing step to extract object features for complex classification
methods. The literature contains a large variety of algorithms for finding 3D
skeletons. Most of them can be divided into two categories of thinning based
methods or distance transform based methods. Thinning is an iterative method
that first detects simple points in components satisfying specific constraints, and
then converts those into background points. A thinning procedure will not stop



Figure 1: The neighborhood of a voxel p. N6(p) includes the central voxel p
and six 6-adjacent voxels which are U, D, N, S, E and W. N18(p) includes N6(p)
and the voxels marked with ”•”. N26(p) includes N18(p) and the voxels marked
with ”◦”.

until no further simple point can be found. The result of thinning is a skeleton
that preserves the topology of the image.

In this report, we discuss an algorithm proposed by Palagyi et al. [3], which
is based on a 6-subiteration thinning method with options to calculate anchor
points based on a special distance transform or based on a shrinking algorithm.

The notion of a simple point (pixel or voxel) is of basic importance for thinning
algorithms. A point is simple iff the change of its value does not change the
topology of the image, in the sense that there is a bijective map between all
components before and after thinning. In a binary 3D image a voxel has 26
neighbors. Therefore, it has 226 possible configurations in its neighborhood.
Many thinning techniques use lookup tables with 226 entries and an actual
configuration will be compared in order to determine simple voxels. We use
instead the characterization of simple points based on the concept of attachment
sets. It turns out that this approach simplifies the implementation and saves
running time.

2 Basic Notions, Simple Voxels

2.1 Basic Notions

A digital image I is a function defined on a discrete set C, which is called the
carrier of the image. The image carrier is defined on an orthogonal grid. In the
grid point model, the vertices of a cube in a 3D volume are 3D voxel locations
with integer coordinates.

We use the grid cell model in order to introduce the notion of the I-attachment
set. In the grid cell model, a voxel is represented by a 3-cell. The frontier of p
is an union of i-cells (for i = 0, 1, 2). Kong [5] defined the I-attachment set as
follows:

2



Definition 1. [5] The I-attachment set S of p in I is the set of all points of an
α-cell, α ∈ {0, 1, 2} on the frontier of p that also lies on an α-cell of the frontier
of at least one other point q with I(p) = I(q), p 6= q.

Kong [5] also proposed Schlegel diagrams to represent S (see Figure 3).

2.2 Characterizations of Simple Voxels

There are formally different definitions of simple voxels in the literature. Ac-
tually, most of them are equivalent. We introduce two definitions of a simple
voxel for (26,6) pictures. Theorem 1 is formulated in terms of the grid point
model.

Theorem 1. [3] An object point p is simple in picture (Z3, 26, 6, B) if and
only if all the following conditions hold:

Figure 2: (a) N6(p) (b) N18(p) (c) N26(p)

Figure 3: (a) The voxel in the middle and (b) its I-attachment set S in form of
a Schlegel diagram.

3



1. The set N26(p) ∩ (B \ {p}) is not empty (i.e., p is not an isolated point);

2. The set N26(p) ∩ (B \ {p}) is 26-connected (in itself);

3. The set (Z3 \B) ∩N6(p) is not empty (i.e., p is a border point);

4. The set (Z3 \B) ∩N6(p) is 6-connected in the set (Z3 \B) ∩N18(p).

In Theorem 2 we use the grid cell model.

Theorem 2. [6] An object point p in image I is simple if and only if the
I-attachment set S and the complement of S (S̄) are connected and the Euler
number of the I-attachment set is 1 (ε(S(p)) = 1).

The Euler number of the I-attachment set is defined by: ε(S(p)) = n0−n1 +n2,
where n0 is the number of 0-cells in S, n1 is the number of 1-cells in S and n2

is the number of 2-cells in S.

Based on these two theorems, we conclude that a simple voxel p has following
properties:

1. An object voxel p must be 6-adjacent to at least one white voxel. That
means p is a border voxel.

2. There is one 26-component of object voxels in the set (N26(p) \ p)

3. There is one 6-component of white voxels in the set (N18(p) \ p)

4. S is not empty and connected.

5. S̄ is not empty and connected.

6. If an object voxel p is simple, then ε(S(p)) = 1. However, if ε(S(p)) = 1,
p might not be simple. See an example in Figure 4.

In Figure 4, the number of 0-cells is 6 (n0 = 6). The number of 1-cells is 5
(n1 = 5). The number of 2-cells is 0 (n2 = 0). The Euler value (ε) is equal to
1. However this voxel is not simple because S and S̄ are not connected.

An object voxel p is called end point if there is only one object voxel in (N26(p)\
p). An object voxel p is called curve point if p is not simple and there are exactly
two object voxels in (N26(p) \ p). An object voxel p is called branching point if
p is not simple and there are more than two simply connected components in S.
We use a thinning algorithm as usual for the algorithm that iteratively deletes
simple voxels that are not end points. A shrinking procedure deletes all simple
points and the result of shrinking is a single voxel for a 3D simply connected
object. An object voxel is called anchor point if the voxel is determined in
a preprocessing step and the image value stays constant during the following
thinning procedure.

4



Figure 4: ε(S(p)) = n0 − n1 + n2 = 1, where n0 = 6, n1 = 5, n2 = 0 and p is
not simple.

Figure 5: Voxels are not simple and ε(S(p)) = 1 for N6 = 6.

3 Adjustments and Characterizations

In this project, we use Theorem 2. The basic idea is to identify voxels that are
not simple.

1. We calculate ε(S(p)). If ε(S(p)) 6= 1, then p is not simple.

2. If ε(S(p)) = 1, then we determine all cases where S is not connected, or
S̄ is not connected.

Let N6 be the number of white voxels which are 6-adjcent to p. All configurations
for N6 = 6, ε(S(p)) = 1 and p is not simple are shown in Figure 5.

Proposition 1: Let N6 = 6. An object voxel p is not simple and ε(S(p)) = 1
iff the I-attachment set S consists of two or three disjoint connected subsets of
points. For two sets, one of these sets is a simple curve in the Euclidian space,

5



and the other set is a single point or an arc in the Euclidian space. For three
disjoint sets, one of these sets is a non-simple curve in the Euclidian space, and
the other sets are single points in the Euclidian space.

Proof. Let p be a black voxel. Let X be a subset of S (X ⊆ S). If X is
a simple curve in the Euclidian space, then ε(X(p)) = 0 (n0 = n1, n2 = 0)
(See Figure 6/a). If X is a single point or an arc in the Euclidian space, then
ε(X(p)) = 1 (n0 − n1 = 1, n2 = 0) (See Figure 6/a). If X is a non-simple
curve in the Euclidian space, then ε(X(p)) ≤ −1 (n0 − n1 ≤ −1, n2 = 0)(See
Figure 6/b/c).

1. We assume p is not simple and ε(S(p)) = 1 and n2 = 0. Based on
Theorem 2 we know that the I-attachment set S or the complement of S
(S̄) are not connected. ε(S(p)) = 1 if

∑3
i=1 ε(Xi(p)) = 1. If S consists

only of one such subset then ε(X(p)) = 1 if n0 − n1 = 1. But then S
and S̄ are connected. This is a contradiction to our assumption. For two
nonempty subsets X1 and X2 we have only the option that ε(X1(p)) = 1
and ε(X2(p)) = 0. X1 can only be a 0-cell or an arc. For X2 follows that
n0 = n1 and this is a curve. For three nonempty subsets we have only
the option that n0 − n1 ≤ −1 for one subset and then there must be two
others with ε(X(p)) = 1. This is only possible if one subset constitutes a
non-simple curve and the other two are both single points.

2. Now we assume that S consists of two or three disjoint connected subsets
of points. For two sets, one of these sets is a simple curve in the Euclidian
space, and the other set is a single point or an arc in the Euclidian space.
For three disjoint sets, one of these sets is a non-simple curve in the Eu-
clidian space, and the other sets are single points in the Euclidian space.
It follows immediately that p is not simple and the ε(S(p)) = 1.

In conclusion, for N6 = 6, all possible cases for a non-simple voxel p and
ε(S(p)) = 1 are covered in Figure 5.

Figure 6: (a)S consists of two disjoint sets. X1 is a simple curve (ε(X1(p)) = 0,
n0 = n1, n2 = 0) and X2 is an arc (ε(X2(p)) = 1, n0 − n1 = 1, n2 = 0) (b)S
is a non-simple curve and (ε(S(p)) = −1, n0 − n1 = −1, n2 = 0) (c)S is a
non-simple curve and (ε(S(p)) = −2, n0 − n1 = −2, n2 = 0)

6



Figure 7: Voxels are not simple and ε(S(p)) = 1 for N6 = 5

For N6 = 5, all cases for a non-simple voxel p and ε(S(p)) = 1 are shown in
Figure 7. For N6 = 1, 2, 3, 4, only one case meets this condition, which is shown
in Figure 8.

We can give the following preposition:

Proposition 2:Let 1 ≤ N6 ≤ 6, N26(p) ∩ B(p) > 1. An object voxel p is not
simple iff ε(S(p)) 6= 1 or ε(S(p)) = 1 and S includes an isolated 0-cell or an
isolated 1-cell or S̄ includes an isolated 2-cell.

As a conclusion we can simplify the algorithm for the identification of non-
simple voxels in the following way: Let N26(p) ∩B(p) > 1.

1. Calculate the Euler number ε(S(p)).

2. If ε(S(p)) 6= 1 then we keep p.

3. If ε(S(p)) = 1 then do the following steps.

Figure 8: Voxels are not simple and ε(S(p)) = 1 for N6 = 1, 2, 3, 4

7



4. Find a single isolated point (0-cell) in S.

5. Find an isolated arc (1-cell) in S.

6. Find a simple curve in S. That is, find an isolated 2-cell in S̄.

Palagyi [3] identifies simple points in his program based on checking the con-
nectivity (Theorem 1). In his code, each object voxel gets a label. If all object
voxels in N26(p) \ p have the same label, then all object voxels are 26-connected.
A similar algorithm is used to check that all white voxels in N6(p) \ p are 6-
connected in N18(p) \ (p). For the details of the implementation, please see [3].
We replaced the part of the code with our method and applied both algorithms
for the same examples in a computer with 500Hz CPU and 192M RAM. We
identified exactly the same number of simple points. Our method is nearly four
times faster than the method proposed in [3].

4 Algorithm for 3D Skeletonization

Thinning is described as boundary peeling which iteratively peels off the bound-
ary layer by layer by identifying and removing the simple voxels with additional
conditions (for example the end point condition). Changing the image values
of simple voxels does not affect the topology of the object. Typical thinning
algorithms work in sequential order or in parallel order. A local operation on
an object voxel p of an image I is called sequential if the decision whether p
holds the conditions or not is based on the new values of its neighbors, which
have already been processed, and its succeeding neighbors in the defined raster
sequence. A local operation on an object voxel p of an image I is called parallel
if the decision is only based on its neighbor’s original values.

We analyzed the C-code provided by K.Palagyi on the internet. The new
value of each voxel depends on its 3 × 3 × 3 neighborhood. An object voxel
changes to a white voxel in one subiteration if and only if its 3 × 3 × 3 neigh-
borhood matches at least one of the given masks (lookup table). The masks are
constructed for each subiteration according to the six directions.

4.1 Set up lookup tables for checking simplicity

The code uses two lookup tables. The first set of masks is called thin table. The
thin table is used to identify voxel configurations that are simple and not end
points. The second table is called shrink table. The shrink table is only used for
checking if a corresponding voxel is simple. In the provided code, shrinking is
done to generate anchor points in a preprocessing step. The aim of shrinking
is to convert a simply-connected object into a single point and a not simply
connected object into a Jordan curve for 2D slices.

8



4.2 3D sequential 6-subiteration thinning algorithm

The code is an implementation of a sequential 3D 6-subiteration thinning al-
gorithm proposed in [3,4]. The pseudo code below is a representation of the
provided code. The variable surfaceVoxelList is a Linklist storing all the sur-
face voxels in six directions. The variable list is a Linklist storing the surface
voxels in one direction. According to the pseudocode in [3], the object voxel
p will be added into list if p is a simple but not end point. In DetectBorder-
Points() method of provided code, p is added into list as long as it is a border
voxel.

void DetectBorderPoints(linkedlist *list, char *image)
{

for each point p in surfaceVoxelList do
if p is border voxel in direction i then

//Change here
---> //if p is simple and not end in direction i then

add p into list;
}
int iteration_step(char *image)
{

int modified = 0;
linkedlist list;
for each direction i do
{

DetectBorderPoints(&list, image);
while list is not empty do
{

p = GetFromList(&list);
if p is simple and not end then
{

set p to 0;
modified++;
update surfaceVoxelList;

}
}

}
return modified;

}
void sequential_thinning(char *image)
{

initialize thin table;
initialize surfaceVoxelList;
modified = 1;
while modified > 0 do

modified = iteration_step(image);
}

9



We used the 2D image in Figure 9/a to create a 3D object shown in Figure 9/b.
The image in Figure 9/c is the skeleton generated by the provided code. Fig-
ure 9/d is the skeleton generated by the adjusted code. Figure 9/d is a good
representation of the shape. The reason is that simplicity of a border voxel
changes depending on its already processed neighbors. If all the border vox-
els in one direction are checked in the deletion procedure, some border voxels
become deletable or undeletable due to its processed neighbors. In fact, the
border voxels becoming deletable during the deletion procedure should be pro-
cessed in the next iteration step in order to keep the shape. Therefore, for one
subiteration step, only those simple and not end voxels will be collected to go
through the following sequential deletion procedure. In this way, the skeleton
will be forced to be close to the central axis of the original object. Each subit-
eration step has two phases. The fist phase is to collect all simple and not end
voxels in its corresponding direction. The second phase will re-check whether
these collected voxels are the simple and not end points when deleting them
sequentially. Figure 10 shows the result of a different example.

4.3 Find anchor voxels

This code provides a number of different options to calculate skeletons. There
is the possibility to combine the advantage of topology preserving thinning with
methods based on the distance transform. Two ways are implemented to find
anchor points in the provided code as preprocessing steps. One option calculates
anchor points based on distance transform.

Figure 9: (a) 2D image (b) 3D object constructed by a. (c) Skeleton generated
without considering the condition that the voxel is a simple and not end point
(d) Skeleton generated with the added condition

10



Figure 10: 3D object and the skeleton of this object

Figure 11: (a) Forward (3, 4, 5)-chamfer mask (b) Backward (3, 4, 5)-chamfer
mask

Definition 2: Let 〈I〉 ⊆ I and 〈Ī〉 ⊆ I. For any grid metric dα, the dα distance
transform of I associates with every voxel p of 〈I〉 ⊆ I the dα distance from p
to 〈Ī〉 ⊆ I.

K.Palagyi uses the (3, 4, 5)-chamfer distance transform to find anchor points.
Two masks are created according to the distance weights for all 26 neighbors
(see Figure 11). (3, 4, 5)-chamfer distance transform consists of a forward scan
and a backward scan. In a forward scan distance values are calculated applying
the first mask (see Figure 11/a). It starts from the top left corner of the top
slice, then along the direction shown in Figure 11/a. A backward scan follows
using the second mask in the opposite direction shown in Figure 11/b. Within
the minimum distance field generated by (3, 4, 5)-chamfer distance transform,
the voxels with maximum values in its local neighborhoods are anchor voxels.

The second option uses the shrink table for 2D images to generate the anchor
points in a preprocessing step.

1. Find the lowest and the highest image slice with object voxels, say m and
n, and then shrink them to get the voxels as the anchor points.

2. Start from m and n, find the first slice in upward and downward direction

11



Figure 12: Use anchor points generated by either chamfer distance transform
or shrink. (a) Skeleton generated without checking the end point condition (b)
Skeleton generated by checking the end point condition

respectively, say m1 and n1, which would contain only one object voxel
after shrinking. The results of the shrinking procedures per slice i (i ∈
[m,m1], i ∈ [n, n1]) are anchor points.

If anchor points were calculated in a preprocessing step based on 2D slices then
an additional thinning is used to reduce the number of voxels for the following
procedure. A thinning will be applied on the original image with the conditions
that a object voxel p can be deleted if it is not an anchor point and p is simple
and not an end point. Because the result is not a thin skeleton, a normal
thinning follows.

5 Conclusion

We tested the 3D sequential 6-subiteration thinning algorithm for simple sym-
metric 3D objects. The program provides a large number of different combina-
tions of preprocessing steps. For complex medical images further testing of all
given preprocessing options is required to remove noise.

We changed the actual thinning procedure as the central part of the program
based on the propositions in this report. We used the characterization of non
simple points based on the grid cell model and we changed the test for voxels to
be simple or not. We identified the same simple points as the original version
of the program. The running time of the algorithm was 4 times faster.

6 Acknowledgment

We thank K.Palagyi for providing the program code of the sequential 3D 6-
subiteration thinning algorithm.

12



7 Reference

[1] G. Klette, ”A Comparative Discussion of Distance Transformations and
Simple Deformations in Digital Image Processing”, Machine Graphics &
Vision, 12: 235-256, 2003.

[2] G. Klette, ”Simple Points in 2D and 3D Binary Images”, In: CAIP 2003,
LNCS 2756, pages 57-64, Springer Berlin, 2003.

[3] K. Palagyi, E. Sorantin, E. Balogh, A. Kuba, C. Halmai, B. Erdohelyi
and K. Hausegger, ”A Sequential 3D Thinning Algorithm and Its Medical
Applications”, IPMI 2001, LNCS 2082, pages 409-415, Springer Berlin,
2001.

[4] K. Palagyi, A. Kuba, ”A 3D 6-subiteration thinning algorithm for extracting
medial lines”, Pattern Recognition Letters, 19: 613-627, 1998.

[5] T. Y. Kong, ”Topology-Preserving Deletion of 1’s from 2-, 3- and 4-Dimensional
Binary Images”, DGCI 1997, pages 3-18, Springer Berlin, 1997.

[6] C. J. Gau and T. Y. Kong, ”Minimal Non-Simple Sets in 4D Binary Images”,
Graphical Models, 65: 112-130, 2003.

13


