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Abstract

We consider the problem of estimating the Shannon capacity of a circulant graph Cn,j of degree
four with n vertices and chord length j, 2 ≤ j ≤ n, by computing its Lovász theta function θ(Cn,j).
Our interest in this problem is driven by possible applications to error-free communication of data
describing the structure of a digital line. The latter can be represented in terms of spirographs

[12], which, as a matter of fact, are circulants of degree four. We present an algorithm for θ(Cn,j)
computation that takes O(j) operations if j is an odd number, and O(n/j) operations if j is even.
On the considered class of graphs our algorithm strongly outperforms the known algorithms for
theta function computation.
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1 Introduction

In the present paper we consider the problem of estimating the Shannon capacity of a circulant graph
of degree four by computing its Lovász theta function. In a famous paper of 1956 [26] Shannon first
studied the amount that an information channel can communicate without error. He introduced the
notion of zero-error capacity of a graph, known thereafter as the Shannon capacity. It was understood
quite early that the exact determination of the Shannon capacity is a very difficult problem, even
for small and simple graphs (see [15, 25]). In 1979 Lovász [20] introduced a function θ(G) with the
aim of estimating the Shannon capacity. Despite a lot of work in the field, very little is known about
classes of graphs for whose theta function either a formula or a very efficient algorithm is available.

A sample for such a result is the Lovász’s formula θ(Cn) =
n cos π

n

1+cos π
n

for an odd cycle Cn with n nodes

[20]. Recently Brimkov et al. [11] generalized this last result by obtaining formulas for θ(G) for the
special cases of circulant graphs of degree four with chord length two and three.

Our interest in Shannon capacity and Lovász theta function of circulant graphs is particularly
driven by possible applications to error-free communication of data describing the structure of a
digital line, the latter being the most fundamental primitive in computer graphics and image analysis.
Computer representation of digital lines has been an active research topic for nearly half a century
(see the recent survey [24] and the bibliography therein). In [12] Dorst and Duin have developped
the theory of spirographs in order to establish links between digital straight lines and number theory.
Spirograph is a diagram that models the distribution of the integer points constituting a digital line.

We observe that the spirographs appear to be circulant graphs of degree two or four. Various
other applications of circulant graphs are known in counting and combinatorics [23], as well as in
telecommunication networks, VLSI design, and distributed computing [9, 18, 19, 21]. Low-degree
circulants provided a basis for some classical parallel and distributed systems [10, 27] as well as for
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certain data alignment networks for complex memory systems [28]. Specifically, circulant graphs of
degree four have been used in the design of local networks and interconnection subsystems [1, 9].
Recent work [7] presents a class of such graphs with minimal topological distances. These graphs
(called Midimew networks) have been used as a basis for constructing an optimal interconnection
network for parallel computers with a very high degree of fault-tolerance [7], as well as for designing
networks for massively parallel computers [29] or optimal VLSI [16].

In the present note we use geometric approach to construct a very efficient algorithm for com-
puting the theta function of arbitrary circulant graphs of degree four. For a circulant graph Cn,j with
n vertices and chord length j, 2 ≤ j ≤ n, the algorithm performs O(j) operations when j is odd and
O(n/j) operations when j is even, and appears to be strongly superior to the known algorithm whose
time complexity is of the order O(n4) [3].

The paper is organized as follows. In the next section we recall some graph-theoretic notions
and results to be used in the sequel. In Section 3 we define spirographs and estimate their cardinality.
In Section 4 we introduce some geometrical constructions used in designing our algorithm. The basic
results are presented in Section 5. We conclud with some remarks in the final Section 6.

2 Some graph-theoretic notions and facts

Here we recall some well-known definitions from graph theory. (See [8] for details.) Let G(V,E) be
a simple graph. The complement graph of G is the graph Ḡ(V, Ē), where Ē is the complement of E
to the set of edges of the complete graph on V . An automorphism of the graph G is a permutation
p of its vertices such that two vertices u, v ∈ V are adjacent iff p(u) and p(v) are adjacent. G is
vertex symmetric if its automorphism group is vertex transitive, i.e., for given u, v ∈ V there is an
automorphism p such that p(u) = v. By ω(G) and χ(G) we denote the clique and the chromatic
numbers of G, respectively. For any graph G we have ω(G) ≤ χ(G). We also have the following
classical result.

Theorem 1 [8] A connected simple graph G with maximal degree d is d-colorable, unless d 6= 2 and

G is a (d + 1)-clique, or h = 2 and G is an odd cycle.

An independent set of G is a set of vertices no two of which are adjacent. The cardinality of a maximal
independent set is called the independence number of G and denoted α(G). A graph G ′(V ′, E′) is an
induced subgraph of G(V,E), if E ′ contains all edges from E that join vertices from V ′ ⊆ V . G is
perfect if ω(GA) = χ(GA), ∀A ⊆ V , where GA is the induced subgraph of G on A.

An n × n matrix A = (ai,j)
n−1
i,j=0 is called circulant if its entries satisfy ai,j = a0,j−i, where the

subscripts belong to the set {0, 1, . . . , n−1} and are calculated modulo n. In other words, any row of a
circulant matrix can be obtained from the first one by a number of consecutive cyclic shifts, and thus
the matrix is fully determined by its first row. A circulant graph is a graph with a circulant adjacency
matrix. By Cn,j we will denote a circulant graph of degree four, with vertex set {0, 1, . . . , n− 1} and
edge set {(i, i + 1 mod n), (i, i + j mod n), i = 0, 1, . . . , n− 1}, where 1 < j ≤ n−1

2 is the chord length.
See for illustration Fig. 2a presenting the circulant graph C13,2. The Midimew networks mentioned in
the Introduction are special circulant graphs of the form CN,2k+1, where N = k2 + (k + 1)2 and k is
the graph diameter.

Now consider a graph G whose vertices are letters from a given alphabet and where adjacency
indicates that two letters can be confused. In this setting, the maximal number of one-letter messages
that can be communicated without danger of confusion equals the independence number α(G). Then
the maximal number of k-letter messages that can be safely communicated is α(Gk), where Gk is
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Figure 1: a) Digitization of a ray with a slope α = 3/8 together with the level lines. b) The corre-
sponding spirograph S(3/8, 13).

the k-th power of G. It follows that α(Gk) ≥ α(G)k , as equality does not hold, in general [20]. The

Shannon capacity of G is then defined as the limit Θ(G) = limk→∞
k

√

α(Gk). It satisfies Θ(G) ≥ α(G),

where equality does not need to occur. Shannon proved that if G is perfect, then Θ(G) = α(G). As
already mentioned, in order to estimate Θ(G), Lovász devised a function θ(G), known thereafter also
as the Lovász number. Several equivalent definitions of the Lovász number are available [17]. We
present here the one which requires only little technical machinery. Given a graph G, let A be the
family of matrices A such that aij = 0 if vi and vj are adjacent in G. Let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A)

be the eigenvalues of A. Then θ(A) = maxA∈A{1− λ1(A)
λn(A)}.

Combining the fact that Θ(G) ≤ θ(G) with the easy lower bound Θ(C5) ≥
√

5, Lovász was
able to determine the capacity of the pentagon C5, which turnes out to be

√
5. We know very little

about the Shannon capacity of other non-perfect graphs. For instance, Θ(C7) is still unknown. θ(G),
however, is computable in polynomial time with arbitrary precision, although being “sandwiched”
between the clique number ω(G) and the chromatic number χ(G), whose computation is NP-hard for
general graphs. More precisely, we have ω(G) ≤ θ(Ḡ) ≤ χ(G). Because of this remarkable property
and due to the relations to communication issues, the Lovász number is a subject of active study. For
various results and applications see the surveys by Knuth [17] and Alizadeh [2] and the bibliography
therein. See also [4, 5, 6, 13, 14] for a sample of the diversity of results and applications of Θ(G) and
θ(G). Here we list a simple proposition for future reference.

Proposition 1 (see [17]) For every graph G with n vertices, θ(G) · θ(Ḡ) ≥ n. If G is vertex sym-

metric, then θ(G) · θ(Ḡ) = n.

3 Digital lines and spirographs

Let γα,β = {(x, αx + β) : 0 ≤ x < +∞} be a ray with a slope α and intercept β. Digitization of γα,β

over the integer grid is defined as the set of integer points Iα,β = {(n, In) : In = bαn+β +0.5c, n ≥ 0}.
Because of the symmetry of the grid, one can assume that 0 ≤ α ≤ 1. Straight line digitization is
defined analogously. The integer points of a digital ray Iα,β with rational α = p/q belong to level

lines whose number equals α’s denominator q, where p/q is an irreducible fraction (see Figure 1a). It
is well-known that a digital line/ray with rational coefficients is periodic with a period length q [24].
Let, for simplicity, Iα,0 be a digitization of a ray y = αx through the origin with a slope α = p/q. The
spirograph S(α, n) of Iα,0 is a set of n points on a circle with unit perimeter, marked 0, 1, . . . , n − 1
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and defined by the level lines of Iα,0 of slope α intersecting the grid lines x = 0, x = 1, . . . , x = n− 1
at grid points. We mark on the circle a first point representing the intersection point for grid line
x = 0. Then we proceed in clockwise orientation from the first vertex to a second vertex on the circle
at radial distance α representing the intersection point for the grid line x = 1, and so on. If α is
any rational number p/q, then the number of level lines, as well as their intersection points in [0, 1),
equals q. In turn, the number of different points on the circle generated through the above process is
q, as well, i.e., we obtain a spirograph S(α, n) with n = q vertices and chord length p. It is easy to
see that the so constructed spirograph is isomorphic to a circulant graph. See Figure 1b and [12] for
more details. Spirographs have been used to study the periodicity structure of digital lines as well as
to handle some problems of practical importance (e.g., to determine the accuracy of estimating the
slope and the intercept of a generating ray as a function of the length of a given digital line segment).
Shannon capacity of a digital line is the capacity of the corresponding spirograph.

We notice that not every spirograph is a circulant of degree four: in fact, any spirograph Cq,1

that corresponds to a digital line with a slope α = 1/q is a circulant of degree two, i.e., a cycle Cq.
If q is even, then Cq is perfect and its Shannon capacity and theta function equal n/2. For n odd we

have the Lovász formula θ(Cq) =
q cos π

q

1+cos π
q

. Thus we can exclude cycles from further consideration.

We also observe that not every circulant graph Cn,j with j ≥ 2 corresponds to a digital line.
However, it turns out that most of the graphs Cn,j are spirographs. More precisely, we have the
following fact.

Proposition 2 As n tends to infinity, the number of spirographs of order n is approximately 0.6 of

the number of all circulant graphs Cn,j.

Proof By the spirograph construction it follows that a circulant graph Cn,j is a spirograph of some
digital line if and only if n and j are relatively prime. Thus the number of disctinct spirographs of
order n is φ(n)

2 , where φ(n) is the Euler totient function. It is well-known that the latter tends to
6n
π2 as n approaches infinity. Thus we obtain that the number of distinct spirographs of order n is
assimptotically equal to 1

2 · 6n
π2 = 3n

π2 = (0.30396 . . .) · n ≈ 0.3n. The number of all distinct circulant
graphs Cn,j (including the cyclic graph Cn,1 = Cn) is clearly bn

2 c, from where the statement follows.
2

The algorithm for theta function computation described in the following sections applies to
circulant graphs of degree four. We notice that all circulants of order ≤ 5 except the pentagon are
perfect and their Shannon capacity is trivially determined. We also have Θ(C5,1) = θ(C5,1) =

√
5.

Thus we can consider circulant graphs of order larger than 5. It is easy to see that for circulants Cn,j

with n ≥ 6 it holds ω(Cn,j) ≥ 2 and χ(G) ≤ 4, hence 2 ≤ θ(C̄n,j) ≤ 4. Since the circulant graphs are
vertex symmetric, by Proposition 1 we obtain the bounds n/2 ≥ θ(Cn,j) ≥ n/4. In the subsequent
sections we design an efficient algorithm for the exact computation of θ(Cn,j).

4 LP formulation of θ(Cn,j) and certain subsidiary geometrical con-

structions

Taking advantage of the particular properties of circulant matrices whose eigenvalues can be expressed
in closed form, one can easily generalize the approach of [20]. Then the validity of the following minmax
formulation of the θ-function of circulant graphs of degree 4 can be derived.
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Figure 2: a) The graph C13,2. b) The polyhedral cone related to C13,2, cut at z = 2.

Lemma 1 (see [11]) Let f0(x, y) = n+2x+2y and, for some fixed value of j, fi(x, y) = 2x cos 2πi
n +

2y cos 2πij
n , i = 1, 2, . . . , n− 1. Then

θ(Cn,j) = min
x,y

max
i

{

fi(x, y), i = 0, 1, . . . , bn
2
c
}

. (1)

This is in turn equivalent to the following Linear Programming (LP) problem:

θ(Cn,j) = min{z : fi(x, y)− z ≤ 0, i = 0, 1, . . . , bn
2 c, z ≥ 0}. (2)

We now observe that the equalities f1(x, y)−z = 0, . . . , fn−1(x, y)−z = 0 define planes through the ori-
gin. Having in mind the specific coefficients of these planes in the different ortants, as well as the rela-
tions between the coefficients of two consecutive planes, one can see that the set maxi{f1(x, y), . . . , fn(x, y)}
is a polyhedral surface, namely a polyhedral cone C with its apex at the origin. The cone belongs to
the positive halfspace z ≥ 0 and the Oz axis is contained inside the cone. The faces of the cone are
portions of consecutive planes with equations z = fi(x, y), i = 1, 2, . . . , n− 1, and thus the rays of C
are intersections of neighboring planes, obtained for pair of indices i, i+1. The other intersections are
not of interest, since they all fall “below” the conic surface maxi{fi} and thus are not part of it.

A more careful analysis can show that only one of the planes forming the cone has two positive
coefficients, and only one of them has a positive coefficient for y and a negative coefficient for x. In
the other cases we may have arbitrary many planes. For example, in the ortant x ≤ 0, y ≤ 0, z ≥ 0
(i.e., if the two coefficients are negative), we may have arbitrary many planes forming the cone.

We now consider the plane f0(x, y) = n + 2x + 2y. Its intersection with the cone C produces a
new polyhedral surface. Roughly speaking, this is the upper part of the cone C, i.e., the part of the
cone above the plane f0 (see Fig. 1b). As it will turn out later, a part of the cone C will be “cut out”
and thus some of the planes (forming the faces of C) will be eliminated.

Clearly, the intersection points of the plane f0 with C are the possible candidates for solution of
the problem. The theta function is the intersection point with minimal z. Consider the intersection of
C and f0. This intersection is the boundary of some 2D convex polyhedron P (possibly unbounded).
As mentioned above, the solution is at some of the vertices of this intersection. Let this be the
point A = (x0, y0, z0) (and thus ϑ = z0). Let us now assume that we have intersected C by the
plane z = z0 (parallel to the xy-plane). The intersection is a (bounded) convex polygon Qz0 . By
construction, it follows that the polyhedron P and the polygon Qz0 intersect at a single point, i.e., the
point A = (x0, y0, z0). We will determine A using the sides of Qz0 , rather than the sides of P . Since
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the coefficients of x and y of the plane z = n + 2x + 2y are equal (indeed they are both equal to 2),
then it is not difficult to see that A will be the vertex of Qz0 , obtained as the intersection of the two
sides of Qz0 which “sandwich” the straight line in z = z0 passing through A, and with a slope of 45
degrees. These lines have equations 2x cos α + 2y cos(αJ) = z0 and 2x cos β + 2y cos(βJ) = z0, where
α = 2πi1

n and β = 2πi2
n , for some indices i1 and i2. Once i1 and i2 are known, z0 can be computed by

solving the linear system

z = 2x cos α + 2y cos(2α)

z = 2x cos β + 2y cos(2β)

z = n + 2x + 2y.

Note that one can use any horizontal intersection of the cone, since all such intersections are homothetic
to each other.

Through a more detailed analysis of the structure of the admissible region defined by the linear
constraints, in the next section we propose an efficient computation of θ(Cn,j). The general idea is
to reduce significantly the set of constraints in the LP problem (2) and then apply existing efficient
algorithms for LP in 3D (e.g., the Megiddo’s algorithm which performs in time linear with respect to
the number of constraints of the problem). We measure the complexity of a computation by counting
the number of arithmetic operations in the set S = {+,−, ∗, /, b.c, cos(·)} as a function of the number
of constraints in the three-dimensional LP problem (2).

5 Computation of θ(G)

Relying on 2, we will focus on the geometric unintuitive regularities of the polygon defined by the
lines l(k) of equation

x cos(αk) + y cos(jαk) = 1, (3)

with αk = 2π
n k. Let a(k) = 1/ cos(αk) and b(k) = 1/ cos(2πkj/n) be their x and y coordinates (axes

cuts) respectively. We will refer to angle αk as to the angle of line l(k). We distinguish two cases: j
even and j odd.

5.1 Odd chord lengths

As a first result let us prove the following lemma for arbitrary circulant graphs. It provides an
immediate solution to the case of Cn,j with n even and j odd.

Lemma 2 Let C(n; j1, j2, . . . , jk) be a circulant graph of n vertices and chord lengths j1, . . . , jk with

2 < j1 < . . . < jk. Assume that n is even and all the chord lengths ji are odd. Then C(n; j1, . . . , jk)
is perfect and θ(C(n; j1, . . . , jk)) = n/2.

Proof Since every circulant graph is vertex symmetric we have

θ(C(n; j1, . . . , jk)) · θ(C̄(n; j1, . . . , jk)) = n.

Thus it is enough to show that θ(C̄(n; j1, . . . , jk)) = 2. Bearing in mind the inequality ω(G) ≤ θ(Ḡ) ≤
χ(G) which applies to any graph G, we obtain that it is enough to show that ω(C(n; j1, . . . , jk)) =
χ(C(n; j1, . . . , jk)) = 2. In fact, the clique number is 2 since for n ≥ 6 and ji ≥ 3 the minimal cycle
in C(n; j1, . . . , jk) has length at least 4 (which bound is reached for j = 3). It is also not hard to see
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respect to any lk with αlk ∈ S1.

that the vertices of C(n; j1, . . . , jk) can be alternatively colored with two colors only, if n is even and
the ji’s are odd, which completes the proof. 2

Now we obtain the following main result.

Theorem 2 Let n, j be two odd numbers with j ≤ n−1
2 . Then θ(Cn,j) can be computed with O(j)

operations by solving a 3D LP problem having O(j) constraints.

Proof

Here we prove that we can identify in constant time a set of at most b j
2c + 1 lines that define

the polygon Qz0 .

Let S = {S1, S2, . . . , Sj+1} be a set of adjacent intervals covering [0, π] defined as

S1 = [π − π

2j
, π], Sj+1 = [0,

π

2j
] and Sk+1 = [π − (2k + 1)

π

2j
, π − (2k − 1)

π

2j
],

for k = 1, 2, . . . , j − 1. So, S1, Sj+1 are intervals of width π
2j , whereas S2, S3, . . . , Sj are intervals of

width π
j (see Fig 3a). A quick analysis of the function cos(jα) reveals that

a) it is periodic of period 2π/j;

b) it nullifies on Sk ∩ Sk+1, for k = 1, 2, . . . , j, and

c) it is negative on the odd numbered intervals attaining −1 on their middle points.

Consider line l(bn
2 c) in the interval S1. This verifies











a(bn
2 c) = 1

cos(π−π/n) = max{a(i) | a(i) < 0 ∧ i ≥ 0} < −1

b(bn
2 c) = 1

cos(j(π−π
n

)) = 1
cos(π−j π

n
)

7



This line defines a face of Qz0 because it is the one that intersects the Ox axis in the closest point
to (−1, 0) (see Fig.3b). Furthermore, its inclination w.r.t the Oy axis is less than 45 degrees and all
other lines in S1 have a lower x-cut and y-cut therefore falling outside Qz0 .

Consider the even numbered intervals. Lines whose angle τ falls in these intervals all have
positive y coordinate because cos(jτ) > 0. Their x-coordinate can be either positive, and in that case
they would not even cross the third quadrant or negative, in which case it must be

1

cos(τ)
<

1

cos(α(n−1)/2)
= a(bn

2
c).

So, we can conclude that those lines can not affect the solution.
Consider the odd numbered intervals S2k−1, for k = 1, 2, . . . , (j + 1)/2 and let β(k) = π − (2k −

2)π/j. Angle β(1) is π whereas, for k > 1, angles β(k) correspond to the centers of intervals S2k−1 and
all verify cos(jβ(k)) = −1. We can observe that the only lines l(i) that intersect l(b n

2 c) in the third
quadrant are those for which

b(bn
2
c) < b(i) < −1. (4)

Now, focus for a moment on the function f(x) = 1/ cos(jx). It is periodic and assumes the same
values within the odd numbered intervals

S2k−1 = [β(k) − π/2j, β(k) + π/2j].

Furthermore it is increasing over [β(k) − π/2j, β(k)], decreasing over [β(k), β(k) + π/2j] and verifies:

f(β(k)) = −1, lim
x→(β(k)−π/2j)+

= lim
x→(β(k)+π/2j)−

= −∞.

Observe that b(i) = f(2iπ/n), i.e., condition (4) can be rephrased as

f

(

π − π

n

)

< f

(

2π

n
· i

)

< −1 .

Since the behavior of f(x) on the interval [π − π/2j, π + π/2j] is the same as for all the other odd
numbered intervals [β(k) − π/2j, β(k) + π/2j] the condition

f

(

π − π

n

)

< f(x) < −1

will be verified only for

| x− β(k) |< π

n
(5)

where {β(k) | k = 1, 2, . . . , (j + 1)/2} is the set of the solutions to equation f(x) = 1/ cos(jx) = −1
on [0, π].

Given that the angle does not vary with continuity, but assumes only a discrete set of values
αi = 2πi/n, for 0 ≤ i ≤ (n − 1)/2, we can see that, if for some u, αu satisfies condition (5), then
αu+1 = αu + 2π/n can not.

Thus we can deduce that for each odd numbered interval S2k−1 there can be at most one line
verifying condition (4) and since we have b j

2c odd numbered intervals to consider, there will be at
most as many lines to select.

Now the obtained linear program can be solved in O(j) time by the Megiddo linear programming
algorithm which has linear complexity when the number of variables is fixed. 2
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Corollary 1 The theta-function of a Midimew network CN,j can be computed with O(
√

N) operations.

Proof Follows from the fact that Midimew networks are circulant graphs of the form CN,j with
j = 2k + 1 and N = k2 + (k + 1)2 which implies j <

√
2N . Then θ(CN,j) can be computed in

O(j) = O(
√

N) time. 2

5.2 Even chord lengths

We have the following theorem.

Theorem 3 Let n be a positive integer and j an even number with j ≤ n−1
2 . Then θ(Cn,j) can be

computed with O(n/j) operations by solving a 3D LP problem having O(n/j) constraints.

Proof Consider once more the family of intervals S = {S1, S2, . . . , Sj+1}. Now the j/2 even numbered
ones, S2k, for k = 1, 2, . . . , j/2, are those in which cos(jα) is negative. Let β (k) denote the angle
corresponding to the center of S2k. Thus cos(jβ(k)) = −1 for all k. First, notice that each interval
contains no more than dn

j e lines.
Let us focus on S1 ∪ S2 and define an enumeration of consecutive (w.r.t. the corresponding

increasing angle) lines l1, l2, . . . , ls, where l1 is the line whose angle, α(1) is the closest from below to
the center of S2 and ls is the line whose angle is the largest within S1: l(bn/2c). It is not hard to see
that those lines define a set C1 of segments that, together with the x and y negative axes, bound a
convex polygon Q.

We needed to consider also the lines in S1, because those have x-coordinate that happen to be
very close to point (−1, 0) and, as proven above, they contribute to shaping polygon Q. Furthermore
all the other lines in S2 whose angle is smaller than l1’s angle must have lower x-cut and y-cut and
therefore do not intersect this polygon.

We can apply the same idea to the other even numbered intervals S2k, k = 2, 3, . . . , j/2, and

define the corresponding finite sequences of lines l
(k)
1 , l

(k)
2 , . . . , l

(k)
sk

, now ending with lines whose angle

is within S2k. (Note the asymmetry in the definition of the lines {l(k)
i }, in that l

(k)
sk

has the largest
angle in S2k, whereas the sequence li is not limited to S2 but goes on until the exhaustion of the
interval S1 adjacent to S2.)

Now, as in the case for j odd, it turns out that for all k only l
(k)
1 might intersect Q. Furthermore

this would occur only when the angle α(k) of l
(k)
1 satisfies

| α(k) − β(k) |<| α(1) − β(1) |≤ π/n . (6)

As a consequence, the search for the solution can be restricted to the vertices of the polygon formed
by the two axes, the lines in S1 ∪ S2 plus, possibly, the lines whose angle verify property 6. Thus
the total number of lines to be considered is O(n/j) Then the obtained LP problem can be solved in
O(n/j) time by the Megiddo linear programming algorithm. 2

6 Concluding Remarks

We have presented efficient ways to compute the theta function of circulant graphs of degree four. In
particular, the problem can be reduced to a 3-variable LP problem having at most O(j) constraints
when j is odd, whereas for j even the bound on the number of significant constraints was shown to be
O(n/j). Consequently, an application of the Megiddo algorithm allows to compute θ(Cn,j) with O(j)
or O(n/j) operations depending on the evenness of j. Megiddo algorithm solves any LP problem in

9



linear time with respect to the number of constraints, provided that the number of variables is fixed.
It is indeed known that its complexity would include an implicit factor of the order of O(2s2

), where
s is the number of variables, which however is a small number for the considered dimension. Work
in progress aims at providing efficient computation of the theta-function of circulant graphs of higher
degree, e.g. of appropriately defined circulant graphs that represent digital planes.
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