The Application of TD(\) Learning to the Opening Games of 1%19 Go
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Abstract of moves in a game is approximately between 250 and 300.
This means that any naive search method is doomed to fail-

This paper describes the results of applying Temporal Dif- ure. In fact, the search spaces need to be strongly biased so
ference (TD) learning with a network to the opening game that efficient problem solving strategies can be developed.
problems in Go. The main difference from other research One such approach is the use of machine learning in learn-
is that this experiment applied TD learning to the full- ing good sequence for the opening game of Go.
sized (1%19) game of Go instead of a simple version In this paper, we used TR learning (with a back-
(e.g., %9 game). We discuss and compare Xpgarning propagation neural network) to learn the board evaluation
for predicting an opening game’s winning and for finding function. Using the board evaluation function, we analyzed
the best game among the prototypical professional open-several characteristics in the opening games.
ing games. We also tested the performance ofX)®py
playing against each other and against the commercial Go 2 TD()\) Learning
programs. The empirical result for picking the best game is
promising, but there is no guarantee that TQill always The fundamental idea of TD stated by Richard Sutton is
pick the identical opening game independent of diffepent that learning is based on the difference between temporally
values. The competition between two RJ3(shows that  successive predictions. The aim of TD in the game of Go

TD(X) with a higher\ has better performance. is to evaluate the possible moves and to determine the best
next move. In general, researchers randomly generate pos-
1. Introduction sible moves using special methods (e.g., Gibb’s sampling

[2] and a modified tree search [4]). In a real game of Go,
Go is a board game for two players: black and white. Two the number of possible moves (branching factor) is too vast
players alternately play a single stone onto the19 in- for these methods. To reduce the branching factor, simpli-
tersections (i.e. 361 points). The goal in Go is to surround fied rules and scaled-down game boards (e.g9 Board)
more territory than the opponent by enclosing some area. are frequently used by other researchers.

Go is academically characterized as a perfect informa- TD learning is a well-known reinforcement learning
tion, deterministic and zero-summed game between twotechnique which is used for sequential prediction as well as
players [2]. In recent years, the advent of new technol- sequential decision. Using scalar rewards and a supervised
ogy and better algorithms has led to increased interest inneural network, it can tune the function approximator.
computer Go. Go is an excellent testbed for artificial intel-  In a game of Go, each state represents the current whole
ligence (Al) research because of its vast search space antoard position; i.e. it describes the positions of all stones
the importance of strategic and tactical decisions during thethat have been played so far (excluding captured stones).
opening game. When a sequence of statesSy, Sy, - -+, S, - -+, Sy > of

The traditional Al approach when faced with a computer the board is given, a network visits those states sequentially
board game problem is to search the space of all possibleuntil the final stateS; is encountered. Her§, indicates
moves to find a move sequence that leads to an advantathe state of the initial empty board arfdndexes the board
geous position. Searching with-3 tree pruning or other  situation after the final move. At the final staie, a utility
more advanced search algorithms are frequently used. Al-value (e.g., reward or punishment) is received as a final re-
though its algorithm works in theory, this approach does not ward z. A general approach to derive the general equation,
work well in Go. That is, the complexity of the domain of which is a function of the state and the utility value, would
Go is too large. In the early stages of the opening game,be to pair each state with the final rewartb build a train-

Go has a branching factor of over 200 [1], and the numbering sequence of the forre (So, z), (S1,2), -+, (St,2),



-, (Sf,2) >. Atemporal difference method, by contrast, Sy J

uses a training sequence suchasSy, o), (S1,P1), -+ s J
(St, Py), -+, (Sf, Pr) > whereP, represents the prediction S I PO o PO b IO
generated by the network at time S,Sl * \ ol * 1]

Weights in a neural network are generally updated by " °| gias J X, || Xy
the batch weight update or the intra-sequence weight up- )
date. In the batch weight update, the new weight mairjx \\ / //
is updated only once for each sequence of moves and thus
the network will not change its weights until encountering Yo W1 W2 e [MasqM36)
the final move. After processing a sequence of moves, the
weightw,, is updated by the sum of all the moves’ incre- _— )

. tivation @IOH
ments: ;
Wy, = Wy + Aw = w, + Z Aw, (1) Final reward, z
t=0 prfH

wherew, is the old weight matrix and’ denotes the total ' J L
number of states in a sequence of moves. P

Using the delta rule the general equation of RP(s
given by:
Figure 1: Neural network structure for TD learning.
t
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k=0 Since there were no prototypical professional opening
games, each of which has a final reward, we created a
database of 213 professional opening games manually. The
games were selected from [3]. We then generated 1,704
games by using the symmetries (i.e. reflection and rotation)
of each game.

To analyze how TDX) learning works varying with the
opening styles, we categorized 1,704 opening games as five
styles in Table 1. We assigned final rewardwhich was
judged by professional players, as +1 for a game which is
favorable to black, O for an even game, and -1 for a game
which is favorable to white.

whereq is the learning rate anf, is the prediction gener-
ated by the network at time

In TD()\), the predictions of observation vectors, which
occur k steps in the past, are weighted h§ where\ €
[0,1]. The discount factok determines the amount of sen-
sitivity in successive predictions. We tried four values for
A A=0.0,0.3,0.7 and 1.0. Note that TD(1.0) is the proto-
typical supervised learning.

Finally the batch weight update is represented as:

: op,
Wn, = Wo + Z (Pis1 — Z {/\t . 8;] ©) Opening Favorable to
h=0 styles || Black [ White | Both Total

whereP; , ; is the final reward:. Twostar | 144 | 72 | 136 | 352(20.7%)
Three star|| 152 184 120 | 456 (26.8%)

i Chinese 104 104 312 | 520 (30.5%)
|mp|ementat|0n of TD()\) Shusaku 24 72 152 | 248 (14.5%)

For training the network, the encoded board positions of Misc. 16 40 72 128 (7.5%)
each opening game were fed into a single-layered neural Total 440 472 | 792 | 1,704 (100%)

network (i.e. the 362-1 network as in Figure 1) with the
tangent hyperbolic function as an activation function. The ~ Table 1: Distribution of the training opening games.
input data is a sequence of the form Sy, S1, -+, Sy—1,
Sy > for an opening game. The final rewaravas put into
the (f+1)-th column in the output layer to conduct as the )
(f+1)-th predictionPy . 4. Experimental Results

In Figure 1, the input dat&; at timet is composed of ..
a sequence of moves for black and white: By, W5, Bs, 4.1. Generallzmg the Network
Wy, -+, We_1, By >. X, inthe (a+1)-th column holds one  To generalize TDX) learning with a network, we split the
value: O if there is no stone, +1 for a black stone and -1 for 1,704 opening games randomly into 1,136 for training data
a white stone on the game board. (66.6%) and 568 for validation data (33.3%).



The early stopping method using cross validation was  Table 2 shows that the network predicts 544 games cor-
used to avoid overfitting to the training data. The number of rectly among 1,704 games whars 0.7.
epochs was limited to 100 epochs. After applying the early

stopping method, we obtained the number of epochs: 100 |Opening Hit count as

epochs for\ = 1.0 and\ = 0.7, and 25 epochs fox = 0.3 styles |Winning Losing| Even Total

and\ = 0.0. Two star|| 36/144| 36/72|34/136 106/352 (30.1%
We then retrained the network for the selectedal- Three star38/152(92/184 30/120 160/456 (35.1%

ues with the original 1,706 games and each different epoch. | Chinese| 26/104|52/104 78/312 156/520 (30.0%
RMSE curves in the dotted box in Figure 2 show that XD( Shusaku| 6/24 | 36/72|38/152 80/248 (32.2%)
with higher\ has better performance in terms of RMSE. Misc. 4/16 | 20/40| 18/72| 42/128 (32.8%)
Total ||110/44(R36/47298/79544/1,704 (31.9%)

1.25

Table 2: Correctness between the predicfiprand the final
rewardz. (A =0.7 anda = 0.5)

We found that TD learning with a neural network is
strongly distorted by the composed shapes of the training
data rather than the final rewards, and thus the network can
not precisely predict each game’s winning.

4.3. Finding the Best Opening Game

‘ ‘ ‘ ‘ Human players do not know which game is the best open-
0 20 0 epochs 80 100 ing game, which is the most favorable to black, among the
1,704 opening games because they can not evaluate all se-

Figure 2: Plot of RMSE for the selectedvalues with the ~ quences of the games precisely. But we can pick the best
corresponding epochsa E 0.5). opening game by comparing the predictiBnof the game
tree with the simple forward Minimax method. The sim-
ple forward Minimax method would select the best opening
4.2. Predicting an Opening Game’s Winning game.V\./hich holds the m-aximum when bIapk plays and
the minimumP; when white plays, at each time step.

Table 3 shows that TD{) picks the different best open-
ing game with the differenk values. The predictio®, in
Table 3 shows that white has a higher probability to win an
opening game when the network is trained with TD(0.0) and
TD(0.7). On the other hand, black has a high probability to
win an opening game when the network is trained with
= 0.3. When\ is 0.3, we can see that white defends well
against black’s playing becaugg and P; are positive and
is negative which shows white’s winning. Finally, we found
that when there are opening games mixed with reward and
punishment values, there is no guarantee thatX)ym(ll
always pick the identical opening game from the training
opening games independent of the differemalues.

S=TNT NS

The network’s prediction?; in Figure 1 can be used as
an evaluation function and indicates an estimate of itre
move’s winning probability from the current board position.
That is, black is likely to win the game #; is positive. If

P, is negative, on the other hand, it means that black is
likely to lose this game.

Since P; of a game is different for each opening style
(i.e. the first move position), we calculated the mean of
P, for the selected\ values from 1,704 games. The re-
sulting set of\ and P; values is:{(1.0,+0.98), (0.7,-0.06),
(0.3,+0.49), (0.0,-0.03)

Two TD(A)s (with A = 1.0 and 0.3) regard that the first
player (black) has a high probability to win an opening
game when the network is trained by these 1,704 opening

games. We found that the network’s first predicti&ndif- N ) P >~ | Bestgame

fers with the different values. 001 -049 [ +1.001 -1 | 1.578%
We also analyzed what extent the network can predict 031l +0.90| +1.00| -1 17667“’

each game’s winning probability by comparifiy and the 071 039 | +1.00! 0 éOQ”d

final rewardz. If P; is greater than +0.5 andis +1, we 10 +007! +1.00! 0 6281h

increased the number of the winning count. Af is less

than -0.5 and is -1, we increased the number of the losing Table 3: The picked best games. % 0.5)

count. Meanwhile, ifP; is between -0.5 and +0.5 ands
0, we increased the number of the even count.



4.4. Performance of TDQ\)s Secondly, we picked the best opening game, which is the

To test the performance of TRY, we firstly let two TDQ)s most.favorable to black, With differentvalues among pro-
play against each other. The number of moves in each gamdCtypical professional opening games. The empirical result
was limited to 50. for picking the best game is promising. But there is no guar-
As the evaluation of the final board positions was so antee that TDY) will always pick the identical best opening
difficult, we let a professional 9-dan (the highest rank) 9ame independent of differentvalues. _
player assess the game’s likely results as: very favorable 1hirdly, we tested the performance of TD(by playing
to black (VB), favorable to black (FB), very favorable to against each othera_md againstthe commermal Go programs.
white (VW), favorable to white (FW), and a result which is 1rough a professional player assessing each game, we
difficult to be determined by a professional player (ND). ~ found that TDQ) with higher A (and white player) mostly
In Figure 3, each of the row entries represent Xp( Wins an opening game. From the competition against the
when black plays, and each of the column entries represenfommercial Go, we found that the main drawback of XD(
TD()) for white. There are 16 games in which each game’s '€&rning with a network is generally lack af priori Go
potential results are shown. Figure 3 shows XDgith _knowledge (such as mfluer_lce, group’s safety, connectiv-
higher A (and white player) mostly wins against a lower ity between groups etc),_whlch will be embedded by future
[2] when ) is not equal to 1.0. Furthermore, better perfor- WOTK through implementing a neuro-fuzzy controller.
mance is achieved when= 0.0 rather thar\ = 1.0. Figure
4 is an opening game played between two X3( abedeyfghijklmnopagrs
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Figure 4: A game record (1-50), which is very favorable to

Figure 3: Results played between two TOX. black, played between TD(0.7) (black) and TD(1.0) (white).
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