
The Application of TD(λ) Learning to the Opening Games of 19×19 Go

Byung-Doo Lee Hans Werner Guesgen Jacky Baltes
Dept. of Computer Science, Dept. of Computer Science, Dept. of Computer Science,

Univ. of Auckland, Univ. of Auckland, Univ. of Manitoba,
Auckland, New Zealand Auckland, New Zealand Winnipeg, Canada

blee026@cs.auckland.ac.nz hans@cs.auckland.ac.nz jacky@cs.umanitoba.ca

Abstract

This paper describes the results of applying Temporal Dif-
ference (TD) learning with a network to the opening game
problems in Go. The main difference from other research
is that this experiment applied TD learning to the full-
sized (19×19) game of Go instead of a simple version
(e.g., 9×9 game). We discuss and compare TD(λ) learning
for predicting an opening game’s winning and for finding
the best game among the prototypical professional open-
ing games. We also tested the performance of TD(λ)s by
playing against each other and against the commercial Go
programs. The empirical result for picking the best game is
promising, but there is no guarantee that TD(λ) will always
pick the identical opening game independent of differentλ
values. The competition between two TD(λ)s shows that
TD(λ) with a higherλ has better performance.

1. Introduction
Go is a board game for two players: black and white. Two
players alternately play a single stone onto the 19×19 in-
tersections (i.e. 361 points). The goal in Go is to surround
more territory than the opponent by enclosing some area.

Go is academically characterized as a perfect informa-
tion, deterministic and zero-summed game between two
players [2]. In recent years, the advent of new technol-
ogy and better algorithms has led to increased interest in
computer Go. Go is an excellent testbed for artificial intel-
ligence (AI) research because of its vast search space and
the importance of strategic and tactical decisions during the
opening game.

The traditional AI approach when faced with a computer
board game problem is to search the space of all possible
moves to find a move sequence that leads to an advanta-
geous position. Searching withα-β tree pruning or other
more advanced search algorithms are frequently used. Al-
though its algorithm works in theory, this approach does not
work well in Go. That is, the complexity of the domain of
Go is too large. In the early stages of the opening game,
Go has a branching factor of over 200 [1], and the number

of moves in a game is approximately between 250 and 300.
This means that any naive search method is doomed to fail-
ure. In fact, the search spaces need to be strongly biased so
that efficient problem solving strategies can be developed.
One such approach is the use of machine learning in learn-
ing good sequence for the opening game of Go.

In this paper, we used TD(λ) learning (with a back-
propagation neural network) to learn the board evaluation
function. Using the board evaluation function, we analyzed
several characteristics in the opening games.

2. TD(λ) Learning
The fundamental idea of TD stated by Richard Sutton is
that learning is based on the difference between temporally
successive predictions. The aim of TD in the game of Go
is to evaluate the possible moves and to determine the best
next move. In general, researchers randomly generate pos-
sible moves using special methods (e.g., Gibb’s sampling
[2] and a modified tree search [4]). In a real game of Go,
the number of possible moves (branching factor) is too vast
for these methods. To reduce the branching factor, simpli-
fied rules and scaled-down game boards (e.g., 9×9 board)
are frequently used by other researchers.

TD learning is a well-known reinforcement learning
technique which is used for sequential prediction as well as
sequential decision. Using scalar rewards and a supervised
neural network, it can tune the function approximator.

In a game of Go, each state represents the current whole
board position; i.e. it describes the positions of all stones
that have been played so far (excluding captured stones).

When a sequence of states< S0, S1, · · ·, St, · · ·, Sf > of
the board is given, a network visits those states sequentially
until the final stateSf is encountered. HereS0 indicates
the state of the initial empty board andf indexes the board
situation after the final move. At the final stateSf , a utility
value (e.g., reward or punishment) is received as a final re-
wardz. A general approach to derive the general equation,
which is a function of the state and the utility value, would
be to pair each state with the final rewardz to build a train-
ing sequence of the form< (S0, z), (S1, z), · · ·, (St, z),



· · ·, (Sf , z) >. A temporal difference method, by contrast,
uses a training sequence such as< (S0, P0), (S1, P1), · · ·,
(St, Pt), · · ·, (Sf , Pf ) > wherePt represents the prediction
generated by the network at timet.

Weights in a neural network are generally updated by
the batch weight update or the intra-sequence weight up-
date. In the batch weight update, the new weight matrixwn

is updated only once for each sequence of moves and thus
the network will not change its weights until encountering
the final move. After processing a sequence of moves, the
weight wn is updated by the sum of all the moves’ incre-
ments:

wn = wo + ∆w = wo +
f∑

t=0

∆wt (1)

wherewo is the old weight matrix andf denotes the total
number of states in a sequence of moves.

Using the delta rule the general equation of TD(λ) is
given by:

∆wt = α(Pt+1 − Pt)
t∑

k=0

[
λt−k · ∂Pk

∂w

]
(2)

whereα is the learning rate andPt is the prediction gener-
ated by the network at timet.

In TD(λ), the predictions of observation vectors, which
occurk steps in the past, are weighted byλk whereλ ∈
[0,1]. The discount factorλ determines the amount of sen-
sitivity in successive predictions. We tried four values for
λ: λ = 0.0, 0.3, 0.7 and 1.0. Note that TD(1.0) is the proto-
typical supervised learning.

Finally the batch weight update is represented as:

wn = wo +
f∑

t=0

[
α(Pt+1 − Pt)

t∑

k=0

[
λt−k · ∂Pk

∂w

]]
(3)

wherePf+1 is the final rewardz.

3. Implementation of TD(λ)
For training the network, the encoded board positions of
each opening game were fed into a single-layered neural
network (i.e. the 362-1 network as in Figure 1) with the
tangent hyperbolic function as an activation function. The
input data is a sequence of the form< S0, S1, · · ·, Sf−1,
Sf > for an opening game. The final rewardz was put into
the (f+1)-th column in the output layer to conduct as the
(f+1)-th predictionPf+1.

In Figure 1, the input dataSt at time t is composed of
a sequence of moves for black and white:< B1, W2, B3,
W4, · · ·, Wt−1, Bt >. Xn in the (n+1)-th column holds one
value: 0 if there is no stone, +1 for a black stone and -1 for
a white stone on the game board.

Figure 1: Neural network structure for TD learning.

Since there were no prototypical professional opening
games, each of which has a final reward, we created a
database of 213 professional opening games manually. The
games were selected from [3]. We then generated 1,704
games by using the symmetries (i.e. reflection and rotation)
of each game.

To analyze how TD(λ) learning works varying with the
opening styles, we categorized 1,704 opening games as five
styles in Table 1. We assigned final rewardz, which was
judged by professional players, as +1 for a game which is
favorable to black, 0 for an even game, and -1 for a game
which is favorable to white.

Opening Favorable to
styles Black White Both Total

Two star 144 72 136 352 (20.7%)
Three star 152 184 120 456 (26.8%)
Chinese 104 104 312 520 (30.5%)

Shusaku 24 72 152 248 (14.5%)
Misc. 16 40 72 128 (7.5%)
Total 440 472 792 1,704 (100%)

Table 1: Distribution of the training opening games.

4. Experimental Results
4.1. Generalizing the Network
To generalize TD(λ) learning with a network, we split the
1,704 opening games randomly into 1,136 for training data
(66.6%) and 568 for validation data (33.3%).



The early stopping method using cross validation was
used to avoid overfitting to the training data. The number of
epochs was limited to 100 epochs. After applying the early
stopping method, we obtained the number of epochs: 100
epochs forλ = 1.0 andλ = 0.7, and 25 epochs forλ = 0.3
andλ = 0.0.

We then retrained the network for the selectedλ val-
ues with the original 1,706 games and each different epoch.
RMSE curves in the dotted box in Figure 2 show that TD(λ)
with higherλ has better performance in terms of RMSE.

0 20 40 60 80 100
1

1.05

1.1

1.15

1.2

1.25

Epochs

R
M

S
E

λ = 1.0 

λ = 0.7 

λ = 0.0 
λ = 0.3 

Figure 2: Plot of RMSE for the selectedλ values with the
corresponding epochs (α = 0.5).

4.2. Predicting an Opening Game’s Winning
The network’s predictionPt in Figure 1 can be used as
an evaluation function and indicates an estimate of thet-th
move’s winning probability from the current board position.
That is, black is likely to win the game ifP1 is positive. If
P1 is negative, on the other hand, it means that black is
likely to lose this game.

SinceP1 of a game is different for each opening style
(i.e. the first move position), we calculated the mean of
P1 for the selectedλ values from 1,704 games. The re-
sulting set ofλ andP1 values is:{(1.0,+0.98), (0.7,-0.06),
(0.3,+0.49), (0.0,-0.01)}.

Two TD(λ)s (with λ = 1.0 and 0.3) regard that the first
player (black) has a high probability to win an opening
game when the network is trained by these 1,704 opening
games. We found that the network’s first predictionP1 dif-
fers with the differentλ values.

We also analyzed what extent the network can predict
each game’s winning probability by comparingP1 and the
final rewardz. If P1 is greater than +0.5 andz is +1, we
increased the number of the winning count. IfP1 is less
than -0.5 andz is -1, we increased the number of the losing
count. Meanwhile, ifP1 is between -0.5 and +0.5 andz is
0, we increased the number of the even count.

Table 2 shows that the network predicts 544 games cor-
rectly among 1,704 games whenλ is 0.7.

Opening Hit count as
styles Winning Losing Even Total

Two star 36/144 36/72 34/136 106/352 (30.1%)
Three star38/152 92/184 30/120 160/456 (35.1%)
Chinese 26/104 52/104 78/312 156/520 (30.0%)

Shusaku 6/24 36/72 38/152 80/248 (32.2%)
Misc. 4/16 20/40 18/72 42/128 (32.8%)
Total 110/440236/472198/792544/1,704 (31.9%)

Table 2: Correctness between the predictionP1 and the final
rewardz. (λ = 0.7 andα = 0.5)

We found that TD learning with a neural network is
strongly distorted by the composed shapes of the training
data rather than the final rewards, and thus the network can
not precisely predict each game’s winning.

4.3. Finding the Best Opening Game
Human players do not know which game is the best open-
ing game, which is the most favorable to black, among the
1,704 opening games because they can not evaluate all se-
quences of the games precisely. But we can pick the best
opening game by comparing the predictionPt of the game
tree with the simple forward Minimax method. The sim-
ple forward Minimax method would select the best opening
game which holds the maximumPt when black plays and
the minimumPt when white plays, at each time step.

Table 3 shows that TD(λ) picks the different best open-
ing game with the differentλ values. The predictionP0 in
Table 3 shows that white has a higher probability to win an
opening game when the network is trained with TD(0.0) and
TD(0.7). On the other hand, black has a high probability to
win an opening game when the network is trained withλ
= 0.3. Whenλ is 0.3, we can see that white defends well
against black’s playing becauseP0 andP1 are positive andz
is negative which shows white’s winning. Finally, we found
that when there are opening games mixed with reward and
punishment values, there is no guarantee that TD(λ) will
always pick the identical opening game from the training
opening games independent of the differentλ values.

λ P0 P1 z Best game
0.0 -0.49 +1.00 -1 1, 578th

0.3 +0.90 +1.00 -1 1, 667th

0.7 -0.39 +1.00 0 902nd

1.0 +0.07 +1.00 0 628th

Table 3: The picked best games. (α = 0.5)



4.4. Performance of TD(λ)s
To test the performance of TD(λ), we firstly let two TD(λ)s
play against each other. The number of moves in each game
was limited to 50.

As the evaluation of the final board positions was so
difficult, we let a professional 9-dan (the highest rank)
player assess the game’s likely results as: very favorable
to black (VB), favorable to black (FB), very favorable to
white (VW), favorable to white (FW), and a result which is
difficult to be determined by a professional player (ND).

In Figure 3, each of the row entries represent TD(λ)
when black plays, and each of the column entries represent
TD(λ) for white. There are 16 games in which each game’s
potential results are shown. Figure 3 shows TD(λ) with
higherλ (and white player) mostly wins against a lowerλ
[2] whenλ is not equal to 1.0. Furthermore, better perfor-
mance is achieved whenλ = 0.0 rather thanλ = 1.0. Figure
4 is an opening game played between two TD(λ)s.

TD(1.0)


TD(0.7)


TD(0.3)


TD(0.0)


TD(0.0)
 TD(0.3)
 TD(0.7)
 TD(1.0)


Play as white


P

l
a


y
 

a


s

 
b


l
a

c


k


VW


ND
VW
 VB


VW


VW


VW


VW


ND
FW


FW
 ND
 VB


ND
 VW
 VW


Figure 3: Results played between two TD(λ)s.

We secondly tested the performance of TD(λ) against the
commercial Go programs:Go++ andNeuroGo. During
the competition, TD(λ) without havinga priori Go knowl-
edge played poorly against the commercial Go programs.
We found thata priori knowledge is an essential factor to
strengthen TD(λ) learning with a network for solving the
opening game problems in Go.

5. Conclusions
We firstly analyzed the first move’s predictionP1 which is
the estimate of the probability of the first player’s winning.
We found that the network by TD(λ) learning is strongly
distorted by the composed shapes of the training data rather
than the final rewards, and thus the network can predict the
winner of a game winning only to a very limited extent.

Secondly, we picked the best opening game, which is the
most favorable to black, with differentλ values among pro-
totypical professional opening games. The empirical result
for picking the best game is promising. But there is no guar-
antee that TD(λ) will always pick the identical best opening
game independent of differentλ values.

Thirdly, we tested the performance of TD(λ) by playing
against each other and against the commercial Go programs.
Through a professional player assessing each game, we
found that TD(λ) with higherλ (and white player) mostly
wins an opening game. From the competition against the
commercial Go, we found that the main drawback of TD(λ)
learning with a network is generally lack ofa priori Go
knowledge (such as influence, group’s safety, connectiv-
ity between groups etc), which will be embedded by future
work through implementing a neuro-fuzzy controller.

a k lhgb d i jc fe m n o p q sr

a k lhgb d i jc fe m n o p q sr

32

4

5

25

2

8

6

24

14

20

10

12

18

2216

26

1

7

9

3

17

23

21

19

15

13

11

35

39

27

31

29

43

41

37

33

44

42

4038

28

30

34

36

46

48

47

45

 9

10

 2

 4

 3

 7

 5

 8

 6

 1

11

12

13

14

15

16

18

17

19

 9

10

 2

 4

 3

 7

 5

 8

 6

 1

11

12

13

14

15

16

18

17

19

49

50

Figure 4: A game record (1-50), which is very favorable to
black, played between TD(0.7) (black) and TD(1.0) (white).

References

[1] J. M. Burmeister.Studies in Human and Computer Go: As-
sessing the Game of Go as a Research Domain for Cognitive
Sciencer. PhD thesis, Computer Science and Electrical Engi-
neering and School of Psychology, University of Queensland,
2000.

[2] H. W. Chan, I. King, and J. C. S. Lui. Performance Analysis
of a New Updating Rule for TD(λ) Learning in Feedforward
Networks for Position Evaluation in Go Game. Available on-
line at http://citeseer.nj.nec.com/483789.html, 1996.

[3] D. Hu. Baduk Exercise Book: Standard Opening Games I and
II . The Korean Baduk Association, 2001.

[4] T. B. Trinh, A. S. Bashi, and N. Deshpande. Temporal Dif-
ference Learning in Chinese Chess. InProc. IEA/AIE Conf.,
pages 612–618, 1998.


