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ABSTRACT
This paper describes the result of applying a fuzzy reason-
ing method, which conducts Go term knowledge based on
pattern knowledge, to the opening game in Go. We discuss
the implementation of the fuzzy reasoning method for de-
ciding the best next move to proceed through the opening
game. We also let the fuzzy reasoning method play against
the TD(λ) learning method to compare the performance.
The results reveal that the simple fuzzy reasoning system
performs better than the TD learning method and it shows
great potential to be applied to the real game of Go.
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1 Introduction

Go is a board game for two players: black and white. Two
players alternately play a single stone onto the 19×19 in-
tersections (i.e. 361 points). The goal in Go is to surround
more territory than the opponent by enclosing some area.

Since the Go board is mostly empty and a branch-
ing factor is over 200 [1] in the early stages of the open-
ing game,αβ search or other more advanced search algo-
rithms are not tractable. Furthermore, the number of moves
is approximately between 250 and 300. This means that
any naive search method is doomed to failure. In fact, the
search spaces need to be strongly biased so that efficient
problem solving strategies can be developed. One such ap-
proach is the use of fuzzy reasoning which is an inference
procedure to derive a conclusion using a set of fuzzyif -
then rules.

Human players intuitively play a game with both low
level concepts (e.g., counting the number of liberties of a
string) and high level concepts (e.g., the safety of a group,
connectivity between groups, or thickness of a group).
Since most of accumulated Go knowledge is implicitly in
the form of patterns, it is easy for humans to perceive it but
hard to model it with a computer.

Since Go knowledge is composed of pattern knowl-
edge and term knowledge [1], the strong points when they
complement each other are as follows:

• Pattern knowledge provides a sequence of moves (or
a move) for tackling board situations, since expert
games (patterns) implicitly involve most Go knowl-
edge [2].

• Term knowledge, which can conduct high-level con-
cepts and complements the weakness of pattern
knowledge, provides a move for tackling unrecog-
nised patterns, since there is a very low possibility
that an identical pattern will ever be encountered more
than once.

For solving opening games of Go, fuzzy logic, which
is a rule-based method for solving problems in an uncertain
(imprecise) domain, was applied. This approach aims at
deciding the best next move with term knowledge based on
pattern knowledge.

2 Fuzzy Inference System

A fuzzy inference system (FIS) is a nonlinear mapping of
crisp inputs into crisp outputs using fuzzy rules, and is
composed of three parts: fuzzification, fuzzy inference and
defuzzification.

The Mamdani fuzzy model uses the minimum (for
T-norm) and the maximum (for T-conorm) operators for
fuzzy relational composition. Assume that there aren
Single-Input-Single-Output (SISO) fuzzy rules to be fired.
Then thei-th rule is represented as:

Ri: if x is Ai theny is Bi (1)

wherei = 1, 2,· · · andn.
The linguistic variablesx andy are input and output

fuzzy variables, respectively. Fuzzy setsAi andBi are lin-
guistic terms represented as membership functions.

Then, the fuzzy relation of thei-th ruleRi onX × Y
is expressed byAi → Bi as:

µRi(x, y) = min [µAi(x), µBi(y)] = µAi(x) ∧ µBi(y)
(2)

where the minimum (∧) operator is applied on the Carte-
sian product space ofX andY .

Finally, the fuzzy relationR (the aggregated relation,
representing the entire fuzzy model) is derived by summing



over all of the fuzzy relations as:

R =
n⋃

i=1

Ri =
n⋃

i=1

µR(x, y) =
n⋃

i=1

[µAi
(x)∧ µBi

(y)]. (3)

If the input fuzzy setx = A′ is given, the output fuzzy
setB′ is computed based on the max-min composition by:

µB′(y) = ∨x[µA′(x) ∧ µR(x, y)]

=
n⋃

i=1

{∨x[µA′(x) ∧ µAi(x)] ∧ µBi(y)]}

=
n⋃

i=1

[αi ∧ µBi
(y)] (4)

whereαi is thefiring strength.
For extracting a crisp output value from a fuzzy set

B′, we need to defuzzify the fuzzy setB′. As a defuzzifica-
tion method, the centre-of-gravity (COG) method is mostly
used and is defined as:

YCOG =

∫
Y

µB′(y) y dy∫
Y

µB′(y) dy
(5)

whereµB′(y) is the aggregated output membership func-
tion, representing a relationship of the fuzzy model.

3 Implementation

The fuzzy reasoning system in Figure 1 has three basic
components: a neural network with supervised learning, an
evaluator of board situation with each candidate next move,
and a neuro-fuzzy controller with the Sugeno fuzzy infer-
ence model [3]. The fuzzy reasoning system performs the
following three steps:

• Ten candidate moves are generated by the neural net-
work with supervised learning, which can recognise
patterns of the prototypical opening games.

• Each candidate move is evaluated by a Distance
Transform (DT) method [4] to provide two crisp in-
puts to the neuro-fuzzy controller: the change rate of
the net influence and the change rate of the potential
net territory.

• The neuro-fuzzy controller decides the best move
among the candidate moves by the fuzzy inference
process.

3.1 Network with Supervised Learning

In an opening game of Go, most human players select
the best next move from similar patterns which they have
remembered. That is, humans recognise similar features
from previously played games and prototypical games.

We constructed a back-propagation neural network
with supervised learning to recognise the patterns of the

prototypical opening games. The main reasons for con-
structing a neural network are (1) to mimic human be-
haviour of remembering the patterns (games) played and
(2) to reduce computing time.
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Figure 1. A scheme to compete a fuzzy reasoning system
with a Temporal Difference (TD) learning.

For training the network, the encoded board positions
of each opening game were fed into a single-layered neural
network (i.e. a 362-361 net) with the tangent hyperbolic
function as an activation function. The input data is a se-
quence of the form< S0, S1, ..., Sf > for an opening
game, whereS0 denotes an empty (initial) board situation
andf indexes the board situation after the final move of an
opening game (e.g.,f = 47 in Figure 3(a)).

Given the delta rule, the prototype supervised learning
procedure with the hyperbolic tangent activation function
is:

∆wji = κ(zj−Pj)
∂Pj

∂wji
= α(zj−Pj)(1+Pj)(1−Pj)Xi

(6)
whereα is the learning rate,zj is the j-th target value
(which has a value of +1, 0 or -1) andPj is thej-th out-
put generated by the network.Xi is thei-th component of
patternSt at timet.

We created a database of 213 professional opening
games manually. The games were selected from [5]. We
then generated 1,704 games by using the symmetries (i.e.
reflection and rotation) of each game.

Figure 2 shows a sequence of moves generated by
the trained neural network, and the performance of pre-
dicting next moves is surprisingly good. But the trained
network has some problems when being applied to a real
game: i.e. it sometimes generates strange moves such as



black 47 in Figure 2 because of (1) a lack of understand-
ing the importance of the temporal sequence, and (2) in-
sufficient Go knowledge for tactical and strategic playing.
These weak points can be compensated by using a fuzzy
reasoning method embedded in Go knowledge.
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Figure 2. A sequence of moves generated by the trained
neural network after 100 epochs. The number of moves in
an opening game was limited to 50.

For reducing computing time (i.e. playing a move in
a limited computing time), we therefore generated a set of
candidate next moves ordered (prioritised) by the activa-
tion function output values. Among them we tried to pick
the best one as a next move through the fuzzy rule-based
inference system.

3.2 Evaluation of Candidate Moves

There is no simple theory which determines the best next
move in an opening game. However, there are some popu-
lar general principles that can be helpful. For instance:

• Corners, sides and then center.

• Play in the center of a symmetrical formation.

Linguistic expressions such as these are so vague that
it is very difficult to implement Go knowledge into a com-
puter system. The aim of the opening game is to play
stones efficiently to gain influence (rather than to make ter-
ritory directly) from which a player can develop the ter-
ritory gradually. Influence provides a high possibility of
maximising territory acquired later in the opening game.

Influence, which is strongly related to the Go the-
ory concept ofthickness, is a simple heuristic for evalu-
ating board positions. Each stone radiates influence on the
board. Influence from a stone propagates out and decreases
with distance. Captured stones have no influence, and sur-
rounded stones influence only as far as the surrounding
group. We applied an influence function that depends on
the shortest distance between two points as:

I(d) = C1 · exp(−d2/4) (7)

whered is the shortest empty path between a position in-
fluenced and a stone influencing, andC1 is a constant: +64
for black and -64 for white.

For finding a shortest empty pathd between two
points, we applied the Distance Transform (DT) method,
which is widely used in image processing [4]. This method
finds all paths from the goal location (e.g., stones influenc-
ing) back to the start location (e.g., a position being influ-
enced). Figure 3(b) illustrates the influence map for black
and white of the opening game in Figure 3(a) performed by
Equation 7.
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(a) A trained opening game

(b) The influence map. (c) The territory map

Figure 3. (a) An opening game among 1,704 opening
games used in training the network. The number on each
stone denotes its move sequence. (b) The influence map af-
ter applying the influence function. Hills represent black’s
influence and valleys represent white’s influence. (c) The
territory map derived from Figure 3(b).

For crisp inputs of the fuzzy controller, we computed
the change rate of the net total influence when playing each
of the 10 candidate moves. The change rate of the net total
influence of thei-th move is defined by:

DI(i) = exp(−i2/2σ2) · (NI(i− 1)−NI(i))/C2 (8)

whereDI(i) ∈ [0,1], i = 1, 2,· · ·, 10 and the degree of sim-
ilarity, exp(−i2/2σ2), measures the priority of each candi-



date move generated by the network (σ = 45).
The net influenceNI(i) is the summation of the over-

all black influence net of the overall white influence when
thei-th stone is played on the Go board (C2 = 1,000).

Another input variable is the change rate of the poten-
tial territory as:

DT (i) = exp(−i2/2σ2) · (NT (i− 1)−NT (i))/C3 (9)

whereDT (i) ∈ [0,1], i = 1, 2,· · ·, 10 andC3 = 50.
Potential territoryNT (i) was calculated from the in-

fluence map by truncating extreme highs and lows at the
same absolute elevation and excluding the points already
played by black and white.

3.3 Fuzzy Controller

A neuro-fuzzy controller is generally modelled from the
three most commonly used fuzzy inference systems (FIS):
the Mamdani FIS, the Tsukamoto FIS and the Sugeno FIS
[6]. From [7], the Sugeno neuro-fuzzy model is far superior
to the Mamdani neuro-fuzzy model (i.e. in terms of lower
RMSE error and less memory) but the implementation of
the Sugeno neuro-fuzzy model is more difficult than that of
the Mamdani neuro-fuzzy model [8].

We constructed a similar Adaptive Neural Fuzzy In-
ference System (ANFIS) using the Mamdani neuro-fuzzy
model and the Sugeno neuro-fuzzy model as a neuro-fuzzy
controller, which is called the Similar ANFIS (SANFIS)
from now.

The ANFIS shown in the right side of Figure 4 is
a neuro-fuzzy inference system which has Sugeno’s type
of if -then rules. ANFIS identifies antecedent and con-
sequent parameters by using a supervised neural network
with the back-propagation method. That is, ANFIS de-
termines the antecedent parameters using back-propagation
learning and the consequent parameters using least-square
estimation [9]. We tried to adapt only the consequent pa-
rameters (i.e.pi, qi andri) in SANFIS rather than to adapt
the antecedent and the consequent parameters as in ANFIS.

SANFIS qualitatively evaluates the candidate next
moves depending on the two fuzzy input variables: the
change rate of the net influence,x, and the change rate of
the potential territory,y. With two linguistic input vari-
ables and an output variablez, we defined the Sugeno
neuro-fuzzy controller in three Multi-Input-Single-Output
(MISO) fuzzy rules as:

Rule 1: ifx is HIGH andy is LARGE
thenz1 = p1x + q1y + r1,

Rule 2: ifx is MIDDLE andy is MEDIUM
thenz2 = p2x + q2y + r2,

Rule 3: ifx is LOW andy is SMALL
thenz3 = p3x + q3y + r3.

(10)

When the inputsx = x0 andy = y0 are given, the
firing strength of thei-th rule,αi, is computed by the min-

imum operator as:

α1 = HIGH(x0) ∧ LARGE(y0),
α2 = MIDDLE(x0) ∧MEDIUM(y0), (11)

α3 = LOW (x0) ∧ SMALL(y0)

and the outputs of each rule derived from the relationships
in Equation 10 arezi = pi x0 + qi y0 + ri, wherei = 1, 2
and 3.

Finally, the final crisp outputz0 is computed by the
center-of-gravity method as:

z0 =
α1z1 + α2z2 + α3z3

α1 + α2 + α3
= β1z1 + β2z2 + β3z3 (12)

whereβi is the normalised value ofαi with respect to the
sum (α1 + α2 + α3).

Figure 4. An adaptive network with a Sugeno neuro-fuzzy
model and a Mamdani neuro-fuzzy model to obtain the
consequence parameters.

The arising problem is how to obtain the consequent
parameter values,pi, qi andri. To obtain these values, we
implemented the Mamdani neuro-fuzzy controller in the
left side of Figure 4 to generate the crisp output which was
used as the target value to train the Sugeno neuro-fuzzy
controller. And the rules in Equation 10 were replaced by:

Rule 1: ifx is HIGH andy is LARGE
thenz is EXCELLENT,

Rule 2: ifx is MIDDLE andy is MEDIUM
thenz is MEDIUM,

Rule 3: ifx is LOW andy is SMALL
thenz is POOR.

(13)

The bell-shaped Gaussian membership function
µ(t; σ, c) was used for the memberships of antecedent and
consequent parts of the rules as shown in Table 1. The
function has the form:

µ(t; σ, c) = exp

(−(t− c)2

2σ2

)
(14)

wherec represents the membership function’s centre andσ
determines the membership function’s width.



Figure 5(a) illustrates the control surface of the func-
tion z = f(x, y), generated by the Mamdani neuro-fuzzy
controller.

Part of Linguistic terms Applied MFs

HIGH µA1(x; 0.2, 1.0)
MIDDLE µA2(x; 0.1, 0.5)

Antecedent LOW µA3(x; 0.2, 0.0)
LARGE µB1(y; 0.2, 1.0)

MEDIUM µB2(y; 0.1, 0.5)
SMALL µB3(y; 0.2, 0.0)

EXCELLENT µC1(z; 0.2, 1.0)
Consequent MEDIUM µC2(z; 0.1, 0.5)

POOR µC3(z; 0.2, 0.0)

Table 1. Applied membership functions.

Based on the control surface of the Mamdani neuro-
fuzzy controller, the Sugeno neuro-fuzzy controller was
trained to obtain the consequent parameters enabling the
control of the neuro-fuzzy controller. After 100 epochs, we
obtained the consequent parameters of the Sugeno neuro-
fuzzy controller. With these fixed consequent parameters,
the Sugeno neuro-fuzzy controller generated the control
surface illustrated in Figure 5(b).
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(b) Control surface 2

Figure 5. (a) Control surface generated by the Mamdani
neuro-fuzzy controller and (b) Control surface generated by
the Sugeno neuro-fuzzy controller after training (learning
rateα=0.01, epochs=100).

The control surface generated by the Sugeno neuro-
fuzzy controller demonstrated that:

• the performance of a supervised neural network in the
Sugeno neuro-fuzzy controller is very good (i.e. the
control surfaces generated by both neuro-fuzzy con-
trollers are almost same), and

• Sugeno neuro-fuzzy controller in SANFIS can consid-
erably reduce the computing time needed to infer the
crisp output compared to that of the Mamdani neuro-
fuzzy controller when the input valuesx and y are
given.

3.4 TD Learning

Temporal Difference (TD) learning is popular because
when using scalar rewards it can use existing super-
vised learning methods to tune the function approximation.
When a sequence of states< S0, S1, · · ·, Sf > of the board
is given, a network visits those states sequentially until the
final stateSf is encountered. HereS0 indicates the state
of the initial empty board. At the final state, a utility value
(e.g., reward or punishment) is received as a final utilityz.

Using the delta rule the general equation of TD(λ) is
given by:

∆wt = α(Pt+1 − Pt)
t∑

k=0

[
λt−k · ∂Pk

∂w

]
(15)

whereα is the learning rate andPt is the predicted utility
generated by the network at timet. We tried four values for
λ: λ = 0.0, 0.3, 0.7 and 1.0.

To test the performance of TD(λ), we let two TD(λ)s
play against each other (i.e. 16 games were played). The
number of moves in each game was limited to 50 and a
professional 9-dan (the highest rank) player assessed each
games’s potential result. We found that the network with
higherλ (and white player) mostly wins against a lower
λ network [10] whenλ is not equal to 1.0. Furthermore,
we found that better performance is achieved whenλ = 0.0
rather thanλ = 1.0 [11].

4 Results and Conclusions

For proceeding through an opening game efficiently and
effectively, human players generally: (1) select a few can-
didate next moves (usually less than 4) from similar fea-
tures they have remembered, and then (2) evaluate the ef-
ficiency of each move with deep searching for finding the
best sequence of next moves witha priori knowledge of
Go concepts such as influence, group’s safety, connected-
ness between groups etc.

Influence is a basic criteria for human players’ strate-
gic decisions in the opening game, and is strongly relat-
ing with the concepts ofthickness in Go theory. We used
two concepts, influence and potential territory, as fuzzy in-
puts into the neuro-fuzzy controller. With them the max-
imised crisp output was induced from the Sugeno neuro-
fuzzy controller in SANFIS to give the best next moves in
games competing against the TD learning method.

For selecting suitable candidate next moves, we con-
structed an additional neural network with supervised
learning. The performance of the neural network gener-
ating the set of candidate moves was promising.

For building up a neuro-fuzzy controller, we imple-
mented the Sugeno neuro-fuzzy controller to obtain the
consequent parameters. Then we constructed the Mam-
dani neuro-fuzzy controller to generate the target values for
training the Sugeno neuro-fuzzy controller. With the tar-
get values, the Sugeno neuro-fuzzy controller was adapted



and then generated the fixed consequent parameters. Fi-
nally, we used the adapted Sugeno neuro-fuzzy controller
in SANFIS with the adapted consequent parameters.

We tested the performance of the fuzzy reasoning sys-
tem by playing against TD(λ)s (λ = 0.0, 0.3, 0.7 and 1.0).
Eight games were played. As the evaluation of the final
board positions in the opening game played was so diffi-
cult, we let a professional 9-dan player assess the games’
likely results as: very favourable to black (VB), favourable
to black (FB), very favourable to white (VW), favourable to
white (FW), and a result which is difficult to be determined
by a professional player (ND). Table 2 shows the games’
potential results and Figure 6 shows a game played fuzzy
reasoning (black) and TD(0.7) learning (white).

Game 1 Game 2 Game 3 Game 4

Black Fuzzy TD(0.0) Fuzzy TD(0.3)
White TD(0.0) Fuzzy TD(0.3) Fuzzy
Result VW FW VW ND

Game 5 Game 6 Game 7 Game 8

Black Fuzzy TD(0.7) Fuzzy TD(1.0)
White TD(0.7) Fuzzy TD(1.0) Fuzzy
Result VB VW FW VW

Table 2. Results played between the fuzzy reasoning and
the TD learning.

The results reveal that the simple fuzzy reasoning sys-
tem performs better than the TD(λ)s and it shows great
potential to be applied to the real game of Go. This is
because the neuro-fuzzy controller reflects Go knowledge
with the filtered candidate moves (not the randomly gen-
erated moves) which are generated by a supervised neural
network and most are good moves for an opening game.

However, the main drawback of the fuzzy reasoning
system in this experiment is the lack of a richer Go knowl-
edge. To create a more robust fuzzy reasoning system, it
is recommended to analyse human reasoning: i.e. how hu-
man players acquire, organise and use Go knowledge [1].
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