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Abstract

3D reconstruction is one of the main components in computer vision. The dynamic stereo model applied to rotating
objects on a turntable provides a way of analyzing object’s surface or 3D position. In this paper, we extend work
reported in [S]: we correct an error in computing the rotational angle; and we present a new procedure for 3D
object reconstruction with unknown rotation angle by using orthogonal coordinates in a dynamic stereo model.
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1 Introduction

The dynamic stereo model can be used to reconstruct
surfaces of objects or to analyze 3D positions, see Fig.
1. We consider an object on a turntable, images are
captured at different times. See [1] page 209 Task 5.2:
For a surface point P = (X,,,Y,,,Z,), it is assumed that
its motion from image E; to image E; + 1 could be
tracked exactly. The rotation angle 0 of the turntable
is assumed to be known. The world coordinates X,,,
Y,, and Z,, of the point P have to be determined. This
is to analyze the 3D position of point P. Actually the
rotation angle 0 is not necessary to be known. [5] pre-
sented two solutions for calculating the rotation angle
6. One is a straightforward solution, and the other is
using cylinder coordinates. We found that the formula
on calculating angle 0 is not correct in the straightfor-
ward solution. In Sec. 3 we will correct it and show our
detailed solution. Besides the calculation of angle 6
using cylinder coordinates, we also present our solution
of calculating angle 0 using orthogonal coordinates.

The paper is structured as follows: Section 2 presents
our method for calculating the rotation angle 8 using
orthogonal coordinates; Section 3 presents our calcula-
tion procedure for correcting the formula stated in [5];
and Section 4 gives our conclusions.

2 Orthogonal Coordinates

[5] presented an approach for calculating 3D object
positions by using cylinder coordinates. It defined an
upward Z direction and used a left-hand coordinate
system. In this section, we present an alternative

approach by using orthogonal coordinates and the
right-hand coordinate system for reconstructing
3D objects. Assume a pair of points in image
coordinates (xj,y;) and (x2,y»), the corresponding
world coordinate points are P = (X,Y,Z) and the point
after rotation is P' = (X’,Y’,Z'). The corresponding
camera coordinate points are C = (X, Y, Z;) and the
point after rotation is C' = (X/,Y/,Z;). The distorted
image coordinates (x,,,y,,) and (xy,,ys,) can be
calculated from
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That is,
xidl —cx
Xy, = ——— and y,; = y1dy —cy,
Sx
xdl —cy
Xy = and y,, = ya2dy — cy.
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The undistorted image coordinates (x,,y,) and
(%uy,Yu,) can be calculated from
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where

D, = x, (k17 +kor*) and Dy = y, (ki r* + kar*))

with r = y/x2+y2. That is,
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The undistorted image coordinates can be obtained
from the corresponding camera coordinates by using
central projection,

Therefore, the camera coordinates can be rewritten as
in the following form:
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Consider the affine transformation from world into
camera coordinates, with rotation matrix R and
translation vector T,

ror on T,
R=|ry rs re | andT = | T,
r7 rg Ig T;

The world coordinates can be transformed to the cam-
era coordinates by using the following equation

C=R-P+TandC' =R-P' +T.
From equations (1) and (2), we have

P=R Y(Z-E—-T)=R"(Z-E—T) and (3)

P =R Yz, -E'—~T)=R"(Z,-E'-T). 4)

Assumption 1. The rotation axis is parallel to the Y
axis of the world coordinate system (see Fig. 1).

If the dynamic stereo system satisfies assumption 1,
the rotation axis is across the point 7, = (X.,0,Z.).
The values of X, and Z. can be calibrated. The point
P' = (X},Y,,Z,) is the transformation point of P =

(Xw, Y, Z,) which is rotated 6 degree around the ro-
tation axis.

Assume that our world coordinate system is a right-
hand system, as already stated in [1] the rotation matrix
Ry is as follow

cos® O sin6
Rg = 0 1 0
—sin® 0 cosB

The world coordinate points P’ and P satisfy the fol-
lowing equation

P =T.+Ry - (P-T,).

From equations (3) and (4), the above equation can be
rewritten as (see [1])

R"-(Z, E'—=T)=T.+Rg-(R" - (Zt-E~T)—T.).(5

Although the algorithm still assumes that the rotation
angle is given (see [1, page 209]), it is known that in
general the rotation angle 0 can be determined from
one pair of corresponding projections of the same sur-
face point [5]. The system A -z = b of linear equations
allows that the rotation angle 6 does not have to be as-
sumed to be known (see [1, page 212]). We will prove
that the rotation angle is unnecessary to be known. In
order to prove this, first we need to compute Z;. Then it
follows that Z,’{ can be calculated, and our theorem can
be proved. The details of calculating Z; and Z; are in
Appendix A.

Theorem 2.1 In equations (1) and (2), assume that
Z #0; Z, # 0 and a # 0; and ai + a3 — kK*(a}f +
d?) # 0. Then we have

2[7(a1b1 +a3b3) +k’(a’1b1 +a'3b3)}
(a? +a3) —K?(a}} +d?)

Zy =

and

7, =KZ.
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provided that
dy #0.

3 3D Position from Unknown Angle

[5] discusses in section ”World Position for Unknown
Rotation” a straightforward solution. However, equa-
tion (29) of calculating rotation 8 is incorrect. In this
section, we will correct this formula and present a de-
tailed derivation. Compared with [5], we will use sym-
bols ay, ay, a3 instead of ay, ay, a;, same changes to b
and c. So we also have by, by, bz and ¢y, ¢3, c3. From
equations (25), (26) and (27) of page 132 in [S] we can
get the following formula:

z1a1—c1 = (z2b1—c1)cos0 — (z0b7 — ) sin 6 (6)
ziaa—cy = (z2b1 —c1)sin® + (222 —¢z)cos 6 (7)
a3 —c3 = bz—c3 (®)

Solve z, from equation (8), and use it in equation (6)
and (7), it follows that:

a1 — €1

=(52b1 —c1)cos 6 — (%bz —¢)sin6

= zl(’;—iblcose — Z—zbgsine) —c1¢c080 +cysinf

©))

By (9), we have

c1—c1cos0+cysin 6

a0 aj —Z—zblcosﬂ+2—§b2sin6
B b3(ci —c1cos0 +cpsin0) (10)
- aibsy —azbycos 0 +azby sin O
Similarly,
b —c18in@ —cycos O
. 3(c2—cy . 2 ) (11
a2b3 — a3b1 sin@ — a3b2 cos O
Compare (10) with (11), we get
B b3(c1 —c1cos0 +cpsin0)
a4 abs —aszbycos 6 +azb,sin O
B b3(cp —c18in@ —cycos0)
B a2b3 —(13[91 sin O —a3b2 cos O
(12)
or
B c1—c1cos0+cyrsinf
a4 = airbs —azbycos 0 +azbysin O
_ cz—clsir.le—czcose (13)
a2b3 — a3b1 sinf — a3b2 cos B
Note that
ing — 21an% 2 14
sing = 2~ 20 14)
and
1 —x?

6 = 15
cos T (15)
where

0
=tan — 16
X =tan > (16)

After replacing sin 6 and cos 6 with (14) and (15), (13)
becomes

. 1—a2 2x
a-daige T 1+x2
<l - b b 1—x2 b 2x
aiby —asby 7 +asba s
2x 1—x2
_ c2—C1 1+x2 €2 14+x2 (17)

1—x2

2x
azbs —asb1 77 —asbr T



So (17) can be reduced to

[c1(a2bs + azby) — ca(arbs + azby)]x’

+[—2a3(bic1 — baca) + c2(azbs +azby)
+c1(arbs +azby)|x?

+[—2a3(bicy —bycy) +c1(aabs — azby)
—cp(aybs —azby)|x

Figure 2: Left is the original image of a golf head.
+[c2(azbs —azbz) +ci(aibs —azb1)] =0  (18)  Right is the reconstructed result in 3D.

[1], which assumes that the rotation angle is known.
We provided details for calculating rotation angle. Our
results are illustrated in Fig.2. Here a golf head was
reconstructed by placing it on a turntable.

Assume that
ci(axbs +azby) —ca(aibs +azby) #0
Then equation (18) has a real root (see [6], [7], [8])
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. A Proof of Theorem 2.1.
By (16) and (19) we finally obtain

From equation (5), we have
0 = 2arctanx.

R"-(Zi-E'—=T)~T.=Rg-(R"-(ZE—T)—T.)(20)
4 Conclusions

The left hand side of equation (20) equals to
The rotational dynamic stereo model is a common
model in 3D object reconstruction and object’s position
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result is important, for the algorithm on page 209 in
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(22)

From equation (22) it follows that the right hand side

of equation (20) equals to

cos® O sinf a1Zy + by
0 1 0 arZy+ by
—sin® 0 cosB azZy+bs

cos0-(a1Z+by)+
sin @ - (aszZ + b3)
= aZi+by
(—sin6) - (a1Zx+b1)+
cos O - (a3Zk + b3)

From (21) and (23), we have

cos 0 - (alzk—l-bl) +sin@ - (a3Zk+b3)
= dZ 1,

aryZy+by, = CI/ZZ//c + b/z, and

(23)

(24)

(25)

(—sinB) - (a1Zy +by) +cos 0 - (a3Z; + b3)
= dyZ; + b}.
(26)

From equation (25) and note that b, = b’z, we obtain
a7y = db7j. 27

From equation (10), it follows that

d\Zy +b) =cos0 - (a1Zy+b1) +sin0 - (a3Z; +b3). (28)
From equation (24), it follows that

a3Z;+ by = (—sinB) - (a1 Zy +by) +cos 0 - (a3Z; + b3). (29)
Squaring equations (28) and (29), we have

(@12 +bY)? + (a5 7+ b5)?

=[cos 0 - (a1Z;+b1) +sin 0 - (a3Z; + b3))?

+[(-sin @) - (a1Z; +by) +cos 0 - (a3Zy + b3))?

(30)

Now the left hand side of equation (30) equals to
(a +a3)Z +2(a) b +a3bh)Z; + (bF +67)
Since

b} = by and b} = b3,

then the left hand side of equation (31) equals to
(a? +a?)Z2 +2(d\by + sy Zy + (B3 +53) (1)

And the right hand side of (31) equals to

= (a1Z +b1)*(cos® 6 +sin” )
+ (a3Zy + b3)*(sin”> @ 4 cos” 0)
+2cos0 - (a1Z;+by)-sinb - (a3Z; + b3)
—2c080-(ajZy+by)-sinO - (azZy + b3)
= (ai+a3)Z; +2(a1by +a3b3)Zy + (b] +b3)
(32)

From (31) and (32), we have
(af +a3)Z2 +2(d) ) + a3b3)Z;

= (a% + a%)Zf +2(a1by +azb3)Zy.
(33)



We combine equation (27) with the second condition in
the theorem. It follows that

/ a
Zy = —Zk
a

= KZ, where k' = (34)

ap
ay’

From equation (33), we have

(a1 +a3) —K*(af +a}))Z; +

2[(a1by +aszbs) — k’(a'lbl +a’3b3)]Zk =0.

From the first condition in the theorem it follows that

Zi 0.

In accordance with the third condition in the theorem:

ai+a3—k*(d? +af) #0.

So

7 — —2[(a1b21 —|—a23b3) — K (a b1 + d5b3)] .
(a?+d3) —k?(a}? +d})

Or

7 — 2[—(aiby +azbz) + k' (d) b1 + d5b3)] .

(a% + a%) — k2 (cz’l2 + a’32)

This together with equation (34), it follows that Z; can
be calculated. Our theorem is now proved. QED.



