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Abstract

This report explains a new method for the estimation of curvature of plane curves and compares
it with a method which has been presented in [2]. Both methods are based on global approximations
of tangents by digital straight line segments. Experimental studies show that a replacement of global
by local approximation results in errors which, in contrast to the global approximation, converge to
constants> 0. We also apply the new global method for curvature estimation of curves to surface
curvature estimation, and discuss a method for estimating mean curvature of surfaces which is based on
Meusnier’s theorem.
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1 Introduction

Curvature estimation is of interest in the context of 2D and 3D image analysis, e.g. for the deter-
mination of high curvature points on digital curves (“corners”) or surfaces (“landmarks” ). Curvature
estimation has been widely studied for 2D applications, but research on surface curvature is still at its
beginning [4]. Corner detectors (e.g. early methods from around 1970-1980), designed for high curva-
ture point detection on plane curves, also provide values which can be used as a measure of curvature.
Typically these methods are based on analyzing changes of angles between neighboring points. See
[5,6,8] for surveys and comparisons. Letp andq be points on a plane curve andδ the angle between
their (positively oriented) tangents. The curvatureκ at p is defined as the limit of the ratio ofδ and the
arclength|pq| for |pq| → 0,

κ(p) = lim
pq→0

δ

|pq|
. (1)



-

x

6
y

0 �
���

���
���

���
���

��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

sp

sq

ds

θ θ + dθ

dθ = δ

Fig. 1. Assume a pointq “close” top: κ̃(p) =
∣∣ δ
ds

∣∣ provides a curvature estimate.

In this report we consider curvature as a positive quantity|κ(p)|. The radiusr(p) of the osculating
circle atp is the reciprocal value of the curvature,r(p) = 1

κ(p)
. Figure 1 illustrates a way for estimating

curvature.

Let ρ be an 8-curve inZ2. Tangents are approximated by DSS (digital straight segment) approxima-
tion; see [7] for a review on digital straightness. We apply the linear on-line DSS recognition algorithm
DR1995which has been proposed in [3]. This algorithm is based on arithmetic geometry.
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Fig. 2. Tangent computation.



Compute-curvature(Curveγ)
For pointp in γ do
compute maximum-length DSS’s[q, p] and[p, s]

computeθb = arctan
(
|q.x−p.x|
|q.y−p.y|

)
andθf = arctan

(
|p.x−s.x|
|p.y−s.y|

)
computeθ = 1

2
· θb + 1

2
· θf

computeδb = |θb − θ| andδf = |θf − θ|
return 1

2
· δb

d2(q,p)
+ 1

2
· δf

d2(p,s)

Fig. 3. MethodHK2003 for curvature estimation.

Let µ, ω, a, b ∈ Z, a, b relatively prime and non-zero, andω = max{a, b}. The set

ρ = {(a, b) : a, b ∈ Z ∧ µ ≤ ax− by < µ + ω}

is an 8-DSL (digital straight line). Letp, q ∈ Z2 be start and end point of a DSS[p, q], and letϕ be a grid
point closest to the center point of the real line segmentpq. We define the coordinates of vector~v ∈ Z2

as
~v = (|px − qx|, |py − qy|) = (δx, δy) .

An estimated tangentτ onϕ is now uniquely defined by the angleθ between vector~v and the x-axis. We
have

tan(θ) =
δx

δy
, i.e. θ = arctan

(
δx

δy

)
is the angle of the tangent with the x-axis [we use the radian measure throughout this report]. Note that
it makes no difference, taking the positive values forδx andδy. In every case we have the sameθ (see
Fig. 2). From now on, an estimated tangent segment on, and centered atϕ is defined by an angleθ, i.e.
we haveτ = τ (θ). Its length isl (τ) = ‖ ~v ‖2. We speak of a tangent segmentτ atϕ, or of a DSS[p, q]
starting atp.

2 Methods for Curvature Estimation

We present two curvature estimation methods, one based on approximating osculating circles, and
one following the original definition in Eq. 1. Both methods use algorithmDR1995. The first method
estimates curvature based on a single straight line at pointp ∈ γ, and the second one uses two.

[2] proposes the computation of the maximum-length DSSτ(p) = [p, q] which begins at pointp of γ.
Let ` = l(τ(p))

2
and let

rinf =

⌈(
`− 1

2

)2

− 1

4

⌉
andrsup =

⌊(
` +

1

2

)2

− 1

4

⌋
.

Return (
2

rinf + rsup

)
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Fig. 4. DSS approximation problem for disk 1.

as the estimated curvatureκ̃(p). This algorithmCMT2001uses only the length of the tangential segment,
and not the angle.

The value returned by this function is actually the estimated curvature at midpointϕ of [p, q], and not
at p. It would be more appropriate to calculate the maximum-length DSS which is centered atp. For
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Fig. 5. Mean errors of both methods, for both digital circles. The bold lines are for disk 1, and the thin lines for
disk 2.
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Fig. 6. Mean errors ofHK2003 for disk 1: bold line for unlimited application, followed by lines fork = 7, and
k = 5 (from bottom to top, on the right of the figure).

example, letp be the point with indexi in γ. Start at pointi− 1, and stop with DSS recognition at point
i + 1. Then start at pointi − 2 and stop ati + 2. Proceed as far as possible, which finally produces the
longest DSS centered atp. However, the time complexity of this algorithm would be superlinear.

In the implemented version ofCMT2001 we process throughγ in one direction, computing curvature
estimates for midpointsϕ of DSS’s[p, q]. This way we estimate curvature at some points ofγ, possibly
not just once, and we may omit some of the points onγ. However, the labeled points onγ proved to be
sufficient for our experiments.

We propose a new method (let us call itHK2003) which also approximates tangents by DSS’s, but we
assign two DSS’s to each pointp onγ, one forward DSS[p, s] starting atp, and one backward DSS[q, p]
ending atp. Now we estimate the curvature for both midpointsϕ1 andϕ2 of these two DSS’s, based on
orientations of these DSS’s (see Fig. 3). The mean of both values defines the estimated curvature atp.

3 Multigrid Analysis of Curvature Estimation

We tested both methods on two digital circles with about the same radius. Consider the real disks
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Fig. 7. Multigrid analysis forCMT2001: mean error for disk 1 (dotted line), maximum error for disk 2 (thin line),
and mean error for disk 2 (bold line).

• disk 1:x2 + y2 ≤ r2

• disk 2:x2 + y2 ≤ r2 + r

These disks are digitized (Gauss digitization). The 4-borders are traced by 8-curves, defining digital
circles.

In our experiments we runr within the interval[1, ..., 1040] and generate digital circles. We estimate
the curvature for all grid points of these digital circles, and determine the mean and the maximum error.
Let maxr be the maximum andmeanr the mean error of the curvature estimates for all grid points on
these digital circles. The curves in Figs. 5 - 8 are drawn in steps of 10. The values are determined as
sliding means as1

39

∑19
i=−19 meanr+i for the mean error, and1

79

∑39
i=−39 maxr+i for the maximum error.

Figure 5 shows that errors are bigger for the first disk than for the second. This effect is explained in
Fig. 4: the Gauss digitization of disk 1 produces “single peaks”; if we process the digital circle clockwise
then we obtain the worst approximation of tangents at the shown pointp (with respect to length and
angle, which is in this case45◦). The estimated curvature at such a “single peak” has a nearly constant
error of≈ 0.998 for CMT2001, and≈ 0.1380 for HK2003. Such an error does not occur in disk 2.
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Fig. 8. Multigrid analysis forHK2003: mean error for disk 1 (dotted line), maximum error for disk 2 (thin line),
and mean error for disk 2 (bold line).

Figure 6 shows errors ofCMT2001 applied to disk 1 for increasing resolution (bold line). We re-
placed the global tangent approximation inCMT2001 by local methods, where tangents are simply
approximated by either 5 (upper thin curve) or 7 consecutive grid points on the digital circle. These local
approximations work fine for low resolution digital circles.

Figures fig:method1 and 8 show results of both methods separately for a larger error scale. Note, that
the maximum error in Fig. 7 is approximately ten times larger than the mean error.HK2003 produces
the more accurate results, paid by about double computing time compared toCMT2001.

4 Curvature Estimation for Surfaces

Assume a surface which is cut by normal slices incident with surface pointM , and where such slices
intersect the surface in curves with defined curvature atM . (Slices are planes, defining curves on a
surface by intersection. Normal slices are slices which contain the surface normal. The surface normal at
M is defined as the cross product of two tangents of two curves, defined by any two slices, which have
a point of intersection atM .)



Let r1 andr2 be the radii of the osculating circles of those curves, which are defined by normal slices
C1 andC2 producing the maximum and minimum curvature value atM ; see Fig. 9 on the left. The
curves are orthogonal and have their point of intersection inM . The mean curvature of a surface at point
M is

H =
1

2

(
1

r1

+
1

r2

)
,

and the Gaussian curvature of a surface at pointM is

K =
1

r1r2

.

The main normal at a point of plane curves is orthogonal to the corresponding tangent. Meusnier’s
theorem states: Between the radiusr of the osculating circle of a plane sliceC and the radiusR of the
osculating circle of a normal sliceCnorm, where both slices have the same tangentPQ in M , exists the
relation

ρ = R · cos(~n, ~N) ,

where ~N is the unit surface normal and(~n, ~N) the angle between the unit vector~n of the main normal
of curveC and ~N . ; see Fig. 9 on the right. The Curvature1

R
is called the normal curvature ofC atM .

We intersect a surface at pointM by exactly two slice contours. This produces two curves “around
M ”. We can compute the normal curvature of these curves by applying Meusnier’s theorem. For both
slice contoursSlCi,b which are crossing the surface faces, we define fork ∈ {1, 2, 3} the unit tangent
t with its coordinatestk = 0 if k = i, cos(θ) for the remaining coordinate with the smaller index and
sin(θ) for the last one. Algorithm 2 explains how to computeθ. For a slice contourSlC2,b, we have the
coordinates(cos (θ) , 0, sin (θ)). By rotation of these vectors in the mathematical positive direction we
get the main normals of both curves. In the example it would result in(−sin (θ) , 0, cos (θ)). The surface
normal of unit length can be computed by a vector cross product of the two tangents. Now we can apply
Meusnier’s theorem by using the new method for the estimation of the curvature of the curves defined
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Fig. 9. Left: a surface is cut by two normal slices, forming an angle of90◦ degrees. Right: A surface is cut by one
normal slice and another slice, both intersecting in a straight line which is incident withM .
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Fig. 10. Comparison ofHK2003 applied to digital circles (in the plane) and digital spheres: thin line for circles,
and bold line for spheres.

by the plane Slices and computing the cosine of( ~N,~n) by the inner product of the two unit vectors~n

and ~N . The mean value of both curvatures is used as an approximation for the mean curvature of the
surface!

Note that the directions of the computed normals do not correspond with the directions of the real
surface normal of the object! But this is not necessary, since we are only interested in the angle between
the surface normal and the main normal.

5 Multigrid Analysis of Surface Curvature Estimation

We generate Gauss digitizations of spheresx2 + y2 + z2 ≤ r2 + r and apply the described “3D exten-
sion” of a plane curve curvature estimator. Figure 10 compares results forr ∈ [1, ..., 100], obtained for
digital circles (in the plane) with those obtained for digital spheres. The Artzy-Herman surface tracking
algorithm [1] is applied for tracing all frontier faces of the 6-connected 3D digital ball. Each surface face
f is non-parallel to two coordinate planes. These planes are supporting planes for two slices defining
intersecting digital curvesγ1 andγ2 on the surface, where both intersect atf . The tangents of these
curves allow to estimate curve curvature (we useHK2003) and the tangential plane, i.e. the surface



normal. Meusnier’s theorem allows to estimate the normal curvaturesκ̃1 and κ̃2 for these two curves.
Based on the assumption thatγ1 andγ2 are about orthogonal cuts of the surface we can estimate the
mean curvature atf by taking the mean of̃κ1 andκ̃2.

Figure 10 shows calculated values without applying any sliding mean. The error for digital circles (for
correspondingr-values) decreases faster than the error for digital spheres. This has a simple explanation:
since we are slicing the sphere parallel to coordinate planes we obtain digital circlesγ1 andγ2 which
have a smaller radius than

√
r2 + r, and thus produce a bigger error for curvature estimation..

6 Conclusions

In this report we presented a new global method for the exact estimation of curvature along digital
curves. We showed in experimental studies that the error converges to zero for increasing grid-resolution
and that there is only a minor difference (small variance) between the mean and the maximum error. We
replaced the global tangent approximation by local approximations and showed by experiment that local
methods do not converge to the correct curvature value.

Meusnier’s theorem allows to apply curve curvature estimators for surface curvature estimation. First
results show the feasibility of this approach, and studies on surfaces of “higher complexity” should
follow.
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