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Abstract. The paper starts with a brief review of combinatorial results
for adjacency and oriented adjacency graphs (combinatorial maps). The
main subject is incidence pseudographs (a dual of cell complexes) of the
n-dimensional orthogonal grid. It is well known that these pseudographs
(or complexes) allow a definition of a topological space, and combinato-
rial formulas are provided for characterizing open and closed sets in this
topology. The paper extends work by K. Vossin 1993, which is (in the
terminology of incidence pseudographs) on open regions only. The paper
also provides combinatorial formulas for closed regions. Matching for-
mulas and Euler characteristic calculations are generalized for arbitrary
open or closed regions in the n-dimensional orthogonal grid.

1 Introduction

Many results in combinatorial geometry can be shown by analyzing the given
structures as graphs or pseudographs (graphs with loops), without making any
use of a specific geometric embedding of the graphs, i.e. without properties de-
fined in a metric space, such as angles or distances. Examples of such results in
combinatorial geometry are the Pick formulas for calculating the area of a planar
grid polygon [16] (by dividing it into simple grid polygons, and counting grid
points in the interior and on the frontier of each polygon), the studies on local
property measurements for regular grids (see [5,15]), and the elementary result
that the plane allows only three different regular grids: orthogonal, trigonal, and
hexagonal.

The Descartes-Euler polyhedron theorem ag—aj+as = 2 is another example:
originally it was proved only for convex polyhedra (i.e. in a metric space), but
today it is generalized to connected finite planar graphs G = [S, E], with ay =
card(S), a1 = card(FE), and as the number of faces (of any planar embedding) of
G. The Descartes-Euler theorem represents the beginning of research on spatial
subdivisions. In 1813 A. Cauchy generalized the Descartes-Euler polyhedron
theorem by studying intercellular faces within a given simple polyhedron. Such
a spatial subdivision was defined to be a complex by J. B. Listing in 1861. Cell
complexes are the subject of combinatorial topology.
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This paper presents some results in combinatorial topology which have been
obtained in the context of digital image analysis. It starts with basic formulas
for adjacency graphs (one-dimensional complexes), which model adjacencies be-
tween pixels, followed by results for the “more refined model” of cell complexes,
here in the form of incidence pseudographs, which model 2D and 3D image grids.

2 Oriented Adjacency Graphs

A countable set S and an adjacency relation A (a symmetric and irreflexive
relation) define an adjacency structure [S, A], where {p, ¢} is an adjacency pair
iff p,qg € S and pAq. Two nodes p,q € S are connected with respect to M C S
[17] iff there is a path v = (p1,p2,...,Pn), 1 = p and p, = ¢, in [S, A] where
the nodes of the path are either all in M or all in M = S\ M. A subset of S is
connected (with respect to M) iff every pair of its nodes is connected. Maximal
disjoint connected subsets of S are the components (if contained in M) or the
complementary components (if contained in M) of M. Figure 1 illustrates “finite
rectangular windows” of the infinite digital plane. The grid point model is used
on the left (with alternating 6-adjacencies) and in the middle (with 4-adjacency).
The grid cell model is used on the right, where the squares have been moved
slightly apart from one another to illustrate edge adjacency by short connecting
lines.

An adjacency structure is called an adjacency graph iff it satisfies the following
axioms:

A1: The adjacency set A(p) = {q:q € SApAq} is finite for any p € S.
A2: S is connected with respect to relation A.
A3: Any finite subset M C S has at most one infinite complementary component.

The object nodes in the three parts of Fig. 1 define adjacency graphs, which are
finite subgraphs of [Z2, A¢] or [Z2, A4).

A region M 1s a connected, nonempty, finite subset of S. A node p € M is an
inner node iff A(p) C M; otherwise, it is called a border node. The set of inner
nodes of M 1s called the inner set of M and the set of border nodes of M is
called the border of M.

I ESN
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Fig.1. A binary image with (left) 6- and (middle) 4-adjacency in the grid point model,
and (right) edge-adjacency in the grid cell model.
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A local circular order £(p) = (q1,...,¢n) at node p € S lists the nodes in
A(p) exactly once each. We use this order to trace the edges in adjacency graph
[S, A] as follows: if we arrive at p from ¢; € A(p) we move next to qg, where
k = i+1 (modulo n). Any move from a node p to one of its neighbors ¢ initiates
a path defined by the local circular order. This path 1s a cycle if finite.

An oriented adjacency graph [S, A, €] is defined by an adjacency graph [S, A]
and an orientation & on [S, A], defined by local circular orders of the adjacency
sets, which satisfies axiom

A4: Any directed edge initiates a cycle (and not an infinite path).

For example, assume that &(p) is represented by the clockwise orientation of
all outgoing edges. Figure 1 (left and middle) indicates orientations of cycles
by arrows. Finite oriented adjacency graphs specify an alternative definition for
two-dimensional combinatorial maps; see, e.g., [14] for such maps in the context
of image analysis.

Let ag = card(S), a1 = card(A), v(p) = card(A(p)) and A(y) the length of
cycle 4. Elementary graph theory says that

Y ovlp) =Y M) =201 (1)

peES

Furthermore, for the Fuler characteristic Y = ag — a1 + a3 we obtain

; (2)

for any finite oriented adjacency graph, see [23]. An oriented adjacency graph
is called planar iff either it is finite and has y = 2, or it is infinite and any
of its nonempty finite connected oriented subgraphs has y = 2. For example,
the planar embeddings [Z?, Ag, &5] and [Z?, A4, €4] (with clockwise local orders)
of [Z2, Ag] and [Z2, A4], respectively, define planar infinite oriented adjacency
graphs.

An oriented adjacency graph is regular iff A(y) and v(p) are constants for all
cycles v and all nodes p of the graph. For infinite sets of nodes there are (up
to isomorphy) only three regular planar infinite oriented adjacency graphs G, »
[23]: Z% with A(y) = v(p) = 4, with A(y) = 3 and v(p) = 6; and with A(y) = 6
and v(p) = 3. The graph [Z?, As, &s] is regular, but the Euler characteristic of a
finite simply connected set has no lower bound; see Fig. 2.

A subset M C S induces a substructure [M, Apr, Epr] of an oriented adjacency
graph [S, A, &], where Aps contains only those adjacency pairs {p, ¢} such that
{p,q} € A and p,q € M, and where for p € M, &{p(p) is the reduced local
circular order, defined by deleting from ¢(p) all points which are not in M. Such
a substructure is again an oriented adjacency graph iff M is connected with
respect to Aps.

The cycles of [M, Apr,€n] may differ from the cycles of [S, A,€]. Let (p,q)
be a directed edge in [M, Apr,&m], let 41 be the cycle generated by (p,q) in
[M, Apr,Enr], and let 5 be the cycle generated by (p,q) in [S, A,£]. v is an

x <2
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Fig. 2. Unlimited decrease of the Euler characteristic in case of 8-adjacency. The infi-
nite oriented 8-adjacency graph is regular with v(p) = A(v) = 8.

atomic cycle iff y1 = 9, and a border cycle otherwise. For example, consider the
“black” adjacency graphs in Fig. 1 as subgraphs of [7Z2, A, £6] and [Z2, A4, &4).
There are 9 atomic cycles and 3 border cycles on the left, and 2 atomic cycles
and 2 border cycles in the middle.

Let (7, q) be a directed edge in [S;A], M C S, g €M and r € (S\ M). We
call (r,q) a directed invalid edge from M = S\ M to M. An undirected edge
between M and M is invalid iff one of its two directions is invalid. In Fig. 1 we
deleted all the invalid edges in [Z2, Ag] and [Z?% A4], assuming that the object
pixels shown in the figure specify the set M.

A directed invalid edge (7, q) points to a cycle in [M, Ay, En] if (g, p) is the
directed edge such that p is the first point of M that follows r in the (original)
local circular order £(q). Every directed invalid edge points to exactly one border
cycle in [M, Apr,€nr]. This defines a partition of all (directed or undirected)
invalid edges into equivalence classes; each class is the set of all (directed or
undirected) invalid edges that are assigned to a given border cycle.

Theorem 1. [23] Let [S, A, €] be a (finite or infinite) planar oriented adjacency
graph and M a nonempty finite connected proper subset of S. Then [S, A, €]
splits into at least two non-connected substructures when we delete all undirected
mvalid edges assigned to any border cycles of M.

Let M be a finite connected subset of an infinite oriented adjacency graph
G =[S, A,€]. M has exactly one infinite complementary component (the back-
ground). Any finite complementary component of M is called a hole of M in G.
If [G, A, £] is also planar, M has exactly one border cycle, called its outer border
cycle, which separates M (see Theorem 1) from its infinite complementary com-
ponent. All other border cycles of M are inner border cycles. If complementary
component A of M is separated from M by border cycle v of M, we say that A s
assigned to v. Any complementary component of M assigned to one of its inner
border cycles is a proper hole of M, and any finite complementary component
assigned to the outer border cycle 1s an improper hole of M. For example, in
Fig. 1, left, we have two proper holes, and in the middle we have two improper
holes and one proper hole.
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3 Infinite Regular Planar Oriented Adjacency Graphs

This section reviews a few results from [19] for a finite subgraph [M, Aar, {ar)
of an infinite regular planar oriented adjacency graph G, . First let us consider
the case in which M only has one border cycle of length . We call such a set M
simply connected. Let k be the number of invalid undirected edges between M
and M. We obtain in this case

vi—Ak+vA=(2v+2X —vA)a; . (3)

For all three versions of G, » we obtain 2v 4+ 2A — vA = 0, i.e., for any simply
connected set M we have k = v+ vl/X. In other words, the relationship between
the number of invalid edges and the length of the border cycle depends only on
the parameters v and A.

Now assume that M has r > 1 border cycles. Let [; be the length of border
cycle i, and k; the number of invalid edges connecting M with nodes on this
border cycle, for 1 <7 < r. It follows that

I/Zr:li—)\zr:ki—(r—mu)\: vL—AK —(r—=2)vd = 0. 4)

i=1 i=1

The outer border cycle of M coincides with the outer border cycle of its cover
C(M), which is the union of M with all of its proper holes. Tt follows that we
always have vl, — Ak, + vA = 0, where r is assumed to be the index of the outer
border cycle of M. Subtracting this equation from Equation (4) it follows that

yrz_fli—)\rz_fki—(r—l)y)\ =v(L-0L)=AMK—=k)—(r=1vx = 0. (5)

All the »—1 inner border cycles of M can be regarded as independent events, and
Equation (5) splits into r— 1 equations vl; — Ak; +vA = 0, for 1 < i < r—1. Thus
for a connected set M and any of its border cycles it follows that & = +v +vi/A,
where the outer border cycle implies the positive sign, and any inner border cycle
the negative sign. This provides a simple algorithmic rule for deciding whether
a traced border cycle is either inner or outer, by keeping track of k£ and [ during
border cycle tracing.

From Equation (4) it follows that » = 2 + L/A — K/v . The total length
L of all border cycles and the number K of all invalid edges allow us to calculate
the number r of border cycles, which is a topological invariant of the given finite
connected set M. Note that L and K can be accumulated by passing through
all adjacency sets A(p) of points in M, i.e. border cycle tracing is not necessary
for calculating L and K.

Let f be the number of atomic cycles of set M. It follows that

ag = Affv + 1/2 +1, (6)

for any simply connected set M. This result in [19] is a graph-theoretic gener-
alization of Pick’s formula for simple grid polygons. For an inner border cycle v
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let g denote the number of nodes of Z?\ M surrounded by + (‘in the interior
of 4’), and f be the number of atomic cycles of the oriented planar adjacency
graph defined by these ag nodes and the nodes on the inner border cycle. Then
we have

ag = Afjfv — 12 +1. (7)

Note that one inner border cycle may separate several proper holes from M, and
this formula specifies a result for the union of these holes.

Let m be the total number of atomic cycles of all proper holes assigned to a
given inner border cycle. The remaining f — m atomic cycles, defined by nodes
in the complementary set M and on the inner border cycle, are boundary cycles.
The Am edges of all boundary cycles split into & invalid edges, the length [ of
the inner border cycle of M, and the sum of the lengths /; of all the outer border
cycles of all n > 0 proper holes assigned to the given inner border cycle of M:

Am o= 2k + L+ Y nl;. (8)
i=1
This implies that
n=1+%k—-—m, (9)

which is another example of how a topological invariant (the number n of proper
holes) can be calculated by accumulating local counts of invalid edges and bound-
ary cycles.

In the case of G 3 exactly one complementary component is assigned to any
(inner or outer) border cycle of a finite connected set M. As a conclusion, a
connected set in Gg 3 does not have any improper holes, and a region adjacency
graph generated by any subset of G 3 is a tree. Any directed invalid edge in this
planar oriented adjacency graph generates exactly one boundary cycle; for any
inner border cycle of a connected subset of G 3.

4 Incidence Pseudographs

Let {So, S1, ..., Sm} be a family of pairwise disjoint, nonempty sets, where ¢ € S;
is an i-dimensional subset of an n-dimensional space, for 0 <i < m and n > m.

Let
s= U s

0<i<m

Two elements ¢, ¢’ € S are called set-theoretically incident (notation: cl¢') iff
c¢ C ¢ or ¢’ C c. The relation I is reflexive and symmetric. For example, any grid
vertex (O-cell) in 3D space is incident with six grid edges (1-cells), a grid square
(2-cell) is incident with four grid edges, a grid cube (3-cell) is incident with 12
grid edges, etc.
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Fig. 3. A binary image with (left) (8, 4)-adjacency in the grid point model, and (middle)
black pixels closed or (right) white pixels closed in the grid cell topology.

Actually, these incidence relations can also be interpreted at a more abstract
level; see Fig. 3: the geometric representations of O-cells are small closed squares,
those of 1-cells closed rectangles, those of 2-cells closed squares, etc. !

An incidence structure [S, I, dim] is defined by a countable set .S, an incidence
relation T on S which is reflexive and symmetric, and a function dim defined
on S and into a finite set {0, 1,...,m} of natural numbers. The definition of
the function dim depends upon the context. For example, an i-cell in a regular
orthogonal grid has dimension i: the geometric representation of a 0-cell may
be a vertex or a small square, of a 1-cell an edge or a small rectangle etc. - the
function dim just assigns integers to these cells.

Let [S,I,dim] be a finite incidence pseudograph. If ¢/ € I(e) with ¢ # ¢
and dim(c) < dim(c'), then we define ¢ < ¢’. In general, for ¢,¢’ € S let ¢ < ¢
iff ¢ < ¢’ or ¢ = ¢’. This defines an (abstract) cell complez [S, <,dim] [2]. Cell
complexes are popular for describing pictorial information; see [1,3,4,6-8,12,
13].

Let G = [S, I, dim] be an incidence structure with a finite or infinite set S.
ZLet I{e) = {c': ¢ € S A e} for c € S. If dim(c) = i,c is called an i-
node. The maximum value of dim(c), for any ¢ € S, defines the index dimension
n = ind(G) of G. Any node of G of dimension smaller than n is a marginal node,
and any node of dimension ind(G) is a principal node of G.

For example, let S be the set Cy of 0-, 1-, 2-cells in the orthogonal grid in
the Euclidean plane, and the set Cs of these plus 3-cells in the orthogonal grid
in 3D Euclidean space, and let I be an incidence relation. This defines incidence
structures [Cy, I, dim] and [Cs, I, dim] of dimensions 2 and 3, respectively, of
which pixels and voxels are the principal nodes.

Two nodes ¢1, ¢ € S of an incidence structure [S, I, dim] are called i-adjacent
(notation: ey A;cq, or {c1,ca} € A;, or ¢1 € Aj(c2)) iff e1 # ¢o and there is
an ¢-node ¢ € S, ¢ # ¢; and ¢ # cq, such that ¢; € I(c) and ¢ € I(ea),
for 0 < ¢ < ind(S). As usually done in digital geometry [17], the transitive
closure of i-adjacency defines i-connectedness and i-paths, and (for a subset

! This allows us to define topological equivalence of sets of cells based on unions of
squares and rectangles. Note that, e.g., a closed square minus one of its vertices is
homeomorphic to the real plane.

2 [21] discussed incidence structures with finite base sets S only.
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Fig.4. FExample of an incidence pseudograph. Nodes a,...,f have values

dim(a), ..., dim(f).

of S) i-components and complementary i-components. An incidence structure
G =[S, I,dim], with n = ind(G), is an incidence pseudograph iff it satisfies the
following axioms:

T1: I(c) is finite for any ¢ € S.

12: The set of all principal nodes in G is (n — 1)-connected.

I3: Any finite subset M C S of principal nodes has at most one infinite comple-
mentary (n — 1)-component of principal nodes.

T4: If ¢/ € I(c) and ¢ # ¢’ then dim(c) # dim(c').

I5: Any i-node ¢ € S with ¢ < n = ind(G) is incident with at least one n-node
in G.

If {¢,c'} € I, we also say that ¢ and ¢’ are (graph-theoretically) incident. The
function dim partitions S into pairwise disjoint classes. See Fig. 4 for an example
of a finite incidence pseudograph. The numbers in the circles specify the node
dimensions.

[C, I,dim] and [Cs, I, dim] are examples of infinite incidence pseudographs.
Consider [Cs, I, dim]: two 1-cells may be 0-, 2-, or 3-adjacent, but not 1-adjacent.
A 1-path in [Gs, I, dim] can contain 0-, 2- or 3-cells, but not 1-cells. Of course,
an i-path or an i-component can be restricted to contain only cells of one chosen
dimension.

Let G =[S, I, dim] be an incidence pseudograph, and M C S. We define the
supplement M® of M (with respect to G) as the smallest subset of S which has
the following two properties:

(1) all nodes in M are also in M*
(i) if ¢’ € M* for all ¢! € I(c) with dim(c¢') > dim(c), then c € M*.

Note that condition (ii) leads to a recursive procedure for adding nodes: first
(ind(G) — 1)-nodes, then (ind(G) — 2)-nodes, etc. In Fig. 5 we add three 0-
nodes after having added six 1-nodes. A subset M of an incidence pseudograph
1s complete iff M = M?.

The remainder of this article follows related definitions and results in [21],
reformulates them in a cellular model, and completes them by discussing not
only open but also closed subsets of an incidence pseudograph.



Combinatorics on Adjacency Graphs and Incidence Pseudographs 9

.
OO0
'l
e\‘o

o

AP
E<EN

©; “Q
e"'o

Fig. 5. Left: original nodes in a set M that has four 1-components of 2-nodes. Right:
supplement M?*, having two 1-components of 2-nodes (loops omitted).

5 Connectedness, Components, and Regions

We consider complete subsets of incidence pseudographs G = [S, I, dim], with
n = ind(G). Our main interest is in principal nodes of dimension n. The set of
all n-nodes of a set M C S defines the core of M. Let M be a complete subset
of S. A component of M in G is the union of an (n — 1)-component C' of the
core of M with the set of all nodes of M which are incident with at least one
n-node in C'. A complete subset M is connected in G iff it contains at least one
n-node, and M coincides with the set of nodes of one component of M in G.

For example, the incidence pseudograph shown in Fig. 4 is connected (in
itself); C' = {a, e, f} is its core, and the supplement of its node set is (of course)
the node set again. The set M on the left in Fig. 5 is not connected; it is a
proper subset of M*. M*® consists of two components, which are the components
of M in the incidence pseudograph. Note that one 0-node in M belongs to both
components of M, i.e. components of M can share i-nodes, where 0 <7 < n—1.

Tt follows that any n- or (n — 1)-node cannot be in more than one component
of a complete set M. A complete set M C S is not always a union of components;
there may be i-nodes in M which are not incident with any n-node in M.

A region of an incidence pseudograph G = [S, I, dim] is a nonempty, finite,
complete, connected subset of S. A node ¢ (of any dimension!) in a region M C S
is called an inner node iff I(¢) C M; otherwise, it is called a border node. The
set of all inner nodes of M is called the inner set of M and the set of border
nodes of M is called the border of M.
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Fig. 6. Inner sets (bold, unfilled circles) and borders (bold, shaded circles) of a closed
(left) and an open (right) region. The left region remains closed after deleting 2-node
a, and this deletion creates an open hole.

The set S of an incidence pseudograph G = [S, I, dim] has only inner nodes.
The complete set M* shown on the right in Fig. 5 can be split into two disjoint
regions by deciding which region contains the 0O-cell contained in both compo-
nents. See Fig. 6 for two illustrations of inner sets and borders.

6 Open and Closed Regions

A subset M C S of an incidence pseudograph G = [S, I, dim] is called closed
in G iff for any ¢ € M and ¢’ € I(c) with dim(c’') < dim(c) we have ¢/ € M.
A subset M C S of an incidence pseudograph G = [S,I,dim] is open in G iff
M = S\ M is closed. Tt follows that the sets S and  are closed and open in
G. Any closed or open set M is also complete. Figure 3 illustrates a given set of
pixels (black dots) as close (middle) or open (right) region in [C?, I, dim]. Note
that the closed representation corresponds to the good pair (8,4) (as used on the
left), and the open representation corresponds to good pair (4,8). We have as a
direct consequence of these definitions

Theorem 2. A finite subset M C S of an incidence pseudograph G = [S, I, dim],
with ind(G) = n, is a closed region in G iff its core is nonempty and (n — 1)-
connected, and for any ¢ € M and ¢ € I(c) with dim(c') < dim(c) we have
cdeM.

An incidence pseudograph is called monotone (short for: in transitive correspon-
dence with a monotonic chain of dimensions) iff ¢! € I(c), if ¢/ € I(c) and
¢’ € I(c'), with dim(c) < dim(c’) < dim(c¢”). For example, the pseudograph in
Fig. 4 is not monotone because, e.g., ¢ € I(b) and b € I(a) but ¢ ¢ I(a). The
incidence pseudographs in Figs. 5 and 6 are monotone.

For an open region, any cell which is “enclosed” by higher-dimensional cells
is also an element of the region:
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Fig.7. Two regions (bold, unfilled circles) and their boundaries (bold, shaded circles).
Left: closed region. Right: open region.

Theorem 3. Let M be a finite subset of an incidence pseudograph G = [S, I, dim],
with ind(G) = n. M is an open region in G iff its core is nonempty and (n—1)-
connected, and an i-cell c € C, withi < n is in M iff all j-cells ¢' with cIc' and
1< j<mnarewn M. If G is monotone, M s an open region in G iff its core is
nonempty and (n — 1)-connected, and an i-cell ¢ € C, is in M iff all n-cells in
I(e) are also in M.

7 Holes and Boundaries

Let M be a closed region in an infinite incidence pseudograph. Then M = S\ M
is the union of a finite number of pairwise disjoint open regions and of one infinite
open subset of S. The (finite) open regions are open holes, and the infinite subset
is the open background of M. Conversely, if M 1s an open region, we obtain closed
holes and a closed background. See Fig. 6 for an example of an open hole (after
removing node a).

Let M C S. A node ¢ € S is invalid (with respect to M) iff ¢ ¢ M but there
is at least one n-node ¢’ € M such that ¢/ € I(c). Let G = [S,I,dim] be an
incidence pseudograph and let M C S. The set of all invalid nodes (with respect
to M) defines the boundary of M. See Fig. 7 for two examples of boundaries.
The numbers

if i=dim(c) and ce M
0 otherwise

card{c' € I(c) : dim(c') =j A ¢ isinvalid }
biy (c) =

are called boundary counts for the cells in M, and
= be\f(c) for 0 <1i,j <ind(G)
cEeS

are called the total boundary counts for a subset M of an incidence pseudograph

G =1S,1,dim].
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node a|b|lc|d|e]|f
7 2 1 0 1 2 2
aio 1 1 1 3 1 1
a1 2 1 2 1 1 1
aio 0 1 1 1 0 1

Table 1. Incidence counts for the pseudograph in Fig. 4.

8 The Matching Theorem

The following Matching Theorem is a basic combinatorial formula for finite in-
cidence pseudographs of dimension n > 0. Let G = [S, I, dim] be an incidence
pseudograph, and let ¢ € S. We call

card{c € S: dim(c')=j A {c,d}eT} if i=dim(c)
aij(c) =
0 otherwise

the incidence count of ¢ in [S, I, dim]. Because of self-incidence and axiom 14 we
have a;;(c) = 1 for i = dim(c). See Table 1 for examples of incidence counts.

Theorem 4. (Matching Theorem) > a;; (¢) = 3. aji(¢) for 0<4,j<n.
ceS ceS

Proof. See Fig. 8: if i # j, all the edges between i-nodes and j-nodes, and

only those edges, are counted in the formula. All edges are undirected, and the

numbers of endpoints are equal on the upper and lower row in the figure. If

1 = 7, the sum is equal to the number of i-nodes in the pseudograph. a

The basic equation (1) of adjacency graphs follows from the Matching The-
orem (one of the basic theorems for cell complexes) where v(p) = ag1(p) for any
node p of an adjacency graph [S, A], and F = {{p,q} : (p,q) € A}:

ZV(]?) = 2‘101 (p) = Zflm (e) = 2ay .
peES pES ccE

In a regular incidence pseudograph [S, I, dim] we have a;;(c) = a;; for all ¢ €
S, where dim(c) = i and j > 0. Complete finite graphs K, are examples of

Fig. 8. All undirected edges connecting i-nodes of an incidence pseudograph with j-
nodes.
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finite regular incidence pseudographs of index dimension 1. The nodes of K,, are
pseudograph nodes of dimension 0, the edges of K,, are pseudograph nodes of
dimension 1, and every pseudograph node is self-incident.

For a finite subset M of an incidence pseudograph [S, I, dim], with ind(G) =
n>1,
aM =card{c: c€ M A dim(c) =i} (10)

(3

are called the class cardinalities of M, for 0 < ¢ < n. We usually omit the

superscript M. From the Matching Theorem (4) we know that for finite regular
incidence pseudographs, a;a;; = aja;; for 0 <2, 5 < n. It follows that

a;a;y —agag; =0 for 0< i< n, (11)

for any (say: fixed) index k with 0 < k& < n. Hence the possible integer values of
class cardinalities aj and «; define constraints (Diophantine equations) on the
incidence counts ag; and a;, and vice versa.

The infinite incidence pseudographs [Cy, I, dim] and [Cs, I, dim] are also reg-
ular. In the 3D case we have the incidence counts

ago =1, ag1 =6, ags =12, agz =8,
a0=2, ann =1, a2 =4, a3 =4,
a0 =4, asn =4, axp=1, a3 =2,

asg — 87 asy = 12, azs = 6, and aszsz — 1.

9 The Euler Characteristic

K. Voss generalized in [21] the definition of an Euler characteristic from oriented
adjacency graphs (combinatorial maps) to incidence pseudographs. Let G =
[S,I,dim] be a finite incidence pseudograph, with ind(G) = n > 1. The Fuler
characteristic of G is defined by its class cardinalities:

n

X(@) =D (=1

i=0

For example, for the incidence pseudograph G shown in Fig. 4 we have x(G) =
1 —2+ 3 = 2. Adding another edge, e.g. between nodes b and e, does not
change the Euler characteristic. But deleting a node, e.g. 2-node e, results in an
incidence pseudograph G’ with x(G') = 1—242 = 1, and does change the Euler
characteristic.

By the Matching Theorem, for regular finite incidence pseudographs G with
index dimension n we have

X(G) — Z (_1)2%

3
Ak

i=o

These n+1 equations, for k = 0,1, ..., n, are all rational multiples of one another.
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Fig. 9. Four components defining sub-pseudographs: two closed regions on the left and
two open regions on the right. The Euler characteristic is 1 in all four cases.
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Figure 9 shows examples of regions in the infinite regular incidence pseu-
dograph [Z?, I, dim], defining sub-pseudographs (loops omitted). For the upper
left region we have yx = 3 — 10 + 8 = 1, for the lower left region we have
x =1 —444 =1, for the region on their right we have y =5 —-5+1 =1,
and for the remaining 1-path we have x =7 — 6+ 0 = 1. For the set M* (not a
region!) shown on the right in Fig. 5 we have y = 15 — 28 4+ 14 = 1; note that
removing marginal border nodes will change this value. In Fig. 6, for the closed
region on the left we have y = 12 — 33+ 22 = 1, and for the open region on the
right we have x = 12 — 154+ 4 = 1. Removing the “central” 2-node a from the
closed region creates an ‘open hole’, and we obtain y = 11 — 33 + 22 = 0.

10 Incidence Grids

Consider the incidence pseudographs [Cy, T, dim] and [Cs, I, dim]. These pseu-
dographs [S, I, dim] are monotone, and also have the following properties:

— If ¢ € S and dim(c) > 0, there is a ¢/ € S with dim(¢’) < dim(c) and
{e,c'} eI

— If e, ¢’ € I with {e,c'} € I and dim(c) — dim(c’) > 1, there is a ¢’ € S with
dim(c’) < dim(c”") < dim(c) and {c,¢"} € I and {¢/,c"} € I.

These properties are the closeness conditions on incidence pseudographs. Gen-
eralizing Cy and Cs, we will consider the n-dimensional case with n < [. This
simplifies the formulation of combinatorial formulas.

In the set Z" of grid points, let e¢; be the straight segment which connects
the origin o with grid point (0,...,0,1,0,...,0), where the 1 is in position j, for
1 < j < n. The set (0.5,0.5) + Z" is the set of all O-cells. Let ¢ be a k-cell in a
k-dimensional subspace of R”, 0 < k < n, and let ¢; be in a n — k dimensional
subspace of R™. For any j with 1 < j < n, the Minkowski sum ¢ @ ¢; in R”

defines a (k + 1)-cell. Let C be the set of all i-cells, 0 < i < n, and let

— CJ (C( )
i=1
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Let [C,,I,dim] be the regular incidence pseudograph of index dimension
n, where C, is the countably infinite set of all i-cells, for 0 < 7 < n. This
pseudograph is monotone and satisfies the closeness conditions. We have [8, 18]

i <Z:;> it i<j

a;=d 1 if Q= (12)

22’—3’(2) ifi>j

for the incidence counts in this general case. For example, an i-cell ¢ € C, is
incident with 2"~! n-cells. Equation (12) allows us to show that

. ()
")

for 0 < 2,j < n; and these identities allow us to show that

(13)

n
S (1) %= LZ(_UJ(@) - _oz-0
j=0 i <”) i=0 ! (”)
i i
for any 7, 0 < 1 < n, and for the incidence pseudograph [C,, I, dim] with n > 1.
Both equations will later prove to be very useful.

An incidence grid is an abstraction of the set-theoretical incidence relation in
Cy or C3 which allows us to use the Euclidean topology in R? or R?: [S, I, dim)]
is an incidence grid iff (i) it is equal to [Cq, I, dim] or [Cs, I, dim], or (ii) it is a
finite closed sub-pseudograph of one of these two infinite pseudographs, defined
by a core which is either an m X n rectangular subset of the discrete plane
'CQ(Q) or an | x m x n cuboidal subset of 3D discrete space CE,)B). Nodes p in an
incidence grid have assigned geometric locations in a Euclidean space; nodes p
in an incidence pseudograph do not.

An incidence grid G is always connected in [Cy, I,dim] or [Cs, I, dim]. A
finite nonempty complete subset M C S of an incidence grid [S, I, dim] defines
an incidence structure [M, I’ dim'], where I’ and dim’ are the restrictions of T
and dim to M.

11 The Region Matching Theorem

M

For a set M C C, we have class cardinalities ;" incidence counts a;; (in the

regular graph [C,, I, dim]), and boundary counts bf‘f We omit the superscript
M.



16 Reinhard Klette

Theorem 5. (The Region Matching Theorem) Let M be an open or closed
region in [C,, I, dim]. For 0 < i,j < n we have

aza;; — by = ajaz; fori < joif M s closed, or fori > j if M s open
Qg4 = Q;aj; fOT i:j

aza;; + by = ajay; fori > g of M s closed, or fori < j of M s open.

Proof. Let M be closed. The right sides of the equations for ¢ < j specify the
number of j-cells in M times the number of i-cells which are incident with any of
these j-cells, i.e. the number T of incidences between j-cells in M and i-cells in
M . All these i-cells are also elements of M ; see the first part of Theorem 2. The
total number of incidences between i-cells in M and j-cells in M is, of course,
identical to T'. However, the i-cells in M are also incident with b;; j-cells which
are not in M, i.e. the count a;a;; on the left hand side of the equation must be
reduced by bj;.

The second equation is trivial, and is given only for completeness. Case j < ¢
follows for a closed region M by simply swapping ¢ and j in the discussion of case
t < j. In the case of an open region M we use the second part of Theorem 2. 0O

Note that the proof of this theorem makes no use of the connectedness of a
region, but only of its being either closed or open.

Conclusion 1 The formulas of the Region Matching Theorem also hold for any
finite union of pairwise disjoint closed (or pairwise disjoint open) regions.

For a closed region M (or a finite union of pairwise disjoint closed regions)
the Region Matching Theorem implies

aji by .
a; = oy Iy T ifi<

a5j aij

aj; cr
o = ;- ifi=

Q5 j

aji by ...
o= o — L i

(2% aij

Together with Equ. (14) it follows, for any j, 0 < j < n, that the Euler charac-
teristic

i=1
= i 4ji j - i 4ji thal i bji - i bji
=a; |y (-1) DT+ > =1 Pl s > (1) P > (-1 P
i=0 ] i=j+1 K i=1 N P | K
j—1 b n b]z
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can be calculated by counting only invalid cells (cells in the boundary of the
region). The incidence counts a;; are constants in C,. Similarly, for an open
region M (or a finite union of pairwise disjoint open regions) we obtain

j—1 n

i bji i bji
N(M)= =37 (=12 4 37 (1)
i=1 ] i=j+1 ]

Note that the value of j can be any number in the set {0,1,...,n}, and the
cases j = 0 and j = n provide the simplest expressions. The following section
will show that these expressions can be further simplified.

12 Euler Characteristics of Regions

We apply the Region Matching Theorem and Conclusion 1:

Lemma 1. Let M be a finite union of pairwise disjoint closed regions in C, .
For 0<1,j <n we have

n—1

ni biit1 Gj41
a; = an +§:J,J+ .]+7.

Qin j=i Aj41,5  dij+41

Proof. The proof is by downward induction, starting at ¢ = n:

ann
a, =a,— + 0.
ann

Assume that the equation is correct for ¢ > 1. We show that it is also correct for
¢ — 1. From the Region Matching Theorem for a closed region we have

_aiio1 | b
s
ai—14 ai 14

n—1
_ niii b 41054110551 n bii_1

= p,

AinQi—1 4 =i Aj41,5C5 j410i—15 a; 14

n—1 b
An,i—1 + G, 3+105 41,01

bl
Do G+1,%i-1,541

= a,
ai;—1.n j

where the simplification of products of b-values can be based on Equ. (13). O

Analogously, for open regions we obtain (the original formula in [21]):

Lemma 2. Let M be a finite union of pairwise disjoint open regions in C, . For
0<1i,7 <n we have

)

o — aoam B bjj-1 aj-1
7 .
aio JZII @1 @i
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The following theorem was proved by K. Vossin 1993 for open regions.

Theorem 6. Let M be a finite union of pairwise disjoint closed (or pairwise
disjoint open) regions in [C,, I, dim], with ind(M) = n. The Euler characteristic
of M 1s

1 & .
X(M) = o Z (—=1)"*1b; ;1 for open regions,
i=1
and
1 n—1 )
X(M) = o Z (=1)"*1b; 41 for closed regions.
=0

Proof. We prove this for open regions; closed regions can be treated analogously.
Lemma 2 and the equation Y (—1)"ag;/aio = 0 show that

n i

X(M) => " (-1 _EM

i=0 j=1 4j—-1,j%,j-1

The double sum can be rearranged: first take the sum for all j-values and then
for all i-values. It follows that

2:]] 12: z+1a.7 1,

aj—1,j = 5,5-1

The formula for closed regions then follows from Equ. (13) and

£ en (@) e ()-er(2)

for 0 <m < n. a

The b;_1;’s and b;41;’s in Theorem 6 can also be replaced by class cardinal-
ities and (globally known) incidence counts, because

b; i1 = aj_1a;_1,; — aya; ;1 for open regions, and

biiv1 = a;a; 541 — ayp1a;41,; for closed regions.

Let n = 3. For a closed region, bo1 is the number of all invalid grid edges incident
with grid vertices in the region, b15 is the number of all invalid grid squares
incident with grid edges in the region, and bs3 is the number of all invalid grid
cubes incident with grid squares in the region. For open regions we use b1q, the
number of all invalid grid vertices incident with grid edges in the region; bsq,
the number of all invalid grid edges incident with grid squares in the region; and
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Fig. 10. Nodes in regions are represented by bold and shaded circles. Left: two closed
regions with Euler characteristics 0 and 1. Right: two open regions, also with Euler
characteristics 0 and 1.

b3a, the number of all invalid grid squares incident with grid cubes in the region.
Note that the total boundary counts are over all cells in M, i.e. invalid cells can
be counted repeatedly if they are incident with several cells in M.

Fig. 10 shows a 2D example. For the left closed region we have b5 = 16 and
bo1 = 16, and for the right closed region we have b15 = 4 and by; = 8. For the
left open region we have by = 16 and b1g = 16, and for the right open region (a
single node) we have by; = 4 and b19 = 0.

13 Concluding Remarks

Adjacency graphs have been studied in the context of image analysis since the
1970s, and the paper [17] stands at the beginning of this research. Oriented
adjacency graphs defined by axioms A1-A4 have been studied in a sequence of
papers, starting with [22] and ending with [9], completely documented in the
book [20], briefly reviewed in the paper [10] and cited at some places in the book
[21].

Incidence pseudographs are studied in graph theory, geometry, and combi-
natorial topology. The book [21] discussed incidence pseudographs for a model
that assumes pixels or voxels to be grid points in incidence structures. Also, [21]
only discussed the case of open sets, but without defining open or closed sets at
all. The discussion of closed regions has been added in this article to complete
the characterization of topological concepts in incidence pseudographs.
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