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Abstract

In the present notes we define and study the notion of digital flatness. We extend to two
dimensions various definitions and results about digital straightness, in particular, we resolve a
conjecture of M. Nivat for the case of digital planes and define and characterize 2D Sturmian rays.
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1 Introduction

In this work we define and study the notion of digital flatness. We extend to two dimensions various
notions and results related to digital straightness.

The manuscript organization is described in the preceeding contents. In order to make the paper
self-contained, we start with comprehensive preliminaries (Section 2). There we first recall some basic
notions and facts related to digital straightness, which we extend to two dimensions in the subsequent
sections. As a background for our further considerations, we also outline related basic definitions
and results from digital topology, digital geometry, lattice theory, combinatorics on strings and 2D
arrays, theory of computation, and others. Readers familiar with the above subjects could skip the
corresponding subsections. As further preparation, periodicity and symmetry in infinite 2D arrays are
considered in Section 3.

Then, we define digital 2D rays and study their basic properties. In particular, we address a
conjecture by M. Nivat for the case of digital planes and consider 2D Sturmian rays (Sections 4 and
5). Examples and related issues are presented and discussed in Sections 6 and 7. Some algorithmic
aspects are concerned in Section 8. Further tasks are commented in Section 9.

2 Preliminaries

In this section we summarize as a background for our further considerations some knowledge related
to digital topology and geometry, digital straightness, integer lattices, combinatorics on words and 2D
arrays, and computational models. Most of these preliminaries will be used for references in the further
sections.
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2.1 Basic notions of digital topology and digital geometry

Discrete coordinate plane consists of unit squares (pixels), centered on the integer points of the two-
dimensional Cartesian coordinate system in the plane. Discrete coordinate space consists of unit cubes
(voxels), centered on the integer points of the three-dimensional Cartesian coordinate system in the
space. The pixels’/voxels’ coordinates are the coordinates of their centers. Sometimes they are called
discrete points. The edges of a pixel/voxel are parallel to the coordinate axes. A set of discrete points
is usually referred to as a discrete object.

A j-dimensional facet of a pixel/voxel will be called j-facet, for some j, 0 ≤ j ≤ n− 1 (n = 2 or
3). Thus the 0-facets of a voxel v are its vertices, while the 1-facets are its edges.

Two pixels/voxels are called j-adjacent if they share a j-facet. A k-path in a discrete object A is
a sequence of pixels/voxels from A such that every two consecutive pixels/voxels are k-adjacent. Two
pixels/voxels are k-connected if there is a k-path between them. A discrete object A is k-connected if
there is a k-path connecting any two pixels/voxels of A. A discrete object is said to be connected if it
is at least 0-connected. Otherwise it is disconnected.1

Let D be a subset of a discrete object A. If A − D is not k-connected then the set D is said
to be k-separating in A. Let a set of pixels/voxels A be k-separating in a discrete object B but not
j-separating in B. Then A is said to have j-tunnels for any j < k. Discrete object without any
k-tunnels is called k-tunnel-free2.

A k-component is a maximal (non-extendable) k-connected set. Let D be a k-separating discrete
object in Z3 such that Z3−D has exactly two k-components. A k-simple point in D is a discrete point
p such that D− p is k-separating. A k-separating discrete object in Z 3 is k-minimal (or k-irreducible)
if it does not contain any k-simple point.

2.2 Digital rays and lines

Let γα,β be a ray or a straight line, i.e.,

γα,β = {(x, αx + β) : 0 ≤ x < +∞} (1)

or
γα,β = {(x, αx + β) : −∞ < x < +∞}. (2)

The digitization of these objects over the grid points has been extensively studied in the recent decades.
Below we briefly recall some basic definitions and related facts, following Rosenfeld and Klette [36].
Some denotations and formulations used in Sections 2.1, 2.2, and 2.3 are directly taken from [36].

2.2.1 Equivalent definitions and basic properties

Consider first more in detail the digitization of (1) in the set N2 of the grid points with nonnegative
integer coordinates. W.l.o.g., assume that 0 ≤ α ≤ 1. Let ρ0, ρ1, ρ2, . . . be the intersection points of
γα,β with the vertical grid lines for n ≥ 0. Let (n, In) ∈ Z2 be the grid point nearest to ρn. If the
second coordinate of ρn is half-integer, we choose (n, In) to be the upper one. Formally, we define

Iα,β = {(n, In) : In = bαn + β + 0.5c, n ≥ 0}.
1Classically, 0-adjacent/connected (resp. 1-adjacent/connected) pixels are called 8-adjacent/connected (resp. 4-

adjacent/connected). In dimension 3, 0-adjacent/connected (resp. 1 or 2-adjacent/connected) voxels are called 26-
adjacent/connected (resp. 18 or 6-adjacent/connected).

2Classically, in dimension two, a 0-tunnel (resp. 1-tunnel) is called 8-tunnel (resp. 4-tunnel). In dimension three, a
0-tunnel (resp. 1- or 2-tunnel) is called 26-tunnel (resp. 18- or 6-tunnel).
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α and β are the slope and the intercept of Iα,β, respectively.
Iα,β will be considered as a discrete ray. We will also call it discretization of γα,β . Sometimes,

discretization of a ray γ will be denoted also by discr(γ).
Now we define a digital ray with slope α and intercept β as follows:

iα,β = iα,β(0)iα,β(1)iα,β(2) . . . ,

where iα,β(n) are called chain codes and defined for n ≥ 0 by

iα,β(n) = In+1 − In =

{

0, if In+1 = In

1, if In+1 = In + 1
.

Code 0 can be interpreted as a horizontal grid increment while 1 as a diagonal increment in the grid
N2.

We will also call iα,β digitization of γα,β. Sometimes, digitization of a ray γ will be denoted also
by digit(γ). Discretization and digitization of a straight line are defined analogously.

An 8-arc is a finite or infinite sequence of grid points such that any point is an 8-neighbor
of its predecessor in the sequence. An 8-arc is irreducible iff its set of grid points does not remain
8-connected after removing a point which is not an end point. We have the following theorem.

Theorem 1 (Rosenfeld 1974 [37]) A digital ray is an irreducible 8-arc.

Remark 1 The digital ray iα,β is generated by the ray γα,β. Clearly, if β − β ′ is integer, then
iα,β = iα,β′. Thus, w.l.o.g., we may assume that the intercepts are limited to 0 ≤ β ≤ 1. Clearly,
i0,β = 000 . . . and i1,β = 111 . . ..

We have the following theorem.

Theorem 2 (Bruckstein 1991 [20]) For irrational α, Iα,β uniquely determines both α and β. For
rational α, Iα,β uniquely determines α, and β is determined up to an interval.

Remark 2 Let γα,β = {(x, αx + β) : 0 ≤ x < +∞} be a ray. Let α be a rational number p
q

which is

an irreducible fraction (i.e., gcd(p, q) = 1). According to our assumption, 0 ≤ p
q
≤ 1, i.e., p ≤ q. The

line equation y = αx + β, α = p
q
, can be written as −px + qy = qb. Consider the ray determined by

the line g
bc
α,β : −px + qy = bqbc. Its digitization is clearly Iα,β. In addition, the lines with the same

digitization Iα,β are g : −px+ qy = β ′ with bqbc− 1
2 ≤ β′ ≤ bqbc+ 1

2 , if max(|p|, |q|) is an odd number,
and bqbc ≤ β ′ < bqbc+ 1, if max(|p|, |q|) is an even number.

A digital ray is rational if it has a rational slope, and irrational if its slope is an irrational
number. We have the following theorem.

Theorem 3 (Brons 1974 [19]) Rational digital rays are periodic and irrational digital rays are ape-
riodic. Moreover, if the slope of a digital ray is an irreducible rational fraction p/q, then the period
length is equal to q.

Remark 3 At this point it is useful to mention that the rationality/irrationality of a line depends on
the integer (or rational) points it contains. A line l contains exactly one or no one rational point if
and only if it is irrational. If l contains more than one rational point, then it contains infinitely many
rational points which are dense on the line. In this case l is parallel to or coincides with a line l ′ which
contains infinitely many equidistant integer points. This is the case if and only if the line is rational,
and according to Theorem 3, it is periodic. The period of a digital line corresponds to the segment
between two consecutive integer points.
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There are several approaches to studying digital lines and rays. In the sequel we will use the following
one.

Definition 1 2D arithmetic line is a set of pixels L(a1, a2, µ, ω) = {(x, y) ∈ Z2|−bω
2 c ≤ a1x+a2y+µ <

bω
2 c}, where ω ∈ N. ω is called arithmetic thickness of the line and µ is called internal translation

constant.
An arithmetic line L(a1, a2, µ, ω) is 0-connected (classically, 8-connected or naive) if ω =

max(|a1|, |a2|), and 1-connected (classically, 4-connected or standard), if ω = |a1|+ |a2|.

The naive line is the thinnest 2-tunnel-free arithmetic line. We have the following theorem.

Theorem 4 (Reveilles 1991 [34]) An arithmetic line P (a1, a2, µ,max(|a1|, |a2|)) coincides with a dis-
crete straight line with the same slope and intercept, and vice versa: any discrete straight line can be
represented in the form P (a1, a2, µ,max(|a1|, |a2|)) for some parameters a1, a2, µ.

Thus the points of a discrete straight line which correspond to a digital straight line, lie between or
on two parallel lines having a distance less than 1, measured in the y-axis direction.

2.2.2 Other definitions. Sturmian words

For some basic notions of theory of words, such as factor of a word, period of a word, periodic and
eventually periodic word, etc., we refer to [36].

Let w be a finite or infinite word on the alphabet A = {0, 1}. Complexity function of w is the
function P (w, n) defined as the number of different factors of w of length n. In particular, P (w, 0) = 1
(since the empty word can be considered as a factor), while P (w, 1) is the number of the different
letters appearing in w. It is well-known (see, e.g., [32, 23]) that a word w is eventually periodic
if P (w, n) ≤ n for some n ≥ 0. Thus, the complexity function of any aperiodic word w satisfies
P (w, n) ≥ n + 1.

Definition 2 A word w is called Sturmian if P (w, n) = n+ 1, i.e., if it is aperiodic and has minimal
complexity.

Definition 3 Height h(w) of a word w is the number of letters in w equal to 1. Given two words v
and w of the same length, δ(v, w) = |h(v) − h(w)| is their balance. A set of words X is balanced if
|v| = |w| implies δ(v, w) ≤ 1 for all pairs of words v, w ∈ X. An infinite word w is balanced if its set
of factors is balanced.

For a finite or infinite word w, by Sub(w) we denote the set of all finite factors of w.

2.2.3 Properties of periodic (rational) and aperiodic (irrational) rays/lines

As already mentioned, rational straight lines/rays are periodic. Detailed study of various points related
to line/ray periodicity can be found in [23, 24, 32, 30]. We list some basic results.

Theorem 5 (Lunnon and Pleasants 1991 [30]) (a) All digital lines with a rational slope α 6= 0,∞
are equivalent up to a translation.

(b) All digital lines with an irrational slope α contain the same set of factors Sub(α).

Theorem 6 (Coven and Hedlund 1973 [23]) Let w be a Sturmian word. Then every subword appearing
in w appears infinitely many times in w.
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Theorem 7 (Coven and Hedlund 1973 [23]) For an infinite word w over two letter alphabet, the
following conditions are equivalent: (i) w is eventually periodic;

(ii) P (w, n) < n + 1 for some n ≥ 1;
(iii) P (w, n) is bounded (by the period length of w).

Theorem 8 (Morse and Hedlund 1940 [32]) For an infinite word w, the following conditions are
equivalent: (i) w is Sturmian;

(ii) w is balanced and (eventually) aperiodic;
(iii) w is an irrational digital line.

Remark 4 Note that, by definition, the complexity P (w, n) of a Sturmian word w is unbounded.

2.2.4 Symmetry

It has been shown in [30] that if the slope of a digital line is rational, then each period is a symmetric
word. Classification of the possible types of symmetry is provided, as well. Thus, in particular, if w
is a word in a rational digital line, then the reverse of w is a word in that line, too.

About an irrational ray w, it has been shown in [23] that if certain block (finite word) appears
in w, then its reverse appears in w, too.

2.2.5 Other notions and facts related to repetitions

In this section we follow [22]. A word is said to contain a repetition of order k, with a rational k > 1,
if it contains a factor of the form

z ∈ pref(rω),
|z|
|r| = k,

where pref(.) is a denotation for a prefix of a word. Let k > 1 be a real number. We say that a word
u is:

k-free, if it does not contain as a factor a repetition of order at least k;
k+-free, if, for any k′ > k, it is k′-free;
k−-free, if it is k-free, but not k′-free for any k′ < k.

Now consider the following two morphisms:

• Thue-Mors morphism

T :

{

0 7→ 01
1 7→ 10

,

which defines a word wT = abbabaabbaababbabaababbaabbabaab . . . ;

• Fibonacci morphism

F :

{

0 7→ 01
1 7→ 0

,

which defines a word wF = abaababaabaababaababaabaababa . . . .

We have the following results.

Theorem 9 (Thue 1912 [39, 40]) The Thue-Morse word wT is 2+-free, i.e., does not contain over-
lapping factors.

Theorem 10 (Mignosi and Pirillo 1992 [31]) The Fibonacci word wF is (2 + φ)-free, where φ is the
golden ratio.
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2.3 Integer lattices

Consider the hyperplane
H : a1x1 + a2x2 + . . . + anxn = b,

where the vector a = (a1, . . . , an) and the number b are rational. W.l.o.g., we can assume that they are
integer. It is well-known that if gcd(a1, a2, . . . , an) divides b, then the hyperplane H contains infinitely
many integer points which form an (n−1)-dimensional lattice Λ(a, b) in Rn, i.e., a lattice with a basis
consisting of n − 1 linearly independent vectors. For n = 2, Λ(a, b) is a 1-dimensional lattice, while
for n = 3, Λ(a, b) is 2-dimensional.

If gcd(a1, a2, . . . , an) is not a divisor of b, H contains rational points that are not integer. In
this case, H is parallel to a plane which contains an (n− 1)-dimensional integer lattice.

2.4 2D arrays. Basic notions

Below we introduce some definitions and facts from combinatorics of 2D words. Some of them will be
used in the sequel. Others elucidate certain periodicity issues in 2D, which may facilitate the better
understanding of the further considerations. We use in part [14].

2.4.1 2D periodicity of finite 2D arrays

A two-dimensional array (or 2D-array, for short) is any m×n rectangular array X[0..m−1, 0..n−1] with
m > 1 rows and n > 1 columns. Any rectangular subarray of X is a block. A block W = X[0..k, 0..l],
0 ≤ k < m and 0 ≤ l < n is a prefix of X, while a block W = X[k..m − 1, l..n − 1], 0 ≤ k < m
and 0 ≤ l < n is a suffix of X. A point of X is a pair of integers (i, j) for a row i and a column j.
An element of X at the point (i, j) is denoted by X(i, j). The elements of X are symbols of some
alphabet Σ.

Two-dimensional periodicity of arrays has been introduced and studied in [1, 2, 3, 27].

Definition 4 A symmetry vector of X is a vector that maps, without a mismatch, one copy of X to
another copy of its, positioned at a certain point of X.

We will also use interchangebly an equivalent definition of symmetry vector in terms of blocks (called
periods) which seems to us somewhat more demonstrative.

Definition 5 A block W of X is a period of X if W is X itself or one of the following conditions is
met:

(1) W = X[0..k− 1, 0..l− 1], 0 < k ≤ m and 0 < l < n, and it is possible to rigidly superimpose
two copies of X in such a way that X(0, 0) is brought onto X(k, l) (if k < m) or onto X(0, l) (if
k = m) without generating any mismatches;

(2) W = X[m − k..m − 1, 0..l − 1], 0 < k < m and 0 < l ≤ n, and it is possible to rigidly
superimpose two copies of X in such a way that X(m− 1, 0) is brought onto X(m− k− 1, l) (if l < n)
or onto X(m− k − 1, 0) (if l = n) without generating any mismatches.

Thus a symmetry vector (k, l) in Definition 4 corresponds to a period block W = X[0..k − 1, 0..l − 1]
in Definition 5. An illustration to the above definitions is given in Figure 1. Period W = X is said
to be the trivial period. Following [1, 27], a period fulfilling Condition 1 is called quad-I period. In
the particular case where k = m but l < n, i.e., it is possible to superimpose without mismatches two
copies of A in such a way that A(0, 0) is brought onto A(0, l). Then W is said to be a horizontal period
of X; A period fulfilling Condition 2 is called quad-II period. If, in particular, l = n, but k < m, so
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a

a

a

x x x x x
x x x x x
x x x x x
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x x
x x
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x x
x xa

(b)(a)

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

(c)

Figure 1: a) Lattice-periodic, primitive, non-tiled array. A period is darkened. b) Lattice-periodic,
primitive, non-tiled array. A period is darkened. c) Every prefix is a period, and there is a unique tile
a which is also the only primitive period.

that A(m− 1, 0) can be brought without mismatches onto A(m−k− 1, 0), then W is a vertical period
of X.

In a string, a special role is played by the period of minimum size. With 2D arrays, there can
be more than one such an elementary period, as the following definition suggests.

Definition 6 A quad-I period W = X[0..k − 1, 0..l − 1] is minimal if it does not contain any other
period W ′ = X[0..k′ − 1, 0..l′ − 1] with k′ ≤ k and l′ ≤ l.

Minimal quad-II periods are similarly defined. Note that W , being a minimal period for X,
does not imply that any minimal period of W must coincide with W .

Definition 7 X is periodic if one of the following conditions is met. Condition 1: the period W is a
horizontal (respectively, vertical) period for X and its horizontal (resp. vertical) length does not exceed
1/2 of the corresponding dimension of X. Condition 2: Period W is neither horizontal nor vertical,
but each of its dimensions does not exceed 1/2 of the corresponding dimension of X.

A period such as W in Definition 7 is called a short period. An array X is non-periodic if it
has no short periods. A pair (W1,W2) consisting of a short minimal quad-I period W1 and a short
minimal quad-II period W2 of X (when it exists) is called a basis for X. The periods W1 and W2

are called quad-I and quad-II basis periods of X, respectively. It is not difficult to prove (or see [27])
that the existence of two short minimal quad-I periods for array X implies the existence of a short
(minimal) quad-II period, hence also of a basis for X. Two periods W1 = X[0..k1 − 1, 0..l1 − 1] and
W2 = X[0..k2 − 1, 0..l2 − 1] are independent if the points (0, 0), (k1, l1) and (k2, l2) are not collinear
(i.e., k1/l1 6= k2/l2). Independence of periods of other types is defined analogously.

The following definitions parallel those given in [1, 27]. Let X be a periodic array. X is lattice-
periodic if it has at least one short quad-I period and at least one short quad-II period, or, equivalently,
if it has a basis. X is line-periodic if it has only one independent short period. X is radiant-periodic if
it is not lattice-periodic but it has at least two independent short quad-I periods or at least two short
quad-II periods. In all other cases X is non-periodic.

2.4.2 Tiles, tiled arrays, and repetitions

We now introduce some additional notions.
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a b a b a a b a b a a
c d c d c c d c d c c
a b a b a a b a b a a
a b a b a a b a b a a
c d c d c c d c d c c
a b a b a a b a b a a
a b a b a a a a ab b
c c c c c c cd d d d

Figure 2: The tile of a tiled array may be tiled itself.

Definition 8 An array X is primitive if setting X =

W . . . W
. . . . . . . . .
W . . . W

, where X has k rows and l

columns, implies k = 1, l = 1.

As Figure 1 (a, b) displays, an array can be periodic and primitive at the same time.

Definition 9 A primitive block W of X is a tile of X if X =

W . . . W W ′

. . . . . . . . . . . .
W . . . W W ′

W ′′ . . . W ′′ W ′′′

, where W ′,

W ′′, W ′′′ are possibly empty prefixes of W of appropriate dimensions.

Definition 10 An array X =

W . . . W W ′

. . . . . . . . . . . .
W . . . W W ′

W ′′ . . . W ′′ W ′′′

is tiled if it features at least two vertical or

horizontal blocks W . If there are at least two W -blocks along both dimensions then X is called a two-
dimensional (2D) repetition. An array is called repetition-free if it does not contain any repetitions.

A tile may have periodicity type and properties of its own, in particular it can be a tiled array
(see Figure 2). An array may have several tiles. Consider, for example, the array A made of two
Fibonacci words abaababa one on top of the other. Then both abaab and abaabab are tiles of A.
However, it is impossible for an array to be tiled in two different fashions.

Proposition 1 [14] An array X can be tiled by only one tile W , and the size of W is p× q, where p
is the least common multiple (lcm) of the lengths of the shortest periods of all the rows of X, and q is
the lcm of the lengths of the shortest periods of all the columns of X.

Clearly, a tiled array is periodic. We have also that an array X is horizontally (vertically)
periodic if and only if it is tiled horizontally (vertically), as the horizontal (vertical) length of the tile
is equal to the length of the shortest horizontal (vertical) period of X.

In the general case, the lattice-periodicity of X (and of course the radiant or line-periodicity, as
well) does not imply that X is tiled (Figure 1a,b). However, we have the following plain propositions.
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Proposition 2 [14] An array X is a 2D repetition if and only if X is lattice-periodic with one short
horizontal and one short vertical period or, equivalently, if it has one short horizontal (vertical) period
of height l (height k) and one short non-horizontal k× l-quad-I period or one non-vertical k× l-quad-II
period.

The simultaneous existence in X of a short horizontal and a short vertical period can be inter-
preted as the existence of an orthogonal basis for X. The following lemma shows that if an array X
has a basis and if the dimensions of the array are sufficiently large compared to those of the basis
periods, then X is a 2D repetition.

Proposition 3 [14] Let X be a lattice-periodic m×n array with basis (W1,W2). If the array dimen-
sions m and n are sufficiently large compared to the corresponding dimensions of W1 and W2 then X
is a 2D repetition.

2.5 Computational issues, models of computation

When computational issues are concerned, it matters what kind of data an algorithm takes as an input.
If rational lines/planes are considered, then the classical computational model with bit-operations can
be used. However, when processing lines and planes with irrational slopes/coefficients, one needs to
perform the operations in a real model of computation. This kind of model has been widely used
in various disciplines, such as algebraic complexity, scientific computing, computational geometry,
and (although not explicitly) numerical analysis. In our study we conform mainly to the version
presented in [13], known as the BSS-model (named after the authors Blum, Shub and Smale). In this
model, the assumption is that all the real numbers in the input have unit size, and the basic algebraic
operations +,−, ∗, / and the relation ≤ are executable at unit cost. Thus, the algebraic complexity of
a computation on a problem instance is the number of operations and branchings performed to solve
the instance. For more details on the BSS-model and complexity theory over arbitrary rings, we refer
to [13, 12].

3 Further preparation

3.1 Periodicity, repetitions and tilings of infinite arrays

As distinct from the one-dimensional case, a two-dimensional structure may feature many different
shapes. In what follows, we will be mainly concerned with the case of a plane quadrant, which is
the 2D counterpart of a ray. For definitenes, we will consider the first quadrant quad I. We will also
consider the full plane, which is the 2D counterpart of a line.

Consider R2
+ and the integer lattice Z2

+. Often we will work with the corresponding set of pixels
with centers at the integer points and sides parallel to the coordinate axes. The pixels’ sides form a
grid. An array A on Z2

+ over an alphabet Σ is a mapping from Z2
+ to Σ, i.e.,

A =

. . . . . . . . . . . .
a2,0 a2,1 a2,2 . . .
a1,0 a1,1 a1,2 . . .
a0,0 a0,1 a0,2 . . .

,

where aij ∈ Σ. Array on Z2 is defined analogously.
Two elements of an array are called adjacent if the corresponding points (pixels) are adjacent.

The unit cell on vectors u and v is the set of points w such that w = αu + βv, for 0 ≤ α, β < 1. The
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lattice cell at w on u and v is the set of points w + p for p in the unit cell (i.e., the unit cell shifted
by w). Two points p and q are lattice congruent modulo u and v if p− q = iu + jv for integers i, j. A
point that is lattice congruent modulo u and v to (0, 0) is called lattice point on u and v.

A subset s ⊆ Z2
+ is called a shape. Given an array A on Z2

+, by A[s] we denote the restriction of
A to s. A[s] is connected if s is connected. We will call A[s] factor of A on shape s. In what follows,
we will consider factors which are discretizations of lines, line segments, rectangles, parallelograms,
etc. A rectangular factor of size m× n will be called m× n-factor.

Below we slightly modify some definitions from Section 2.4 in order to adapt them to infinite
arrays. We follow in part [25], where periodility in infinite 2D arrays is considered.

Definition 11 Let A be an array on Z2
+ (or on Z2). Let S = A[s] be a factor of A on shape s.

(possibly, s = Z2
+ and S = A). A vector v is a symmetry vector for S if A(i, j) = A(v + (i, j)) for

any point (i, j) ∈ s such that v + (i, j) is still in s. (If s = Z 2, then clearly v + (i, j) ∈ s for any point
(i, j).)

v is periodicity vector (or a period) for S if for any integer k, the vector kv is a symmetry
vector for S.

Remark 5 Since the considered arrays have infinite size, clearly all periods kv for a period vector v
and a fixed integer k may be regarded as short periods.

We list a simple proposition from [25].

Proposition 4 A vector v is a symmetry vector for S if and only if −v is a symmetry vector for S.
Moreover, if v is a period for S, then for any k ∈ Z, kv is a period of S.

Definition 12 An array A on Zn
+ is lattice periodic if there are two linearly independent vectors u

and v such that w = iu + jv is a period for A for any pair of integers i, j for which w ∈ Z n
+. A is line

periodic if all periods of A are parallel vectors.

Note that this definition does not destinguish between quad I and quad II periods, and, in general, it
is not equivalent to the definitions from [1, 27] outlined in Section 2.4.

Remark 6 If A is line-periodic, then the set of its periods is generated by a single element v, whose
length is a divisor of the lengths of all other periods.

Let A be lattice-periodic and u and v two of its periods. Then there is a finite set T ⊂ Z 2
+ such

that every point from Z2
+ is congruent modulo u and v to a unique point from T .

We also have the following property.

Proposition 5 Let A be a lattice periodic array on Z 2
+ or Z2. Let u and v be two symmetry vectors

both pointing to the first quadrant (i.e., with positive coordinates). Then A has symmetry vectors
pointing to the forth quadrant (i.e., with a first coordinate positive number and a second coordinate
negative number).

The above statement holds also for finite lattice periodic arrays of sufficiently large size. Its meaning
is roughly that in an enough large array, the existence of two quad I periods implies the existence of
a quad II period.

Definition 13 Let A be lattice periodic array on Zn
+. The set of its symmetry vectors is a subset of

(is extendable to) a sublattice of Z2. Let Λ be the minimal one by inclusion. Then any basis of Λ will
be considered as a basis of A.

11
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Figure 3: Illustration to 2D palindromes. a) The center of symmetry is an integer point. ) The center
of symmetry has one integer and one half-integer component. c) The center of symmetry has two
half-integer components.

The definitions of tiles, tiled arrays, and 2D repetition can be transferred directly to infinite
arrays. Propositions 1, 2 and 3 can be easily modified to hold for an array on Z 2 or Z2

+. Thus we
have:

Proposition 6 Let X be a tiled array on Z2
+. Then X can be tiled by only one tile W . If W is finite,

then it is a p× q block, where p is the least common multiple (lcm) of the lengths of the periods of all
rows of X, and q is the lcm of the lengths of the periods of all columns of X.

If W is a strip that is infinite in one dimension (e.g., along the x-axis) and has size p in the
other dimension (along the y-axis), then p is the lcm of the lengths of the periods of all rows of X.

Proposition 7 An array X on Z2
+ is a 2D repetition if and only if X is lattice-periodic with one

horizontal and one vertical period.

Proposition 8 Any lattice-periodic array on Z 2
+ is a 2D repetition.

3.2 Symmetric arrays and 2D palindromes

Let s be a shape in Z2
+ and A be an infinite array on s.

s is symmetric if there is a point c ∈ s (not necessarily integer), such that for every vector v
with c + v ∈ B, it holds c − v ∈ B. A point c with this property will be called a center of symmetry
for the shape s.

Now let B ⊆ A be a factor of A on shape s. The factor B is a 2D palindrome if its shape s
is symmetric with respect to some center of symmetry c, and for every vector v with c + v ∈ B, the
symbol at the point c + v is the same as the one at c− v.

Note that it may happen that the center of a symmetric set of points is between two or four
integer points (see Figure 3). In such a case the center of symmetry will be a point (x, y) such that
one or both of its coordinates are half-integer (Figure 3b,c).

3.3 Discrete parallelogram tilings

Consider the plane with the integer grid defined in a previous section. Consider a parallelogram Q with
integer vertices p1, p2, p3, and p4, such as in Figure 4. It is well-known that such a parallelogram has
an integer area, equal to the determinant of the vectors v1 = p2−p1 and v2 = p4−p1. We will define a
“discrete parallelogram tile” associated with Q. By the simple geometry of the considered objects, it

12
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Figure 4: Discrete parallelogram tile.

is clear that two oposite sides of Q intersect the same number of pixels, and the corresponding pixels
are intersected in the same way.

We construct a discrete parallelogram tile as follows. First, we include in Q ′ one of the pixels
corresponding to one of the four vertices (e.g., to p1). The other three pixels are not included. Next,
include in Q′ all pixels whose centers are inside Q. Finally, observe that if there is a pixel whose center
lies on a side of Q, then the center of the corresponding pixel intersected by the oposite side of Q, lies
on that side. In such a case, we include in Q′ exactly one of the two pixels.

By simple geometrical arguments it is clear that the obtained pattern Q′ has area equal to the
one of Q. It is also clear that by such a tile one can tile the whole plane.

Note that we consider the discrete tile Q′ as a useful technical construction to be used further
in this paper, rather than as a discretization of Q that may be applied, e.g., in computer graphics.
More reasonable discretizations of polygons have been suggested in [7, 15, 16].

4 Digital planes

4.1 Basic definition

We first observe that a connected linear set of points

γα,β = {(x, αx + β) : x ∈ J ⊆ R} (3)

is a line segment, ray or a straight line depending on whether J is a line segment, ray or a straight
line. Consider now the Euclidean plane

P(α1, α2, α3, β) = {(x1, x2, x3) ∈ R3 : α1x1 + α2x2 + α3x3 = β}. (4)

W.l.o.g., assume that P makes with the coordinate plane Ox1x2 an angle

0 ≤ θ ≤ arctan
√

2. (5)

(See Figure 5.) Then the coefficient α1 of x3 in (4) will be nonzero. Dividing both sides of (4) by α3,
we obtain the following equivalent formulation:

P(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b}, (6)
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Figure 5: A plane forming an angle arctan
√

2 with the plane Ox1x2.

where a1 = −α1

α3
, a2 = −α2

α3
, b = β

α3
.

We will consider digitizations of the plane P or its portions in the set of grid points Z3 =
{(i, j, k) : i, j, k ∈ Z}. In terms of representation (6), we will digitize the third coordinate x3 over the
integer grid points Z2 = {(i, j) : i, j ∈ Z} in the coordinate plane Ox1x2.

In 2D, with a reference to (3), γα,β is a connected set of points (segment, ray or line) as long as
the set J is an interval (finite or infinite). In 3D, the situation may be more complicated. To illustrate,
let us write (6) in a more general form:

PD(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b, (x1, x2) ∈ D ⊆ R2}. (7)

We call PD(a1, a2, b) the restriction of P(a1, a2, b) to the domain D.

We have that PD(a1, a2, b) is connected as long as D is connected. Also, PD(a1, a2, b) is bounded
(resp. unbounded) if and only if D is bounded/unbounded. Note, however, that a 2D domain D
admits many different shapes, whether D is bounded or not. (The possible unbounded shapes are
even infinitely many.) As far as in our study periodicity properties of digitized planes are concerned,
it is reasonable to restrict ourselves to a few cases.

When we consider a finite domain D, we will usually assume that it is the rectangle

D = {(x1, x2) : m1 ≤ x1 ≤ n1,m2 ≤ x2 ≤ n2, m1, n1,m2, n2 ∈ Z}.

Then clearly the corresponding portion PD(a1, a2, b) of P(a1, a2, b) will be a space rectangle. For an
infinite domain D, one can consider the following three basic cases:

1. D is a quadrant;

2. D is a half-plane;

3. D is the whole plane.

Remark 7 The first case corresponds to the case of a ray while the third one to the case of a line in
the plane. Therefore, in Case 1, we will call PD(a1, a2, b) a 2D ray. Note that the second case of a
half-plane does not have a 1D counterpart.
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We will deal mostly with digitizations of 2D rays. The other cases can be handled in a similar
(although not fully identical) way.

Below we explain how one can digitize PD(a1, a2, b) when D is a 2D ray, i.e., the first quadrant
of the plane. Formally, we have

PD(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b, (x1, x2) ∈ D = {(x1, x2) : 0 ≤ x1, x2 ≤ ∞}}.
(8)

We digitize PD(a1, a2, b) in Z3
+ = {(i, j, k) : i, j, k ∈ Z+}, where Z+ is the set of nonnegative

integers. We digitize the third coordinate x3 over the nonnegative integer grid points Z2
+ = {(i, j) :

i, j ∈ Z+} in the first quadrant QuadI. Let

. . . . . . . . . . . .
ρ2,0 ρ2,1 ρ2,2 . . .
ρ1,0 ρ1,1 ρ1,2 . . .
ρ0,0 ρ0,1 ρ0,2 . . .

be the intersection points of the vertical grid lines with PD(a1, a2, b). Let (i, j, Ii,j) ∈ Z3 be the grid
point nearest to ρi,j. If there are two nearest points, we choose the upper one. Formally, we have that
the discretization of PD(a1, a2, b) over Z3

+ is

Ia1,a2,b = {(i, j, Ii,j) : i, j ≥ 0, Ii,j = ba1x1 + a2x2 + b +
1

2
c}.

It has a slope vector (a1, a2) and intercept b. Sometimes, the discretization of a 2D ray R will alterna-
tively be denoted discr(R).

Remark 8 The plane P intersects the coordinate planes Ox1x3 and Ox2x3 in straight lines with
equations x3 = a1x1 + b, x2 = 0 and x3 = a2x2 + b, x1 = 0, respectively. Considered in the plane
Ox1x3, the first line has slope a1, while the second has slope a2. The slope vector of the plane has the
slopes of these two lines as coordinates.

Now we define a digital 2D ray ra1,a2,b with a slope vector (a1, a2) and intercept b, as follows3:

ra1,a2,b =

. . . . . . . . . . . .
ra1,a2,b(2, 0) ra1 ,a2,b(2, 1) ra1,a2,b(2, 2) . . .
ra1,a2,b(1, 0) ra1 ,a2,b(1, 1) ra1,a2,b(1, 2) . . .
ra1,a2,b(0, 0) ra1 ,a2,b(0, 1) ra1,a2,b(0, 2) . . .

,

where ra1,a2,b(i, j) are called cell codes and defined for i, j ≥ 0, as follows:

We set ra1,a2,b(0, 0) = I0,0.
Defining the 0-th digitized row:

ra1,a2,b(0, j + 1) = I0,j+1 − I0,j =

{

0, if I0,j+1 = I0,j

1, if I0,j+1 = I0,j + 1
,

Defining the 0-th digitized column:

ra1,a2,b(i + 1, 0) = Ii+1,0 − Ii,0 =

{

0, if Ii+1,0 = Ii,0

1, if Ii+1,0 = Ii,0 + 1
,

3An alternative way to define digital 2D rays is briefly sketched in Section 8.2.
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Defining the i-th digitized row:

ra1,a2,b(i, j + 1) = Ii,j+1 − Ii,j =

{

0, if Ii,j+1 = Ii,j

1, if Ii,j+1 = Ii,j + 1
,

Alternatively, we can digitize the array columnwisely.

Defining the i-th digitized column:

ra1,a2,b(i + 1, j) = Ii+1,j − Ii,j =

{

0, if Ii+1,j = Ii,j

1, if Ii+1,j = Ii,j + 1
.

Note that the 0-th row and the 0-th column are the same both in the rowwise and the columnwise
digitizations. Code 0 can be interpreted as a horizontal rowwise/columnwise grid increment while 1
as a vertical rowwise/columnwise increment in the grid N3.

Remark 9 Because of assumption (5), horizontal/vertical move from one integer point to another in
the domain D can increase the z-coordinate by at most 1. Once the 0-th row or column is generated,
one can build the rest of the array either rowwisely or columnwisely.

ra1,a2,b is called digitization of the 2D ray PD. Sometimes, the digitization of a 2D ray R will
alternatively be denoted by digit(R).

Note that the two digitizations defined by rows and by columns may not be identical, although
they both correspond to the same 2D ray discretization Ia1,a2,b. This is illustrated by the following
example. (Further details are given in Example 2.)

Example 1 Consider the 2D ray R 1

2
, 1
3

determined by x3 = 1
2x1 + 1

3x2, x1, x2 ≥ 0. The x3-values at

the integer points (x1, x2) for the first 10 rows and columns are presented in the following table.

R 1

2
, 1
3

:

. . . . . . . . . . . . .
10 31

3 35
6 41

3 45
6 51

3 55
6 61

3 65
6 71

3 75
6 81

3 .
9 •3 31

2 •4 41
2 •5 51

2 •6 61
2 •7 71

2 •8 .
8 22

3 31
6 32

3 41
6 42

3 51
6 52

3 61
6 62

3 71
6 72

3 .
7 21

3 25
6 31

3 35
6 41

3 45
6 51

3 55
6 61

3 65
6 71

3 .
6 •2 21

2 •3 31
2 •4 41

2 •5 51
2 •6 61

2 •7 .
5 12

3 21
6 22

3 31
6 32

3 41
6 42

3 51
6 52

3 61
6 62

3 .
4 11

3 15
6 21

3 25
6 31

3 35
6 41

3 45
6 51

3 55
6 61

3 .
3 •1 11

2 •2 21
2 •3 31

2 •4 41
2 •5 51

2 •6 .
2 2

3 11
6 12

3 21
6 22

3 31
6 32

3 41
6 42

3 51
6 52

3 .
1 1

3
5
6 11

3 15
6 21

3 25
6 31

3 35
6 41

3 45
6 51

3 .
0 •0 1

2 •1 11
2 •2 21

2 •3 31
2 •4 41

2 •5 .

0 1 2 3 4 5 6 7 8 9 10 .

The points with integer x3 values are marked by bullet sign. It is visible that they form a lattice with
a basis b1 = (2, 0, 1) and b2 = (0, 3, 1). The next table illustrates the corresponding discretization
discr(R 1

2
, 1
3

) composed by the values Ii,j. Any two rectangular blocks are equivalent modulo an integer
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number.

discr(R 1

2
, 1
3

) :

. . . . . . . . . . . . .
10 3 4 4 5 5 6 6 7 7 8 8 .
9 •3 4 •4 5 •5 6 •6 7 •7 8 •8 .

8 3 3 4 4 5 5 6 6 7 7 8 .
7 2 3 3 4 4 5 5 6 6 7 7 .
6 •2 3 •3 4 •4 5 •5 6 •6 7 •7 .

5 2 2 3 3 4 4 5 5 6 6 7 .
4 1 2 2 3 3 4 4 5 5 6 6 .
3 •1 2 •2 3 •3 4 •4 5 •5 6 •6 .

2 1 1 2 2 3 3 4 4 5 5 6 .
1 0 1 1 2 2 3 3 4 4 5 5 .
0 •0 1 •1 2 •2 3 •3 4 •4 5 •5 .

0 1 2 3 4 5 6 7 8 9 10 .

The next table presents the columnwise digitization digitcol(R 1

2
, 1
3

) of R 1

2
, 1
3

. From it, one can recover

the discretization discr(R 1

2
, 1
3

) of R 1

2
, 1
3

. This can be done as follows. Let the x3 value of a point (i, j)

be sought. First move along the 0th row counting the number of 1s until reaching the jth column.
Then move up along the jth column counting the number of 1s until reaching the element (i, j). The
overall number of 1s counted is the value of x3 at the point (i, j). Note, however, that the result may
be different if we first move vertically rather than horizontally. For instance, in the latter case the
value at the point (7, 4) is 5 (the correct value), while in the former it is 1 (incorrect).

digitcol(R 1

2
, 1
3

) :

. . . . . . . . . . . . .
10 0 0 0 0 0 0 0 0 0 0 0 .
9 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

8 1 0 1 0 1 0 1 0 1 0 1 .
7 0 0 0 0 0 0 0 0 0 0 0 .
6 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

5 1 0 1 0 1 0 1 0 1 0 1 .
4 0 0 0 0 0 0 0 0 0 0 0 .
3 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

2 1 0 1 0 1 0 1 0 1 0 1 .
1 0 0 0 0 0 0 0 0 0 0 0 .
0 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

0 1 2 3 4 5 6 7 8 9 10 .

The next table presents the rowwise digitization digitrow(R 1

2
, 1
3

) of R 1

2
, 1
3

. From it, one can recover

the discretization discr(R 1

2
, 1
3

), moving first upward along the 0th column until reaching the ith row,

and then to the right on ith row until reaching the element (i, j). Although the two digitization are
different as 0/1 arrays, they have identical periodicity structure and represent the same discrete plane.
Note that the digital 2D rays digitcol(R 1

2
, 1
3

) and digitrow(R 1

2
, 1
3

) are both tiled by a 2 × 3 tile, as the

horizontal size of the tile (2) and the vertical one (3) are precisely the denominators of the coefficients
of x1 and x2. Note also that this tiling is identical to the lattice determined by the integer points of
R 1

2
, 1
3

. It is so because the denominators 2 and 3 are relatively prime. We will see in Example 2 that
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if this is not the case, the tiling and the lattice may be essentially different.

digitrow(R 1

2
, 1
3

) :

. . . . . . . . . . . . .
10 0 1 0 1 0 1 0 1 0 1 0 .
9 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

8 1 0 1 0 1 0 1 0 1 0 1 .
7 0 1 0 1 0 1 0 1 0 1 0 .
6 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

5 1 0 1 0 1 0 1 0 1 0 1 .
4 0 1 0 1 0 1 0 1 0 1 0 .
3 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

2 1 0 1 0 1 0 1 0 1 0 1 .
1 0 1 0 1 0 1 0 1 0 1 0 .
0 •0 1 •0 1 •0 1 •0 1 •0 1 •0 .

0 1 2 3 4 5 6 7 8 9 10 .

2

Example 2 Consider the 2D ray R 1

4
, 1
6

determined by x3 = 1
4x1 + 1

6x2, x1, x2 ≥ 0. The table presents

the x3-values at the integer points (x1, x2) for the first 10 rows and columns.

R 1

4
, 1
6

:

. . . . . . . . . . . . .
10 1.66 1.91 2.16 2.41 2.66 2.91 3.16 3.41 3.66 3.91 4.16 .
9 1.5 1.75 •2 2.25 2.5 2.75 •3 3.25 3.5 3.75 •4 .
8 1.33 1.58 1.83 2.08 2.33 2.66 2.91 3.16 3.41 3.66 3.91 .
7 1.16 1.41 1.66 1.91 2.16 2.41 2.66 2.91 3.16 3.41 3.66 .
6 •1 1.25 1.5 1.75 •2 2.25 2.5 2.75 •3 3.25 3.5 .
5 0.83 1.08 1.33 1.58 1.83 2.08 2.33 2.58 2.83 3.08 3.33 .
4 0.66 0.91 1.16 1.41 1.66 1.91 2.16 2.41 2.66 2.91 3.16 .
3 0.5 0.75 •1 1.25 1.5 1.75 •2 2.25 2.5 2.75 •3 .
2 0.33 0.58 0.83 1.08 1.33 1.66 1.91 2.16 2.41 2.66 2.91 .
1 0.16 0.41 0.66 0.91 1.16 1.41 1.66 1.91 2.16 2.41 2.66 .
0 •0 0.25 0.5 0.75 •1 1.25 1.5 1.75 •2 2.25 2.5 .

0 1 2 3 4 5 6 7 8 9 10 .

Similar to Example 1, the integer points are marked by bullet sign. They form a 2D lattice with a basis
b1 = (4, 0, 1) and b2 = (2, 3, 1). The next table illustrates the corresponding discretization composed by
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the values Ii,j. Any two rectangular blocks are equivalent modulo an integer number.

discr(R 1

4
, 1
6

) :

. . . . . . . . . . . . .
10 2 2 2 2 3 3 3 3 4 4 4 .
9 2 2 •2 2 3 3 •3 3 4 4 •4 .
8 1 2 2 2 2 3 3 3 3 4 4 .
7 1 1 2 2 2 2 3 3 3 3 4 .
6 •1 1 2 2 •2 2 3 3 •3 3 4 .

5 1 1 1 2 2 2 2 3 3 3 3 .
4 1 1 1 1 2 2 2 2 3 3 3 .
3 1 1 •1 1 2 2 •2 2 3 3 •3 .
2 0 1 1 1 1 2 2 2 2 3 3 .
1 0 0 1 1 1 1 2 2 2 2 3 .
0 •0 0 1 1 •1 1 2 2 •2 2 3 .

0 1 2 3 4 5 6 7 8 9 10 .

The next table presents the columnwise digitization of R 1

4
, 1
6

. From it, one can reconstruct the dis-

cretization of R 1

4
, 1
6

.

digitcol(R 1

4
, 1
6

) :

. . . . . . . . . . . . .
10 0 0 0 0 0 0 0 0 0 0 0 .
9 1 0 •0 0 1 0 •0 0 1 0 •0 .
8 0 1 0 0 0 1 0 0 0 1 0 .
7 0 0 0 0 0 0 0 0 0 0 0 .
6 •0 0 1 0 •0 0 1 0 •0 0 1 .

5 0 0 0 1 0 0 0 1 0 0 0 .
4 0 0 0 0 0 0 0 0 0 0 0 .
3 1 0 •0 0 1 0 •0 0 1 0 •0 .
2 0 1 0 0 0 1 0 0 0 1 0 .
1 0 0 0 0 0 0 0 0 0 0 0 .
0 •0 0 1 0 •0 0 1 0 •0 0 1 .

0 1 2 3 4 5 6 7 8 9 10 .

Note that the area of the rectangular tiles is equal to the product of the denominators of the coefficients
of x1 and x2 (i.e., 4 × 6 = 24). The corresponding lattice has basis vectors (4, 0) and (0, 6), which
are the projections on Ox1x2 of the vectors (4, 0, 1) and (0, 6, 1). Note, however, that this basis is
not “minimal.” An actual basis is, e.g., the one consisting of the vectors b̄1 = (0, 4) and b̄2 = (2, 3),
which are the projections on Ox1x2 of the vectors b1 = (4, 0, 1) and b2 = (2, 3, 1). The area of the
corresponding parallelogram tile is the least common multiple of the denominators of the coefficients of
x1 and x2 (i.e., lcm(4, 6) = 12). See Figure 6. Note that the rectangular tiling of Example 1 provided
a basis for the considered lattice, since the denominators 2 and 3 of the two coefficients were relatively
prime. 2

4.2 Other definitions and properties

Arithmetic plane is a set of voxels P (α1, α2, α3, µ, ω) = {(x1, x2, x3) ∈ Z3| − bω
2 c ≤ α1x1 + α2x2 +

α3x3 + µ < bω
2 c}, where ω ∈ N. ω is the arithmetic thickness of the plane and µ is its internal

translation constant. An arithmetic plane P (α1, α2, α3, µ, ω) is naive if ω = max(|α1|, |α2|, |α3|), and
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Figure 6: Rectangular tile with area 24 and a parallelogram tile with area 12. The latter corresponds
to a lattice basis.

standard if ω = |α1| + |α2| + |α3|. The naive plane which is centered about the continuous plane
α1x1 + α2x2 + α3x3 + µ = 0 is P (α1, α2, α3, µ + bω

2 c, ω), ω = max(|α1|, |α2|, |α3|). Such an arithmetic
plane is called regular. In what follows, we consider arithmetic planes of this type. We have the
following theorem.

Theorem 11 (Reveilles 1991 [34]) arithmetic plane P (α1, α2, α3, β,max(|α1|, |α2|, |α3|)) coincides
with a set of grid points assigned to a discrete plane, and vice versa: for any discrete plane P there
are numbers α1, α2, α3 and β such that the set of points of P is P (α1, α2, α3, β,max(|α1|, |α2|, |α3|)).

Corollary 1 The points corresponding to a digital plane lie between or on two parallel planes having
a distance less than one, measured in the x3-axis direction.

We also have the following fact which follows from a more general result about discrete hyperplanes.

Theorem 12 (Andres and Acharya 1997 [4]) Let P = P (α1, α2, α3, β, ω) be an arithmetic plane.
Assume without loss of generality that |α1| ≤ |α2| ≤ |α3|. Then,

– if ω < |α3|, the plane has 2-tunnels;

– if |α2|+ |α3| ≤ ω ≤ |α1|+ |α2|+ |α3|, then the plane has 0-tunnels and is 1-separating;

– if |α3| ≤ ω ≤ |α2|+ |α3|, then the plane has 1-tunnels and is 2-separating;
– if ω ≥ |α1|+ |α2|+ |α3|, then the plane has no tunnels.

We have the following theorem.

Theorem 13 (analog of Theorem 1) A discretization of a plane P is 2-minimal in Z3
+.

Proof By Theorem 11, the discretization of P is a naive plane for some parameters α1, α2, α3, β and
thickness ω = max(|α1|, |α2|, |α3|). Then from Theorem 12 (3rd case) it follows that the discretization
Ia1,a2,b of P is 1-separating in Z3

+. By construction, to any integer point (x1, x2) ∈ Ox1x2 corresponds
exactly one integer point (x1, x2, x3) ∈ Z3

+ which belongs to Ia1,a2,b. Let us remove an integer point
Q = (x1, x2, x3) from Ia1,a2,b. Then clearly Ia1,a2,b − Q will contain a 2-tunnel, since a 2-connected
path can penetrate through Ia1,a2,b − Q and connect points which before removing of Q have been
2-separated by Ia1,a2,b. 2
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Corollary 2 A discretization of a 2D ray is 2-minimal in Z3
+.

Remark 10 The digital 2D ray ra1,a2,b is said to be generated by the 2D ray x3 = a1x1 + a2x2 + b.
If we have two 2D rays ra1,a2,b and ra1,a2,b′ and if b− b′ is integer, then clearly ra1,a2,b = ra1,a2,b′.

Thus, without loss of generality we may assume that the intercepts are limited to 0 ≤ b ≤ 1.
We also have

r0,0,b =

. . . . . . . . . . . .
0 0 0 . . .
0 0 0 . . .
0 0 0 . . .

and r1,1,b =

. . . . . . . . . . . .
1 1 1 . . .
1 1 1 . . .
1 1 1 . . .

.

We have the following theorem.

Theorem 14 (Barneva, Brimkov and Nehlig 1998 [7]) Let P : a1x1 +a2x2 +a3x3 = b be a continuous
plane and P = P (a1, a2, a3, b+bω

2 c, ω) be the corresponding regular plane. Let without loss of generality
0 ≤ a1 ≤ a2 ≤ a3 and a3 6= 0. Let (x1, x2) ∈ Z. Then (x1, x2, x̄3) ∈ P and (x1, x2, x3) ∈ P implies
|x̄3 − x3| ≤ 1

2 .

In other words, the points of a plane discretization are within 1
2 vertical distance from the continuous

plane.
Let (a1, a2) be the slope-vector of a plane discretization Ia1 ,a2,b. Ia1,a2,b (as well as the corre-

sponding digital 2D ray ra1,a2,b and the Euclidean plane x3 = a1x1 +a2x2 + b) is called rational if both
a1 and a2 are rational numbers. Otherwise, it is called irrational.

We also have the following analog of the Bruckstein theorem (Theorem 2).

Theorem 15 For irrational plane with a slope vector (a1, a2), the plane discretization Ia1,a2,b uniquely
determines both (a1, a2) and b. For rational (a1, a2), Ia1,a2,b uniquely determines (a1, a2), and b is
determined up to an interval.

The proof is similar to the one of Theorem 2.

Remark 11 Let PD(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b, (x1, x2) ∈ D = {(x1, x2) :
0 ≤ x1, x2 ≤ ∞}} be a 2D ray. Let (a1, a2) be a pair of rational numbers p1

q1
and p2

q2
which are irreducible

fractions (i.e., gcd(p1, q1) = 1 and gcd(p2, q2) = 1). According to our assumption, 0 ≤ p1

q1
≤ 1, i.e.,

p1 < q1 and 0 ≤ p2

q2
≤ 1, i.e., p2 < q2. Then the plane equation x3 = a1x1 + a2x2 + b can be written as

−p1q2x1 − p2q1x2 + q1q2x3 = q1q2b.

Consider the 2D ray determined by the plane

Pbc
a1,a2,b : −p1q2x1 − p2q1x2 + q1q2x3 = bq1q2bc.

Its discretization and digitization are the same as the one of P. Moreover, it is easy to prove that

gcd(p1q2, p2q1, q1q2) = 1, hence P
bc
a1,a2,b contains integer points. One can realize that all the planes

with the same discretization/digitization are

Pa1,a2,b : −p1q2x1 − p2q1x2 + q1q2x3 = b′

where bq1q2bc − 1
2 ≤ b′ < bq1q2bc + 1

2 if max(|α1|, |α2|, |α3|) is an odd number, and bq1q2bc ≤ b′ <
bq1q2bc+ 1, if max(|α1|, |α2|, |α3|) is an even number.
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Figure 7: Illustration to the proof of Theorem 16. The 2D integer lattice Λ in the plane P and some
of its bases.

4.3 Periodicity properties of 2D digital rays

In this section we study the periodicity of 2D digital rays. We consider separately the cases of rational
and irrational rays.

4.3.1 Rational digital 2D rays

Consider a rational 2D ray R = PD(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b, (x1, x2) ∈
D = {(x1, x2) : 0 ≤ x1, x2 ≤ ∞}}, its discretization discr(R) = Ia1,a2,b, and the corresponding
digital 2D ray digit(R) = ra1,a2,b . The coefficients a1, a2, b are rational numbers. Without loss of
generality we may assume that they are integer and that R contains integer points. With a reference
to Section 2.3, these integer points belong to a 2-dimensional integer lattice Λ ∈ Z3 in the plane
P = P(a1, a2, b) = {(x1, x2, x3) ∈ R3 : x3 = a1x1 + a2x2 + b}.

Consider a basis B for Λ, i.e., a linearly independent system of integer vectors B = {e1, e2},
such that

{x : a1x1 + a1x2 + a1x3 = b, x ∈ Zn} = {e0 + λ1e
1 + λ2e

2, λ1, λ2 ∈ Z},

where e0 is an arbitrary integer point in P . Note that Λ has different bases. For instance, in Figure
7, any one of the pairs of vectors B1 = {e1, e2} B2 = {−e1, e2}, B3 = {e1,−e2}, and B4 = {−e1,−e2}
constitutes a basis. Geometrically, for a given basis {e1, e2}, the whole plane P is partitioned into
parallelograms spanned on the basis vectors. (See Figure 7.) Any two parallelograms are equivalent
up to translation. Every lattice point can be obtained from any other lattice point by consecutive
passes along the vectors e1, e2,−e1 or −e2. The discretization discr(P ) and the digitization digit(P )
will be periodic as well. discr(P ) has period vectors e1 and e2, while digit(P ) has as period vectors
the projections of e1 and e2 on the coordinate plane Ox1x2.
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Figure 8: The points of the integer lattice Λ of the 2D ray R.

If we choose an integer point e0 ∈ PD(a1, a2, b), we can obtain identical periodicity picture of
R, discr(R) and ra1,a2,b = digit(R). (See Figure 8.) In view of the above discussion, one can consider
digit(P ) and digit(R) as tiled by a tile with a shape of parallelogram formed by the vectors of a given
basis.

It follows from Proposition 3 that ra1,a2,b and rD
a1,a2,b are also tiled by a rectangular tile of

suitable dimension. (See Figure 9 and Examples 1 and 2.) We have seen that the lattice of the integer
points of a plane or a 2D ray can be generated by different bases, which feature different parallelogram
partitions (Figure 7). Nevertheless, it is a well-known fact from lattice theory that the lattice cells
have the same area for all possible bases. It equals the value max(|α1|, |α2|, |α3|), where α1, α2, α3 are
the coefficients in the plane representation (4) with gcd(α1, α2, α3) = 1.

The above discussion leads us to the following 2D version of Brons theorem (Theorem 3) for the
case of rational 2D rays.

Theorem 16 Rational digital 2D rays are lattice-periodic. For a given basis of the lattice, the corre-
sponding lattice cells are parallelograms. For all possible bases, the lattice cells have the same area which
equals the absolute value of the maximal coefficient in the plane representation α1x1 +α2x2 +α3x3 = β
with gcd(α1, α2, α3) = 1.

Remark 12 We have seen that in the case of digital plane or 2D ray, always lattice-periodicity holds.
Note, however, that in case of a finite array, one may have radiant-periodicity (see Figure 10a). Note
also that even if a digitized domain is infinite, depending on its particular shape, it may have periodicity
structure different than lattice-periodicity (see Figure 10b).

Remark 13 It is also clear that:
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Figure 9: If a lattice-periodic array is enough large, then it can be tiled by a rectangular tile.

b)a)

Figure 10: a) A small portion of a lattice-periodic array may be radiant-periodic. b) An infinite
subdomain of a lattice-periodic array may not be lattice-periodic.
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1. All digital planes with the same rational slope vector are equivalent up to translation with an
appropriate translation vector.

2. For any two digital 2D rays r′a1,a2,b′ and r′′a1,a2,b′′ with the same rational slope vector (a1, a2),
there exist vectors v′ and v′′, such that v′ + r′a1,a2,b′ = r′′a1,a2,b′ and v′′ + r′′a1,a2,b′ = r′a1,a2,b′.

Symmetry of rational digital 2D rays and planes

The study of the digital plane structure reveals certain symmetry properties of digital 2D rays and
planes.

Fact 1 1. Let digit(P ) be the digitization of a plane P with a rational slope vector. Then every
point of digit(P ) which corresponds to an integer point of P is a center of symmetry for digit(P ).

2. Let B be a symmetric set of points of a plane digitization or a ray digitization. (In case of a
plane, B may be finite or infinite, while in case of a 2D ray, B is always finite.) Then B is a
2D palindrome.

3. Any 2D parallelogram tile of a plane digitization or a 2D ray digitization is a 2D palindrome
whose center of symmetry is the center of the period.

4.3.2 Irrational digital 2D rays

We start with the note that, unlike an irrational line digitization which is always aperiodic, a plane
digitization may be line-periodic. As a background for our further considerations we start by listing
some useful facts.

Fact 2 (A) Let P be an irrational plane. The possible periodicity structure as well as the possible
symmetry of digit(P ) depends on the integer (or rational) points which P contains. There are several
possibilities:

1. P contains no integer or rational points.

2. P contains a single integer or rational point.

3. P contains infinitely many equidistant integer points which belong to a straight line on P , or P
is parallel to a line which contains infinitely many equidistant integer points. (In the latter case,
P contains infinitely many rational points, which belong to parallel straight lines on P and form
dense sets on these lines.)

(B) A 2D ray R may feature the following possibilities:

1. R contains no integer or rational points.

2. R contains a single integer or rational point.

3. R contains infinitely many equidistant integer points which belong to a ray on R, or R is parallel
to a ray which contains infinitely many equidistant integer points. (In the latter case, R contains
infinitely many rational points, which belong to parallel rays on R and form dense sets on these
rays. See Figure 11a.)
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a) b)

Figure 11: a) Sample orientation of the rational rays, Fact 2 (B-3). b) Sample orientation of the
rational segments, Fact 2 (B-4).

4. R contains finitely many equidistant integer points which belong to a straight line segment on
R, or R is parallel to a segment which contains finitely many equidistant integer points. (In
the latter case, R contains infinitely many rational points which belong to these straight line
segments and form dense sets on them. See Figure 11b.)

The following are other plain facts.

Fact 3 A line/plane contains exactly one integer/rational point if and only if it is irrational.

Fact 4 If a plane/2D ray Q contains exactly one integer/rational point, then there is no line parallel
to Q and containing infinitely many equidistant integer points.

Fact 5 A plane/2D ray Q contains infinitely many equidistant integer points which belong to a straight
line on Q, and no other integer points, if and only if Q is irrational.

Fact 6 A plane/2D ray Q contains infinitely many rational points which belong to (and are dense on)
a straight line/straight line segment on Q, and no other rational points, if and only if Q is irrational.

The presence of integer and/or rational points on a plane depends on its coefficients (the slope
vector). We list some related facts.

Fact 7 A plane with equation x3 = a1x1+a2x2+b may contain a line with infinitely many equidistant
integer points on it, even if all coefficients a1, a2 and b are irrational numbers. Consider, for instance,
the plane with equation √

2x1 +
√

3x2 + (
√

2 +
√

3)x3 =
√

2 + 2
√

3,

or, equivalently,

x3 = −
√

2√
2 +

√
3
x1 −

√
3√

2 +
√

3
x2 +

√
2 + 2

√
3√

2 +
√

3
.

This plane contains the integer points (0, 1, 1) and (1, 2, 0), hence it contains infinitely many equidistant
integer points.

Fact 8 Let a plane P have equation x3 = a1x1 + a2x2 + b, such that one of the coefficients (say, a2)
is irrational, while the other is integer (or rational).
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1. If b is integer or rational, then the plane contains a line with infinitely many equidistant integer
points on it. More precisely, this is the line x3 = a1x1+b, x2 = 0. (If a1 = p1/q1, gcd(p1, q1) = 1,
and b = p/q, gcd(p, q) = 1, then the line equation is equivalent to qq1x3 = p1x1 + p. Clearly,
gcd(qq1, p1) = 1 and the equation has infinitely many integer solutions).

2. If b is an irrational number such that it is not a rational multiple of a1, then the plane contains
no integer or rational points. Nevertheless, P is parallel to a line containing infinitely many
equidistant integer points.

Fact 9 Let a plane have equation x3 = a1x1 + a2x2 + b, such that both coefficients a1 and a2 are
rational (i.e., the plane has a rational slope vector), while b is irrational. Then the plane contains no
integer or rational points. Nevertheless, P is parallel to two lines with linearly independent directions,
each of them containing infinitely many equidistant integer points. In view of Theorem 16 and the
related discussion, the digitization of P is lattice-periodic.

Fact 10 Let a plane P have equation x3 = a1x1 + a2x2 + b, such that both coefficients a1 and a2 are
irrational, while b is rational. Then the plane contains a single integer or rational point.

In the following remark we describe some constructions and fix some denotations to be used in
the sequel.

Remark 14 (Constructions and denotations) Let R : x3 = a1x1 + a2x2 + b, x1, x2 ≥ 0 be a 2D ray,
discr(R) its discretization and digit(R) its digitization.

The row indexes i = 0, 1, 2, . . . run on the integer points of x2 axis, while the column indexes
j = 0, 1, 2, . . . run on the integer points of x1 axis.

We denote by discr(R)i the ith row of discr(R) and by discr(R)j the jth column of discr(R).
Also, let us denote by digitrow(R)i a generic ith row of digitrow(R) and by digitrow(R)j a generic

jth column of digitrow(R). Analogously, denote by digitcol(R)i a generic ith row of digitcol(R) and by
digitcol(R)j a generic jth column of digitcol(R). These are sequences of 0s and 1s.

Consider discr(R)i. Consider the two vertical planes P1 and P2 which bound discr(R)i. They
intersect R in two parallel lines g1 and g2. Consider the ray g on R which is between g1 and g2

and is in equal distance from both of them. Let g ′ be the orthogonal projection of g on Ox1x3. Let
discr(g′) denote the discretization of g′ on the integer points of Ox1x3, and digit(g′) the corresponding
digitization on the integer points of Ox1x3.

In an analogous way we define a discretization discr(h′) and digitization digit(h′) of a ray h
corresponding to a column discr(R)j. Such a correspondence holds for any row or column of discr(R).

After this preparation, we are able to prove the following theorem.

Theorem 17 Irrational digital 2D rays are either aperiodic or line-periodic.

Proof Consider a plane P with an irrational slope vector (a1, a2) and the corresponding 2D ray R.
We will consider three different cases.

1. Both a1 and a2 are irrational and the plane P : x3 = a1x1 +a2x2 + b does not contain more than
one integer or rational point and is not parallel to a line containing infinitely many equidistant
integer points.

Consider discr(R)i, g′ and digit(g′) defined in Remark 14. Let v be an arbitrary voxel of
discr(R). This means that the vertical distance from the center c(v) of v to R, is ≤ 1

2 . Clearly,
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Figure 12: Illustration to the proof of Theorem 16. g ′ is the projection of g on the facet of v which is
parallel to the plane Ox1x3.

equality is possible only if R passes through the center of the square which is an upper 2D-facet
of v. (See Figure 12.) According to our assumption, this may happen with either no one voxels
of discr(R) (Case (a)) or with exactly one voxel of discr(R) (Case (b)). In the former case,
the vertical distance from c(v) to R is strictly less than 1

2 . In the latter case, according to the
definition of discr(R), c(v) is above R. Consider now the projections v ′ and c(v)′ of v and
c(v), respectively, on Ox1x3 (v′ being a unit square and c(v)′ an integer point in Ox1x3). We
investigate their position with respect to the line g ′. In view of the definition of g′, we have in
Case (a) that the vertical distance between g ′ and c(v)′ is strictly less than 1

2 . In Case (b), we
have that g′ is above c(v)′ and that the vertical distance between them is equal to 1

2 . Hence, the
projections of all voxels of the row discr(R)i form a discrete line, which is exactly the discrete
line discr(g′). (According to the Bruckstein theorem (Theorem 2), a continuous straight line is
uniquely determined by a given discretization, if the line has an irrational slope, which is the
case.)

Since the slope vector (a1, a2) of R has two irrational components and the plane P contains at
most one integer or rational point, the same applies to the lines g and g ′.

According to Brons theorem (Theorem 3), the digitization digit(g ′) of g′ is aperiodic.

Consider now the digitization of the ith row of discr(R). By definition, it is the ith row
digitrow(R)i of digitrow(R). We observe that digitrow(R)i is identical to digit(g′), with a possible
difference in the first element (since building digitrow(R)i may start either from 0 or from 1,
depending on the corresponding element in the 0th column). Thus we obtain that the ith row
digitrow(R)i of digitrow(R) is aperiodic.

In a similar way one can show that for any j, the jth column digitcol(R)j of digitcol(R) is
aperiodic.

The same applies to any column of digitrow(R). If we assume that there is a column digitrow(R)j

of digitrow(R) that is periodic, it will follow that the corresponding jth column digitcol(R)j of
digitcol(R) is periodic with the same periodicity as digitrow(R)j – a contradiction. (In fact, this
would mean that R is parallel to a line which contains equidistant integer points, and whose
orthogonal projection on Ox1x2 is parallel to the Ox2 axis. Then digitrow(R) would be “vertically
periodic,” i.e., all its columns would be periodic, including the 0th one. However, digitrow(R)
and digitcol(R) have the same 0th column, and we have seen that the one of digitcol(R) is
aperiodic, which is a contradiction.)
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2. The coefficient a1 is irrational, while a2 is rational.

Here the rowwise situation is identical to the previous case, i.e., all digital rows digitrow(R)i

are aperiodic. Instead, all the continuous lines h associated with the columns of digitcol(R)
have integer slope a2, and according to Brons theorem (Theorem 3), they are periodic, with the
same period length. Furthermore, from Lunnon-Pleasant theorem (Theorem 5), we have that
all collumns’ digitizations are equivalent up to translation. Then, by arguments similar to those
used in the case when both a1 and a2 were irrational, it follows that the columns of digitrow(R)
are periodic, as well.

3. Both a1 and a2 are irrational and the plane P contains more than one integer point or is parallel
to a line containing infinitely many equidistant integer points.

Here the rowwise and columnwise structures are identical to the first case, i.e., all digital rows
digitrow(R)i and columns digitrow(R)j of digitrow(R) are aperiodic.

We have that R contains or is parallel to a ray or a segment of a line L with integer coefficients
containing infinitely many equidistant integer points (or finitely many, in the case of segment).
We have also that L is not parallel to a coordinate axis. Thus, its discretization does not
constitute a row or a column of discr(R). If R does not contain ray/segment with integer points
but is parallel to a line containing such a ray/segment, then R is parallel to infinitely many lines
of this type which may be arbitrarily close to R.

W.l.o.g., consider, for the sake of definiteness, the case when R contains integer points. We
discretize L as follows. Let Lx1x2

be the orthogonal projection of L on the plane Ox1x2. Let
discr(Lx1x2

) be the discretization of L (in other words, the naive line associated to it). Because
of condition (5), for each integer point of Lx1x2

there exists exactly one integer point in discr(R).
Denote the set of all these points by discr(L). Note that, as shown, e.g., in [7], discr(L) may be
disconnected (see also Section 6). Clearly, the set of voxels discr(L) is periodic, as the period
corresponds to the segment between two integer points on L.

It is easy to realize that the discretizations of all straight lines on R which are parallel to L, are
equal up to translation. So that, they all are periodic with the same period length as the one of
L. Then the same applies to the corresponding digitizations of L.

We are now ready to conclude the proof of the theorem. We reason about digitrow(R); the
considerations about digitcol(R) are analogous.

The above discussion reveals that:

(a) In Cases 2 and 3, the digital 2D ray digitrow(R) is line-periodic, with a horizontal or vertical
period in Case 2 and a non-horizontal non-vertical period in Case 3.

(b) In Case 1, digitrow(R) does not have a period. To prove this, assume the opposite, i.e.,
that digitrow(R) has a periodicity vector w. We suppose that w is not parallel to neither
of the coordinate axes (the opposite case is more trivial).

Let l be the ray in Ox1x2 determined by w. Since it is determined by an integer periodicity
vector, it has integer coefficients. Let discr(l) be the discretization of l in the integer
points of Ox1x2. Assign 0s or 1s to the pixels of discr(l) in such a way that they are the
corresponding digits in digitrow(R). That is, discr(l) is a digital ray in Ox1x2, which is
periodic with a period determined by w. Consider the set of voxels L ⊆ digitrow(R) which
correspond to discr(l). L appears to be discretization of some ray l̄ on P , such that l is the
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orthogonal projection of l̄ on Ox1x2. (As mentioned, discr(l) may be a disconnected set.)
Because of this correspondence between discr(l) and L, one can conclude that L is periodic
with a period vector w̄, such that w is the projection of w̄ on Ox1x2. Since the points of L
belong to digitrow(R), this is possible only if R is parallel to a line with an integer slope,
containing integer points. This contradicts the assumption.

(c) In all the three cases digitrow(R) is not lattice-periodic, i.e., it does not have two linearly
independent period vectors. To prove this, assume the opposite, i.e., that digitrow(R) is
lattice-periodic with linearly independent periodicity vectors w1 and w1. Since digitrow(R)
is infinite, it satisfies the conditions of Proposition 6. Hence, digitrow(R) is a 2D repetition.
Then its rows and columns will be periodic as well. By arguments similar to those used
in the case of rational slope vector, one can conclude that for every row (column), the
corresponding central line g (h) must be rational, which is a contradiction.

This completes the proof of the theorem. 2

5 Sturmian planes and 2D rays

5.1 Definitions

Let r = ra1,a2,b be a digital 2D ray. Let k, l ≥ 0 be integers. We call a (k, l)-suffix of r the sub-array of
r determined by its rows and columns with indexes greater than or equal to k and l, respectively. k, l-
prefix of r is determined by the rows and columns with indexes not greater than k and l, respectively.
Digital 2D ray r is called ultimately periodic if there are integers k, l ≥ 0 such that the (k, l)-suffix of r
has a period vector. r is uniformly recurrent if for every integer n > 0 there is an integer N > 0 such
that every square factor of size N ×N contains every square factor of size n× n.

Given a 2D array A (finite or infinite), we define complexity function PA(m,n) of A as the
number of different (m× n)-factors of A. In particular, we have PA(0, 0) = 1 (the empty word is the
unique factor in this case), while PA(1, 1) is the size of the alphabet. Thus for a binary alphabet {0, 1}
we have PA(1, 1) = 2. In what follows we will consider arrays on the alphabet {0, 1}.

The above definitions naturally extend analogous notions about usual one-dimensional words.
Recall that the complexity function Pw(n) of such a word w is defined as the number of different
n-factors of w. A word with Pw(n) ≤ n for some n, is (ultimately) periodic. Sturmian words are
the words that have lowest complexity among the non-ultimately periodic words, i.e., of complexity
Pw(n) = n + 1 for any n ≥ 0. It is also well-known that any Sturmian word is a digitization of an
irrational straight line and is ultimately recurrent. See [36] for further details. In higher dimensions the
situation is more complicated. For instance, it is still unknown whether a notion of minimal complexity
can be reasonably defined (see [9] and the discussion therein). To a certain extend the same applies to
the notion of 2D Sturmian word. Initially it has been expected that 2D words of minimal complexity
are digitizations of irrational planes with no rational direction. Such words were believed to have
complexity mn + 1. However, it has been recently shown that a 2D word of complexity mn + 1
cannot be uniformly recurrent and does not appear to be a digitization of any plane [21]. Therefore,
it makes sense to call 2D Sturmian words the ones that appear to be digitizations of irrational planes
which do not have a rational direction. Such kind of words obtained within a number of diverse
digitization schemes have been widely investigated by S. Ito, M. Ohtsuki, L. Vuillon, V. Berthé, R.
Tijdeman among others, and various interesting and sophisticated results have been obtained. See, e.g.
[41, 6, 9, 10, 21, 11, 8, 29]. Here we study digital 2D rays in the framework of our simple digitization
scheme described in the previous section.
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Figure 13: Illustration to the proof of Theorem 10.

5.2 Basic results

First we list a number of properties, which, as a matter of fact, are based on the Kronecker theorem.

Proposition 9 All digital planes/rays with an irrational slope vector (a, b) contain the same set of
rectangular factors.

Proof The same proof works both for digital planes and rays. Let r ′ be an irrational digital 2D ray
determined by a 2D ray R′ with an irrational slope vector (a1, a2). Let w′ be a (p× q)-factor of r′. r′

corresponds to a discretization I ′ of R′. Let x be an integer point of I ′ which is in a shortest vertical
distance d′ from R′. If there are more than one such kind of points (this may happen only if r ′ is
line-periodic), we choose an arbitrary one. Let the point of r ′ corresponding to x have indexes i and
j with respect to the ray r′. Now consider a 2D ray R′′ which has the same slope vector (a1, a2) but
another intercept. Let I ′′ and r′′ be its discretization and digitization, respectively. Since the slope
vector (a1, a2) is irrational, by arguments implied by the Kronecker theorem, it follows that one can
find an integer point y ∈ I ′′, such that its vertical distance d′′ from R′′ is arbitrary close to h′. Consider
in r′′ the digital image ȳ of y (which is a discrete point labeled 0 or 1) and take a (p × q)-factor w ′′

of r′′ in such a way that ȳ has indexes i and j with respect to r ′′. Now it is easy to realize that if
|d′ − d′′| is small enough then w′ = w′′, i.e., the word w′ appears also in r′′. 2

Proposition 10 Let r be an irrational digital 2D ray. Then every rectangular block appearing in r,
appears in it infinitely many times.

Proof Let r be an irrational digital 2D ray determined by a 2D ray R with a slope vector (a1, a2). Let
w be a (p× q)-factor of r and I the discretization of R. Assume that w appears finitely many times in
r. Then it is contained in a (finite) prefix f of r. Consider the rest of r, i.e., the digital domain r− f .
It is a digitization of an infinite portion of R and contains a digital 2D ray R̄ (see Figure 13) with the
same slope vector (a1, a2) as R. By arguments similar to those used in the proof of Proposition 9, we
get that the digitization of R̄ will contain a factor equivalent to w – a contradiction. 2

Proposition 11 Any factor of an irrational digital plane is a factor of a rational digital plane.

Proof Let r be an irrational digital 2D ray determined by a 2D ray R with a slope vector (a1, a2).
Let I be the corresponding discretization of R and w a (p× q)-factor of r. Let Rw be the rectangular
portion of r corresponding to the digital rectangle w and Iw the corresponding portion of I. Let x ∈ Iw

be an integer point which is the closest one to R and does not belong to R. If there are more than
one point with this property, we choose an arbitrary one. Consider a plane r ′ passing through x and
parallel to R. Consider the corresponding portion R′

w defined similarly to Rw. Clearly, one can choose
a rational plane R̄ which is “sandwiched” between p and R′ in the region restricted by the factor w.
Then, the digitization of that region of R̄ will be identical to w. 2
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We now investigate some other properties.

Proposition 12 If the digital 2D ray r is irrational then Pr(m,n) is unbounded.

Proof Since r is irrational, by construction either its columns or rows (or both) will be irrational
digital lines. Since the complexity function of an irrational digital line is unbounded, the same follows
for any digital 2D ray containing such lines as columns or rows. 2

An important array characteristic is its balance. Let h(U) denote the number of 1’s in a binary
array U . Given two binary arrays U and V of the same size m× n, δ(U, V ) = |h(U) − h(V )| is their
balance. A set X of arrays is said to be α-balanced for a certain constant α > 0, if δ(U, V ) ≤ α for
all pairs of (m × n)-arrays U, V ∈ X, where m and n are arbitrary positive integers. An infinite
array A is said to be α-balanced if its set of factors is α-balanced. Array balances are familiar from
studies in number theory, ergodic theory, and theoretical computer science. For recent study on
balance properties of multidimensional words on two or three letter alphabets see, e.g., [8]. Within
the digitization scheme adopted here, we are able to state the following.

Proposition 13 Let Q be a rowwise digitization of a 2D ray. Then δ(U, V ) ≤ m for any pair of
(m× n)-factors of Q, m,n ≥ 0.

Proof Suppose first that Q is irrational. Then, according to Proposition 9, all rows contain the
same set of factors. In particular, the set of n-factors is the same for all rows. Let X and Y be two
(m×n)-factors of r. Since r is irrational, the rows of r are irrational digital lines with the same slope.
Then they are all 1D Sturmian words. Therefore, the number of 1s in the jth row of X differs from
the number of 1s in the jth row of Y by at most 1 (see [36]). Hence, the number of 1s in X differs
from the number of 1s in Y by at most m.

Since a rational digital ray is 1-balanced as well (see [36]), the above argument applies also to
the case when Q is rational. 2

Note that the bound of Proposition 13 is reachable, hence within the considered digitization
scheme the 2D digital rays are, overall, non-balanced. To see this, consider the 2D ray R0, 1

3

defined

by x3 = 2x2, x1, x2 ≥ 0. Its digitizations digitrow(R0, 1
3

) and digitcol(R0, 1
3

) are identical and consist

of rows composed either only by 0s or only by 1s, which change alternatively. Then, for an arbitrary
integer k ≥ 1, there will be infinitely many pairs of (1× k)-factors whose balance will be equal to k.

Before presenting the other results of this section, we provide a brief discussion on the structure
of 2D ray discretization. First we recall that an (m,n)-window at a point (p, q) ∈ Z 2 is a set of points
(i, j) ∈ Z2 with p ≤ i < p + m and q ≤ j < q + n. An (m,n)-cube at a point (i, j) ∈ Z 2 of a discrete
plane P is the set {(x, y, z) ∈ P : i ≤ x ≤ i + m− 1 and j ≤ y ≤ j + n− 1}. Two (m,n)-cubes at two
different points (i, j) and (i′, j′) of a discrete plane are geometrically equivalent if each of them can
be obtained from the other by an appropriate translation. By CR(m,n) we will denote the number of
different (m,n)-cubes over the points of discr(R). CR(m,n) is an important parameter characterizing
a discrete plane structure (see, e.g., [35]) and is closely related to the complexity function of a plane
digitization. In what follows we will use the following lemma.

Lemma 1 (a) If R is a 2D ray then CR(m,n) ≤ mn.
(b) If R is rational, then CR(m,n) ≤ lcm(q1, q2), where q1 and q2 are the denominators of the coeffi-
cients of x1 and x2 in plane representation (3).

Proof (a) Consider an arbitrary (m,n)-window B of Z 2
+. Let RB be the corresponding quadrilateral

portion of R and discr(RB) ⊂ discr(R) the corresponding discretization of RB. We denote by rB

32



the digitization of RB . Recall that by Theorem 11, the integer points of discr(R) are between two
Euclidean planes R1 and R2 parallel to each other and to the plane containing R, so that R is in
the same vertical distance 1

2 both from R1 and R2. As already mentioned in Section 3, if b′ − b′′ is
integer, then the discretized 2D rays Ia1,a2,b′ and Ia1,a2,b′′ are equivalent. Hence, it is enough to study
the structure of discr(R) for planes between R1 and R2.

Now imagine that we continuously move R upward with a translation vector parallel to the Ox3

axis, until it touches an integer point. At this moment, the discretization discr(RB) of the translated
quadrilateral RB changes (as its digitization rB does, as well). The same happens if we move R
downward until it touches an integer point. All Euclidean planes between these two positions form
an equivalence class of planes whose restrictions to B have the same discretization. When moving R
upward or downward, clearly at most mn changes are possible and at most mn different equivalence
classes may arise: one for each point from discr(RB). Let these classes be CB(k), 1 ≤ k ≤ mn. They
can also be numbered by the pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus, there are at most mn different
discrete rectangles corresponding to planes between R1 and R2 and restricted to the block B.

It remains to show that no other (m,n)-cubes may appear in discr(R). Consider another (m,n)-
window B′ of Z2

+. Let x′ be the integer point which is above RB′ and closest to RB′ . Let x′ be over
the ith row and jth column of B ′. Then the corresponding integer point below R with the same
coordinates (i, j) will be the point farthest to RB′ among all points of discr(RB′). Similarly, let y′

be the integer point which is below the plane R and closest to R. Let y ′ be over the i′0th row and
j′0th column of B ′. We have (i0, j0) 6= (i′0, j

′
0). Now consider the equivalence class CB′(k0) to which

discr(RB′) belongs for some k0, 1 ≤ k0 ≤ mn. This class corresponds to the pair of indexes (i′0, j
′
0),

if we consider the equivalence classes as determined by upward moving, or to the pair of indexes
(i0, j0) if the classes are determined by downward moving. Suppose the latter is the case. Consider
the class CB(k0) corresponding to the integer point from discr(RB′) with the same indexes (i0, j0).
Then CB(k0) and CB′(k0) are equivalent in a sense that they give rise to the same discretizations, i.e.,
for any plane Q ∈ CB(k0) and any plane Q′ ∈ CB′(k0) we have digit(Q′

B′ ) = digit(QB). To see this,
consider the class CB(k0) determined by the indexes (i0, j0), i.e., the integer point x over (i0, j0) is the
closest one to RB among all points of discr(RB). If the distance from x to R is larger than the one
from x′ to R, we can move R upward until both distances become equal. If R ′ is the translated plane,
then clearly R′

B and RB will have the same discretization. If the distance from x to R is smaller than
the one from x′ to R, we can move R downward until both distances become equal, thus obtaining
the same result.

(b) Let R be rational. We have seen (Theorem 16) that in this case discr(R) can be partitioned
into parallelogram patches with sides corresponding to a basis of the lattice Λ. Every parallelogram
involves lcm(q1, q2) elements, where q1 and q2 are the denominators of the coefficients of x1 and x2

. Let P1 and P2 be two arbitrary parallelograms of the partition. Consider the translation T that
brings P1 onto P2. The pair of points that are corresponding to each other under T , are considered
equivalent. In the same way we define equivalence of points for every two parallelograms. Clearly,
every point of any parallelogram is equivalent to exactly one point from any other. Thus the points
of discr(R) are partitioned into lcm(q1, q2) equivalence classes. Then for any positive integers m and
n the number of different (m,n)-cubes at points of discr(R) is bounded by lcm(q1, q2). 2

Lemma 2 If a digital 2D ray r is irrational and aperiodic, then Pr(m,n) ≥ mn.

Proof Keeping in mind the proof of Lemma 1, it is easy to see that in the considered case CR(m,n) =
mn. It is also clear that CR(m,n) ≤ Pr(m,n), from where the lemma follows. 2

We conclude the present study with results related to a well-known conjecture by M. Nivat about
periodicity of infinite binary 2D words. He conjectured that if for some integers m,n ≥ 0 an infinite
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Figure 14: Illustration to the proof of Theorem 19.

bi-dimensional 0/1 array A has complexity PA(m,n) ≤ mn, then A has at least one period vector [33].
Note that the converse is not true, in general: an array may be periodic but its complexity may be
higher than mn (see [9]). Only partial results for small values of m and n have been proved regarding
this conjecture. In [25] a weaker statement is proved under the condition PA(m,n) ≤ 1

100mn. Here
we consider the Nivat’s conjecture for the special case of arrays that are digital 2D rays.

Theorem 18 A digital 2D ray r has a period vector if and only if for some integers m,n ≥ 0,
Pr(m,n) < mn.

Proof From Lemmas 1 and 2 and their proofs it is clear that the inequality Pr(m,n) < mn holds for
some m,n ≥ 0 if and only if discr(RB) contains two points that are in equal vertical distances from
R. In view of theorems 16 and 17 and the related discussion, this may happen iff discr(R) and, in
turn digit(R), have a period vector. As we have seen, this may happen when R is either rational or
irrational digital ray. 2

Remark 15 If for some m,n ≥ 0 an equality Pr(m,n) = mn holds, it seems to imply the condition
Pr(m,n + 1) < m(n + 1), under which Theorem 18 applies. To prove this remains as a further task.

The next theorem provides an asymptotic result in terms of CR(m,n). We will say that a vector v is
a symmetry vector of discr(R) if for any voxel w ∈ discr(R), v + w ∈ discr(R). v is a period vector
of discr(R) if for any integer k, kv is a symmetry vector of discr(R).

Theorem 19 Let R be a 2D ray. Then discr(R) has a period vector if and only if

lim
m,n→∞

CR(m,n)

mn
= 0. (4)

Proof Let (4) holds. Then there exist positive integers m0, n0 such that for any pair of integers m,n

with m ≥ m0 and n ≥ n0 we have CR(m,n)
mn

< 1, i.e., CR(m,n) < mn. Then by Theorem 18, digit(R)
has a period vector, as discr(R) does.

Now let v = (p, q, r), p ≥ q, be a period vector of discr(R), where p, q and r are fixed integers.
Let v′ = (p, q) be its projection on the coordinate plane Ox1x2. Because of condition (2), there is a
one-to-one correspondence between the voxels of discr(R) and the points of Z 2

+. So to obtain certain
quantitative estimations, one can work with projections of (m,n)-cubes over Ox1x2 rather than with
the (m,n)-cubes themselves.
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Consider the set of nonnegative integer points of the form u(i) = i · v = (ip, iq) for i =
0,±1,±2, . . .. They are projections on Ox1x2 of points of discr(R), generated by the period v. The
points u(i) belong to a line determined by v′ and induce a partition of Z2

+ into a set S of vertical
strips delimited by the vertical rays x1 = ip, x2 ≥ 0, for i = 0,±1,±2, . . . (Figure 14a). Since v
is a symmetry vector of discr(R), any two strips from S correspond to regions of digit(R) that are
equivalent up to translation by the vector v.

Now consider an (m,n)-window W = A1A2A3A4 of Z2
+ with m = jp and n = jq (see Figure

14b). It corresponds to an (m,n)-cube C of discr(R). Partition W into j rectangles Wt (t = 1, 2, . . . , j)
of width p and height jq and consider their pre-images Ct (t = 1, 2, . . . , j) from discr(R) under the
orthogonal projection onto Ox1x2. Now we notice with the help of Figure 14b that the set of voxels
from C1 corresponding to W1 completely determines (through translation by the vector v) all the
other Ct’s portions that correspond to Wt’s portions over the diagonal A1A3. Similarly, the set of
voxels from Cj corresponding to Wj completely determines (through translation by vector (−v)) all
the other Ct’s portions that correspond to Wt’s portions below the diagonal A1A3. Thus the sets of
voxels from C1 and Cj are sufficient to completely recover the whole (m,n)-cube C.

Because of the one-to-one correspondence between voxels from discr(R) and elements of Z 2
+, the

number of voxels in a set Ct equals the number of integer points in a strip Wt, so C1 and Cj contain
overall 2(p.jq) voxels. From this last fact and recalling the proof of Lemma 1, one can conclude that
vertical perturbations of the digital 2D ray R through the window W can induce no more than 2(p.jq)
different (m,n)-cubes. Then for the ratio of CR(m,n) and mn we have the upper bound

CR(m,n)

mn
≤ 2pjq

j2pq
=

2

j
=

2p

n
,

which approaches 0 as n approaches infinity. 2

5.3 Symmetry

It is shown in [30] that if the slope of a digital line is rational, then each period is a symmetric word.
Thus, if w is a word in a digital line, then the reverse of w is also a word in that digital line.

As mentioned in Remark 2, a straight line l with irrational slope may pass either through exactly
one or through no one rational point. In the cases when l passes through an integer or semi-integer
point, we can state the following proposition.

Proposition 14 Let a straight line l with irrational slope passes through a point x = (x1, x2), such
that x1 is either integer or half-integer and x2 is either integer or half-integer. Then the Sturmian
sequence corresponding to l is symmetric with respect to the point P .

Proof The proof follows from the fact that in all possible cases, the corresponding integer points on
both sides of x in the discretization of l are in equal distances from l. 2

About rays we can state the following proposition.

Proposition 15 Let a ray R with irrational slope pass through a point x = (x1, x2), such that x1

is either integer or half-integer and x2 is either integer or half-integer. Let r be the Sturmian word
corresponding to R. Let r′ be the portion of the ray from its beginning to x, and r ′′ its portion
symmetric to r′ with respect to x. Then the part w′ of w corresponding to r′ is symmetric to the part
w′′ corresponding to r′′.

The proof is similar to the one of Proposition 14. We clarify the symmetry issue through the following
two remarks.
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Remark 16 If the line l (resp. the ray R) does not pass through a point with integer/half-integer
coordinates, some sort of symmetry still exists.

Let, for instance, l be a line with irrational slope. Let x = (x1, x2) be a point with integer or
half-integer coordinates. Consider, for definiteness, the case when both x1 and x2 are half-integers.
Consider the Sturmian sequence L related to l. If l passes through x, then by Proposition 14, L will be
symmetric w.r.t. x. Now let us slightly translate l with a translation vector t orthogonal to l. Then,
if ||t|| is small enough, L will be symmetric in a certain neighborhood of x. It is also clear that the
smaller ||t||, the longer the symmetric factor around the point x.

Given a line l, one can choose integer or half-integer points arbitrarily close to l. Therefore, L
contains infinitely many symmetric factors, and one can find arbitrarily large symmetric factors.

Remark 17 The observations of Remark 16 can be extended to the case of digital 2D planes and rays.
Specifically, let a plane P with an irrational slope vector pass through a point x with integer/half-integer
coordinates. Then the corresponding digital plane is symmetric w.r.t. x. Further, let P ′ be a plane
parallel to P and in a distance d from P . Then, if d is small enough, the corresponding digitization
digitrow(P ) (or digitcol(P )) will be a 2D palindrome in a certain neighborhood of x. It is clear also
that the smaller d, the larger the 2D palindrome centered at x.

Given a plane P , one can choose integer or half-integer points arbitrarily close to it. Therefore,
digitrow(P ) and digitcol(P ) contains infinitely many and arbitrary large 2D palindromes.

Recent studies on symmetries of digital planes can be found in [11].

6 Examples: Fibonacci 2D rays

In this section we illustrate with examples some of the theoretical results of the previous sections.
First we define Fibonacci 2D rays, as follows.

Example 3 Consider a sequence which is a digitization of the ray y = φx, x ≥ 0, where φ is one of

the golden ratio numbers: φ =
√

5−1
2 = 1

τ
, τ = 1+

√
5

2 = 0.618033988 . . ..

We have I0 = b0.τ +1/2c = 0, I1 = b1.τ + 1/2c = 1, I2 = b2.τ + 1/2c = 1, I3 = b3.τ + 1/2c = 2,
I4 = b4.τ + 1/2c = 2, I5 = b5.τ + 1/2c = 3, I6 = b6.τ + 1/2c = 4, I7 = b7.τ + 1/2c = 4, I8 =
b8.τ +1/2c = 5, . . ., and then i(0) = I(0) = 0, i(1) = I1−I0 = 1, i(2) = I2−I1 = 0, i(3) = I3−I2 = 1,
i(4) = I4 − I3 = 0, etc. (See the last row of the figure below containing the first elements of the
sequence 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . ..)

Now we consider a digitization of a 2D ray RFib : x3 = φx1 + φx2, x1, x2 ≥ 0. Its projections
on the coordinate planes Ox1x3 and Ox2x3 are the rays with equations x3 = φx1, x1 ≥ 0, x2 = 0 and
x3 = φx2, x2 ≥ 0, x1 = 0, respectively. According to our digitization process, we obtain the following
digitization of the lower-left corner of RFib:
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digit(RFib) :

. .

. . .

. . . .
19 1 0 . . .
18 0 1 0 . . .
17 1 0 1 0 . . .
16 1 1 0 1 0 . . .
15 0 1 1 0 1 0 . . .
14 1 0 1 1 0 1 0 . . .
13 1 1 0 1 1 0 1 0 . . .
12 0 1 1 0 1 1 0 1 0 . . .
11 1 0 1 1 0 1 1 0 1 0 . . .
10 0 1 0 1 1 0 1 1 0 1 0 . . .
9 1 0 1 0 1 1 0 1 1 0 1 0 . . .
8 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
7 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
6 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
5 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
4 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
3 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
2 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 . . .
0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . .

Note that, since the array is symmetric with respect to the line x1 = x2, we have digitcol(RFib) =
digitrow(RFib). From the digital Fibonacci ray one can find the corresponding x3-coordinate at any
point, thus recover discr(RFib). For example, the integer point corresponding to the underlined point
(7, 5) has value 7.

Fibonacci array has several interesting properties, some of which are considered next.

6.1 Repetitions in Fibonacci 2D rays

Let X be a rectangular factor of array A (finite or infinite). By |X|h and |X|v we denote the horizontal
and vertical size of X, respectively. By Xw

h we denote a half-strip of infinitely many adjacent horizontal
replicas of X from some starting point to the right. (See Figure 15.) Xw

h is called infinite horizontal
power of X. Infinite vertical power of X is defined similarly.

Let A denote a finite or infinite array corresponding to the first quadrant. Every set of consecu-
tive columns of A starting from the first one, forms a horizontal prefix of A. Vertical prefix is defined
similarly.

We say that a 2D array A (finite or infinite) contains a horizontal repetition of order k where
k > 1 is a rational number, if it contains a rectangular factor z, such that for some rectangular array
y, z is a horizontal prefix of yw, and |z|h

|r|h = k. Vertical repetition of order k is defined analogously.

Let k > 1 be a real number. We say that a 2D array is:
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X XX X

Figure 15: Infinite horizontal power of a rectangular block X.

k-free, if it does not contain as a factor a repetition (horizontal or vertical) of order at least k;
k+-free, if, for any k′ > k, it is k′-free;
k−-free, if it is k-free, but not k′-free for any k′ < k.

We have the following 2D version of Mignosi-Perillo theorem (Theorem 10).

Theorem 20 The Fibonacci digital 2D ray digit(RFib) is (2 + φ)-free, where φ is the golden ratio.

The proof follows from the corresponding result about Fibonacci words and by the construction of
Fibonacci 2D ray.

We remark that in [5] we have constructed Fibonacci arrays in somewhat different fashion, and
have demonstrated some interesting extremal properties of theirs. Those Fibonacci arrays, however,
do not correspond to digital planes. Nevertheless, the digital Fibonacci arrays presented above are
expected to possess similar properties.

Thue-Morse arrays can be defined analogously to the Fibonacci rays, and a similar result about
2+-freedom can be obtained.

7 Digital flatness and 3D digital straightness

Let R be a 2D ray, discr(R) its discretization, and digit(R) its digitization. Let l be a straight line on R
and l′ its projection on Ox1x2. Let discr(l′) be the discretization of l′ in Ox1x2. (See Figure 16a.) Now
consider the set of voxels discr(l) ⊂ discr(R) whose projections on Ox1x2 are the pixels of discr(l′).
Consider the elements of digit(R) corresponding to discr(l ′). We denote this set by digit(l) and call
it digitization of the straight line l relative to digit(R). discr(l) is the discretization of l. Note that a
digitization of a straight line l relative to a certain digital 2D ray R retains some information about
the real line only if it is considered in relation with digit(R). Then the x3-coordinates of the voxels
of l can be recovered, considering digit(l), pixel by pixel, and computing the corresponding values, as
illustrated in Example 1 from Section 4.1. For instance, the horizontal line in the figure has digitization
consisting entirely of 0s. Nevertheless, it corresponds to a discrete line with x3-coordinates presented
in Figure 16b. Depending on the type of R (rational, irrational without period vector, irrational with
period vector) and the particular position of l on R, the digitization digit(l) considered as a sequence
of 0s and 1s, may be periodic or aperiodic. Thus, if R is rational, digit(l) is always periodic. If R is
irrational and digit(R) does not have a period vector, then digit(l) is aperiodic. If R is irrational and
digit(R) has a period vector, then digit(l) may be periodic, which is the case only if the direction of
l′ is the same as the one of the period vector.
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Figure 16: a) Discrete lines in digitcol(R 1

2
, 1
3

). b) The corresponding x3-values of the lines’ pixels in

discr(R 1

2
, 1
3

).

Figure 17: Possible configuration of voxels in a discrete plane satisfying Condition (5).

discr(l) could be regarded as a sort of 3D discrete line, called pseudoline in [7]. It is well-known
that discr(l) can be disconnected, since discr(r) may contain configurations as the one depicted in
Figure 17. Such kind of configuration was called a jump in [16]. Locations of jumps are denoted by
star signs in the figure exposing the x3-coordinate values in the discretization of the Fibonacci 2D ray.
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.

. .

. . .
19 12 . . .
18 11 12 . . .
17 11 11 12 . . .
16 10 11 11 12 . . .
15 ?9 10 11 11 12 . . .
14 9 ?9 10 11 11 12 . . .
13 8 9 ?9 10 11 11 12 . . .
12 ?7 8 9 ?9 10 11 11 12 . . .
11 7 ?7 8 9 ?9 10 11 11 12 . . .
10 6 7 ?7 8 9 ?9 10 11 11 12 . . .
9 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
8 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
7 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
6 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
5 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
4 ?2 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
3 2 ?2 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
2 1 2 ?2 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
1 1 1 2 ?2 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .
0 0 1 1 2 ?2 3 4 ?4 5 6 6 7 ?7 8 9 ?9 10 11 11 12 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . .

If an Euclidean plane (resp. a 2D ray) is rational, then the locations of jumps form in it a lattice
in the plane. Otherwise, if the plane/2D ray is irrational, this is not the case, as illustrated by the
Fibonacci digital 2D ray above. It is easy to realize that jumps appear only in configurations of the
form

m + 1 m + 2
? m m + 1

.

Let R have equation α1x1 + α2x2 + α3x3 = β, x1, x2 ≥ 0. Assume that |α1| ≤ |α2| ≤ |α3|. We
have the following theorem.

Theorem 21 The plane discretization discr(R) contains jumps if and only if |α3| < |α1|+ |α2|.

The above statement has been proved in [16] for the case of rational planes, but the proof can be
easily modified to hold also for irrational planes.

An analytical discrete plane with thickness ω = max(|α3|, |α1|+ |α2|) is called graceful. This is
the thinnest discrete analytical plane without jumps. It is “sandwiched” between the naive and the
standard planes. If the maximum above is reached for |α3|, then the graceful plane is a naive plane.
Otherwise, it contains additional voxels, appearing exactly in a way to “fill up” the jumps. For instance,
the Fibonacci array above has jumps, since in the corresponding plane equation x3 = φx1 + φx2 the
maximal coefficient (α3 = 1) is smaller than the sum of the other two (|α3| = 1 < |α1| + |α2| =
0.618033988 . . . + 0.618033988 . . . = 1.236067976 . . .). The corresponding graceful plane will contain
one more voxel on the top of every voxel marked by a star. We call such a pair of voxels tandem. In
this case, the graceful plane is thicker than the naive, but thinner than the standard.
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Given a line l on a plane R, consider the corresponding graceful plane G and the set of its
voxels G(l) obtained in the same way as the voxels of a pseudoline in a naive plane. The set G(l)
is called graceful line. The graceful lines are the thinnest possible connected discrete lines obtained
under this discretization scheme. Their 0/1 digitization is identical to the one of pseudolines, with the
only difference that some of the 0/1 points correspond to two voxels which form tandems.

8 Algorithmic aspects

Given a straight line/plane, an important question is to recognize the periodicity type of the corre-
sponding digital line/plane and (if applicable) to determine its periodicity or center of symmetry.

8.1 The case of rational planes

With a reference to Remark 11, for a given plane P with equation x3 = a1x1 + a2x2 + b there is a
family of planes with the same coefficients and different right-hand sides, which determine the same
digital plane as P .

Given a plane P : x3 = a1x1 + a2x2 + b, one can verify whether it contains integer points by

testing if gcd(a1, a2, a3) divides b. If it does not, then we consider the corresponding plane P
bc
a1 ,a2,b :

a1x1 +a1x2 +a1x3 = b̄ defined in Remark 11. Then we find a basis for the set of solutions of the plane
equation, i.e., a linearly independent system of integer vectors e0, e1, e2 such that

{(x1, x2, x3) : a1x1 + a1x2 + a1x3 = b̄, x ∈ Zn} = {e0 + λ1e
1 + λ2e

2, λ1, λ2 ∈ Z}.

This can be done efficiently in polynomial time using well-known algorithms (see [38]). The orthogonal
projections of the two basis vectors appear to be period vectors for the corresponding digital plane.

8.2 The case of irrational planes

8.2.1 Undecidebility results

We first mention the following fundamental fact.

Theorem 22 (Brimkov and Dantchev 1997 [17]) There is no algorithm over R that verifies if a linear
Diophantine equation with more than one unknown has an integer solution.

Therefore, the search must be performed in certain (sufficiently large) subset of the line/plane,
e.g., in the cube 0 ≤ x ≤ d for some vector d with sufficiently large norm ||d||.

8.2.2 Recognition of the periodicity type

The following theorem shows that within the real number model, an equation with two or three
unknowns can be solved efficiently in any restricted domain.

Theorem 23 A linear Diophantine equation ax = b with two or three unknowns and with real coef-
ficients can be solved within the real number model with O(log d) operations, where 0 ≤ x ≤ d. The
algebraic complexity of the problem is Θ(log d), i.e, the complexity bound is tight (best possible within
a constant factor).

Moreover, r + 1 affine independent integer solutions to ax = b can be found with O(log λr)
operations, where λr is the minimal integer such that the set {x : ||x|| ≤ λr} contains r + 1 affine
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independent integer solutions. The algebraic complexity of the problem is Θ(log λr), i.e, the complexity
bound is tight.

The above theorem is a corollary of more general results about systems of linear equations and
inequalities of arbitrary dimension [17, 18].

9 Further work

9.1 Studying other properties

In these notes we did not consider possible 2D generalizations of some other interesting concepts and
results related to digital straightness (see [36], Section 2). This remains as a further task.

9.2 Other digitization schemes

Another possible direction of research is to look for other reasonable digitizations of 2D rays and
planes. An alternative way to digitize a 2D ray R is the following. Let R satisfy Condition (5) from
Section 3.1. Then to any voxel v from discr(R) corresponds exactly one pixel p from the discrete
coordinate plane Ox1x2. If R intersects a lower 2-facet of v (including the case when the intersection
point is a vertex of v), we label p by 1, otherwise by 0. Thus we obtain a 0/1 digitization of R.

It would be interesting to study the relation between the above digitization and the row-
wise/columnwise digitization detailed in the present work. We expect that the properties of the
two are essentially equivalent, and analogous statements hold in the framework of both digitization
schemes.

9.3 Extension to higher dimensions

The presented theory can be extended to higher dimensions. A starting point can be the well-known
fact that in Rn, a hyperplane with real coefficients either contains no integer points, or it contains a k-
dimensional lattice of integer points, where 0 ≤ k ≤ n−1. Digitizations of hyper-planes containing no
one or a single integer point can be considered as generalizations of Sturmian sequences. nD Sturmian
arrays, power function and other notions can be defined similarly to the 3D case. Digitizations
of hyper-planes containing an (n − 1)-dimensional integer lattice are rational hyperplanes. Various
properties, analogous to those valid in 3D, can be proved in a similar fashion.

9.4 Graph representation, Fibonacci graphs

Consider a (k × k)-prefix rk of a digital 2D ray r, for some k ≥ 0. rk can be regarded as an incidence
matrix of a graph Gk(r) of order k. In the general case, the matrix rk is non-symmetric, therefore the
graph Gk(r) is directed. If the equation x3 = a1x1 + a2x2 + b is with a1 = a2, then rk is symmetric
and Gk(r) is an undirected graph. Clearly, a graph Gk(r) is a subgraph of a graph Gl(r), for l > k.

Graph representation of digital 2D rays may be useful for certain purposes. For instance, some
properties of the digital planes can be studied by employing the rich arsenal of the graph theory.
In particular, there is an evidence that the graphs corresponding to rational planes possess certain
symmetry, while those corresponding to irrational arrays are not symmetric but possess certain reg-
ularity. One can expect that graphs representing digital arrays with certain optimal properties (e.g.,
Fibonacci arrays), may possess optimal properties that may be useful, e.g., in communications or
other applications.
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9.5 Nivat’s conjecture

We believe that some of the ideas and results of this work, combined with those of Epifanio, Koskas,
and Mignosi [25], may lead to a complete proof of Nivat’s conjecture for the case of arbitrary digital
arrays (not necessarily digitizations of 2D rays).

9.6 Penrose tilings and quasicrystals

It has been observed that the irrational digital lines and rays possess certain properties that are
germain to ones of the Penrose tilings of the plane. (See, e.g., [28, 6]. On the other hand, Penrose
tilings have been found relevant to the structure of the quasicrystals. It would be worth to explore
such kind of interesting relations when irrational digital planes/2D rays are involved.
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