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Abstract. This paper shows that there exist linear models for sensor
pose estimation for multi-view panoramas defined by a symmetric or
leveled pair of cylindric images. It assumes that pairs of correspond-
ing points have been detected already in those pairs of panoramas. For
the first time a cost function is formulated whose minimization solves
the pose estimation problem for these two general cases of multi-view
panoramas, specified by unconstrained sensor parameter values but only
minor constraints on sensor poses. (Note that due to the non-linearity
of the panoramic projection geometry, the modeling of sensor pose es-
timation typically results into non-linear forms which incur numerical
instability.)

1 Review and Basic Notions

A panoramic image is recorded by a panoramic sensor, such as a rotating camera.
Sensor pose estimation deals with recovering the relative pose of two (calibrated)
sensors. Compared to planar images or catadioptric images, there is very few
literature on sensor pose estimation from cylindric panoramas.

Ishikuro el at. [1] dealt with a very restricted case of the sensor pose estima-
tion problem, in which the given panoramas are acquired at the same altitude
and with parallel rotation axes. Kang and Szeliski [2] discussed the sensor pose
estimation problem only for single-center panoramas. Neither generalized to the
multi-view case (i.e., different intrinsic sensor parameters and arbitrary sensor
poses) nor practically relevant cases (e.g., multi-view panoramas as in [3,4]) of
sensor pose estimation have been studied or discussed in the literatures before.
This paper provides (for the first time) a cost function whose minimization solves
the pose estimation problem for two general cases of cylindric panoramas.

A 360° cylindric panoramic image can be acquired by various means, such
as a rotating video or matrix-sensor camera, a catadioptric sensor (with a sub-
sequent mapping onto a cylinder), or a rotating sensor-line camera, as commer-
cially available from various producers since the late 1990s. For simplifying our
discussion, we assume a sensor model close to the latter one which has a fixed
rotation axis and takes images consecutively at equidistant angles. (Rotating
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Fig. 1. Sensor model for cylindric panoramas, showing three image columns with their
projection centers.

sensor-line cameras allow maximum accuracy, and have been used, e.g., in ma-
jor architectural photogrammetric projects; see [5]). The projection center of the
camera does not have to be on the rotation axis. In the case of an off-axis dis-
tance R > 0, the resulting panoramic images are refereed to as multi-projection
center panoramas.

A multi-view panorama [6] is a set of multi- or single-projection center cylin-
dric panoramas which were recorded at different locations or with different cap-
turing parameters. In particular, they might be acquired with respect to different
rotation axes. In comparison to a single axial panorama [7, 8], the advantages
of multi-view panoramas are known to include enlarged visibility and improved
stereo reconstruction opportunities; in short, they define multi-view image anal-
ysis for the cylindric panoramic case.

2 Cylindric Panoramas - General Case

We generalize from various panoramic imaging models [1,7,9]. The model con-
sists of multiple projection centers and a cylindric image surface; see Fig. 1. C
denotes a projection center. Projection centers are uniformly distributed on the
base circle which is in the base plane and has center O, which is also the origin of
the sensor coordinate system. The off-azis distance R (radius of the base circle)
describes the distance between any projection center and the rotation axis.

A cylindric panorama is partitioned into image columns of equal width which
are parallel to the rotation axis. W is the number of image columns. There is
a one-to-one ordered mapping between image columns and projection centers.
The distance between a projection center and its associated image column is
the effective focal length f. The principal angle w is between a projection ray
in the base plane, emitting from C, and the normal vector of the base circle at
point C. R, f, w, and W are the four intrinsic sensor parameters, characterizing
a panoramic image Ep(R, f, w, W). The affine transform between two sensor
coordinate systems is described by a 3 x 3 rotation matrix R = [r]rir3]T and
a 3 x 1 translation vector T = (t,t,,t,)".
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Fig. 2. Row difference Ay between the actual corresponding image point (z2,y2) and
the point where epipolar curve and column x5 intersect.

Let (x1,y1) and (x3,y2) denote the image coordinates of the projection of
a 3D point in two panoramas Ep, (R, f1, w1, W1) and Ep,(Ra, f2, we, Wa),
respectively. If multiple pairs of corresponding image points are provided, say
(214, 911) and (22;,y9;), for i = 1,2,...,n, then we are able to estimate sensor
poses by minimizing the following cost function,
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The cost function is defined to be the image row difference Ay, see Fig. 2.
Epipolar curves are calculated based on point coordinates x1;, y1; and sensor
parameters; see [6]. The estimation of sensor poses appears to be rather difficult,
if not impossible for the unrestricted case.

3 Two Standard Multi-view Cases

However, when using panoramic sensors, such as rotating sensor-line systems,
then it is actually standard to aim for a set of leveled panoramas, and for sym-
metric panoramas if stereo-viewing is also intended; see [5].

Two Symmetric Pairs. Ep (R,f, w, W) and Ep,(R,f, -w, W) define a sym-
metric pair of panoramas, both defined for the same sensor coordinate system.
Epipolar curves are in this case lines which may be identified with image rows
(see proofs in [4,6,10]). Dense image correspondences can be calculated by us-
ing stereo matching algorithms as developed for stereo pairs of planar images.
If 3D data are collected from multiple pairs of symmetric panoramas, acquired
at different locations, then data fusion becomes a challenge, and the registration
step requires that the sensor pose estimation problem has been solved. In our
sensor pose estimation approach, first, for each symmetric pair, transform pairs
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of corresponding image points into directional unit vectors pointing to the re-
constructed 3D points; second, establish a geometric relation between these two
bunches of unit vectors that are respectively defined in two sensor coordinate
systems.

The theorem below shows how the directional unit vector of a 3D point (with
respect to Q) is derived from a pair of corresponding points (x1,y) and (z2,y)
on symmetric panoramas Fp, (R, f, w, W) and Ep,(R, f, -w, W). Let u be the
directional unit vector of that 3D point which projects into (z1,y) and (z2,y).

Theorem 1. Let o = % and B = W We have that
T
(sin w sin «, % sin 3, sin w cos a)

u= - (3)
\/sin2 w+ % sin? 8

This applies to approaches in [6, 3] where angle w can take any value. There
is no dependence of the off-axis distance R in those two formulas. — For sensor
pose estimation from two symmetric pairs (see Fig. 3), we may apply reasoning
and results as in [11].

Fig. 3. Four corresponding points in two pairs of symmetric panoramas and its pre-
image P in 3D space. Vectors u; and uz are two corresponding directional unit vectors
of P with respect to the sensor coordinate systems O; and Osq, respectively.

Theorem 2. Given are at least eight pairs of corresponding points in two pairs
of symmetric panoramas, where the associated sensor parameters are known ex-
cept for R. The relative sensor poses can then be recovered by the mormalized
8-point algorithm up to a scale factor.

If all the sensor parameter values (including R) are pre-calibrated and given,
then the exact sensor pose associated to O can be recovered with respect to the
world coordinate system at O;. Then, these distances can be used as a reference
to recover the unknown scale factor in Theorem 2.

One Leveled Pair. In this second common approach for capturing multi-view
panoramas, the only constraint is that all associated base planes have to be
parallel (say, to the sea level), to be guaranteed by a lever. See Figure 4.

Leveled panoramas allow large “overlapping” fields of views. The larger the
common field of view, the higher the probability that object surfaces are visible
in more than one panorama. This supports reliable stereo reconstruction and
smooth view-transitions between multiple panoramas.
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Fig. 4. A pair of leveled panoramas and a pair of corresponding image points.

The sensor pose estimation criteria of a leveled pair are specified in the follow-
ing theorem. Both leveled panoramas are acquired by two sensors with identical
intrinsic parameters, and the sensor poses are related by a single rotation an-
gle ¢ with respect to the rotation axis and a translation vector (¢, t,, t.)T. Let
X1 =cos¢, Xo =sing, Xg =1,,X4 =1t,, X5 =t, and

Ci; = yQiRSiH((SM — Otgz') + yliRsin((SQi — Otli)
coi = yulR COS(52¢ - Oéu) —yuRR COS(5M - 0421')
€3i = —Y2iCOSdy; C4i =12 Sin 01
Csi = Y14 CO8 0o Cei = —Y1i SN 0g;
cri = fsin(ag;—a1;)  csi=fcos(ai—aa;)
Co; = —(yu + yzi)R sin w

where ay; = 27{;’“’, Ori = (ag; +w), and k=1 or 2.

Theorem 3. Given a set of corresponding pairs of points (x1;,y1:) and (x2;, yai),
where i =1,2,...,n, the values of ¢,t,,t,, and t, can be estimated by minimiz-
ing the following sum,

Z(Cqu +cgi Xo+ez Xg+ca Xa+c5:. X1 X3+c6: X1 Xy
i—1
+e7i X1 X+ c6i Xo X3 — 53 Xo Xy +c8i Xo X5 +Co; )

subjected to the constraints X? + X3 =1, X} <1, and X3 < 1.

4 Experiments

We carried out real-world experiments on estimating sensor poses at differ-
ent indoor or outdoor locations, using different cameras. Camera and sensor
were calibrated separately in advance; camera’s intrinsic parameters are thus
known and kept unaltered during image acquisition. Figure 5 just illustrates
one example of a leveled pair. In our experiments, the estimated sensor pose
was denoted as R and T. The error measurement for rotation was defined as
arccos ((tr(Rf{ )—1) /2] and the error measurement for translation was de-

fined as arccos (T . T/||T||||TH), i.e., the angle between T and T, both in de-
grees.
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Fig. 5. A symmetric pair of panoramas, with enlarged areas also showing used points.

We used the SVD method for estimating R and T when symmetric pairs were
used. When only a leveled pair was used, the sequential quadratic programming
method was used for optimization. We achieved in average 1.24° error in the
rotation estimation and 4.65° error in the translation. Figure 6 and Fig. 5 bottom
show three particular epipolar curves calculated based on erroneous estimations
from the leveled case. The mean y-difference between identified corresponding
points and the calculated epipolar curves is 1.2 pixel. Less than three pixel error
in vertical direction was typical.

We also conducted an error sensitivity analysis with simulated image data, in
analogy to the real-world experiment, for both estimation approaches. Figure 7
plots how errors in detecting corresponding points impact the estimation result.
The horizontal axes show various error sizes up to ten pixel. In the analysis, for
example, a five-pixel input error means that each pair of corresponding image
points was corrupted by errors of max/min five pixel in both z- and y-values,
and the errors are modeled as Gaussian-distributed random numbers.

In the case of symmetric panoramas, the curves of the estimation errors
for rotation and translation show both a monotonic increase (measured for 500
runs). For up to ten-pixel input error, the estimation errors of rotation matrix or
translation vector are less than one or three degrees, respectively. This analysis
suggests that we had input errors of about six to eight pixel in our real-world

Fig. 6. Three epipolar curves calculated based on the pose estimation results.
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Fig. 7. Error sensitivity analysis for the symmetric or leveled case (synthetic images).

experiment. However, this conclusion did not match our expectations. Hence, a
further error analysis was conducted to test how the sensor calibration errors
of R and w affect the pose estimation results. In the symmetric case, R is an
independent variable; and if w has a one-degree error, then it would produce a
four-pixel error in the input data. Therefore, the accuracy of sensor calibration,
especially for w, is crucial to the pose estimation result.

For the case of leveled panoramas, the errors for both R and T are about
two point five times the errors in the symmetric-panorama case. It suggests that
the quadratic programming approach is more sensitive to input errors than the
SVD method. Also, the assignment of initial values has significant impact onto
the estimation result. According to our experiments, the estimation result was
mostly sensitive to the ‘sign’ of the initial values but not to their quantities nor
inter-ratios. In particular, zeros were not good for an initial guess in our case.
The plots in this case indicate that we had input errors of about eight to nine
pixel in our real-world experiment, which are close but slightly bigger than the
conclusion drawn in the symmetric-panorama case. Error analysis on R and w
was carried out as well. It concludes that the error of R has a very minor impact
on pose estimation results. Moreover, a k-degree error of w would cause about a
k-degree error in the estimated 'i‘, for any real number k, but an error in w has
very little impact on the estimation of R. The conclusion drawn here is coherent
to the symmetric-panorama case.

Finally, more synthetic experiments lead to conclusions that the resolution of
the input panoramic images, and the distribution of the selected corresponding
points are also two critical factors for pose estimation. The panoramic image
resolution, especially the width, should be as large as possible. The corresponding
points should be distributed uniformly and sparsely on the entire panoramic
images. A larger set of corresponding points, say greater than 100, would not
guarantee a better estimation result. A much better result can be achieved if
image resolution of 1,000 x 10,000 is used instead, and the nearest scene point
is no less than four meters from both sensors. The estimation errors can be less
than 0.5 degrees for both R and T, allowing for both cases even up to ten-pixel
input error.
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5 Conclusions

For the case of two symmetric pairs, we showed that the (common) normalized
8-point algorithm can be utilized in this case. Experimentally, we found that the
normalization step of the normalized 8-point algorithm for improving the accu-
racy and satiability was ignorable in our case,® and this makes a difference to the
planar image case. The results for the leveled-panorama case were greatly im-
proved and reasonably stable. The proposed approaches are able to achieve high
accuracy of less than 0.5 degree error in general, if high-resolution panoramic
images are used and corresponding image points are carefully selected.

According to our error sensitivity analysis, the estimation of T is generally
more sensitive to noise than the estimation of R, and both estimation errors have
approximately a linear relation to the input errors (as concluded from extensive
simulations). We may also conclude that sensor pose estimation from leveled
panoramas is more sensitive to errors than from pairs of symmetric panoramas.
For future work it is of interest to develop an algorithm, or a framework, that
takes care of sensor calibration and pose estimation at once, similar to self-
calibration for the planar image case.
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