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discrete gradient vector field, obtained by applying a Shape from Shading 
or Photometric Stereo method. To derive this algorithm, we combine the 
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a single functional, which is then minimized. Therefore, value changes in 
the height or depth map will be more regular. To solve the minimization 
problem, we employ the Fourier transform theory rather than the 
Variational Principle. The Fourier transform of the (unknown) surface is 
expressed as a function of the (given) gradient's Fourier transforms. The 
relative depth values can be obtained by an inverse Fourier Transform 
and by choosing associated weighting parameters. The method is 
evaluated on gradient data delivered by a Photometric Stereo algorithm. 
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Abstract

This paper presents a regularization method for sur-

face reconstruction from noisy gradient vector �elds.

The algorithm takes as its input a discrete gradient vec-

tor �eld, obtained by applying a Shape from Shading or

Photometric Stereo method. To derive this algorithm,

we combine the integrability constraint and the surface

curvature and area constraints into a single functional,

which is then minimized. Therefore, value changes

in the height or depth map will be more regular. To

solve the minimization problem, we employ the Fourier

transform theory rather than the Variational Principle.

The Fourier transform of the (unknown) surface is ex-

pressed as a function of the (given) gradient's Fourier

transforms. The relative depth values can be obtained

by an inverse Fourier Transform and by choosing asso-

ciated weighting parameters. The method is evaluated

on gradient data delivered by a Photometric Stereo al-

gorithm.

Keywords: Regularization, Fourier Transform, gradi-

ent vector �elds, depth from gradients, depth map

1. Introduction

Most shading-based 3D shape recovery techniques,

e.g. shape from shading (SFS), photometric stereo

method (PSM), normally provide gradient values (i.e

the discrete gradient vector �eld) for a discrete set of

visible points on object surfaces. In order to achieve

the relative height or depth values of the surface, these

discrete gradients have to be integrated. In practice,

the gradient vector �elds are normally contaminated

by noise because each captured image is in
uenced by

the presence of camera noise and further measurement

errors.

Suppose that the surface function Z(x; y) of a scene

object is formed by an orthographic (parallel) projec-

tion of the surface into the xy-image plane, and de�ned

in the image plane over a compact region 
. The gra-

dient values of this surface at discrete points (x; y) 2 


p(x; y) =
@Z(x; y)

@x
= Zx

and

q(x; y) =
@Z(x; y)

@y
= Zy

are only available as input data and contaminated by

noise, for instance, in the form of a given imperfect

needle diagram.

Essentially there are two main classes of integration

techniques for �nding Z(x; y) from p(x; y) and q(x; y):

local integration techniques and global integration tech-

niques (for a review, see Klette and Schl�uns [7]). Local

integration methods [1], [3], [12] are conceptually sim-

ple and based on the following curve integrals:

Z(x; y) = Z(x0; y0) +

Z



p(x; y)dx+ q(x; y)dy; (1)

where 
 is an arbitrarily speci�ed integration path from

(x0; y0) to (x; y) 2 
. Starting with initial height val-

ues, the methods propagate height values according

to a local approximation rule (e.g., based on the 4-

neighborhood) using the given gradient data. Such a

calculation of relative height values can be repeated

by using di�erent scan algorithms. Finally, resulting

height values can be determined by averaging opera-

tions. However, initial height values have to be pro-

vided. The locality of the computations propagates

errors, i.e. this approach strongly depends on data ac-

curacy. Therefore, local integration techniques perform

badly when the data are noisy.

Global integration techniques (Horn and Brooks [4],

Frankot and Chellappa [2], Horn [5], Wei and

1



Klette [10, 11]) are based on minimizing the following

functional (cost function):

W =

ZZ



[jZx � pj2 + jZy � qj2]dxdy: (2)

Comparing with the local methods, the Frankot-

Chellappa algorithm, based on the results of the paper

[2] and presented in Klette et. al [8], leads to better

results for the task of calculating height from gradient.

Nevertheless, the errors of the algorithm are high for

noisy gradient vector �elds. Also,the algorithm is very

sensitive to the abrupt changes in orientation, i.e. there

are large errors at the object boundary. Noakes, Koz-

era and Klette [9] proposed a Lawn-Mowing algorithm

for enforcing the integrability condition of a given non-

integrable vector �eld, but there are no experimental

results reported for real images.

The organization of the rest of the paper is as fol-

lows. In Section 2 we present our new algorithm for

height from gradient. The experimental results and

conclusions are given in Section 4 and 5, respectively.

2. Depth from noisy gradient vector

�elds

In the following, we apply the Fourier transform the-

ory to derive a new algorithm for solving the height

from gradient. In order to improve the accuracy and

robustness, and to strengthen the relation between the

estimated surface and the original image, the functional

to be minimized is as follows:

W =

ZZ



�
jZx � pj2 + jZy � qj2

�
dxdy

+�

ZZ



�
jZxj

2 + jZyj
2
�
dxdy

+�

ZZ



�
jZxxj

2 + 2jZxyj
2 + jZyyj

2
�
dxdy;(3)

where the subscripts indicate partial derivatives. In the

above cost function, the second term of the right-hand

is a small de
ection approximation of the surface area,

and the third term is a small de
ection approximation

of the surface curvature (i.e it is a measure of quadratic

variation in the surface slopes). The non-negative reg-

ularization parameters � and � establish a trade-o�

between the constraints, i.e it is used to adjust the

weighting between them. The above new cost function

re
ects the relations among Z(x; y); p(x; y) and q(x; y)

more e�ectively, and make the best use of the informa-

tion provided by the surface gradient.

The following objective is to solve the unknown

Z(x; y) subject to an optimization process which mini-

mizes the cost function W . Instead of using the calcu-

lus of variations to derive the Euler-Lagrange equations

for the solution to (3), we use the Fourier transform

theory. Suppose that the Fourier transform of the sur-

face function Z(x; y) is

ZF (u; v) =

ZZ



Z(x; y)e�j(ux+vy)dxdy; (4)

and the inverse Fourier transform is

Z(x; y) =
1

2�

ZZ



ZF (u; v)e
j(ux+vy)dudv; (5)

where j is the imaginary unit. According to the di�er-

entiation properties of the Fourier transform, we have

Zx(x; y)$ juZF (u; v);

Zy(x; y)$ jvZF (u; v);

Zxx(x; y)$ �u2ZF (u; v);

Zyy(x; y)$�v2ZF (u; v);

Zxy(x; y)$�uvZF (u; v):

Let P (u; v) and Q(u; v) be the Fourier transforms of

p(x; y) and q(x; y), respectively. Taking the Fourier

transform in (3) and using the above di�erentiation

properties and the following Parseval's formulaZZ



jZ(x; y)j2dxdy =
1

2�

ZZ



jZF (u; v)j
2dudv;

we obtain

1

2�

ZZ



h
jjuZF (u; v) � P (u; v)j

2
+

+ jjvZF (u; v) �Q(u; v)j
2
i
dudv +

+
�

2�

ZZ



h
jjuZF (u; v)j

2
+ jjvZF (u; v)j

2
i
dudv

+
�

2�

ZZ



h���u2ZF (u; v)
��2 + 2 j�uvZF (u; v)j

2
+

+
���v2ZF (u; v)

��2idudv! minimum;

The left side of the above expression can be expanded

as

1

2�

ZZ



�
u2ZFZ

�

F
� juZFP

� + juZ�
F
P + PP �

+v2ZFZ
�

F
� jvZFQ

� + jvZ�
F
Q+ QQ�

�
dudv

+
�

2�

ZZ



�
u2 + v2

�
ZFZ

�

F
dudv

+
�

2�

ZZ



�
u4 + 2u2v2 + v4

�
ZFZ

�

F
dudv;

where � denotes the conjugate. Di�erentiating the

above expression with respect to ZF and Z�
F
, we can



deduce the following minimal conditions for the cost

function (3)

CuvZF + juP + jvQ = 0;

CuvZ
�

F
� juP �

� jvQ� = 0:

where Cuv = (1+�)(u2+v2)+�(u2+v2)2. Adding the

above two equations together, then subtracting the �rst

one from the second one, this results in the following

equations

Cuv(ZF + Z�
F
) + ju(P � P �) + jv(Q �Q�) = 0;

and

Cuv(ZF � Z�
F
) + ju(P + P �) + jv(Q +Q�) = 0:

Solving the above equations except for (u; v) 6= (0; 0),

we obtain

ZF (u; v) =
�juP (u; v) � jvQ(u; v)

(1 + �)(u2 + v2) + �(u2 + v2)2
(6)

where (u; v) 6= (0; 0). Therefore, the Fourier transform

of the surface is expressed as a function of the Fourier

transforms of given gradients p(x; y) and q(x; y). The

main result is summarized in the following theorem.

Theorem 1 The cost function (3) is minimized by

taking the Fourier transform of surface Z(x; y) as in

the formula (6).

The Frankot-Chellappa algorithm [2] as formulated in

[8], is a special case when parameter � = 0 and � = 0

in (3). Therefore, let � = 0 and � = 0 in (6), we obtain

that the objective functional (2) is minimized by taking

the Fourier transform of the surface Z(x; y) as

ZF (u; v) =
�1

u2 + v2
[juP (u; v) + jvQ(u; v)] ; (7)

where (u; v) 6= (0; 0). The formula (7) can also be

derived using the above process directly. If so, the pro-

cess deriving (7) is much simpler than the one used by

Frankot-Chellappa in [2]. On the other hand, our new

algorithm is capable of dealing with additional con-

straints.

The following algorithm shows our proposed method

for the task of calculating depth from gradients, which

use the transformation as speci�ed in Theorem 1 af-

ter having the Fourier transforms of the given gradient

�eld. Then an inverse Fourier transform leads to the

desired depth map, which allows us to reconstruct ob-

ject surfaces in 3D space within a subsequent compu-

tation step of a general back projection approach.

If the gradient vectors of any length are used as in-

put to the algorithm, then the reconstructed surface

is distorted. To avoid this, the value maxpq = 4 was

used in the experiments that are described in the next

section.

Algorithm 1 New algorithm for height from gradient

1: input gradients p(x; y); q(x; y), � and �

2: for 0 � x; y � N � 1 do

3: if (jp(x; y)j < maxpq & jq(x; y)j < maxpq) then

4: P1(x,y)=p(x,y); P2(x,y)=0;

5: Q1(x,y)=q(x,y); Q2(x,y)=0;

6: else

7: P1(x,y)=0; P2(x,y)=0;

8: Q1(x,y)=0; Q2(x,y)=0;

9: end if

10: end for

11: Calculate the Fourier transforms of P1(x,y) and

P2(x,y): P1(u,v), P2(u,v);

12: Calculate the Fourier transforms of Q1(x,y) and

Q2(x,y): Q1(u,v), Q2(u,v);

13: for 0 � u; v � N � 1 do

14: if (u 6= 0 & v 6= 0) then

15: � = (1 + �)(u2 + v2) + �(u2 + v2)2;

16: �1 = uP2(u; v) + vQ2(u; v);

17: �2 = �uP1(u; v)� vQ1(u; v);

18: H1(u; v) = �1=�;

19: H2(u; v) = �2=�;

20: else

21: H1(0; 0) = something; H2(0; 0) = 0;

22: end if

23: end for

24: Calculate the inverse Fourier transforms of H1(u,v)

and H2(u,v): H1(x,y), H2(x,y);

25: for 0 � x; y � N � 1 do

26: Z(x; y) = H1(x; y)+ BackgroundValue;

fe.g. LSE optimization g

27: end for

3. Experimental results

For an analysis of depth from noisy gradient vector

�elds, the algorithm described earlier was implemented

with one synthetic image and two real images. The dis-

crete gradients were generated using a shape from shad-

ing algorithm proposed by Ikeuchi and Horn [6]. The

Gaussian noise (with a mean set zero and a standard

deviation set to 0.01) was subsequently added to the

gradient vector �elds obtained from the corresponding

surfaces.

Figure 1 shows the reconstructed surfaces for a syn-

thetic image with � = 0; � = 0 and � = 0:1; � = 10 and

the z � y plane sliced at x = 64, where the solid line

represents the real surface, dashed line represents the

reconstructed surface with � = 0; � = 0 , and dotted

line for � = 0:1; � = 10.

Figure 2 illustrates the reconstructed surfaces for a

torus object with � = 0; � = 0 and � = 0:1; � = 15 and



Figure 1. Results of a synthetic image. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed
surface with � = 0; � = 0. (d)Reconstructed surface with � = 0:1; � = 10. (e) z� y plane sliced at x=64,
where solid line for real surface, dashed line for � = 0; � = 0, and dotted line for � = 0:1; � = 10

the z � y plane sliced at x = 100, where the solid line

represents the object surface, dashed line represents the

reconstructed surface with � = 0; � = 0 , and dotted

line for � = 0:1; � = 15.

Figure 2 shows the reconstructed surfaces for a vase

object with � = 0; � = 0 and � = 0:1; � = 10 and

the z � y plane sliced at x = 100, where the solid line

represents the object surface, dashed line represents the

reconstructed surface with � = 0; � = 0 , and dotted

line for � = 0:1; � = 10.

Our evaluation is also done by providing quantita-

tive measures on how well the reconstructed surface

matches the original by looking at the Mean Square Er-

ror (MSE). The errors for the three images are shown

in Table 3.

Surfaces Parameters MSE

Peaks � = 0; � = 0 15.5

Peaks � = 0:1; � = 10 5.8

Torus � = 0; � = 0 32.5

Torus � = 0:1; � = 15 2.7

Vase � = 0; � = 0 22.4

Vase � = 0:1; � = 10 4.0

Table 1. Mean Square Error for the recon-
structed surfaces

4. Conclusions

We designed a new algorithm for depth from gra-

dient vector �elds. The new cost function re
ects the

relations among Z(x,y), p(x,y) and q(x,y) more e�ec-

tively. The new algorithm is capable of dealing with

additional constraints. The choose of regularization

parameters heavily a�ects the surface reconstruction

from noisy gradients. The relation between the pa-

rameters and noise should be the future research topic.

The appropriateness of the approach has been illus-

trated through experiments using synthetic image and

real objects.
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Figure 2. Results of a torus object. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed
surface with � = 0; � = 0. (d)Reconstructed surface with � = 0:1; � = 15. (e) z � y plane sliced at
x=100, where solid line for real surface, dashed line for � = 0; � = 0, and dotted line for � = 0:1; � = 15

Figure 3. Results of a vase object. (a) Intensity image. (b) Gradient vector field. (c) Reconstructed
surface with � = 0; � = 0. (d)Reconstructed surface with � = 0:1; � = 10. (e) z � y plane sliced at
x=100, where solid line for real surface, dashed line for � = 0; � = 0, and dotted line for � = 0:1; � = 10


