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Abstract

Skeletonization is a transformation of a component of a digital im-

age into a subset of the original component. There are di�erent cat-

egories of skeletonization methods: one category is based on distance

transforms, and a speci�ed subset of the transformed image is a dis-

tance skeleton. The original component can be reconstructed from the

distance skeleton. Another category is de�ned by thinning approaches,

and the result of skeletonization using thinning algorithms should be

a connected set of digital curves or arcs. Motivations for interest in

skeletonization algorithms are the need to compute a reduced amount

of data or to simplify the shape of an object in order to �nd features for

recognition algorithms and classi�cations. Additionally the transfor-

mation of a component into an image showing essential characteristics

can eliminate local noise at the frontier. Thinning algorithms are a

very active area of research, with a main focus on connectivity preserv-

ing methods allowing parallel implementation. There are hundreds of

publications on di�erent aspects of these transformations. This report

reviews contributions in this area with respect to properties of algo-

rithms and characterizations of simple points, and informs about a few

new results.

Keywords: shape simpli�cation, skeletonization, thinning, distance trans-

form.
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1 Introduction

Many operators have been proposed for presenting a connected component

in a digital image by a reduced amount of data or simpli�ed shape. In

general we have to state that the development, choice and modi�cation of

such algorithms in practical applications are domain and task dependent,

and there is no \best method". However, it is interesting to note that

there are several equivalences between published methods and notions, and

characterizing such equivalences or di�erences should be useful to categorize

the broad diversity of published methods for skeletonization. Discussing

equivalences is a main intention of this report.

1.1 Categories of Methods

One class of shape reduction operators is based on distance transforms. A

distance skeleton is a subset of points of a given component such that every

point of this subset represents the center of a maximal disc (labeled with

the radius of this disc) contained in the given component. As an example in

this �rst class of operators, this report discusses one method for calculating

a distance skeleton using the d4 distance function which is appropriate to

digitized pictures.

A second class of operators produces median or center lines of the digital

object in a non-iterative way. Normally such operators locate critical points

�rst, and calculate a speci�ed path through the object by connecting these

points.

The third class of operators is characterized by iterative thinning. His-

torically, Listing [10] used already in 1862 the term linear skeleton for the

result of a continuous deformation of the frontier of a connected subset of a

Euclidean space without changing the connectivity of the original set, until

only a set of lines and points remains. Many algorithms in image analysis

are based on this general concept of thinning. The goal is a calculation of

characteristic properties of digital objects which are not related to size or

quantity. Methods should be independent from the position of a set in the

plane or space, grid resolution (for digitizing this set) or the shape com-

plexity of the given set. In the literature the term \thinning" is not used

in a unique interpretation besides that it always denotes a connectivity pre-

serving reduction operation applied to digital images, involving iterations

of transformations of speci�ed contour points into background points. A

subset Q � I of object points is reduced by a de�ned set D in one iteration,

and the result Q0 = Q nD becomes Q for the next iteration.
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Topology-preserving skeletonization is a special case of thinning resulting

in a connected set of digital arcs or curves. A digital curve is a path p =

p0; p1; p2; :::; pn = q such that pi is a neighbor of pi�1, 1 � i � n, and p = q.

A digital curve is called simple if each point pi has exactly two neighbors in

this curve. A digital arc is a subset of a digital curve such that p 6= q. A

point of a digital arc which has exactly one neighbor is called an end point

of this arc.

Within this third class of operators (thinning algorithms) we may classify

with respect to algorithmic strategies: individual pixels are either removed

in a sequential order or in parallel. For example, the often cited algorithm

by Hilditch [5] is an iterative process of testing and deleting contour pixels

sequentially in standard raster scan order. Another sequential algorithm by

Pavlidis [12] uses the de�nition of multiple points and proceeds by contour

following. Examples of parallel algorithms in this third class are reduction

operators which transform contour points into background points. Di�er-

ences between these parallel algorithms are typically de�ned by tests imple-

mented to ensure connectedness in a local neighborhood. The notion of a

simple point is of basic importance for thinning and it will be shown in this

report that di�erent de�nitions of simple points are actually equivalent.

Several publications characterize properties of a set D of points (to be

turned from object points to background points) to ensure that connectivity

of object and background remain unchanged. The report discusses some of

these properties in order to justify parallel thinning algorithms.

1.2 Basics

The used notation follows [17]. A digital image I is a function de�ned on a

discrete set C , which is called the carrier of the image. The elements of C

are grid points or grid cells, and the elements (p; I(p)) of an image are pixels

(2D case) or voxels (3D case). The range of a (scalar) image is f0; :::Gmaxg

with Gmax � 1. The range of a binary image is f0; 1g. We only use binary

images I in this report. Let hIi be the set of all pixel locations with value

1, i.e. hIi = I�1(1).

The image carrier is de�ned on an orthogonal grid in 2D or 3D space.

There are two options: using the grid cell model a 2D pixel location p is

a closed square (2-cell) in the Euclidean plane and a 3D pixel location is a

closed cube (3-cell) in the Euclidean space, where edges are of length 1 and

parallel to the coordinate axes, and centers have integer coordinates. As a

second option, using the grid point model a 2D or 3D pixel location is a grid

point.
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Two pixel locations p and q in the grid cell model are called 0-adjacent

i� p 6= q and they share at least one vertex (which is a 0-cell). Note that this

speci�es 8-adjacency in 2D or 26-adjacency in 3D if the grid point model

is used. Two pixel locations p and q in the grid cell model are called 1-

adjacent i� p 6= q and they share at least one edge (which is a 1-cell). Note

that this speci�es 4-adjacency in 2D or 18-adjacency in 3D if the grid point

model is used. Finally, two 3D pixel locations p and q in the grid cell model

are called 2-adjacent i� p 6= q and they share at least one face (which is a

2-cell). Note that this speci�es 6-adjacency if the grid point model is used.

Any of these adjacency relations A�, � 2 f0; 1; 2; 4; 6; 18; 26g, is irre
exive

and symmetric on an image carrier C . The �-neighborhood N�(p) of a pixel

location p includes p and its �-adjacent pixel locations.

Coordinates of 2D grid points are denoted by (i; j), with 1 � i � n and

1 � j � m; i; j are integers and n;m are the numbers of rows and columns

of C . In 3D we use integer coordinates (i; j; k).

Based on neighborhood relations we de�ne connectedness as usual: two

points p; q 2 C are �-connected with respect to M � C and neighborhood

relation N� i� there is a sequence of points p = p0; p1; p2; :::; pn = q such that

pi is an �-neighbor of pi�1, for 1 � i � n, and all points on this sequence are

either in M or all in the complement of M . A subset M � C of an image

carrier is called �-connected i� M is not empty and all points in M are

pairwise �-connected with respect to set M . An �-component of a subset

S of C is a maximal �-connected subset of S. The study of connectivity in

digital images has been introduced in [15].

It follows that any set hIi consists of a number of �-components. In case

of the grid cell model, a component is the union of closed squares (2D case)

or closed cubes (3D case). The boundary of a 2-cell is the union of its four

edges and the boundary of a 3-cell is the union of its six faces.

For practical purposes it is easy to use neighborhood operations (called

local operations) on a digital image I which de�ne a value at p 2 C in the

transformed image based on pixel values in I at p 2 C and its immediate

neighbors in N�(p).

2 Non-iterative Algorithms

Non-iterative algorithms deliver subsets of �-components in speci�ed scan

orders without testing connectivity preservation in a number of iterations.

In this section we only use the grid point model.
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2.1 \Distance Skeleton" Algorithms

Blum [3] suggested a skeleton representation by a set of symmetric points.

In a closed subset of the Euclidean plane a point p is called symmetric i�

at least 2 points exist on the boundary with equal distances to p. For every

symmetric point, the associated maximal disc is the largest disc in this set.

The set of symmetric points, each labeled with the radius of the associated

maximal disc, constitutes the skeleton of the set.

This idea of presenting a component of a digital image as a \distance

skeleton" is based on the calculation of a speci�ed distance from each point

in a connected subset M � C to the complement of the subset. The local

maxima of the subset represent a \distance skeleton". In [15] the d4-distance

is speci�ed as follows.

De�nition 1 The distance d4(p; q) from point p to point q, p 6= q, is the

smallest positive integer n such that there exists a sequence of distinct grid

points p = p0,p1; p2; :::; pn = q with pi is a 4-neighbor of pi�1, 1 � i � n. If

p = q the distance between them is de�ned to be zero.

The distance d4(p; q) has all properties of a metric. Given a binary digital

image. We transform this image into a new one which represents at each

point p 2 hIi the d4-distance to pixels having value zero. The transformation

includes two steps. We apply functions f1 to the image I in standard scan

order, producing I�(i; j) = f1(i; j; I(i; j)), and f2 in reverse standard scan

order, producing T (i; j) = f2(i; j; I
�(i; j)), as follows:

f1(i; j; I(i; j)) =

8>><
>>:

0 if I(i; j) = 0

minfI�(i� 1; j) + 1; I�(i; j � 1) + 1g

if I(i; j) = 1 and i 6= 1 or j 6= 1

m+ n otherwise

f2(i; j; I
�(i; j)) = minfI�(i; j); T (i+ 1; j) + 1; T (i; j+ 1) + 1g

The resulting image T is the distance transform image of I . Note that

T is a set f[(i; j); T(i; j)] : 1 � i � n ^ 1 � j � mg, and let T � � T such

that [(i; j); T(i; j)] 2 T � i� none of the four points in A4((i; j)) has a value

in T equal to T (i; j)+1. For all remaining points (i; j) let T �(i; j) = 0. This

image T � is called distance skeleton.

Now we apply functions g1 to the distance skeleton T � in standard scan

order, producing T ��(i; j) = g1(i; j; T
�(i; j)), and g2 to the result of g1 in

reverse standard scan order, producing T ���(i; j) = g2(i; j; T
��(i; j)), as fol-

lows:
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g1(i; j; T
�(i; j)) = maxfT �(i; j); T��(i� 1; j)� 1; T ��(i; j � 1)� 1g

g2(i; j; T
��(i; j)) = maxfT ��(i; j); T���(i+ 1; j)� 1; T ���(i; j + 1)� 1g

The result T ��� is equal to the distance transform image T . Both func-

tions g1 and g2 de�ne an operator G, with G(T �) = g2(g1(T
�)) = T ���, and

we have [15]:

Theorem 1 G(T �) = T , and if T 0 is any subset of image T (extended to

an image by having value 0 in all remaining positions) such that G(T 0) = T ,

then T 0(i; j) = T �(i; j) at all positions of T � with non-zero values.

Informally, the theorem says that the distance transform image is re-

constructible from the distance skeleton, and it is the smallest data set

needed for such a reconstruction. The used distance d4 di�ers from the

Euclidean metric. For instance, this d4-distance skeleton is not invariant

under rotation. For an approximation of the Euclidean distance, some au-

thors suggested the use of di�erent weights for grid point neighborhoods [4].

Montanari [11] introduced a quasi-Euclidean distance.

In general, the d4-distance skeleton is a subset of pixels (p; T (p)) of the

transformed image, and it is not necessarily connected.

2.2 \Critical Points" Algorithms

The simplest category of these algorithms determines the midpoints of sub-

sets of connected components in standard scan order for each row. Let l be

an index for the number of connected components in one row of the original

image. We de�ne the following functions for 1 � i � n:

ei(l) =

�
j if this is the lth case I(i; j) = 1 ^ I(i; j� 1) = 0

in row i, counting from the left, with I(i;�1) = 0

oi(l) =

�
j if this is the lth case I(i; j) = 1 ^ I(i; j+ 1) = 0

in row i, counting from the left, with I(i;m+ 1) = 0

mi(l) = int((oi(l)� ei(l)=2)+ oi(l)

The result of scanning row i is a set of coordinates (i;mi(l)) of mid-

points of the connected components in row i. The set of midpoints of all

rows constitutes a critical point skeleton of an image I . This method is

computationally eÆcient.

6



The results are subsets of pixels of the original objects, and these sub-

sets are not necessarily connected. They can form \noisy branches" when

object components are \nearly parallel" to image rows. They may be use-

ful for special applications where the scanning direction is approximately

perpendicular to main orientations of object components.

3 Iterative Thinning Algorithms

Thinning is an operation applied to binary images I which preserves con-

nectivity of components of hIi. It is normally implemented by an iterative

process of transforming speci�ed contour points into background points.

The result of a thinning algorithm might be de�ned to be ideally thin if no

point which is not an end point can be deleted without violating connectivity

properties. It can happen that a thinning procedure results in digital arcs

which intersect each other, generating branching points which have more

than two neighbors. An ideally thin subset of hIi may contain branching

points as in the following example:

1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 1

1 1 1

1 1 1

1 1 1

Note that this is not a digital arc or curve as de�ned above. However, these

calculated connected components can be split into a set of disjoint digital

arcs. A thinning algorithm should satisfy the following conditions in order

to achieve skeletonization within feasible computation time:

1. The resulting subset of the original image should be ideally thin.

2. The resulting subset must approximate the medial axis.

3. End points must be preserved.

4. Connectivity of the object and the background must be preserved.

5. The algorithm should be computationally eÆcient.

6. The algorithm should be robust against noise.
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The location of the resulting skeleton (condition 2) critically depends

upon the sequence of applications of conditions or masks. Algorithms in

the literature di�er in tests of conditions 3 and 4 and types of applied local

operators. The choice of an operator (sequential or parallel, with a di�erent

number of subcycles) and the choice of connectivity tests have in
uence

on conditions 1 and 2. Connectivity preservation for single points can be

precisely de�ned in di�erent ways and will be discussed separately in this

report. Some of the connectivity preserving criterions are equivalent and

algorithms di�er in ways of implementation and additional tests which are

designed to improve the algorithm based on above conditions. These goals

are used for comparisons and evaluations of thinning algorithms apart from

the fact that they are not exactly de�ned.

This report presents a few examples of often cited algorithms and lists

some properties without extensive comparisons and evaluations.

3.1 Basic Notations

De�nition 2 A simple point p in an �-connected component M � C of a

binary image I with I(p) = 1, is a point where a transformation of I into a

binary image I 0 by setting I 0(p) = 0 does not change the �-connectivity of

M n fpg in the transformed image I 0.

This report uses the following synonyms: object as a synonym for an

�-connected component M , M � C , background as a synonym for an �-

connected component B of the complement of M , C n M , deletion as a

synonym for the operation of transforming an object point into a background

point.

In a binary image I an object M consists of �-connected pixels (p; I(p))

with I(p) = 1, and a background B consists of �-connected pixels (p; I(p))

with I(p) = 0. We say a point is �-simple (short: simple) if the deletion of

this point preserves �-connectivity. The following de�nitions of the crossing

number of point p will be used for testing a point p to be simple. Let A8(p)

be the 8-adjacency set of p and the elements xi of this adjacency set are

numbered in the following way:

x4 x3 x2
x5 p x1
x6 x7 x8

De�nition 3 [18] The number of transitions from a background point to an

object point or vice versa when the points of A8(p) are traversed in counter-
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clockwise order is called R-crossing number XR(p):

XR(p) =

8X
i=1

jxi+1 � xij where x9 = x1 :

Let XA(p) be the number of distinct 1-components of object points in A8(p).

Then it is easy to see that XA(p) = XR(p)=2.

Hilditch [5] de�ned the crossing number as follows:

De�nition 4 The number of times of crossing over from a background point

to an object point when the points in A8(p) are traversed in order, cutting the

corner between 0- adjacent 1-neighbors, is called H-crossing number XH(p):

XH(p) =

4X
i=1

bi

where

bi =

�
1 if x2i�1 = 0 and (x2i = 1 or x2i+1 = 1)

0 otherwise .

The H-crossing number is equivalent to the number of distinct 0-components

of object points in A8(p).

There are straightforward ways to compute crossing numbers XR(p) and

XH(p). These de�nitions are frequently used for the design of thinning

algorithms in order to �nd a decision whether a point can be deleted or not.

There are thinning algorithms based on condition XR(p) = 2 and others

based on XH(p) = 1. Algorithms with XR(p) = 2 preserve 1-connected

subsets of the original components and algorithms with XH(p) = 1 preserve

0-connected subsets of the original components (using the grid cell model).

Non-endpoints of ideally thin curves do not satisfy pixel deletion crite-

rions in the sense, that they are non-simple and a thinning algorithm stops

if all remaining points are non-simple. This is di�erent for endpoints. Let

B(p) denotes the number of object points in A8(p). There are the following

de�nitions of an endpoint in the literature.

1. B(p) = 1,

2. B(p) 2 f1; 2g,

3. B(p) = 1, or B(p) = 2 and XR(p) = 2.

Condition 1 is not very strong. Algorithms using this condition can delete

\important parts" of the skeleton.
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3.2 Examples of Thinning Algorithms for 2D

An example for a sequential algorithm is given in [5]. The following criterions

are tested for all points p 2 C and pixels are marked in standard scan order

from the top to the bottom, and from the left to the right.

A1: p is object pixel.

A2: p is contour pixel, that means at least one 1-neighbor is back-

ground pixel.

A3: p is not isolated or end pixel, that means B(p) > 1.

A4: At least one object pixel in A8(p) is unmarked.

A5: XH(p) = 1.

A6: If x3 is marked, setting I(x3) = 0 does not change XH(p) = 1.

A7: If x5 is marked, setting I(x5) = 0 does not change XH(p) = 1.

At the beginning let Q be the set of all object pixels and B the set

of all background pixels. After one iteration all marked pixels (set D) are

set to background pixels. The result Q0 = Q n D becomes Q and B0 =

B [ D becomes B for the next iteration and so on until no simple point

is left for deletion. For an object pixel condition 5 would be suÆcient to

preserve connectivity. Conditions 1 and 2 are checked at the beginning to be

computationally eÆcient and all other conditions were designed for stability

of the skeleton.

[18] provides an example for a parallel algorithm where a 4 � 4 neigh-

borhood is used. A pixel p is deleted i� the following conditions are true:

B1: p is object pixel.

B2: p is not isolated or end pixel, that means B(p) > 1.

B3: XR(p) = 2.

B4: x1x3x5 = 0 or XR(x3) 6= 2.

B5: x7x1x3 = 0 or XR(x1) 6= 2.

In some cases this algorithm produces results with excessive erosion. For

example a 2 � 2 component of object points will vanish completely. This
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disadvantage is based on the nature of parallel algorithms that a set of simple

points can be deleted at the same time in one iteration.

There are di�erent ways to prevent erosion and to preserve connectivity

in parallel thinning algorithms. One method is considering larger (larger

than 3� 3) neighborhoods for pixel deletion tests. The following example is

an algorithm which is completely parallel [6]:

C1: p is marked for deletion if XR(p) = 2 and 3 � B(p) � 6.

C2: Retain the marked points p if they satisfy one of the following

conditions: a) x3 = x7 = 1 and x1 is marked, b) x1 = x5 = 1 and x7
is marked, c) x1, x7 and x8 are marked. Delete all the other marked

points.

In step C1 potentially deletable points are identi�ed. Step C2 preserves

connectivity of certain sets of points. If the algorithm is applied completely

in parallel mode we may use the following neighborhood of p:

x x x x

x p x x

x x x x

x x x x

Thinning operators using smaller neighborhoods (normally 3 � 3) are

preferred for reasons of computational eÆciency. The example above can

also be considered as an algorithm with two subiterations. Step C1 could be

done fully parallel without any deletions of points. The results of C1 could

be used in a fully parallel working step C2 using a smaller neighborhood.

One standard example of using subcycles or subiterations is the four-

subiteration algorithm by Rosenfeld [16]. A pixel p is deleted if

D1: p is object pixel.

D2: p is not isolated or end pixel, that means B(p) > 1.

D3: XH(p) = 1.

D4: x2i+1 = 0 where i = 1; :::; 4; 1; ::: at successive iterations.
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The �rst of four subiterations deletes in parallel only contour pixels where

x3 = 0, the second subiteration deletes only contour pixels where x5 = 0

and so on. The algorithm terminates when no deletions occur during four

successive iterations. Rosenfeld has shown that these four iterations preserve

connectivity. It turned out that the end point condition B(p) is not strong

enough. Too many pixels are deleted in some cases. Therefore condition D2

should be replaced by: B(p) = 1, or B(p) = 2 and XR(p) = 2.

Computationally more eÆcient are parallel algorithms with two or only

one subcycle. A typical example for a 2-subcycle algorithm [19] is the fol-

lowing: The �rst subcycle deletes only the following pixels:

E1: p is object pixel.

E2: 1 < B(p) < 6.

E3: XR(p) = 2.

E4: x1x3x7 = 0.

E5: x1x7x5 = 0.

Equations E4 and E5 are equal to 0 if x1 = 0 or x7 = 0 or x3 = 0 and

x5 = 0. Therefore in the �rst subcycle only 4-simple points on the south

and east borders as well as north-west pixels can be deleted. The north and

west borders and the south-east pixels can be deleted in the second subcycle.

That means the last 2 conditions are replaced by equations x3x5x7 = 0 and

x1x3x5 = 0. The algorithm terminates when no deletions occur at two

successive subiterations.

Another group of thinning operators are the window matching algo-

rithms. For instance in [1] points are deleted in parallel if the following

masks match the pixel and its adjacency set.

The next iteration deletes pixels which match to the 90 degree rotations

of these two masks and so on.

The following example [12] belongs to the group of sequential algorithms.

Contour pixels are traced and labeled. Only multiple pixels are retained.

Pixel p is multiple if at least one of the following conditions is true:

F1: p is traversed more than once during tracing (XH > 1)

F2: p has no 4-neighbors in the interior.

F3: p has at least one 4-neighbor that belongs to the contour but it is

not traced immediately before or after p.
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Figure 1: Basic Masks.

In order to preserve connectivity an additional condition is required: In

one iteration a pixel p is not deleted if p is multiple and p is adjacent to a

labeled pixel of the iteration before.

3.3 Equivalent characterizations of simple points

Let p be a grid square (pixel location) with I(p) = 1 of an image I . Then

the I- attachment set of p is the set consisting of all points on the boundary

of p that also lie on the boundaries of pixel locations q; p 6= q with I(q) = 1.

In [7] Kong showed the following equivalent characterizations of simple

points.

Theorem 2 Let p be a pixel location with I(p) = 1. Then p is simple in

I i� both the I-attachment set of p, and the complement of that set in the

boundary of p are non-empty and connected.

For 2D images this characterization can be further simpli�ed [7].

Theorem 3 Let p be a pixel location with I(p) = 1. Then p is simple in

I i� the I-attachment set of p is non-empty and connected, and is not the

entire boundary of p.

In two examples of thinning algorithms in this report conditions A5 and

D3 are used to preserve connectivity. This characterization of a simple point

is equivalent to Kong's' theorem in case vertices are considered as endpoints

of edges in the boundary. We show:

Theorem 4 Let p be a pixel location with I(p) = 1. Then p is 0-simple in

P i� XH(p) = 1.
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Figure 2: I-attachment sets.

Proof. Let p be 0-simple. Then we have only 4 ways (Figure 3) in which the

P-attachment set is non-empty and connected and not the entire boundary,

in each case XH(p) = 1.

Let XH(p) = 1. At least one 0-neighbor is a 1 per de�nition. It fol-

lows the I-attachment set is non-empty. At least one 1-neighbor is a 0 per

de�nition, it follows the I-attachment set is not the entire boundary. It

remains to show that the I-attachment set is connected. We assume the

I-attachment set is not connected. Then we have 7 di�erent ways where the

I-attachment set is not connected. In each case XH(p) > 1 per de�nition.

This is a contradiction to above assumption. The I-attachment set must be

connected. ut

Condition B3 (or E3) is equivalent to Kong's theorem in case edges and

vertices are considered as distinct elements of the boundary. We also have:

Theorem 5 Let p be a pixel location with I(p) = 1 in a 2D image I. Then

p is 1-simple in P i� XR(p) = 2.

Proof. The proof is analogue to the previous. Let p be 1-simple. Then

we have 7 ways in which the I-attachment set is non-empty and connected

and not the entire boundary. In each case XR(p) = 2. Let XR(p) = 2. It

follows we have only one 1-connected component in set A(P ). It follows

the I-attachment set is connected. The I- attachment set can't be non-

empty or the entire boundary because in these cases XR(p) = 0 what is a

contradiction. ut

Some authors suggest the use of masks to preserve connectivity in parallel
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window matching algorithms. We show the following theorem which also

justi�es the choice of masks for window matching algorithms:

Theorem 6 Let p be a pixel location with I(p) = 1 in a 2D image I. Then

p is 0-simple in I i� the neighborhood of p matches one of the following

masks (simple point masks 1 to 4, from left to right)

or one of their 90Æ rotations.

Comment: Mask 1 and mask 2 with I(x6) = 0 and I(x8) = 0 are nor-

mally not allowed in window matching algorithms in order to avoid the

deletion of end points. The �rst mask in the algorithm matches mask 3

in our theorem. The second mask in the algorithm o�ers the deletion of

6 di�erent con�gurations. They all match to one of the masks in the the-

orem. That means the algorithm deletes only simple points but not all

possible simple points are deleted. Let us consider a mask with I(x3) = 0,

I(x6) = 0, I(x8) = 0 and all the others are 1's. In this case p is 0-simple but

the algorithm will not delete the pixel. The choice of masks in the algorithm

avoids the deletion of end points and the creation of "caves".

In the following characterization theorem the term non-simple is used

for object points p which have the same value I 0(p) = 1 in the resulting

image I 0 after thinning.

Theorem 7 Let p be a pixel location with I(p) = 1 in a 2D image I and

let p be a contour point and let p be not isolated. Then p is 0-non-simple i�

XH(p) > 1.

Proof. Assume p is a contour point, at least one 1-neighbor has value 0,

and p is not isolated. It follows per de�nition that XH(p) > 0, p is 0-non-

simple, that means XH(p) 6= 1 and it follows XH(p) > 1. Let XH(p) > 1

then XH(p) 6= 1 and p is non-simple. ut

With respect to condition F1 the set of non-simple points is a subset of

multiple points.

As we have seen there are several equivalent characterizations of simple

points. They all can be used in thinning algorithms and the deletion of a sin-

gle simple point doesn't change the connectivity of a connected component

15



of an image. However a parallel algorithm normally deletes a set of points at

one time and even if each point of this set is simple the deletion of the whole

set of simple points can destroy the connectivity. It is not enough to �nd

characterizations for simple points in order to test connectivity preservation

for a parallel algorithm. It is necessary to consider the whole set of simple

points which will be deleted by a certain algorithm in one iteration.

3.4 Characterizations of simple sets

Similar to tests of single points to be simple we are interested in testing sets

of points which were identi�ed for deletion by a certain algorithm. Ronse

de�ned in [14]:

De�nition 5 Let D be the set of object points in the original image which

become background points in the resulting image after thinning,D � I. Let S

be the set of object points after thinning, S = I nD and B0 is the background

B0 = B [D after thinning. Ck(I) is the number of k-connected components

of I, k is equal to 0 or 1. D is k-deletable from P i� Ck(P ) = Ck(S),

C0

k
(B) = C0

k
(B0).

D is strongly k-deletable from I i� a) for each k-connected component

exists exactly one k-connected skeleton and vice versa b) for each k-connected

background component exists exactly one k-connected background component

after thinning and vice versa.

In other words a subset D of a digital image I is strongly k-deletable i�

two bijective maps exist: one between k-connected components of I and k-

connected skeletons and the other one between the k0-connected background

components and the k0-connected background components after thinning.

Kong de�ned [7]:

De�nition 6 A sequence q1; q2; :::qn of distinct object points in a digital

image I is called a simple sequence of I if q1 is simple in I, and qi is simple

in P n fqj ; 1 � j < ig for 1 < i � n. A set D of object points in a digital

image is called simple in I if D is empty or if D is �nite and the elements

of D can be ordered as a simple sequence of I.

The de�nitions of simple sets and strongly k-deletable sets are equivalent.

We show:

Theorem 8 A set D of object points D � I is simple i� D is strongly

k-deletable.
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Proof. First we assume that D is strongly k-deletable. Per de�nition no

k-connected component can vanish. For each k-connected component P 0

exists a proper subset D0 with D0 � P 0, S0 = P 0 nD0, and D is the union

of all these subsets D0. I is a digital image, D can only be �nite or empty.

In case D is empty the k-connected components in the original image are

equal to the k- connected components after thinning. In case D is �nite all

subsets D0 are �nite or empty. Because for each k-connected component in

the original image exists exactly one k- connected component after thinning

there must exist exactly one set D0 for each k-connected component which is

empty or �nite. Each non- empty D0 has at least one element what must be

simple otherwise the deletion would split a k- connected component into two

k-connected components. In case D0 has more than one element all these

elements can be ordered in a simple sequence. All these sequences can be

ordered in one sequence one after another and this new sequence is simple.

That means D is simple.

Now we assume D is simple. Per de�nition D must be empty or �nite.

In case D is empty then the k-connected components of I stay exactly the

same and all properties of strongly k-deletable are valid. In case D is �nite

the elements of D can be ordered as a simple sequence of I . Now we consider

all elements of D0 of the same k-connected component with D0 � D. They

constitute a simple sequence. D0 can be empty or �nite. That means no

k- connected component can be split into more than one k-connected com-

ponent or vanish because per de�nition after deletion of certain points the

last one must be simple. But that means there is at least one more adjacent

object point.

Similarly we can show that for each k-connected background component

exists exactly one k-connected background component after thinning and

vice versa. ut

3.5 Connectivity Preserving Algorithms

A thinning algorithm preserves connectivity if it satis�es the following prop-

erties:

a: It must not split a k-connected component of I into two or more

k-connected components of I .

b: It must not completely delete a k-connected component of I .

c: It must not merge a k'-connected component of the background of

I .
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d: It must not create a new k'-connected component of the background

of I .

Obviously a thinning algorithm preserves connectivity if it deletes a spec-

i�ed set D of an image I which is simple in I . For practical reasons it is

more interesting to �nd test criterions based on a local neighborhood. In

order to report about conditions for testing algorithms we introduce two

more de�nitions:

De�nition 7 A set of pixels or voxels is small if every 2 elements of the set

are adjacent to each other. An 0-deletable set is a set which can be deleted

while preserving 0-connectivity.

Obviously, every small set of pixels or voxels is connected. A pair of

0-simple object points p; q is 0-deletable i� q is 0-simple after p is deleted.

In case p and q are 1-neighbors the pair p; q is 0-deletable i� the number of

0-connected components in the adjacency set of p; q is one. The following

examples show con�gurations where p and q are horizontally adjacent and

the number of 0-connected components is larger than one.

0 1 0 0 1 1 0 0 0 1 1 0

0 p q 0 1 p q 0 0 p q 0

0 0 1 0 0 0 1 1 0 1 1 0

Let A be a parallel thinning algorithm. The following conditions are

suÆcient to show that A preserves connectivity (connectivity preservation

test):

a: If an object point is deleted by A then it must be simple.

b: If two 1-neighbors in I are deleted by A then they must constitute

an deletable set.

c: No small set of object points is completely deleted by A.

For instance we like to prove that the 4 subcycle algorithm of Rosen-

feld preserves connectivity. Condition a is valid obviously because of pixel

deletion criteria D3. If a pair of 2 1- neighbors were deleted in the �rst it-

eration for instance then x2i+1 = 0 for p and x2i+1 = 0 for q because of D4.

Together with D2 condition b follows. No small set can completely deleted

because of D2 and D3.
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4 Summary and Conclusions

One possibility to classify existing skeletonization algorithms could be the

use of properties of the resulting set. In [2] six properties of the resulting

subset are used to classify existing algorithms. According to the subtitles in

this report thinning algorithms are classi�ed into iterative and non-iterative

methods. The main category of iterative methods is topology preserving

thinning. There are 2 types of operators used in thinning. One type works

sequentially in standard scan order or following the contour [5], [12]. The

other type of operators works parallel. Parallel working algorithms can be

divided into groups. There is the group of fully parallel operators, the group

of operators which uses subcycles or neighborhoods larger than 3�3 in order

to preserve connectivity and the group of sub�eld operators which partition

the image into subsets and a parallel operator is applied to one of the sub�eld

at each iteration, cycling through the sub�elds.

This report compiled algorithms of di�erent categories. It shows that

di�erent characterizations of simple points (a basic notion for thinning al-

gorithms) are equivalent. For parallel thinning methods it is necessary to

characterize simple sets. Connectivity preservation tests are useful in order

to prove connectivity preservation of speci�ed algorithms. In this report

skeletons based on thinning procedures are special cases where the resulting

subset is a set of digital arcs or curves. Topology preserving thinning oper-

ators deliver quite often subsets of the original set which are not skeletons

in our sense. However there are algorithms in the literature [2] solving this

problem.

Further research needs to be done in order to compare and evaluate

di�erent methods.
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