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Abstract

Fonterra Co-operative Group Ltd is the largest exporter of dairy ingredient products

in the world. Fonterra’s production planning is subject to uncertain milk supply in

a production year. We describe a model for Fonterra’s supply chain, of which the

important features are uncertain milk supply, price-demand curves and contracting.

We derive the forecast milk supply for a production year assuming linear regional

growth in milk supply over years, and then we develop an additive model and a

multiplicative model for uncertain milk supply.

We present six optimization models assuming uncertain milk supply, of which

two are multistage stochastic programming models. We describe an algorithm

DOASA to solve the multistage stochastic programming models, give a mathemat-

ical proof of the almost-sure convergence of DOASA for the linear case, and give a

discussion on convergence for quadratic objectives.

We assess the policies defined by the solutions of the optimization models in

sampled milk supply scenarios in simulation. The policy generated from a mul-

tistage stochastic programming model has significant advantages over the other

policies.

Another situation affected by uncertainty occurs when Fonterra sells products

to international spot markets, and other agents’ sales have an impact on the market

prices. One of the main markets for Fonterra is the European dairy market where

the regulations of the European Union Commission have an impact on Fonterra’s

earnings. In the second part of this thesis, we describe the European dairy market

and present a game-theoretic inventory model for this market. The important
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features include two leaders, Fonterra and Australia, a follower EU (representing the

European Union), and price-demand curves. The model consists of an optimization

problem for each leader and an optimization problem for each follower, and solves

the leaders’ optimization problems simultaneously for an equilibrium of the game.

We describe an approach using EPECs and our algorithm to solve the model.

We perform computational experiments in a game with real data, which shows

simple results. To illustrate the complicated game structure when the market situ-

ation is changed, we perform computational experiments in a game with fictitious

data. First we present a simplified version of the game where Fonterra and Aus-

tralia act together as a single leader, and describe five strategies for this leader.

Then we present the game where Fonterra and Australia compete. We present five

equilibria and illustrate them using the leaders’ best responses. We also use sequen-

tial best response to illustrate how the leaders’ strategies evolve given a leader’s

starting strategy. Finally we investigate the impact of inventory holding cost on

equilibrium.
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Chapter 1

Introduction

The international market for dairy commodities is competitive, requiring dairy

companies to optimize the profit from production and sales to ensure their survival.

Fonterra Co-operative Group Ltd is a leading international dairy company based

in New Zealand. Fonterra faces uncertain milk production in planning, mainly due

to uncertainty in weather. It also faces uncertain behaviour of other agents in the

dairy commodities market. Such uncertainties can lead to large losses, unless some

account is taken of these in production planning.

For example, when Fonterra sells products by contracts, it makes the contracts

several months in advance. After the contracts have been made, the actual milk

production in the months before they are delivered may be lower than what has

been forecast. If such a scenario was not considered when the contracts were made,

then Fonterra may face inadequate inventory to deliver the contracts which incurs

a large cost because it must either breach the contract or acquire the products from

a third party (at considerable expense).

Another situation affected by uncertainty occurs when Fonterra sells products

to international spot markets, and other agents’ sales have an impact on the market

prices. If this impact is not properly assessed in production planning, then Fonterra

will face a lower market price than what it has expected which results in a lower

revenue.
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It is therefore of significant value for Fonterra to seek tools to mitigate the

effects of these uncertainties in planning. A first step in doing this is to seek

more accurate forecasts by collecting more historical data to better estimate the

parameters in statistical forecasting models. Notwithstanding, there will always be

some residual uncertainty in forecast milk supply, and it is important to account

for it when making decisions.

This thesis has as its primary aim the development of computer models to enable

Fonterra to make good decisions in the face of uncertainty. For production planning

with uncertain milk supply, we develop a set of optimization models that produce

policies that maximize expected earnings and compare the policies with existing

policies using simulation. For the uncertain behaviour of the other agents in the

market, we will not use probability distributions, but use game-theoretic inventory

models to assess the inventory policies that emerge in a Nash equilibrium of the

problem.

1.1 Fonterra

Fonterra Co-operative Group Ltd, an international dairy company based in New

Zealand, is one of the leading companies in the international dairy industry. It was

formed in 2001 as a merger of New Zealand Dairy Group, Kiwi Co-operative Dairies

and the New Zealand Dairy Board, and it is now owned by 11,000 farmers. As stated

in the company overview for the year ending on 31 May 20071, Fonterra collected

14 billion litres of milk, processed 1.2 billion kilograms of milksolids, distributed

2.9 million metric tonnes of products and achieved an annual revenue of 13.9 billion

New Zealand dollars.

Fonterra produces and distributes top quality ingredient products under the

NZMP brand and it is the largest exporter of ingredient products in the world.

It produces four main categories of ingredient products — milk proteins, cheese

1Key facts and annual reports are available at Fonterra’s home page http://www.fonterra.com.
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ingredients, milk powders and cream products, which are used to produce up to

600 products.

New Zealand is Fonterra’s main source of production of ingredient products.

Fonterra collects milk from farmers, processes milk in manufacturing sites to pro-

duce products, sells products to international markets and stores products as in-

ventory. Production, storage and transportation incur costs and sales generate

revenue. Fonterra’s production planning aims to maximize earnings.

1.2 Optimization models with uncertain milk

supply

Fonterra’s production planning is subject to uncertain milk supply in a production

year. This prompts us to develop a set of optimization models to assess the effect of

uncertain milk supply on Fonterra’s earnings, assuming that Fonterra is a monopoly

supplier in the market.

The underlying structure of our models represents Fonterra’s supply chain. The

important features are uncertain milk supply, inventory, contracting and a price-

demand curve in the market. The solution of one of these models defines a policy

in production planning which determines for each month, what to produce, what

to sell, what contract to make, what to store with information of past contracts,

past inventory and current milk supply.

We describe two possible models for uncertain milk supply. The first model is

an additive model which has independent random variables. The second model is a

multiplicative model which has Markov states and independent random variables.

With the models for uncertain milk supply, this is an optimization problem with

uncertainty. We develop a multistage stochastic programming model to solve the

problem, which can be used to generat a policy in production planning. Currently

Fonterra implements a deterministic policy using forecasts. This policy solves a

deterministic optimization problem with adaptive decision horizon and forecast,
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and implements the solution in each successive month until the end of the year. We

would like to compare these two policies, along with some other possible policies

in simulation experiment. Our hypothesis is that the policy from the multistage

stochastic programming model is an improvement over the deterministic policy

using forecasts.

To solve the multistage stochastic programming models, we develop a Dy-

namic Outer-Approximation Sampling Algorithm (DOASA). We give a mathemat-

ical proof of the almost-sure convergence of DOASA for linear objective functions

and a discussion on that for quadratic objectives.

1.3 Game-theoretic inventory model for European

dairy market

When Fonterra sells products to international spot markets, other agents’ sales

have an impact on the market prices. The uncertainty in market prices needs

to be properly assessed in production planning, so that Fonterra’s expected price

matches the market price. One of the main markets for Fonterra is the European

dairy market. Australia and the European Union are large suppliers in the market.

The European Union Commission regulates the market which has an impact on

Fonterra’s earnings. Currently, under the regulations, the space for strategic selling

is very limited, but the European Union Commission continually faces pressure to

reform the regulations in favour of free trade, e.g., by choosing a lower intervention

price, and thus we see the opportunity of strategic selling in the future. We develop a

game-theoretic inventory model to assess Fonterra’s strategy in the European dairy

market.

In Part II of the thesis we describe the European dairy market and present a

game-theoretic inventory model for the market. To simplify the analysis we need

to make some assumptions. Particularly, in a multistage production year, Fonterra

and Australia are leaders and EU is a follower in decision making, and they sell
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products to multiple markets in which market prices respond to sales. The model

consists of an optimization problem for each leader and an optimization problem

for each follower. We will describe an approach of solving the model using an EPEC

and present our algorithm to solve the model that uses a grid search and sequential

best response.

We will perform computational experiments in different game settings to assess

the leaders’ strategic behaviours. Our hypothesis is that strategic considerations

are important to Fonterra in the European dairy market.

1.4 Literature review

We aim to develop multistage stochastic programming models for the dairy industry

supply chain with uncertain milk supply and price-demand curves in markets, and

we develop an algorithm to solve the models and give a proof of convergence of

the algorithm. We also aim to develop a game-theoretic inventory model for the

European dairy market. We give a literature review on these subjects as follows.

1.4.1 Stochastic programming in global supply chain

Our supply chain model is a stochastic global supply chain problem. (Here, global

refers to the fact that production and sales are carried out by the same agent.) A

recent literature review of supply chain modelling can be found in [35] and [78].

Stochastic supply chain problems are reviewed in [103] and global supply chain

problems in [108]. (Hereafter we refer to supply chain as global supply chain.) The

papers [77] and [49] give a literature review on supply chain design, and a rich

literature studies supply chain design problems with uncertainty, for example [25].

Particularly, there is a lot of literature on capacity planning and location planning

problems in supply chain design. For example, [1], [72] and [79] solve capacity

planning with uncertain demand with two-stage stochastic programming models,

and [102], [45] and [44] solve location planning problems with uncertain demand.
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Stochastic supply chain problems also arise in networking and vehicle routing.

The paper [28] gives a survey of these problems, and [37] and [13] are examples of

solving instances of these problems.

A huge amount of literature on production planning in supply chains has been

published; for example, [82] gives a literature review of these models. The papers

[26] and [70] describe general stochastic programming models for production plan-

ning under uncertain demand. Some literature directly solves a particular practical

stochastic supply chain problem. For example, [3] applies stochastic programming

models in managing a chemical manufacturing supply chain, [104] performs evalua-

tion on option contracts, [84] describes stochastic optimization in petroleum refinery

complexes, [20] uses a two-stage stochastic linear programming model to investigate

inventory deployment in the steel industry, [14] develops a scenario planning tool

for government agencies to handle the logistics problem under flood emergency with

uncertain weather factors, and [56] solves a problem of raw material procurement

at pulp and paper mill with uncertain weather in Sweden.

In solving stochastic supply chain models, different solution approaches have

been published. For example, [96] combines the sample average approximation

scheme with an accelerated Benders decomposition algorithm, [67] uses a simulation-

based approach, [90] describes a framework called reinforcement learning, and [60]

uses queueing networks to solve a supply chain design problem. We also found

some literature on multi-objective programming in supply chain with uncertainty,

for example, [43] assesses profit and resulting demand satisfaction in the objective

of supply chain management.

1.4.2 Stochastic programming in dairy industry

There is a lot of literature studying the effect of uncertainty in agriculture, fishery

and horticulture. Most of this work uses heuristic approaches. Some papers use

operations research models, for example, [111] presents operations research models

in agriculture and forestry with uncertainty on the farm and regional-sector level.
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Some literature uses stochastic simulation to assess the effect of uncertainty. Fur-

thermore, there is literature applying stochastic programming in other industries

that is applicable to the dairy industry. For example, [83] and [92] survey the liter-

ature on perishable/deteriorating products, and [69] presents a two-stage stochastic

programming model for production planning on perishable products. However, to

our knowledge, models with a direct focus on optimization in the dairy industry

with uncertainty have not been developed.

1.4.3 Stochastic programming with price-demand curve

There is relatively little literature on stochastic programming with price-demand

curves. Much of this literature has focused on electricity models, see [107] for a re-

cent survey of electricity market modelling including stochastic optimization models

with linear demand. In a different setting, [68] develops a model with stochastic

yield and linear demand in agriculture following the same framework as [50]. The

paper [62] describes similar work on agriculture. The paper [9] describes a model

with a downward sloping demand curve in forest industry. The paper [18] studies

stochastic models with a price-demand curve in managerial accounting which is sur-

veyed in managerial accounting models in [19]. In a telecommunication setting, [34]

surveys different optimization models and presents a two-stage stochastic program-

ming model with a linear demand. More generally, [106] analyzes price and produc-

tion postponement strategies in a two-stage model with uncertain demand curve in

a monopolistic case, and [46] solves a pricing problem of end-of-season sales of fash-

ion goods under stochastic demand function. Typically these applications apply

large-scale nonlinear programming algorithms to deterministic-equivalent models.

There is relatively little literature on special algorithms for solving stochastic

programming models that arise from models with price-demand curves. Exceptions

are the papers [94] and [95] on solving piecewise linear-quadratic problems, and [91]

a sequential quadratic programming approach. However there is a large amount

of literature on algorithms for solving stochastic linear programming model with
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inelastic demand, and some of these algorithms can be used to solve problems with

price-demand curves, for example, the methods described in [16] and [71].

One contribution of this thesis is to extend the portfolio of stochastic program-

ming models (with demand curves) to a multistage setting. This approach is par-

ticularly useful when contracting decisions must be made periodically.

1.4.4 Multistage stochastic programming

Multistage stochastic programs are well known in the stochastic programming com-

munity, and are becoming more common in applications. The typical approach to

solving these problems is to approximate the random variables using a finite set of

outcomes forming a scenario tree and then solve a large-scale mathematical pro-

gramming problem (see e.g. [8]). The scenario tree can be constructed to represent

certain desired properties of the uncertain parameters (see e.g. [88]), or it can be

(conditionally) sampled from some probability distribution (see e.g. [98]).

There are various approaches to solving multistage stochastic programs, such

as Monte-Carlo methods described in [98] and [97], and multistage Benders decom-

position sampling-based algorithms as described in [86].

One approach to solving multistage stochastic linear programs is based on the

stochastic dual dynamic programming (SDDP) algorithm in [86]. This algorithm

constructs feasible dynamic programming policies using an outer approximation of

a (convex) future cost function that is computed using Benders cuts. The policies

defined by these cuts can be evaluated using simulation, and their performance

measured against a lower bound on their expected cost. This provides a convergence

criterion that may be applied to terminate the algorithm when the estimated cost

of the candidate policy is close enough to its lower bound (see [53]). The SDDP

algorithm has led to a number of related methods (see [16],[23],[24],[52]) that are

based on the same essential idea, but seek to improve the method by exploiting the

structure of particular applications.

Since its publication in 1991, a number of papers have studied the convergence
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behaviour of SDDP and related algorithms. The PhD thesis [23] (and the paper

[24]) states that “finite convergence of this algorithm follows from the finite conver-

gence of the Nested Decomposition algorithm, since the scenarios from which the

optimality cuts are generated are resampled at each iteration.” This remark which,

strictly speaking, should be a statement of convergence with probability 1, is not

accompanied by a formal proof.

The first formal proof of the almost sure convergence of multistage sampling al-

gorithms is published in [16] which is derived for the CUPPS algorithm. This proof

is extended in [71] to cover other multi-stage sampling algorithms (SDDP [86], AND

[24], ReSa [52]) that use outer approximation. However, the convergence proofs in

[16] and [71] make use of an unstated assumption regarding the independence of

sampled random variables and convergent subsequences of algorithm iterates. This

assumption seriously weakens the analysis in these papers, and leaves open the

question of convergence in general.

The DOASA algorithm includes SDDP, AND, ReSa and CUPPS as special cases.

In chapter 5, we give a direct proof of the almost-sure convergence of DOASA for

linear problems that does not require the assumption made in [16] and [71]. The

proof follows the finiteness argument that is alluded to in the thesis [23], and makes

this argument explicit, by basing it on two well-defined properties of the sampling

procedure.

1.4.5 Game-theoretic inventory models

Game-theoretic models have been studied for many years and a rich literature has

been published. The book [38] is a good recent publication on game theory. Game-

theoretic inventory models arise from many situations, particularly in supply chain

problems where there are different parties in production and sales. For example, [12]

and [47] solve an inventory model in a two-stage supply chain, and [10] gives a broad

view on inventory management in supply chains with competition. There is some

literature on game-theoretic inventory models, where a different focus can be found.
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For example, [115], [7] and [61] present stochastic game-theoretic inventory models,

[12] and [101] present cooperative game-theoretic inventory models, [76], [4], [110]

and [58] present game-theoretic inventory models with simultaneous-move players,

and [100], [99] and [109] present game-theoretic inventory models with sequential-

move players. On the other hand, studies on the properties of the equilibrium

of the game and players’ strategies, such as the existence and uniqueness of the

equilibrium, and differences in open-loop and closed-loop strategies, is an active

research field. Some examples of the literature in this area are [81], [36], [63] and

[11]. Literature on algorithms in solving for equilibria in games are also available,

for example, [33] describes sequential best response, [31] and [30] describe MCPs,

[85] describes MPECs, and [54] describes EPECs.

1.4.6 Strategic models for European dairy market

There is very little literature on strategic issues arising in the European dairy mar-

ket. Typically papers that study this use business models which do not explicitly

quantify the effect of the strategic behaviour as a game-theoretic model does. For

example, [21] discusses competitive strategies in the European dairy market, [27]

describes the problem of deregulation of the European dairy market and provides a

business model for strategy consideration, and [22] has a discussion on the strategy

of a farm in exporting dairy products to Europe.

Most non-cooperative game-theoretic models have been developed from the per-

spective of competing firms within the same market. The models we develop in this

thesis relate more to international trade strategy. We investigate the effect of dif-

ferent trade barriers on the strategic behaviour of large sellers of dairy products

competing with the domestic seller.

1.5 Thesis outline

The thesis is organized as follows.
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Part I, consisting of chapters 2 through 7, presents a suite of optimization models

with uncertain milk supply. Chapter 2 describes a model for Fonterra’s supply

chain. Chapter 3 describes models for uncertain milk supply. Chapter 4 describes

the optimization models. Chapter 5 describes the algorithm DOASA, and gives a

mathematical proof of the almost-sure convergence of DOASA for linear problems

and a discussion of its convergence for quadratic objective functions. Chapter 6

describes the implementation of the optimization models and DOASA, and presents

some results of computational testing. Chapter 7 presents the results from some

simulation experiments, and a comparison of two policies.

Part II (chapters 8 to 10) presents a game-theoretic model for the European

dairy market. Chapter 8 describes the European dairy market. Chapter 9 presents

the game-theoretic model and the algorithm we use to compute Nash equilibrium.

In this model Fonterra and Australia are leaders, and the EU is a follower. Chapter

10 presents the results of computational experiments for different game settings.

Chapter 11 summarizes the thesis, describes how this research benefits Fonterra,

and outlines the limitations and suggestions for future research.
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Part I

Optimization models with

uncertain milk supply
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Chapter 2

A model for Fonterra’s supply

chain

In this chapter we describe a model for Fonterra’s supply chain. The decision

horizon is a twelve-month production year. Milk is collected from farmers and

transported to factories for manufacturing products. Products are transported to

stores. Products in stores are either retained as inventory, or sold to international

spot markets or by contract. In production planning, a policy determines for each

month, what to produce, what to sell, what contract to make and what to store,

with information of past contracts, past inventory and current milk supply.

Fonterra collects milk in several regions in New Zealand and transports milk

to manufacturing sites in the region for processing (see Figure 2.1). We assume in

general that milk in each region is transported to a factory in that region. This

means that the transportation cost is fixed for any milk supply outcome, and so it

can be ignored in the optimization. This assumption is relaxed slightly by assuming

that up to a pre-defined percentage of milk supply in a region can be transported to

an adjacent region, which incurs some transportation cost to be accounted for in the

objective functions. Given historical milk supply data for several years, we derive

a model for uncertain milk supply for a production year, which will be presented

in chapter 3.
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Figure 2.1: Regions of milk collection and production. Here blue indicates the

density of milk production, the red dots are manufacturing sites and the lines

divide New Zealand into six regions.

Fonterra has manufacturing sites around New Zealand, and each site operates

different processes to produce different products. We aggregate these sites to form

one factory in each region and each factory is able to operate all processes. We

display a production schematic in Figure 2.2. Each process produces a mixture

of products, and each factory has a daily process capacity for each process, which

remains constant throughout the year. We assume that in each month, each fac-

tory operates a process at a constant daily rate under the daily process capacity.

Products are categorized as perishable products or powder products. We assume

products have infinite life times and the qualities of all products remain unchanged

over time. In reality this assumption is not valid since perishable products deteri-

orate the longer that they are stored, but we observe in all the solutions that we

have obtained (presented in chapter 7) that inventory is completely replenished in at

most six months, which means that this deterioration can be ignored. The marginal

production cost of a product is constant between processes and over months.

Products manufactured in factories are transported to storage places. Perishable

products are stored in refrigerated stores, and powder products are stored in dry

14
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Figure 2.2: A production schematic.

stores. Fonterra has storage places around New Zealand, but we aggregate them

into one refrigerated store and one dry store, and the storage capacity is set to

be the total of the individual storage capacities. We assume that transportation

cost to storage is low compared with the international freight cost and so we ignore

it. The marginal costs for storage of different products are different, but remain

constant throughout the year. Inventory is used to smooth variation in demands

and thus it is an important feature in production planning.

Products can be sold to international spot markets. In a spot market, demand

responds to market price and this is characterized by a price-demand curve. A

generic price-demand curve is displayed in Figure 2.3, in which demand increases

as market price decreases. These curves represent the residual demand in each

region that Fonterra observes from the actual demand minus what is supplied by

other producers. Note that we require these curves to be independent of Fonterra’s

sales policy, so we do not envisage any strategic selling by other producers. We as-

sume that demand matches sales in the market, and assume a linear price-demand

curve. The assumption of linearity is made not only for simplicity, but also for

computational convenience, as this means that the revenue is a concave quadratic

function of sales, which gives a convex programming problem with quadratic objec-

tive function to solve in each stage. Optimizing with a price-demand curve requires

careful planning to balance production and market price to achieve the highest

earnings.
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There is a market capacity for sales of each product in each spot market and

month. Since Fonterra has some long-term customers and their demands must be

met, we assume there is a minimum demand in each market that is a lower bound

on sales. We assume that products are transported from stores to spot markets

via export ports. There is a marginal cost for transportation from a store to an

export port (inland transportation), and there is a marginal cost for transportation

from an export port to a spot market (overseas transportation). The marginal

transportation costs are different between products and markets, but are constant

over months.

Some products (called contract products) can be sold by contract at a predeter-

mined price, while other products (non-contract products) are sold only at a spot

price. Although there are some contracts with different durations, we assume that

all contracts are arranged three months in advance. In each month there is one

contract made for each product and the contract size is subject to an upper limit.

Contracts are delivered at the exact amount, and variations are unacceptable. The

contract price varies over months. There is a marginal transportation cost for de-

livery of contract products. Contracts require inventory, and thus contracting is an

important factor affecting production planning.
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At the beginning of a year, there is inventory and contracts that result from

decisions made in the previous year. We call them start-of-year inventory and start-

of-year contracts. On the other hand, inventory is required at the end of the year

to enable Fonterra to meet minimum demands and contracts in the following year,

particularly in the first several months when inventory is increasing only slowly.

This gives an inventory target to be met or exceeded at the end of the year.

Given that milk supply is uncertain, production and inventory may not be able

to meet minimum demand, contracts or the inventory target at the end of the

year. To ensure feasibility in all outcomes we assume that products can be bought

from other sources. Such distress trading is not encouraged in practice as it carries

an implicit cost, which will vary with product and time of the year. We assume

that this cost is a constant multiple of the highest spot price for the product in

that period, and estimate the multiple to be the lowest value such that no distress

trading occurs in a deterministic production plan with forecast milk supply. It is

important to observe that the model of distress trading prices will be an important

driver in the optimization, so in the absence of more exact information we choose

the distress prices in our base model to be low to avoid over-estimating the value

of well-hedged policies. We also test the sensitivity of the model to these prices by

decreasing them below the base values and recomputing optimal policies.

17



Chapter 3

Models for uncertain milk supply

In this chapter we will describe our models for uncertain milk supply. We first

derive the forecast milk supply for a production year, and then based on this we

derive an additive model for uncertain milk supply and a multiplicative model for

uncertain milk supply.

First of all we present our notation.

Sets and indices

i, i0 = 1, 2, . . . , I regions.

n = 1, 2, . . . , I index for eigenvalues.

h = 1, 2, . . . ,H production years.

t = 1, 2, . . . T months in a production year.

k = 1, 2, . . . ,Kt index of the values in Ωt.

m = 1, 2, . . . ,Mt index of the values in Φt.

ak ∈ Ωt set of independent random variable in month t.

bm ∈ Φt set of Markov states in month t.

Parameters and variables

t̄ the first month with unpredictable milk supply.

εt a vector of I random errors in month t.

εit a random error in region i and month t.

εth a vector of I random errors in month t and year h.
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ε0 the start-of-year random error.

εi0 the start-of-year random error in region i.

σit, σ̂it standard deviation in region i in month t, and its estimate.

Dt, D̂t a diagonal matrix of σit’s, and its estimate.

ηt a vector of I multivariate normal random variables in month t.

ηit ith component of ηt.

Υt variance-covariance matrix of Dtεt.

erf cumulative distribution function of a standard normal distribution.

Ξ, Ξ̂ variance-covariance matrix of εt in month t, and its estimate.

Σ, Σ̂ variance-covariance matrix of ηt in month t, and its estimate.

ρ, ρ̂ serial correlation coefficient of εt, and its estimate.

Λ diagonal matrix of eigenvalues of Ξ̂ decreasing down the diagonal.

λn the nth largest eigenvalues of Λ.

V matrix of eigenvectors of Ξ̂, ordered according to Λ.

Vin the ith component in the eigenvector for λn.

ωt a vector of independent random variables in month t.

ωtn the nth random variable in ωt.

PrΩt probability of sampling ωtn from Ωt.

φt a Markov state in month t.

PrΦt|Φt−1 probability of sampling φt from Φt given φt−1 in Φt−1.

ft, f̂t base of regional growth for month t, and its estimate.

fit base of regional growth for region i and month t.

gt, ĝt slope of regional growth for month t, and its estimate.

git slope of regional growth for region i and month t.

N the number of realizations of ωtn.

st milk supply in month t.

sit milk supply in region i and month t.

s0it dummy variable ensuring sit ≥ 0 for region i and month t.

sth milk supply in month t and year h.

sith milk supply in region i, month t and year h.
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3.1 Forecast milk supply

We observe that the regional growth over years in each region and month is close

to linear, so we assume the forecast milk supply in year h, month t and region i is

sit = fit + hgit, i = 1, 2, . . . , I,

t = 1, 2, . . . , T,

h = 1, 2, . . . ,H,

where fit and git are constants. In vector form the forecast milk supply in month t

in year h, h = 1, 2, . . . ,H, is

st = ft + hgt, t = 1, 2, . . . , T,

and the actual milk supply is

st = ft + hgt +Dtεt, t = 1, 2, . . . , T,

where εt is a vector of I random errors, having variance-covariance matrix Ξ that

captures the regional correlation in the random variation of milk supply.

ft, gt and Dt are estimated from historical data using maximum likelihood

estimation (see [65]). Given Υt, the variance-covariance matrix of Dtεt, the ith

diagonal component of Dt is the square root of the ith diagonal component in Υt.

Given the estimates f̂t of ft and ĝt of gt, a maximum-likelihood estimate Υ̂t of Υt

is

Υ̂t(i, i
0) =

1

H

HX
h=1

(sith − f̂it − hĝit) (si0th − f̂i0t − hĝi0t), ∀i, i0 = 1, 2, . . . , I, (3.1)

where Υ̂t(i, i
0) is the component in the ith row and the i0th column of Υ̂t. On the

other hand, given Υ̂t, we can obtain estimates f̂t and ĝt by solving

min
ft,gt

HX
h=1

(sth − ft − hgt)| Υ̂t
−1 (sth − ft − hgt). (3.2)
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This results in

HX
h=1

2Υ̂−1t (sth − f̂t − hĝt) = 0

HX
h=1

2hΥ̂−1t (sth − f̂t − hĝt) = 0,

which gives

Υ̂−1t f̂t

HX
h=1

1 + Υ̂−1t ĝt

HX
h=1

h = Υ̂−1t

HX
h=1

sth

Υ̂−1t f̂t

HX
h=1

h+ Υ̂−1t ĝt

HX
h=1

h2 = Υ̂−1t

HX
h=1

h sth. (3.3)

Observe that multiplying both sides of equation (3.3) by Υ̂t gives

f̂t

HX
h=1

1 + ĝt

HX
h=1

h =
HX
h=1

sth

f̂t

HX
h=1

h+ ĝt

HX
h=1

h2 =
HX
h=1

h sth,

which is independent of Υ̂t, and can be solved for f̂t and ĝt. Then we can calculate

Υ̂t from observations of sith, and f̂t and ĝt, using equation (3.1), and then D̂t from

Υ̂t and thus σ̂it, i = 1, 2, . . . , I.

Note that the maximum likelihood estimation above is the same as performing

a least-square estimation (see [65]) for f̂t and ĝt in each region, since f̂t and ĝt have

one component for each region. If we assume that f̂t and ĝt are univariate over all

regions, that is, the components in f̂t and ĝt have the same values, then we will have

a different result from (3.2), which is dependent on Υ̂t, and thus the estimation will

differ from the least-square estimation.

We assume Ξ̂ to be the variance-covariance matrix of σ̂−1it (sith − f̂it − hĝit) for

all t, which is estimated from observations of sith using

Ξ̂(i, i0) =
1

TH

TX
t=1

HX
h=1

σ̂−1it σ̂
−1
i0t (sith − f̂it − hĝit)(si0th − f̂i0t − hĝi0t), ∀i, i0 = 1, 2, . . . , I.

We give an example of processing the real data provided by Fonterra to illustrate

this model. Figure 3.1 displays the actual milk supply and the forecast using the
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model in a particular region in January. For this region, f̂it is 87 million and ĝit

is 18 million. In Figure 3.2, the estimate of Ξ̂ from observations of sith (with six

regions) shows strong correlation between adjacent regions.
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Figure 3.1: Actual milk supply and the forecast in one region in January.

Figure 3.2: The estimate of Ξ̂ in an example.

3.2 Additive model

We derive an additive model for uncertain milk supply based on the forecast milk

supply. The milk supply in month t in year h, h = 1, 2, . . . ,H, is

st = ft + hgt +Dtεt, t = 1, 2, . . . , T,

where the estimates f̂t, ĝt, D̂t and Ξ̂ are calculated as described above. We display

εt in six regions in year 2005 in Figure 3.3. We observe strong serial correlations
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in εt’s in each region, since εt’s in each region follow the same path throughout the

year. We also observe strong spacial correlations between εt’s in each month, since

εt’s in each month move in the same direction.
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Figure 3.3: Residuals in six regions.

Accounting for these two types of correlations, we define an autoregressive model

for εt. Given the start-of-year random error ε0, let

εt = diag(ρ) εt−1 + ηt, t = 1, 2, . . . , T, (3.4)

in which ρ is a coefficient for linear serial correlation of εt, and ηt is a multivariate

normal random variable with variance-covariance matrix Σ.

The estimation of parameters ρ and Σ is done using maximum likelihood. By

equation (3.4), given that εt−1 and ηt are independent of each other, we have

E[ε|t εt] = E[(ρεt−1 + ηt)
| (ρεt−1 + ηt)]

= E[ρ2ε|t−1εt−1 + 2ρε
|
t−1ηt + η|t ηt]

= ρ2E[ε|t−1εt−1] +E[2ρε
|
t−1ηt] +E[η

|
t ηt]

= ρ2E[ε|t−1εt−1] + 2ρE[ε
|
t−1]E[ηt] +E[η

|
t ηt]

= ρ2E[ε|t−1εt−1] +E[η
|
t ηt]
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which implies

Ξ = ρ2Ξ+ Σ,

and thus given an estimate ρ̂ of ρ, we estimate Σ by

Σ̂ = (1− ρ̂2)Ξ̂. (3.5)

On the other hand, given Σ̂, and observed errors εth and εt−1,h, h = 1, 2, . . . , H, we

can obtain a maximum likelihood estimate ρ̂ by solving

min
ρ

TX
t=1

HX
h=1

(εth − ρεt−1,h)
> Σ̂−1 (εth − ρεt−1,h). (3.6)

We substitute equation (3.5) into (3.6), then ρ̂ is given by solving

min
ρ

TX
t=1

HX
h=1

(εth − ρεt−1,h)
> Ξ̂−1 (εth − ρεt−1,h)

(1− ρ2)
,

which results in

min
ρ

ρ2
TP
t=1

HP
h=1

ε>t−1,hΞ̂
−1εt−1,h − 2ρ

TP
t=1

HP
h=1

ε>thΞ̂
−1εt−1,h +

TP
t=1

HP
h=1

ε>thΞ̂
−1εth

(1− ρ2)
.

Let

a =
TX
t=1

HX
h=1

ε>t−1,hΞ̂
−1εt−1,h, b = −2

TX
t=1

HX
h=1

ε>thΞ̂
−1εt−1,h, c =

TX
t=1

HX
h=1

ε>thΞ̂
−1εth,

which are constants given Ξ̂−1, and observed errors εth and εt−1,h, h = 1, 2, . . . , H.

The maximum likelihood estimate ρ̂ is given by

ρ̂ = arg min
ρ∈[0,1]

aρ2 + bρ+ c

(1− ρ2)

=
−a− c+

p
(a+ c)2 − b2
b

.

To construct a milk scenario, we sample a vector of I independent random

variables ωt with each random variable ωtn, n = 1, 2, . . . , I, being sampled inde-

pendently from a standard normal distribution. We generate ηt using

ηt = (1− ρ̂2)
1
2V Λ

1
2ωt, t = 1, 2, . . . , T.
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Here Λ is a diagonal matrix of eigenvalues of Ξ̂ with the nth component being larger

than the (n + 1)th component, and V is a matrix of eigenvectors of Ξ̂. This gives

a vector ηt with variance-covariance matrix

(1− ρ̂2)V ΛV > = (1− ρ̂2)>Ξ̂

= Σ̂.

This is the principal component approach to obtain a vector of correlated random

variables (ηt) from a vector of independent random variables (ωt) (see [59]).

The model described above can be used to generate an infinite number of syn-

thetic milk scenarios from which a finite number may be constructed or sampled

to give a finite approximation to the stochastic programming problem. Ideally

any solution to the stochastic programming problem would be tested with a set of

out-of-sample milk scenarios from a new data set. Unfortunately such data were

not available, and so we have chosen to test the policies (in chapter 7) using syn-

thetic milk scenarios generated by the model above with all principal components

included.

The finite scenario tree that we use to approximate the milk supply process is

constructed as follows. We first approximate a standard univariate normal distri-

bution with a discrete distribution by minimizing the Wasserstein metric. This is

a well-known technique in stochastic programming (see [87]). Suppose we use a

set of finite values for a random variable which are ordered from the smallest to

the largest. We calculate the mid-point of every two successive values in the set.

Then the sum of probabilities for the first j values is the cumulative probability of

the jth mid-point, and the probability for the last value is one minus the total of

probabilities of the previous values. We illustrate this using an example in Figure

3.4. The density curve for a standard normal distribution is displayed. The three

blue dots are the values in a set, and the two black vertical lines sit on the mid-

points between these. Under the Wasserstein metric, the probability of sampling

the first value is defined to be the area (A) under the density function curve up to

the first black line. Then the probability of sampling the second value is the area
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(B) between the two black lines, and the probability of sampling the third value is

the area (C).
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A B C
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A B C

Figure 3.4: An example of constructing an approximation.

In general, suppose we use a set Ωt of Kt values for ωtn, n = 1, 2, . . . , I, in the

discrete distribution, then there are KI
t outcomes of ωt in each stage t and thus

there are
QT
t=1K

I
t milk scenarios. Hence even with a small value of Kt, the sizes

of the scenario trees obtained are very large. To reduce the number of scenarios

further we use only a subset of the principal components (see [59]). In other words,

we restrict the component directions to the eigenvectors of Ξ̂ corresponding to the

N < I largest eigenvalues in Λ, say λn for n = 1, 2, . . . , N , and then we use ωtn,

n = 1, 2, . . . , N , in generating ηt.

Since each ωtn can take negative values in sampling, this may result in a negative

milk supply which is physically impossible. To prevent this we use a dummy variable

s0it ≥ 0 with a high penalty cost that makes sit = 0 when the scenario milk supply

is negative. In practice we observe that milk supply before month t̄ which is the

first month after the peak month is easy to predict, but milk supply in and after

this month is not. Thus we assume sit for t < t̄ in year h is the forecast milk supply,

and we assume there is random variation in milk supply in month t ≥ t̄. We define
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the set of random variables as

Ωt = {0}, t < t̄,

Ωt = {a1, a2, . . . , aKt}, t ≥ t̄.

Now we formally state the model for milk supply for year h as, given εi0,

sit = fit + hgit + σitεit + s
0
it, ∀i = 1, 2, . . . , I, t = 1, 2, . . . , T,

εit = ρεi,t−1 + ηit, ∀i = 1, 2, . . . , I, t = 1, 2, . . . , T,

ηit =
PN

n=1(1− ρ2)
1
2Vinλ

1
2
nωtn, ∀i = 1, 2, . . . , I, t = 1, 2, . . . , T,

ωtn ∼ (Ωt,PrΩt), ∀t = 1, 2, . . . , T, n = 1, 2, . . . , N,

with the probability distribution (Ωt,PrΩt) as

Ωt = {0}, t < t̄,

PrΩt(0) = 1, t < t̄,

Ωt = {a1, a2, . . . , aKt}, t ≥ t̄,
kX
j=1

PrΩt(aj) = erf(
ak + ak+1

2
), k = 1, 2, . . . ,Kt − 1, t ≥ t̄,

PrΩt(aKt) = 1−
Kt−1X
k=1

PrΩt(ak), t ≥ t̄.

To illustrate this model, we give an example of processing the real milk data

provided by Fonterra. A production year has twelve months starting from June. We

display the real milk supply in a particular region over nine years in Figure 3.5. The

figure shows that milk supply before and in the peak production month, October,

is relatively deterministic, but after this month it is not. Similar behaviours are

observed in the other regions. Thus November, which is the sixth month of the

production year, is the first month with unpredictable milk supply.

We set εi0 = 0 and choose N = 2, so ωt has two components. For t ≥ 6, we
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Figure 3.5: Real milk data in a particular region over nine years.

choose Kt = 3, giving a three-point probability distribution defined by

Ωt = {−1.68, 0, 1.68},

PrΩt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.2, for − 1.68,

0.6, for 0,

0.2, for 1.68.

This results in 4.8 million milk scenarios. For the same region, we sample 100

milk scenarios from the approximation, and display the coverage of this sample

along with the forecast milk supply in Figure 3.6. Note that we have assumed no

random variation from June to October and thus milk supply in these months are

the forecast milk supply. We observe large random variation in milk supply in each

month.

We then superpose the coverage of the residuals of the sample onto the residuals

of the nine years of real data from the forecast milk supply in Figure 3.7. Note that

the residuals from June to October are zero. The bold curves are the upper bound

and lower bound of the coverage. Most of the residuals of the real milk supply are
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Figure 3.6: Coverage of a sample of milk scenarios from the additive model.

between the bounds.

3.3 Multiplicative model

In the previous section we presented a model for milk supply where the forecast

milk supply (ft + hgt) and the random error (εt) are in an additive form. Here

we derive a different model for milk supply in which the forecast milk supply and

the random error are in a multiplicative form. In this model milk supply varies

from forecast milk supply by a random proportion εt. We assume this proportion

is constant over regions and thus milk supply in each region has the same deviation

in proportion from the forecast milk supply in each month. The milk supply in

month t in year h, h = 1, 2, . . . ,H, is

st = (ft + hgt)εt, t = 1, 2, . . . , T.

Here the estimates f̂t of ft and ĝt of gt are already known, and εt is a scalar.
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Figure 3.7: Residuals of the real data and the coverage of residuals in a sample of

milk scenarios.

We model εt by two random variables φt and ωt,

εt = φtωt,

where φt is the state in a Markov chain that is sampled from the finite set Φt

conditional on φt−1, ωt is independently sampled from Ωt, and φtωt is unique. Using

two random variables with different properties enables a richness of milk scenarios.

We use a Markov chain model for φt (following the method used in [39]). A

Markov chain is a series of random variables over stages which are called states,

where the state in each stage is (only) dependent on the state in the previous stage,

and the probability of each realization is defined by a transition matrix. Without

loss of generality, we define the state in each stage t by zt with each being sampled

from a finite set Zt. In a mathematical form, in a Markov chain {z1, z2, . . . },

Pr(zt | zt−1, zt−2, . . . , z1) = Pr(zt | zt−1).

30



Suppose Zt consists of qt values in each stage t, that is,

Zt = {zt,i, i = 1, 2, . . . , qt}.

Define the transition matrix by PrZt|Zt−1 . PrZt|Zt−1 is a qt−1 by qt matrix, and is

defined as

PrZt|Zt−1(i, j) = Pr(zt,j | zt−1,i), j = 1, 2, . . . , qt,

i = 1, 2, . . . , qt−1,

where PrZt|Zt−1(i, j) is the component in the ith row and jth column. PrZt|Zt−1 may

vary over stages. Note that if in each stage t, Pr(zt,j | zt−1,i) is independent of zt−1,i,

then the Markov chain degenerates into a series of independent random variables.

Now we return to our multiplicative model for uncertain milk supply. The milk

supply in year h, h = 1, 2, . . . , H, is

st = (ft + hgt)φtωt, t = 1, 2, . . . , T ,

φt ∼ (Φt,PrΦt|Φt−1), t = 1, 2, . . . , T,

ωt ∼ (Ωt,PrΩt), t = 1, 2, . . . , T,

where φt is a state sampled from Φt with a transition matrix PrΦt|Φt−1 , and ωt is

independently sampled from Ωt with a probability PrΩt. In each stage t, given φt−1,

the probability for a realization of φtωt is

PrΦt|Φt−1(φt | φt−1) PrΩt(ωt).

which implies that the realization of φtωt is dependent on the state φt−1 but not

on ωt−1.

We assume milk supply in month t < t̄ is the forecast milk supply and we

take account for random variations in milk supply in month t ≥ t̄. We define

(Φt,PrΦt|Φt−1) and (Ωt,PrΩt) for t < t̄ as

Φt = {1}, PrΦt|Φt−1(φt = 1 | φt−1 = 1) = 1,

Ωt = {1}, PrΩt(ωt = 1) = 1,
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and we define the sets Φt and Ωt for t ≥ t̄ as

Φt = {b1, b2, . . . , bMt},

Ωt = {a1, a2, . . . , aKt},

with PrΦt|Φt−1 and PrΩt estimated from the historical data using maximum likeli-

hood estimation, which is described later. This results in
QT
t=t̄MtKt milk scenarios.

In processing the data, since we use the same random proportion for milk sup-

ply in each region, we sum up the actual milk supply and forecast milk supply

over regions and then calculate the proportions. In general, in any stage t these

proportions do not equal any φtωt, and thus we transform them into φtωt’s using a

set of bins.

A bin defines a range for the proportions and includes one φtωt. We construct

one bin for each φtωt, and thus there are MtKt bins in each stage t. These bins are

disjoint, and cover the entire feasible space of proportions in the real data. Then a

proportion in the real data must fall into one of these bins, say a bin for a particular

φ̂tω̂t, and we replace this proportion by φ̂tω̂t.

Note that the sizes of the bins can be arbitrarily chosen. For example, we may

use a mid-point method to construct the bins. We list φtωt’s in order, and obtain

the mid-points of each pair of φtωt’s (there are MtKt − 1 mid-points). For the ith

φtωt, the lower bound and upper bound of the bin are defined by the (i− 1)th and

ith mid-points. The exceptions are the first and the last φtωt, for the former the

bin only has an upper bound which is the first mid-point, and for the latter the bin

only has a lower bound which is the last mid-point.

After transforming the proportions from the real data into observations of φtωt,

we estimate PrΦt|Φt−1 using maximum likelihood estimation. For each φt−1, we

observe φt given that φt−1 has occurred, and count the number of occurrences of

each φt ∈ Φt, which is denoted xt(φt | φt−1). Then the probability of sampling a

particular φ̂t given a particular φ̂t−1 is

Pr(φ̂t | φ̂t−1) =
xt(φ̂t | φ̂t−1)P

φt∈Φt xt(φt | φ̂t−1)
.
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We repeat this calculation for each φ̂t ∈ Φt, and for each φ̂t−1 ∈ Φt−1. Then we

obtain Pr(φt | φt−1) for each φt ∈ Φt and φt−1 ∈ Φt−1, and so thus PrΦt|Φt−1 . We

repeat this process from stage t̄ to the last stage to obtain PrΦt|Φt−1 in these stages.

We then estimate PrΩt using a similar method. We count the number of occur-

rences of each ωt, denoted yt(ωt). Then the probability of sampling a particular ω̂t

is

Pr(ω̂t) =
yt(ω̂t)P

ωt∈Ωt yt(ωt)
,

and we repeat this calculation for each ω̂t ∈ Ωt to obtain PrΩt. Then we repeat this

process from stage t̄ to the last stage to obtain PrΩt in each of these stages.

In Figure 3.8, we use an example to illustrate the construction of bins and

estimation of PrΦt|Φt−1 and PrΩt . Suppose in each stage t,

Φt = {φt,1,φt,2,φt,3},

Ωt = {ωt,1,ωt,2,ωt,3},

and for i, i0 = 1, 2, 3 and j, j0 = 1, 2, 3,

φt,iωt,j < φt,i0ωt,j0 , if i < i
0,

φt,iωt,j < φt,iωt,j0 , if j < j
0.

The figure displays the transition of states from φt−1 to φt and the number of

observations in the transition, x1, x2,. . . , x9, as well as the sampling of ωt and the

number of observations in the sampling, y1, y2,. . . , y9. The figure also shows 9 bins,

denoted bin 1, bin 2, . . . , bin 9, and their bounds which are a pair of horizontal

lines, with every three bins between a pair of long lines having the same φt. Note

that the values of random variables are displayed with the smallest at the top and

the largest at the bottom.

The 9 bins, with one for each φt,iωt,j, are constructed by using the mid-point

method. The horizontal lines indicate the mid-points, except the two lines at the

top and the bottom indicating the lower and upper bounds of the feasible space of

the observations. Then each of bin 2 to bin 8 is between a pair of mid-points. Bin
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Figure 3.8: Construction of bins and estimation of PrΦt|Φt−1 and PrΩt

1 has an upper bound at the first mid-point, and a lower bound at the top line.

Bin 9 has a lower bound at the last mid-point, and an upper bound at the bottom

line. Note that the 9 bins are disjoint and cover the entire feasible space of the

observations.

To estimate the transition probability for sampling φt,i, we need to estimate

Pr(φt,i0 | φt−1,i) for i = 1, 2, 3 and i0 = 1, 2, 3. For example, given φt−1,1,

Pr(φt,1 | φt−1,1) =
x1

x1 + x2 + x3
,

Pr(φt,2 | φt−1,1) =
x2

x1 + x2 + x3
,

Pr(φt,3 | φt−1,1) =
x3

x1 + x2 + x3
.

Then the transition matrix is⎡⎢⎢⎢⎣
x1

x1+x2+x3
x2

x1+x2+x3
x3

x1+x2+x3

x4
x4+x5+x6

x5
x4+x5+x6

x6
x4+x5+x6

x7
x7+x8+x9

x8
x7+x8+x9

x9
x7+x8+x9

⎤⎥⎥⎥⎦ .
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On the other hand, to estimate the probability for sampling ωt,j, we need to estimate

Pr(ωt,j) for j = 1, 2, 3. For example,

Pr(ωt,1) =
y1 + y4 + y7

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9
.

Then the probability is

y1 + y4 + y7
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9

for ωt,1,

y2 + y5 + y8
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9

for ωt,2,

y3 + y6 + y9
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9

for ωt,3.

So far we have assumed different Φt, Ωt, PrΦt|Φt−1 and PrΩt in each stage. How-

ever, if the size of the set of real data is small, then these estimators are likely

to have a large variance. In this circumstance, we may assume identical Φt and

PrΦt|Φt−1 in each stage. Then the probability of sampling a particular φ̂t given a

particular φ̂t−1 is

Pr(φ̂t | φ̂t−1) =
P

t≥t̄+1 xt(φ̂t | φ̂t−1)P
t≥t̄+1

P
φt∈Φt xt(φt | φ̂t−1)

where φ̂t−1 are identical in each stage t, and so are φ̂t. Note that xt̄(φ̂t̄ | φ̂t̄−1)

are not used since the Φt−1 = {1}, otherwise the estimate would be biased. We

repeat this for each φ̂t ∈ Φt, and repeat for each φ̂t−1 ∈ Φt−1. Similarly, we assume

identical Ωt and PrΩt in each stage. The probability of sampling a particular ω̂t is

Pr(ω̂t) =

P
t≥t̄ yt(ω̂t)P

t≥t̄
P

ωt∈Ωt yt(ωt)

where ω̂t are identical in each stage t, and we repeat this for each ω̂t ∈ Ωt.

Note that Φt and Ωt are arbitrarily chosen, and the estimation of PrΦt|Φt−1 and

PrΩt are dependent on Φt and Ωt. Then to obtain useful PrΦt|Φt−1 and PrΩt, for

example having few zeros, we may need to repeat the estimation of PrΦt|Φt−1 and

PrΩt with different Φt and Ωt.

To illustrate the model, we give an example of processing some real milk data.

We use the same production year as in the previous section: a twelve month pro-

duction year starts from June, and the first month with unpredictable milk supply

is November, the sixth month.
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Since we only have nine years of milk supply data in each month, we use the

same Φt, Ωt, PrΦt|Φt−1 and PrΩt for each t ≥ t̄. We assume the effect of a state φt
in random variation is stronger than ωt, and thus we use values representing large

variation for φt and values representing small variation for ωt. We assume Φt and

Ωt for t ≥ t̄ to be

Φt = {1, 1.1, 0.9},

Ωt = {1, 1.02, 0.98}.

These sets result in 9 values for φtωt. We use the mid-point method to construct

the bins. The estimation results in

PrΦt|Φt−1(φt | φt−1) =

⎡⎢⎢⎢⎣
0.31 0.46 0.23

0.25 0.30 0.45

0.14 0.38 0.48

⎤⎥⎥⎥⎦
with each row defining the probabilities for the realizations of φt = 1, 1.1 and 0.9

given φt−1 = 1, 1.1 or 0.9, and

PrΩt(ωt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.60, for ωt = 1,

0.21, for ωt = 1.02,

0.19, for ωt = 0.98.

In Figure 3.9, we display a matrix of probabilities, with each row defining the

probabilities of each realization of φtωt given a realization of φt−1ωt−1. The sum of

probabilities in each row is one.

With these distributions for random variables, there are 9 outcomes of milk

supply in each month from November to May, which results in 4.8 million milk

supply scenarios.

For the same region in the example of processing real milk data in the previous

section, we sample 100 scenarios and display the coverage along with the forecast

milk supply in Figure 3.10. The milk supply from June to October are the forecast

milk supply. It shows that the milk supply have small random variation in the

months near the end of the year.
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Figure 3.9: Probabilities for each realization of φtωt given each realization of

φt−1ωt−1.

We then display the coverage of the residuals of this sample along with the

residuals of the real data from the forecast milk supply in Figure 3.11. Note that

the residuals from June to October are one. We observe that the residuals of the

real data have large variations in the last three months, but the bounds of the

sample are narrow and thus does not have a good cover in the last three months.

Note that since the multiplicative model assumes uniform random variations

over the regions, it cannot capture the variation between regions.
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Figure 3.10: Coverage of a sample of milk scenarios from the multiplicative model.
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Figure 3.11: Residuals of the real data and the coverage of residuals in a sample of

milk scenarios.
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Chapter 4

Optimization models

Given that we have derived models for milk supply, in this chapter we present

optimization models to solve the optimization problem, assuming (1) forecast milk

supply, (2) milk supply from the additive model, and (3) milk supply from the

multiplicative model. We list the models in Table 4.1.

Abbreviation Optimization model

DS Deterministic stationary model

DN Deterministic non-stationary model

ADO Adaptive deterministic optimization model

ADOS Adaptive deterministic optimization sales-projections model

MSPF Multistage stochastic programming full-scenario model

MSPE Multistage stochastic programming expected-scenario model

DE Deterministic equivalent model

PF Perfect forecast model

Table 4.1: Optimization models.

The deterministic stationary model (denoted DS) and the deterministic non-

stationary model (denoted DN) assume a forecast milk supply. The DS model

assumes insignificant annual growth in milk supply and unchanged production and

market conditions and thus results in a steady-state production plan. This model
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is used to obtain the start-of-year inventory and the start-of-year contracts used

in the other models. The DN model is similar to the DS model, but it doesn’t

assume a stationary production year. This model is used to obtain a penalty cost

on distress trading from Australia.

We study six models of the optimization problem with uncertain milk supply.

We list their main characteristics in Table 4.2.

Model Formulation Sales decision Scenario set Algorithm

ADO Adaptive Free decision Conditional expected value QP

ADOS Adaptive Meet targets Conditional expected value QP

MSPF Recourse Free decision Full scenario set DOASA

MSPE Recourse Free decision Expected value DOASA

DE Deterministic Free decision Full scenario set Intractable

equivalent

PF Deterministic Free decision Perfect forecast QP

Table 4.2: Optimization models.

The adaptive deterministic optimization model (denoted ADO) forecasts milk

supply in the future months based on the current observed milk supply and solves

an optimization problem in each month. Thus this model has an adaptive milk

supply forecast and decision horizon. The adaptive deterministic optimization sales-

projections model (denoted ADOS) is similar to the ADO model but commits to

a set of sales projections which is obtained from the solution to the DN model.

These two models make use of quadratic programming (QP) algorithms in solving

the optimization problems.

The multistage stochastic programming full-scenario model (denoted MSPF)

solves a set of stage problems with each stage problem taking into account the

future cost in the future months, in which the future cost is the expected value of

the stage problems over all scenarios of milk supply in the next stage. The decision

made in each stage depends on the realization of scenario in that stage and thus
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this is a recourse formulation for stochastic optimization with a full scenario tree.

The multistage stochastic programming expected-scenario model (denoted MSPE)

is a simple version of the MSPF model with the future cost being the value of the

stage problem for the expected scenario of milk supply in the next stage. This

model is a recourse formulation for the DN model assuming milk supply from the

additive model, but is a recourse formulation for stochastic optimization with a

Markov chain assuming milk supply from the multiplicative model. The algorithm

DOASA decribed in chapter 5 is used to solve the optimization problems in the two

models.

The deterministic equivalent model (denoted DE) is a deterministic optimiza-

tion problem for the entire year taking into account each scenario of milk supply

in each month. In contrast to the MSPF model, this is a deterministic-equivalent

formulation (or formally in stochastic programming terminology, split variable for-

mulation) for stochastic optimization with a full scenario tree. (We include this

formulation for completeness. In practice this model is too large to be solved by

any existing QP software.) The perfect forecast model (denoted PF) assumes a

single perfect forecast of milk supply at the beginning of the year and then solves

a deterministic optimization problem.

Prior to presenting these models, we define some notation.

Sets and indices

i, i0 ∈ I regions.

j ∈ J processes.

k ∈ K international spot markets.

n ∈ N index for independent random variables.

p ∈ P products.

p̂ ∈ P̂ perishable products.

p̌ ∈ P̌ powder products.

p̄ ∈ P̄ contract products.

p̃ ∈ P̃ non-contract products.
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t ∈ T months in the decision horizon.

Ωt the set of a vector of independent random variables in month t.

Φt the set of Markov state in month t.

Parameters

h a production year.

t̄ the first month with unpredictable milk supply in year h.

t̂ the first month of year h.

ť the last month of year h.

t̃ the first month of decision horizon T .

εi,t̂−1 the start-of-year random error in region i.

σit standard deviation in region i and month t.

ρ serial correlation coefficient of εt.

λn the nth eigenvalue.

Vin the ith component in the nth eigenvector.

PrΩt probability for sampling ωt from Ωt.

PrΦt|Φt−1 probability for sampling φt from Φt given φt−1 from Φt−1.

bp̄t contract price for product p̄ in month t.

cjp yield of product p in process j.

dt the number of days in month t.

fit base of regional growth in region i and month t.

git slope of regional growth in region i and month t.

αp marginal cost for inland transportation for product p.

βkp marginal cost for overseas transportation to market k for product p.

γpt penalty cost on distress trading of product p in month t.

μ penalty cost on milk supply dummy variable.

πii0 marginal cost for milk transportation from region i to region i0.

τ p marginal cost for production of product p.

κp marginal cost for storage of product p.

ς p̄ marginal transportation cost to deliver contract of product p̄.
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q̂ii0 maximum percentage of milk transported from region i to region i0.

r̂ij daily process capacity for process j in region i.

vp,t̂−1 start-of-year inventory for product p.

v̂ storage capacity of the refrigerated store.

v̌ storage capacity of the dry store.

x̂kpt maximum sales for product p at market k in month t.

x̌kpt minimum demand for product p at market k in month t.

x̃kpt sales of product p at market k in month t in a set of sales-projections.

ẑp̄ maximum for contract for product p̄.

zp̄,t̂−3 start-of-year contract for product p̄ to be delivered in month t̂.

zp̄,t̂−2 start-of-year contract for product p̄ to be delivered in month t̂+ 1.

zp̄,t̂−1 start-of-year contract for product p̄ to be delivered in month t̂+ 2.

z̃p̄t contract for product p̄ in month t in a set of sales-projections.

Variables

εit a random error in region i and month t.

ηit a random variable in region i and month t.

ωt a vector of independent random variables in month t.

ωtn the nth random variable in ωt in month t.

φt a Markov state in month t.

akpt market price for product p at market k in month t, as a function of sales.

qii0t milk transported from region i to region i0 in month t.

rijt milk processed each day in process j in region i in month t.

sit milk supply in region i and month t.

s0it milk supply dummy variable in region i and month t.

upt production of product p in month t.

vpt inventory of product p in month t.

v0p product p in distress trading to meet the inventory target at the end

of the year.
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xkpt sales of product p from production at market k in month t.

x0kpt product p in distress trading to meet the minimum demand at market k

in month t.

yp̄t sales of product p̄ from production by contract in month t.

y0p̄t product p̄ in distress trading to meet the contract in month t.

zp̄t contract for product p̄ made in month t.

Θt+1 future cost in the stage problem in month t.

∆t the minimum cost in the stage problem in month t.

Note that since we have assumed a linear price-demand curve for sales in the spot

market, the market price akpt(•) is a linear function of sales. The sales are the total

of the products from production xkpt and the products in distress trading x
0
kpt. Thus

the market price is akpt(xkpt+ x
0
kpt) and the revenue is akpt(xkpt+ x

0
kpt)(xkpt+ x

0
kpt),

which gives rise to a quadratic objective function.

4.1 Optimization models assuming forecast milk

supply

We present two optimization models assuming that the forecast milk supply oc-

curs, the deterministic stationary model (denoted DS) and the deterministic non-

stationary model (denoted DN).

4.1.1 Deterministic stationary model

The DS model assumes that growth in milk supply is insignificant and production

and market conditions are unchanged over years, and thus results in a steady-state

production plan. The start-of-year inventory is set to be the inventory at the end

of the year. Then the inventory target at the end of the year is met and thus

distress trading to meet the target is not needed. The start-of-year contracts are

the contracts made in the last three months of the year. Thus the solution to this
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model gives the start-of-year inventory and the start-of-year contracts. We use

a high penalty cost on distress trading so that no distress trading occurs in the

solution.

Now we present the formulation of the model. The model consists of an objective

which is minimizing the annual cost, and constraints for milk supply, use of milk in

production, manufacturing of products, inventory, sales to spot markets, sales by

contract and domains of decision variables.

min −
X
t∈T

X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
t∈T

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
t∈T

X
i∈I

X
i0∈I

πii0qii0t +
X
t∈T

X
p∈P

τpupt +
X
t∈T

X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
t∈T

X
p∈P

X
k∈K

αpxkpt +
X
t∈T

X
p∈P

X
k∈K

βkpxkpt

+
X
t∈T

X
k∈K

X
p∈P

γptx
0
kpt +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄t, (4.1)

s.t. Milk supply:

sit = fit + hgit, ∀i ∈ I, t ∈ T, (4.2)

Maximum input to process per day:

rijt ≤ r̂ij, ∀i ∈ I, j ∈ J, t ∈ T, (4.3)

Milk flow:

sit +
X
i0∈I

qi0it =
X
j∈J
dtrijt +

X
i0∈I

qii0t, ∀i ∈ I, t ∈ T, (4.4)

Maximum allowance of milk transportation beween regions:

qii0t ≤ q̂ii0sit, ∀i ∈ I, i0 ∈ I, t ∈ T, (4.5)

Yield of products:

upt =
X
i∈I

X
j∈J
dtcjprijt, ∀p ∈ P, t ∈ T, (4.6)

45



Product flow for contract products:

vp̄t +
X
k∈K

xkp̄t + yp̄t = up̄t + vp̄,t−1, ∀p̄ ∈ P̄ , t ∈ T, (4.7)

Product flow for non-contract products:

vp̃t +
X
k∈K

xkp̃t = up̃t + vp̃,t−1, ∀p̃ ∈ P̃ , t ∈ T, (4.8)

Maximum inventory level for perishable products:X
p̂∈P̂

vpt ≤ v̂, ∀t ∈ T, (4.9)

Maximum inventory level for powder products:X
p̌∈P̌

vpt ≤ v̌, ∀t ∈ T, (4.10)

Start-of-year inventory:

vp,t̂−1 = vpť, ∀p ∈ P, (4.11)

Sales meet minimum demands in spot markets:

xkpt + x
0
kpt ≥ x̌kpt, ∀k ∈ K, p ∈ P, t ∈ T, (4.12)

Maximum sales in spot market:

xkpt + x
0
kpt ≤ x̂kpt, ∀k ∈ K, p ∈ P, t ∈ T, (4.13)

Meet contract:

yp̄t + y
0
p̄t = zp̄,t−3, ∀p̄ ∈ P̄ , t ∈ T, (4.14)

Maximum for contract:

zp̄t ≤ ẑp̄, ∀p̄ ∈ P̄ , t ∈ T, (4.15)

Start-of-year contract:

zp̄,t̂−3 = zp̄,ť−2, zp̄,t̂−2 = zp̄,ť−1, zp̄,t̂−1 = zp̄,ť, ∀p̄ ∈ P̄ , (4.16)

Decision variable domain:

All decision variables in Roman typeface ≥ 0. (4.17)

We describe the formulation of the model as follows.
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1. Expression (4.1) defines that the objective is to minimize the annual cost,

which consists of (minus) the revenues from sales to spot markets and sales

by contracts, and the costs of milk transportation, milk processing, inventory

storage, inland transportation and overseas transportation of products, and

the cost of distress trading to meet minimum demands and contracts.

2. Constraint (4.2) defines the forecast milk supply in region i and month t. The

year h corresponds to the year we wish to investigate. Observe that sit is a

decision variable in this model, but it is fixed as the forecast milk supply.

3. Constraints (4.3) to (4.5) describe the use of milk in production. Constraint

(4.3) states that the amount of daily-processed milk is under the daily process

capacity of process j in region i and month t. Constraint (4.4) gives the

balance of milk flow in production, which is that in region i and month t,

the total of milk supply and incoming milk are equal to the total of milk

processed and outgoing milk. Constraint (4.5) gives the upper bound on the

outgoing milk from region i to region i0 in month t .

4. Constraints (4.6) to (4.8) represent the manufacturing of products. Constraint

(4.6) calculates the total production of product p in month t. Constraint

(4.7) presents the balance of product flow for contract products, that is, for

product p̄ in month t, the total of inventory, sales to spot markets and sales by

contracts is equal to the total of production and past inventory. Constraint

(4.8) presents the balance of product flow for non-contract products, that is,

for product p̃ in month t, the total of inventory and sales to spot markets is

equal to the total of production and past inventory.

5. Constraints (4.9) and (4.11) describe the inventory. Constraints (4.9) and

(4.10) state that in month t, the total inventory of perishable products cannot

exceed the refrigerated storage capacity, and the total inventory of powder

products cannot exceed the dry-storage capacity. Constraint (4.11) states

that for product p, the start-of-year inventory must equal the inventory at
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the end of the year.

6. Constraints (4.12) to (4.13) describe the sales to spot markets. Constraint

(4.12) states that in month t, the total sales of product p by production and

in distress trading in spot market k meet the minimum demand. Constraint

(4.13) states that in month t, the total sales of product p in spot market k

cannot exceed the market capacity.

7. Constraints (4.14) and (4.16) describe the sales by contracts. Constraint

(4.14) states that in month t, a contract for product p̄ is delivered by the

total of products from production and in distress trading. Constraint (4.15)

defines the upper bound on the contract for product p̄ made in month t.

Constraint (4.16) states that for product p, the start-of-year contracts are the

contracts made in the last three months of the year.

8. Constraint (4.17) states that all decision variables in Roman typeface are

non-negative, which implies that the other decision variables (in Greek) are

unconstrained.

4.1.2 Deterministic non-stationary model

The DN model does not assume a stationary year and results in a production plan

for a particular year. The start-of-year inventory and start-of-year contracts are

known which are those in the solution to the DS model. The inventory of the last

month needs to meet the inventory target at the end of the year which is the start-

of-year inventory, that is, the inventory in the last month is at least as much as the

start-of-year inventory. Then distress trading to meet the target may be needed.

We use this model to search for the penalty cost on distress trading which is the

lowest value such that no distress trading occurs in the solution.
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We present the formulation as follows.

min −
X
t∈T

X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
t∈T

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
t∈T

X
i∈I

X
i0∈I

πii0qii0t +
X
t∈T

X
p∈P

τpupt +
X
t∈T

X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
t∈T

X
k∈K

X
p∈P

αpxkpt +
X
t∈T

X
k∈K

X
p∈P

βkpxkpt

+
X
t∈T

X
k∈K

X
p∈P

γptx
0
kpt +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄t +

X
p∈P

γp,ťv
0
p, (4.18)

s.t. constraints (4.2)-(4.10), (4.12)-(4.15), (4.17), and

Meet the inventory target at the end of the year:

vpť + v
0
p ≥ vp,t̂−1, ∀p ∈ P, (4.19)

1. Expression (4.18) defines that the annual cost includes the penalty cost for

distress trading to meet the inventory target at the end of the year.

2. Constraint (4.19) states that the total of inventory in last month ť and prod-

ucts in distress trading meets the inventory target at the end of the year.

4.2 Optimization models assuming milk supply

from the additive model

Now we describe the optimization models which assume milk supply from the ad-

ditive model, which are the adaptive deterministic optimization model (denoted

ADO), the adaptive deterministic optimization sales-projections model (denoted

ADOS), the multistage stochastic programming full-scenario model (denoted MSPF),

the multistage stochastic programming expected-scenario model (denoted MSPE),

the deterministic equivalent model (denoted DE) and the perfect forecast model

49



(denoted PF). All of these models use the start-of-year inventory and the start-of-

year contracts obtained in the solution to the DS model and the penalty cost on

distress trading obtained in the solution to the DN model.

4.2.1 Adaptive deterministic optimization model

The ADO model has a decision horizon starting from a given month to the end of

the year. Each of these months is called a stage. In each ADO stage problem, the

milk supply in the future months is forecasted based on the current observed milk

supply. Each stage minimizes the total cost over the decision horizon.

We present the problem in stage t̃ as follows.

∆t̃(zp̄,t̃−3, zp̄,t̃−2, zp̄,t̃−1, vp,t̃−1, εi,t̃−1,ωt̃) =

min −
X
t∈T

X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
t∈T

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
t∈T

X
i∈I

X
i0∈I

πii0qii0t +
X
t∈T

X
p∈P

τ pupt +
X
t∈T

X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
t∈T

X
k∈K

X
p∈P

αpxkpt +
X
t∈T

X
k∈K

X
p∈P

βkpxkpt

+
X
t∈T

X
k∈K

X
p∈P

γptx
0
kpt +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄t +

X
p∈P

γp,ťv
0
p +

X
t∈T

X
i∈I

μs0it, (4.20)

s.t. constraints (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

Milk supply:

sit = fit + hgit + σitεit + s
0
it, ∀i ∈ I, t ∈ T, (4.21)

Calculate random error εit:

εit = ρεi,t−1 + ηit, ∀i ∈ I, t ∈ T, (4.22)

Calculate random variables ηit:

ηit =
X
n∈N

(1− ρ2)
1
2Vinλ

1
2
nωtn, ∀i ∈ I, t ∈ T, (4.23)

Random variables ωtn in future months:

ωtn = 0, ∀ t > t̃, n ∈ N, (4.24)
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1. Expression (4.20) defines that the objective of the stage problem is to min-

imize the total cost in decision horizon T = {t̃, t̃ + 1, . . . , ť} given the past

contracts zp̄,t̃−3, zp̄,t̃−2 and zp̄,t̃−1, past inventory vp,t̃−1, past random error

εi,t̃−1 and a vector of random variables ωt̃ in the current stage (and thus cur-

rent milk supply), which is the (minus) revenue and the cost in production,

transportation, storage, distress trading and dummy milk supply in decision

horizon T .

2. Constraints (4.21) to (4.24) define the milk supply using the additive model

for milk supply defined in chapter 3. Constraint (4.21) states that milk supply

in region i in month t is the sum of the forecast milk supply fit + hgit, the

random variation σitεit and dummy variable s
0
it. Constraint (4.22) states that

εit in region i and month t is calculated from εi,t−1 and ηit. Here εi,t̂−1 is

known. Constraint (4.23) calculates ηit in region i and month t, given ωtn,

n ∈ N , which are known. Constraint (4.24) states that all ωtn in month t > t̃

are zero, and thus milk supply in these months is the milk supply forecast

based on the milk supply in month t̃. Note that sit, s
0
it, εit and ηit are decision

variables, although they are effectively determined by the realization of the

stochastic process.

4.2.2 Adaptive deterministic optimization sales-projections

model

It is not an unusual practice for a company to have a set of sales projections at the

beginning of a year and then committing to the set of sales projections in production

planning as time moves on. We use the ADOS model to capture this feature. The

ADOS model has a similar structure to the ADO model but commits to a set of

sales projections that set to be the sales in spot markets and the contracts from

the solution to the DN model.
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We present the problem at stage t̃ as follows.

Expression (4.20),

s.t. constraints (4.21)-(4.24), (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

Meet sales in spot markets in the set of sales projections:

xkpt + x
0
kpt ≥ x̃kpt, ∀k ∈ K, p ∈ P, t ∈ T, (4.25)

Make contracts in the set of sales projections:

zp̄t = z̃p̄t, ∀p̄ ∈ P̄ , t ∈ T. (4.26)

1. Constraint (4.25) states that for product p, the total sales of products from

production and in distress trading in market k in month t are above the sales

in the set of sales-projections.

2. Constraint (4.26) states that for product p, the contract made in month t is

the contract in the set of sales-projections.

4.2.3 Multistage stochastic programming full-scenario model

The MSPF model solves a set of stage problems. Each stage problem takes into

account the future cost, which is the expected cost of the stage problems for all

scenarios of milk supply in the next stage.
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We present the formulation of the stage t problem as follows.

∆t(zp̄,t−3, zp̄,t−2, zp̄,t−1, vp,t−1, εi,t−1,ωt) =

min −
X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
i∈I

X
i0∈I

πii0qii0t +
X
p∈P

τ pupt +
X
p∈P

κpvpt

+
X
p̄∈P̄

ς p̄typ̄t +
X
k∈K

X
p∈P

αpxkpt +
X
k∈K

X
p∈P

βkpxkpt

+
X
k∈K

X
p∈P

γptx
0
kpt +

X
p̄∈P̄

γp̄ty
0
p̄t +

X
i∈I

μs0it

+Θt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vp,t, εi,t), if t < ť,

+
X
p∈P

γptv
0
p, if t = ť, (4.27)

s.t. constraints (4.21)-(4.23), (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

The future cost:

Θt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vp,t, εi,t) =X
ωt+1∈Ωt+1

PrΩt+1(ωt+1)∆t+1(zp̄,t−2, zp̄,t−1, zp̄,t, vp,t, εi,t,ωt+1). (4.28)

1. Expression (4.27) defines that the objective is to minimize the cost given the

past contracts, past inventory, past random error and the realized random

variables, which takes into account the future costΘt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vp,t, εi,t)

for t < ť or the cost of distress trading to meet the inventory target at the

end of the year.

2. Constraint (4.28) defines the future cost given the past contracts, the con-

tracts made, the inventory and the random error in this stage. The future

cost is the average of the costs of the stage problems for all ωt+1 ∈ Ωt+1 in

stage t+ 1.
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4.2.4 Multistage stochastic programming expected-scenario

model

The MSPE model is a simple version of the MSPF model. This model solves a

set of stage problems with the future cost being the value of the stage problem for

the expected scenario of milk supply in the next stage. The stage problem in this

model is the stage problem in the MSPF model with the set Ωt re-defined as {0}

for all t.

Note that in this model, the optimization problem is deterministic and thus

this does not use stochastic programming techniques. However, as we will describe

later, for the multiplicative model, a model with the same idea solves a stochastic

problem and thus stochastic programming is used. Thus we choose to use the same

name for these two models.

4.2.5 Deterministic equivalent model

A stochastic problem with finite distribution can be treated as an equivalent de-

terministic problem that can be solved using large-scale optimization techniques.

This model is called the deterministic equivalent model (denoted DE).

We present additional sets, parameters and variables and then the formulation.

Sets and indices

ψ ∈ Ψ set of scenarios, i.e., (ωt̂,ωt̂+1, . . . ,ωť).

ψ̂t ∈ Ψ̂t an upper set of Ψ defining the set of scenarios up

to month t, i.e., (ωt̂,ωt̂+1, . . . ,ωt).

ψ̌t ∈ Ψ̌t a lower set of Ψ defining the set of scenarios from

month t, i.e., (ωt,ωt+1, . . . ,ωť).

ψ̄t ∈ Ψ̄t a single-element set containing a particular

scenario in Ψ̌t.
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Parameters

εi,t̂−1,ψ the start-of-year random error in region i in scenario ψ.

PrΨ(ψ) probability of sampling ψ from Ψ.

Variables

εitψ a random error in region i in month t in scenario ψ.

ηitψ a random variable in region i in month t in scenario ψ.

ωtψ a vector of random variables sampled from (Ωt,PrΩt) in

month t in scenario ψ.

ωtnψ the nth random variable in ωtψ.

akptψ market price for product p at market k in month t in scenario ψ,

as a function of sales.

qii0tψ milk transported from region i to region i0 in month t in

scenario ψ.

rijtψ milk processed each day in process j in region i and month t

in scenario ψ.

sitψ milk supply in region i and month t in scenario ψ.

s0itψ milk supply dummy variable in region i and month t in scenario ψ.

uptψ production of product p in month t in scenario ψ.

vptψ inventory of product p in month t in scenario ψ.

v0pψ product p in distress trading to meet the inventory target at

the end of the year in scenario ψ.

xkptψ sales of product p from production at market k in month t in

scenario ψ.

x0kptψ product p in distress trading to meet the minimum demand

at market k in month t in scenario ψ.

yp̄tψ sales of product p̄ from production by contract in month t in

scenario ψ.

y0p̄tψ product p̄ in distress trading to meet the contract in month t

in scenario ψ.
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zp̄tψ contract of product p̄ made in month t in scenario ψ.

χtψ a decision variable in month t in scenario ψ.

χtψ̂tψ̌t+1 a decision variable in month t in scenario ψ̂t and scenario ψ̌t+1.

Formulation

min −
X
ψ∈Ψ

PrΨ(ψ)

ÃX
t∈T

X
k∈K

X
p∈P

akptψ(xkptψ + x
0
kptψ)(xkptψ + x

0
kptψ)

−
X
t∈T

X
p̄∈P̄

bp̄t(yp̄tψ + y
0
p̄tψ) +

X
t∈T

X
i∈I

X
i0∈I

πii0qii0tψ +
X
t∈T

X
p∈P

τ puptψ

+
X
t∈T

X
p∈P

κpvptψ +
X
t∈T

X
p̄∈P̄

ς p̄typ̄tψ +
X
t∈T

X
k∈K

X
p∈P

αpxkptψ

+
X
t∈T

X
k∈K

X
p∈P

βkpxkptψ +
X
t∈T

X
k∈K

X
p∈P

γptx
0
kptψ +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄tψ

+
X
p∈P

γp,ťv
0
pψ +

X
t∈T

X
i∈I

μs0itψ

!
, (4.29)

s.t. Milk supply:

sitψ = fit + hgit + σitεitψ + s
0
itψ, ∀i ∈ I, t ∈ T,ψ ∈ Ψ, (4.30)

Calculate random error εitψ:

εitψ = ρεi,t−1,ψ + ηitψ, ∀i ∈ I, t ∈ T,ψ ∈ Ψ, (4.31)

Calculate random variable ηitψ:

ηitψ =
X
n∈N

(1− ρ2)
1
2Vinλ

1
2
nωtnψ, ∀i ∈ I, t ∈ T,ψ ∈ Ψ, (4.32)

Maximum input to process per day:

rijtψ ≤ r̂ij, ∀i ∈ I, j ∈ J, t ∈ T,ψ ∈ Ψ, (4.33)

Milk flow:

sitψ +
X
i0∈I

qi0itψ =
X
j∈J
dtrijtψ + witψ +

X
i0∈I

qii0tψ,

∀i ∈ I, t ∈ T,ψ ∈ Ψ, (4.34)
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Maximum allowance for milk transportation:

qii0tψ ≤ q̂ii0sitψ, ∀i ∈ I, i0 ∈ I, t ∈ T,ψ ∈ Ψ, (4.35)

Yield of products:

uptψ =
X
i∈I

X
j∈J

dtcjprijtψ, ∀p ∈ P, t ∈ T,ψ ∈ Ψ, (4.36)

Product flow for contract products:

vp̄tψ +
X
k∈K

xkp̄tψ + yp̄tψ = up̄tψ + vp̄,t−1,ψ, ∀p̄ ∈ P̄ , t ∈ T,ψ ∈ Ψ, (4.37)

Product flow for non-contract products:

vp̃tψ +
X
k∈K

xkp̃tψ = up̃tψ + vp̃,t−1,ψ, ∀p̃ ∈ P̃ , t ∈ T,ψ ∈ Ψ, (4.38)

Maximum inventory for perishable products:X
p̂∈P̂

vptψ ≤ v̂, ∀t ∈ T,ψ ∈ Ψ, (4.39)

Maximum inventory for powder products:X
p̌∈P̌

vptψ ≤ v̌, ∀t ∈ T,ψ ∈ Ψ, (4.40)

Meet inventory target at the end of year:

vp,ť,ψ + v
0
pψ ≥ vp,t̂−1, ∀p ∈ P,ψ ∈ Ψ, (4.41)

Meet minimum demand in spot market:

xkptψ + x
0
kptψ ≥ x̌kpt, ∀k ∈ K, p ∈ P, t ∈ T,ψ ∈ Ψ, (4.42)

Maximum sales to spot markets:

xkptψ + x
0
kptψ ≤ x̂kpt, ∀k ∈ K, p ∈ P, t ∈ T,ψ ∈ Ψ, (4.43)

Meet contract:

yp̄tψ + y
0
p̄tψ = zp̄,t−3,ψ, ∀p̄ ∈ P̄ , t ∈ T,ψ ∈ Ψ, (4.44)
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Maximum contract:

zp̄tψ ≤ ẑp̄, ∀p̄ ∈ P̄ , t ∈ T,ψ ∈ Ψ, (4.45)

Non-anticipative contraints for decision variables:

χtψ̂tψ̌t+1 = χtψ̂tψ̄t+1 , ∀t < ť, ψ̂t ∈ Ψ̂t, ψ̌t+1 ∈ Ψ̌t+1, ψ̄t+1 ∈ Ψ̄t+1, (4.46)

Domain of decision variables:

All decision variables in Roman typeface ≥ 0. (4.47)

We give the description of the formulation as the follows.

1. Since for t < ť,

{ψ | ψ ∈ Ψ} = {(ψ̂t, ψ̌t+1) | ψ̂t ∈ Ψ̂t, ψ̌t+1 ∈ Ψ̌t+1},

a variable indexed by ψ ∈ Ψ is same as by ψ̂t ∈ Ψ̂t and ψ̌t+1 ∈ Ψ̌t+1. Ψ̄t

contains a scenario in Ψ̌t which is arbitrarily chosen. All decision variables

are indexed by ψ ∈ Ψ, and thus they are scenario-dependent.

2. Expression (4.29) defines that the objective is to minimize the expected annual

cost, which is the probabilistic sum of the annual costs in all scenarios ψ ∈ Ψ.

3. For each scenario ψ, constraints (4.30) to (4.32) define the milk supply curve,

constraints (4.33) to (4.35) describe the use of milk supply in production, con-

straints (4.36) to (4.38) describe the manufacturing of products, constraints

(4.39) and (4.41) describe the inventory, constraints (4.42) and (4.43) describe

the sales to spot markets, and constraints (4.44) and (4.45) describe the sales

by contracts.

4. Constraint (4.46) is a non-anticipative constraint. Since in any month we

cannot anticipate the realization of scenarios in the future months, we must

have the same solution in month t for the scenarios that have the same random

variables up to month t. Thus constraint (4.46) states that for each t < ť,
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the decision variables in month t in each ψ̂t ∈ Ψ̂t have the same value for all

ψ̌t+1 ∈ Ψ̌t+1.

5. Constraint (4.47) states that all decision variables in Roman type face are

non-negative, which implies that the other decision variables (in Greek) are

unconstrained.

4.2.6 Perfect forecast model

The PF model assumes a perfect forecast of milk supply at the beginning of the

year and then solves a deterministic problem for the entire year.

We present the formulation as follows.

min −
X
t∈T

X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
t∈T

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
t∈T

X
i∈I

X
i0∈I

πii0qii0t +
X
t∈T

X
p∈P

τ pupt +
X
t∈T

X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
t∈T

X
k∈K

X
p∈P

αpxkpt +
X
t∈T

X
k∈K

X
p∈P

βkpxkpt

+
X
t∈T

X
k∈K

X
p∈P

γptx
0
kpt +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄t +

X
p∈P

γp,ťv
0
p +

X
t∈T

X
i∈I

μs0it, (4.48)

s.t. constraints (4.21)-(4.23), (4.3)-(4.10), (4.19), (4.12)-(4.15) and (4.17).

Expression (4.20) defines that the objective is to minimize the annual cost in the

production year based on a realized milk scenario defined in constraints (4.21)-

(4.23).

4.3 Optimization models assuming milk supply

from the multiplicative model

In this section, we present the optimization models assuming milk supply from the

multiplicative. First of all, a Markov state φt is sampled, the vector of independent
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random variables ωt has only one random variable, and the sets Φt and Ωt have the

same number of values.

4.3.1 Adaptive deterministic optimization model

We present the stage t̃ problem of the ADO model as follows.

∆t̃(zp̄,t̃−3, zp̄,t̃−2, zp̄,t̃−1, vp,t̃−1, εi,t̃−1,φt̃,ωt̃) =

min −
X
t∈T

X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
t∈T

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
t∈T

X
i∈I

X
i0∈I

πii0qii0t +
X
t∈T

X
p∈P

τ pupt +
X
t∈T

X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
t∈T

X
k∈K

X
p∈P

αpxkpt +
X
t∈T

X
k∈K

X
p∈P

βkpxkpt

+
X
t∈T

X
k∈K

X
p∈P

γptx
0
kpt +

X
t∈T

X
p̄∈P̄

γp̄ty
0
p̄t +

X
p∈P

γp,ťv
0
p +

X
t∈T

X
i∈I

μs0it, (4.49)

s.t. constraints (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

Milk supply:

sit = φtωt(fit + hgit), ∀i ∈ I, t ∈ T, (4.50)

Random variables φt and ωt in future months:

φt = φt̃,ωt = 1, ∀ t > t̃. (4.51)

Expression (4.49) defines that the objective is to minimize the cost in decision

horizon T , given the past contracts zp̄,t̃−3, zp̄,t̃−2 and zp̄,t̃−1, the past inventory

vp,t̃−1, the past random error εi,t̃−1 and the random variables φt̃ and ωt̃ (and thus

the current milk supply). Constraint (4.50) defines the milk supply. Constraint

(4.51) defines the milk supply in the future months forecast based on the current

milk supply. Note that in each of these months, the Markov state φ is the same as

that in the current month, but the independent random variable ω is set to 1.
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4.3.2 Adaptive deterministic optimization sales-projections

model

The stage t̃ problem of the ADOS model is given as follows.

Expression (4.49),

s.t. constraints (4.50)-(4.51), (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

Meet sales in spot markets in the set of sales projections:

xkpt + x
0
kpt ≥ x̃kpt, ∀k ∈ K, p ∈ P, t ∈ T, (4.52)

Make contracts in the set of sales projections:

zp̄t = z̃p̄t, ∀p̄ ∈ P̄ , t ∈ T. (4.53)

Constraint (4.52) states that for product p, the total sales of products from pro-

duction and in distress trading are above the sales in market k in month t in the

set of sales-projections. Constraint (4.53) states that for product p, the contracts

to be made in month t are the contracts in the set of sales-projections.

4.3.3 Multistage stochastic programming full-scenario model

The stage t problem of the MSPF model is as follows.

∆t(zp̄,t−3, zp̄,t−2, zp̄,t−1, vt−1, εi,t−1,φt,ωt) =

min −
X
k∈K

X
p∈P

akpt(xkpt + x
0
kpt)(xkpt + x

0
kpt)−

X
p̄∈P̄

bp̄t(yp̄t + y
0
p̄t)

+
X
i∈I

X
i0∈I

πii0qii0t +
X
p∈P

τ pupt +
X
p∈P

κpvpt

+
X
t∈T

X
p̄∈P̄

ς p̄typ̄t +
X
k∈K

X
p∈P

αpxkpt +
X
k∈K

X
p∈P

βkpxkpt

+
X
k∈K

X
p∈P

γptx
0
kpt +

X
p̄∈P̄

γp̄ty
0
p̄t +

X
i∈I

μs0it

+Θt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vp,t, εi,t,φt), if t < ť,

+
X
p∈P

γptv
0
p, if t = ť, (4.54)
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s.t. constraints (4.50), (4.3)-(4.10), (4.19), (4.12)-(4.15), (4.17), and

The future cost:

Θt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vt, εi,t,φt) =
X

φt+1∈Φt+1

X
ωt+1∈Ωt+1

( PrΦt+1|Φt(φt+1 | φt)

PrΩt+1(ωt+1)∆t+1(zp̄,t−2, zp̄,t−1, zp̄,t, vt, εi,t,φt+1,ωt+1) ), (4.55)

Expression (4.54) defines that the objective is to minimize the cost given the past

contracts, the past inventory and the random errors. Constraint (4.55) defines

the future cost Θt+1(zp̄,t−2, zp̄,t−1, zp̄,t, vt, εi,t,φt), which is dependent on φt since

PrΦt+1|Φt(φt+1 | φt) is dependent on φt.

4.3.4 Multistage stochastic programming expected-scenario

model

Since φt is dependent on φt−1, the expected value in stage t for each φt−1 may not

be the same. We want to use the same set of values for the random variables in

each stage, and so we retain the set Φt for φt, and re-define the set Ωt to {1} for

ωt. Thus the future cost in the stage t problem is the expected value of the stage

problems for φt+1 ∈ Φt+1 and ωt+1 = 1.

4.3.5 Deterministic equivalent model

The DE model is based on that assuming milk supply from the additive model. We

re-define the following sets and parameters.

Sets and indices

ψ ∈ Ψ set of scenarios, i.e., (φt̂,ωt̂,φt̂+1,ωt̂+1, . . . ,φť,ωť).

ψ̂t ∈ Ψ̂t an upper set of Ψ defining the set of scenarios up

to month t, i.e., (φt̂,ωt̂,φt̂+1,ωt̂+1, . . . ,φt,ωt).
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ψ̌t ∈ Ψ̌t a lower set of Ψ defining the set of scenarios from

month t, i.e., (φt,ωt,ωt+1,φt+1, . . . ,φť,ωť).

ψ̄t ∈ Ψ̄t a single-element set containing a particular

scenario in Ψ̌t.

Variables

φtψ a random variable sampled from (Φt,PrΦt|Φt−1) in month t in scenario ψ.

Formulation

Expression (4.29),

s.t. constraints (4.33)-(4.47), and

Milk supply:

sitψ = φtψωtψ(fit + hgit), ∀i ∈ I, t ∈ T,ψ ∈ Ψ, (4.56)

Constraint (4.56) defines the milk supply in region i and month t in scenario ψ.

4.3.6 Perfect forecast model

The formulation of the PF model is as follows.

Expression (4.48),

s.t. constraints (4.50), (4.3)-(4.10), (4.19), (4.12)-(4.15) and (4.17).
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Chapter 5

Multistage stochastic

programming

To solve the multistage stochastic programming models (the MSPF model and the

MSPE model), we develop an algorithm, the Dynamic Outer-Approximation Sam-

pling Algorithm (DOASA), which uses multistage Benders decomposition. Since

we will use linear price-demand curves which gives rise to a quadratic problem, we

will present the algorithm for quadratic programming.

For quadratic programming with independent random variables, we describe

the multistage Benders decomposition and DOASA, and then give a mathematical

proof of the almost-sure convergence of DOASA for the linear case and discuss

that for quadratic programming. Then we give a similar discussion on quadratic

programming with Markov states and independent random variables.

5.1 Multistage Benders decomposition for quadratic

programming

We define the properties of the multistage stochastic programming models assuming

milk supply from the additive model which has independent random variables as

follows:
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(A1) Random variables appear only on the right-hand side of the constraints in

each stage.

(A2) The set Ωt of random outcomes in each stage t = 2, 3, . . . , T is discrete and

finite, that is, Ωt = {ωti| i = 1, . . . , qt <∞} with probabilities pti > 0 for all

i.

(A3) Random variables in different stages are independent.

(A4) The feasible region of the quadratic program in each stage is non-empty and

bounded.

Then a multistage stochastic programming model for a quadratic problem can be

written in the following form:

Solve the problem defined by

[QP1] ∆1 = minx1
1
2
x|1D1x1 + c

|
1x1 +Θ2(x1)

subject to A1x1 = b1,

x1 ≥ 0,

where for all t = 2, . . . , T,

Θt(xt−1) =

qtX
i=1

pti∆t(xt−1,ωti),

∆t(xt−1,ωti) is defined by the problem

[QPt] ∆t(xt−1,ωt) = minxt
1
2
x|tDtxt + c

|
t xt +Θt+1(xt)

subject to Atxt = ωt −Bt−1xt−1,

xt ≥ 0,

and we set ΘT+1 ≡ 0.

The problem [QPt] depends on the choice of ωt and xt−1, and so we could write

[QPt(xt−1,ωt)], but we choose to suppress this dependence in the notation. By

Assumption (A3), [QPt] is independent of ωt−1,ωt−2 . . . .
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The functions Θt(xt−1) in each stage can be approximated by the maximum of a

collection of linear functions, each of which is called a cut, since Θt(xt−1) is convex

on xt−1 which is proved by induction as follows.

Let f(xt) =
1
2
x|tDtxt + c

|
t xt + Θt+1(xt). Consider t = T and a particular ωTi,

let x0T be the optimal solution to the problem ∆T (x
0
T−1,ωTi), and let x

00
T be that

to ∆T (x
00
T−1,ωTi). Then λx0T + (1 − λ)x00T is a feasible solution to the problem

∆T (λx
0
T−1 + (1− λ)x00T−1,ωTi), since λx

0
T + (1− λ)x00T ≥ 0 and

AT (λx
0
T + (1− λ)x00T ) = λATx

0
T + (1− λ)ATx

00
T

= λ(ωT −BT−1x0T−1) + (1− λ)(ωT −BT−1x00T−1)

= ωT −BT−1(λx0T−1 + (1− λ)x00T−1).

This implies that there is an optimal solution, say x∗T , to∆T (λx
0
T−1+(1−λ)x00T−1,ωTi)

so that

f(x∗T ) ≤ f(λx0T + (1− λ)x00T ).

Since f(xt) is convex,

f(λx0T + (1− λ)x00T ) ≤ λf(x0T ) + (1− λ)f(x00T ).

This results in f(x∗T ) ≤ λf(x0T ) + (1− λ)f(x00T ), and thus

∆T (λx
0
T−1 + (1− λ)x00T−1,ωTi) ≤ λ∆T (x

0
T−1,ωTi) + (1− λ)∆T (x

00
T−1,ωTi),

which means ∆T (xT−1,ωTi) is convex in xT−1. This applies to all ωTi, i = 1, . . . , qt

and thus ΘT (xT−1) is convex.

For t = T −1, T −2, . . . , 1, it is easy to see by induction that since Θt+1(xt) and

f are convex, ∆t(xt−1,ωti) is convex in xt−1 for each ωti, and so Θt(xt−1) is also.

This completes the proof.

In each iteration k = 1, 2, . . . , the algorithm computes a set of feasible solutions

{xkt : t = 1, 2, . . . , T − 1}, and a set of cuts, one for each stage t = 1, 2, . . . , T − 1.

This gives rise to a sequence of approximate problems [AP kt ], k = 1, 2, . . . , for each

stage. These are defined as follows:
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For t = 1, we solve the quadratic program

[AP k1 ] C
k
1 = minx1,θ2

1
2
x|1D1x1 + c

|
1x1 + θ2

subject to A1x1 = b1,

θ2 + (β
j
2)
>x1 ≥ α2,j, j = 0, 1, . . . , k − 1,

x1 ≥ 0,

and, for t = 2, . . . , T − 1, we solve

[AP kt ] C
k
t (x

k
t−1,ωt) = minxt,θt+1

1
2
x|tDtxt + c

>
t xt + θt+1

subject to Atxt = ωt −Bt−1xkt−1,

θt+1 + (β
j
t+1)

>xt ≥ αt+1,j, j = 0, 1, . . . , k − 1,

xt ≥ 0.

Finally for every k, we set [AP kT ]=[QPT ]. The problems [AP
k
t ] are approximations of

[QPt] in the sense that Θt+1(xt) is approximated (below) by the polyhedral function

max
j=0,...,k−1

{αt+1,j − (βjt+1)>xt}.

which is illustrated in Figure 5.1. This means that any solution to [AP kt ] has a

value that is a lower bound on the optimal value of [QPt].

Θ(t+1)

x(t)

Θ(t+1)

x(t)

Figure 5.1: Cuts approximating the future cost.
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For all stages, the first cut (j = 0) is set as the trivial cut θt+1 ≥ −∞. We use

the notation Ckt (xt−1) to denote
Pqt

i=1 ptiC
k
t (xt−1,ωt). In the last stage, T , we have

[AP kT ] = [QPT ], and so for every xT−1 and ωT

CkT (xT−1,ωT ) = ∆T (xT−1,ωT ), k = 1, 2, . . . .

Since cuts are added from one iteration to the next, and no cuts are taken out,

the optimal values of [AP kt ] form a monotonic sequence, i.e. for k = 1, 2, . . .

Ck+1t (xt−1,ωt) ≥ Ckt (xt−1,ωt), t = 2, 3, . . . , T,

and

Ck+11 ≥ Ck1 .

Observe that under Assumption (A4),

{xt | Atxt = ωt −Bt−1xkt−1, xt ≥ 0}

is nonempty and bounded. So [AP kt ] always has a nonempty feasible set and hence

an optimal solution. Thus we have a vector of Lagrange multipliers πt for the

equality constraints and a vector of Lagrange multipliers ρt for the cut constraints,

which are used to calculate the cuts at xkt−1 as follows.

Initially set the iteration count k = 0. At any subsequent iteration k the coeffi-

cients of the cuts at each stage t = 1, 2, . . . , T − 1, are calculated as follows.

Cut Calculation Algorithm (CCA)

1. Solve [AP kt ] for all ωti ∈ Ωt for the Lagrange multipliers (π
i
t(x

k
t−1,ωti), ρ

i
t(x

k
t−1,ωti)).

2. The cut at stage t− 1 has the formula

θt ≥ αt,k − (βkt )>xt−1,
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where

βkt =

qtX
i=1

pti B
>
t−1 π

i
t(x

k
t−1,ωti), for 2 ≤ t ≤ T,

αt,k =

qtX
i=1

pti
£
ω>ti π

i
t(x

k
t−1,ωti) + (α

k−1
t+1 )

>ρit(x
k
t−1,ωti)

¤
, for 2 ≤ t ≤ T − 1,

αT,k =

qTX
i=1

pTi ω
>
Ti π

i
T (x

k
T−1,ωTi).

Observe that αt,k is a scalar, whereas α
k−1
t+1 denotes a (k−1)-dimensional vector.

This means that the dimensions of αk−1t+1 and ρit(x
k
t−1,ωti) are increasing as the

iteration count k increases, and thus the collection of (αt,βt) may be infinite.

5.2 Dynamic Outer-Approximation Sampling Al-

gorithm

The DOASA algorithm has the following steps.

Step 0: (Initialization) Set k = 1.

Step 1: (Forward pass)

Sample a single outcome ωt of the random variable in each stage t = 2, 3, . . . , T−

1, to give a single scenario {ωkt }. For each stage t = 1, 2, . . . , T − 1, compute

the primal solution (xkt , θ
k
t+1) of the problem [AP kt ].

Step 2: (Cut Generation)

For each stage t = T, T − 1, . . . , 2, apply CCA to generate a cut at xkt−1 with

Ωt.

Step 3: Set k = k + 1 and go to Step 1.

The set of scenarios {xkt } contains
QT−1
t=2 qt scenarios. Define ω(j) as the jth

scenario in the set. Then DOASA requires the following property in the sampling

methods used to obtain {ωkt }:
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Forward Pass Sampling Property (FPSP):

For each j = 1, 2, . . . ,
QT−1
t=2 qt, with probability 1¯̄©

k : {ωkt | t = 2, 3, . . . , T − 1} = ω(j)
ª¯̄
=∞.

FPSP states that each scenario ω(j) is traversed infinitely many times with

probability 1 in the forward pass. There are many sampling methods satisfying

this property. For example, consider independently sampling a single outcome

in each stage with a positive probability for each ωti in the forward pass. Then

by the Borel-Cantelli lemma (see [42]) this method satisfies the property. Another

sampling method that satisfies FPSP is to repeat an exhaustive enumeration of each

scenario ω(j), j = 1, 2, . . . ,
QT−1
t=2 qt, although such a method would be prohibitively

expensive in all but the smallest examples.

5.3 Convergence for linear case

LetDt be a zero matrix for t = 1, 2, . . . , T , and then [QPt] becomes a linear problem

[LPt], which is a special case of the quadratic problems.

For linear problems, the Lagrange multipliers are termed the duals. In linear

programming, a dual is the optimal solution to the dual problem of [AP kt ] (see [6]).

By Assumption (A1), the set of extreme points of the dual of [AP kt ] is independent

of the outcomes of the random quantities, which allows us to construct a valid cut at

each stage based on an assembled collectionDkt of extreme-point dual solutions from

different samples. Then we can have an extended CCA which uses the extreme-

point dual solutions in Dkt and a sample Ωkt ⊆ Ωt in calculating the cuts (see [71]

or [89] for the detail of this CCA). For brevity we refer to the extended CCA as

CCA in this section. However, DOASA needs a Backward Pass Sampling Property

in sampling Ωkt which is defined as

Backward Pass Sampling Property (BPSP):
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For each t = 2, 3, . . . , T and i = 1, 2, . . . , qt, with probability 1

¯̄©
k : ωti ∈ Ωkt

ª¯̄
=∞.

BPSP states that each scenario outcome ωti is visited infinitely many times

with probability 1 in the backward pass. For example, the two example sampling

methods satisfying FPSP both satisfy this property.

5.3.1 Previous results

Previous published results in [16] and [71] give proofs for the almost sure conver-

gence of the algorithm CUPPS and MSBD respectively, which are also based on

multistage Benders decomposition and sampling. The proofs in both of these pa-

pers require an important but unstated assumption. Here we state this assumption

formally and discuss it.

Let the iterations of the algorithm be indexed by N = {1, 2, . . . } and suppose

t ∈ {1, . . . , T − 1}. Let {ωnt , xnt }n∈N be the sequence generated by the sampling

algorithm at stage t.

Assumption 1: For any infinite subsequence {xkt }k∈K of {xnt }n∈N there exists

a convergent subsequence {xjt}j∈J that is independent of {ωjt+1}j∈J .

Remark 4.1 in [16] correctly claims that if N is infinite then with probability

one N has an infinite subset Nti corresponding to draws of outcome ωti for any

i = 1, . . . , qt and t = 2, . . . , T . This follows by an application of the Borel-Cantelli

lemma, because each ωnt in {ωnt }n∈N is independently sampled and Pr[ωnt = ωti] > 0.

However, the situation becomes more subtle in the proof of Lemma 5.2 in [16].

Here the authors claim that for any infinite subset K of N , there exists an infinite

subset J with a convergent subsequence {xjT−1}j∈J such that with probability

one there exists an infinite subset Ji of J corresponding to draws of each sample

ωTi for i = 1, . . . , qT . The convergent subsequence {xjT−1}j∈J in this lemma is

constructed using the assumed compactness of the set X in which xT−1 lies. Of
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course, compactness guarantees a convergent subsequence {xjT−1}j∈J of {xkT−1}k∈K,

but it cannot be deduced from this and Remark 4.1 in [16] that there are infinite

number of ωTi in {ωjT}j∈J for every i = 1, . . . , qT . (The problem here is that for

every convergent subsequence it might be the case that there are only finitely many

ωTi for some i = 1, . . . , qT , and this possibility needs to be ruled out somehow.)

In claiming the independence of the sampling procedure from the convergence of

the subsequence, the authors of [16] are making an implicit assumption (Assumption

1), which is needed to make the proof of Lemma 5.2 valid. The proof in [71] is based

on Lemma 5.2 in [16], and so it is also flawed in the absence of Assumption 1.

In the following sections we give a direct proof of the almost-sure convergence

that does not rely on Assumption 1. The new proof formalizes the assertion in [23]

that convergence follows from resampling. It also clarifies the role that extreme-

point dual solutions play in the almost-sure convergence of these sampling algo-

rithms.

5.3.2 Finiteness of set of distinct cuts

The collection of distinct values of (βkt ,αt,k) is provably finite, as we show in the

following lemma.

Lemma 1 For each t = 2, 3, . . . , T , define the set

Gkt = {(βjt ,αt,j) : j = 1, 2, . . . , k − 1}.

Then for any sequence Gkt , k = 1, 2, . . . generated by the repeated application of

CCA there exists mt such that for all k

¯̄
Gkt
¯̄
≤ mt.

Furthermore, there exists kt, so that if k > kt then Gkt = Gktt .

Proof. Consider any realization of the sequence Gkt , k = 1, 2, . . . generated by

the repeated application of CCA. We use induction on t to construct mt such that
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¯̄
Gkt
¯̄
≤ mt. The second part of the lemma follows immediately. First at T , ρT = 0

and πT is an extreme point of {π | A>T π ≤ cT} of which there are at most mT+1,

say. Then the cut coefficients

αT,k =

qTX
i=1

pTi ω
>
Ti π

i
T (x

k
T−1),

βkT =

qTX
i=1

pTi B
>
T−1 π

i
T (x

k
T−1),

each can only take at most mqT
T+1 values, and thus if mT = m

2qT
T+1, then for all k¯̄

GkT
¯̄
≤ mT .

Now suppose at t that there exists mt+1 such that for all k

¯̄
Gkt+1

¯̄
≤ mt+1.

It follows that there exists kt+1, so that if k > kt+1 then Gkt+1 = G
kt+1
t+1 and the cut at

iteration k > kt+1 is a repeat of some cut in the existing cuts. Consider the feasible

region of the dual of [AP kt ], namely

Hk
t = {(πt, ρt) | A>t πt +

k−1X
j=1

βjt+1ρ
j
t ≤ ct,

k−1X
j=1

ρjt = 1, ρt ≥ 0}.

If k > kt+1 then any extreme point (π
k
t , ρ

k
t ) of Hk

t corresponds to an extreme point

(π, ρ) ofHkt+1
t with the same dual objective value, obtained by choosing π = πkt and

basic columns βjt+1 for j < kt+1 that match the basic columns β
j
t+1, kt+1 ≤ j < k.

This is because each latter column βjt+1 and its cost coefficient αt+1,j is a duplicate

of some (β,α) ∈ Gkt+1t+1 . Since there are a finite number, say υt, of extreme point

solutions to Hkt+1
t , there are at most υt distinct values of

£
ω>ti π

i
t(x

k
t−1) + (α

k−1
t+1 )

>ρit(x
k
t−1)

¤
and so (υt)

qt distinct values of

αt,k =

qtX
i=1

pti
£
ω>ti π

i
t(x

k
t−1) + (α

k−1
t+1 )

>ρit(x
k
t−1)

¤
.
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Similarly,

βkt =

qtX
i=1

pti B
>
t−1 π

i
t(x

k
t−1),

can take at most (υt)
qt values and so if mt = (υt)

2qt then

¯̄
Gkt
¯̄
≤ mt,

which proves the result.

Lemma 1 states that in any realization of the algorithm there will exist finite

mt and kt independent of k. Observe however that in the case that Ω
k
t is ran-

domly sampled, mt and kt are random variables with distribution determined by

the sampling distribution. So they could be arbitrarily large.

5.3.3 Single-scenario Multistage Benders Decomposition

To demonstrate the convergence of DOASA it is helpful to first understand the con-

vergence of an algorithm that uses a single scenario. This algorithm will construct

a cut for every xkt , t = 1, . . . , T − 1, k = 1, 2, . . . that is visited by simulat-

ing the solution forward over a single sample scenario ω(j) that remains the same

throughout the course of the algorithm. We call this algorithm SSMBD.

SSMBD

Step 0: (Initialization) Set iteration counter k = 1. Select at each stage t =

2, 3, . . . , T − 1, a single outcome ωt of the random variable to give a single

scenario.

Step 1: (Forward pass)

For each stage t = 1, 2, . . . , T − 1, solve [AP kt ] to yield the primal solution

(xkt , θ
k
t+1).

Step 2: (Cut Generation)

For each stage t = T, T − 1, . . . , 2, apply CCA to generate a cut at xkt−1 with

a sample Ωkt .
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Step 3: Set k = k + 1 and go to Step 1.

We can apply Lemma 1 to give the following result.

Lemma 2 Under every realization of iterations, SSMBD converges in a finite num-

ber of iterations to a policy giving limk C
k
1 which is at most equal to the optimal

expected cost of [LP1].

Proof. Under every realization of iterations, by Lemma 1, for t ∈ {2, . . . , T},

there exists kt, so that if k > kt then Gkt = Gktt and thus there is no further change

in the cuts defining Ckt (xt−1), that is, for every xt−1

max
j=0,...,k−1

{αt,j − (βjt)>xt−1} = max
j=0,...,kt−1

{αt,j − (βjt)>xt−1}.

Thus all solutions (xk1, θ
k
2) to [AP

k
1 ] are the same for k > k2, as are all solutions

(xkt , θ
k
t+1) to [AP

k
t ], t = 2, 3, . . . , T , so the SSMBD algorithm terminates after

iteration k2.

Since any solution to [AP k1 ] has a value that is a lower bound on the optimal

value of [LP1], this will be true at termination of SSMBD.

The solution obtained from SSMBD defines a set of cuts at each stage. If for

every k, Ωkt = Ωt then this set of cuts at termination will be the same every time

the algorithm is run (assuming the single scenario ω(j) remains fixed). On the

other hand if Ωkt is a random sample then the set of cuts will also be random,

and defined by the sampling distribution. Every time the algorithm is run (with

different random number seeds) we should expect to obtain a different sequence of

cuts.

The cuts at stage 1 define a lower bound on the expected cost of any policy.

Every time the algorithm is run, with a possibly different ω(j), this lower bound

will be (possibly) different. However every realization of this value will be a lower

bound on the expected cost of any policy, and so the maximum of these values will

be the best lower bound of those available.

75



The solution obtained from SSMBD is not the same as the optimal solution

to the mathematical program obtained by using a single scenario and solving a

deterministic problem. The latter solution would define a single set of actions, one

for each stage t, that may not be feasible for some scenarios in the original problem.

On the other hand, the SSMBD solution is a set of (possibly) random cuts defining

a policy that is feasible for the original problem. The simulation of this policy using

a randomly sampled forward pass, yields a random value having an expectation that

is greater than or equal to the optimal expected cost of the underlying stochastic

program. A simulation of the policy with the single scenario used in SSMBD gives

the cost of the policy when implemented in the single scenario. The observed value

of this simulation depends on the outcomes in the single scenario. This means that

it may be significantly lower or significantly higher than the true expected cost of

the policy.

5.3.4 Multiscenario Multistage Benders Decomposition

We now consider a multiple-scenario version of SSMDB called MSMBD. In this

version a finite set of N scenarios is sampled in advance. The algorithm then

constructs an optimal solution corresponding to a scenario tree consisting of these

scenarios.

MSMBD

Step 0: (Initialization) Set k = 1. For s = 1 to N , select at each stage t =

2, 3, . . . , T − 1, a single outcome ωst of the random variable to give a set of

N scenarios.

Step 1: (Forward pass)

For each scenario s, and stage t = 1, 2, . . . , T−1, compute the primal solution

(xkst, θ
k
s,t+1) of the problem [AP kt ].

Step 2: (Cut Generation)
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For each stage t = T, T−1, . . . , 2, apply CCA to generate N cuts at the states

xks,t−1 with samples Ω
k
s,t, s = 1, 2, . . . , N .

Step 3: Set k = k + 1 and go to Step 1.

Lemma 3 In every realization of iterations, MSMBD converges in a finite number

of iterations to a policy giving value limk C
k
1 which is at most equal to the optimal

expected cost of [LP1].

Proof. The proof is similar to that for SSMBD. For each s = 1, 2, . . . , N , since

k = 1, 2, . . . and one cut is constructed in each iteration k, then by Lemma 1, for

t ∈ {2, . . . , T}, there exists ks,t, so that if k > ks,t then Gkt = G
ks,t
t and thus there is

no further change in the cuts defining Cks,t(xs,t−1), that is, for every xs,t−1

max
j=0,...,k−1

{αt,j − (βjt)>xs,t−1} = max
j=0,...,ks,t−1

{αt,j − (βjt)>xs,t−1}.

For t ∈ {2, . . . , T}, if we choose kt = maxNs=1{ks,t}, then for each k > kt there is

no change in the cuts defining Ckt (xt−1), that is, for every xt−1

max
j=0,...,k−1

{αt,j − (βjt)>xt−1} = max
j=0,...,kt−1

{αt,j − (βjt)>xt−1}.

Thus all solutions (xk1, θ
k
2) to [AP

k
1 ] are the same for k > k2, as are all solutions

(xkt , θ
k
t+1) to [AP

k
t ], t = 2, 3, . . . , T , so the MSMDB algorithm terminates after

iteration k2.

It is easy to see that for every k the optimal value of [AP k1 ] is a lower bound on

the optimal expected cost of [LP1].

The algorithm MSMBD works with N scenarios that do not change over the

course of the algorithm. All of the remarks that were made for SSMBD apply

in this case also. In particular we observe that a termination criterion that uses

the N scenarios to simulate the candidate policy defined by the cuts might give a

misleading indication of convergence. Lemma 3 demonstrates that MSMBD will

terminate at some policy that gives a lower bound on the optimal expected cost of

[LP1]. Simulating this policy using a set of randomly sampled scenarios will give
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a statistical estimate of an upper bound on the optimal expected cost of [LP1]. If

the sample of N scenarios is small then we might expect termination of MSMBD

at a poor policy. In this case the standard termination criterion using the statis-

tical estimate of the upper bound might fail to be met, even though no further

improvement in the policy is possible by continuing to iterate MSMBD.

A special case of MSMBD uses the universe of N =
QT−1
t=2 qt scenarios.

Lemma 4 Under BPSP, MSMBD with the universe of scenarios converges with

probability 1 to an optimal solution to [LP1] in a finite number of iterations.

Proof. From Lemma 3 in every realization of iterations MSMBD will converge

in a finite number of steps to a policy that has limk C
k
1 giving a lower bound on the

true expected cost. Now consider a realization of MSMBD iterations, and denote

the limiting policy by (x̄1, x̄2(ω2), x̄3(ω2,ω3), . . . ), which is obtained at iteration k̄,

say. For any scenario ω2,ω3, . . . ,ωT , we denote x̄t(ω2, . . . ,ωt) by x̄t(ω). We claim

that for every k > k̄, and any scenario ω,

CkT (x̄T−1(ω)) = ΘT (x̄T−1(ω)), (5.1)

with probability 1, which implies CkT (x̄T−1(ω),ωT ) = ∆T (x̄T−1(ω),ωT ) for all ωT .

Otherwise for some particular outcome ω̂T , we have ω̂T /∈ Ωkt , for every k > k̄, with

positive probability which violates BPSP.

Now we claim that if k > k̄ then for every scenario ω

CkT−1(x̄T−2(ω)) = ΘT−1(x̄T−2(ω)). (5.2)

Otherwise for some particular outcome ω̂T−1,

CkT−1(x̄T−2(ω), ω̂T−1) < ∆T−1(x̄T−2(ω), ω̂T−1). (5.3)

But

CkT−1(x̄T−2(ω), ω̂T−1) = minxT−1,θT c
>
T−1xT−1 + θT

subject to AT−1xT−1 = ω̂T−1 −BT−2x̄T−2(ω),

θT + (β
j
T )
>xT−1 ≥ αT,j, j = 0, . . . , k − 1,

xT−1 ≥ 0,
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which has optimal solution

(x∗T−1, θ
∗
T ) = (x̄T−1(ω),maxj=0,...,k−1{αT,j − (βjT )>x̄T−1(ω)})

with ωT−1 = ω̂T−1.

If θ∗T < CkT (x∗T−1), then for any k > k̄

maxj=0,...,k−1{αT,j − (βjT )>x̄T−1(ω)}) < CkT (x∗T−1) = ΘT (x̄T−1(ω)) (5.4)

by (5.1). But by BPSP we have with probability 1 that for each ωT there is some

k(ωT ) > k̄ with ωT ∈ Ω
k(ωT )
T . If we let k̂ denote the maximum of the k(ωT ) then the

height of the cut at x̄T−1(ω) evaluated at iteration k̂ is ΘT (x̄T−1(ω)) contradicting

(5.4) (see Figure 1).Thus we have

)(1 ω−Tx

*
Tθ

))(( 1 ω−TT xC

)(1 ω−Tx

*
Tθ

))(( 1 ω−TT xC

Figure 5.2: A new cut shown in bold would be created if θ∗T < CkT (x∗T−1).

θ∗T = CkT (x∗T−1) = ΘT (x
∗
T−1)

and

CkT−1(x̄T−2(ω), ω̂T−1) = c
>
T−1x

∗
T−1 +ΘT (x

∗
T−1) = ∆T−1(x̄T−2(ω), ω̂T−1)

contradicting (5.3), thereby demonstrating (5.2). Observe that since ω̂T−1 was

arbitrary this shows that x̄T−1(ω) solves [LPT−1(x̄T−2(ω),ωT−1)] for any ωT−1.

In a similar way, it is easy to show by induction that x̄t−1(ω) solves [LPt−1(x̄t−2(ω),ωt−1)]

thus demonstrating that (x̄1, x̄2(ω2), x̄3(ω2,ω3), . . . ) is an optimal policy.
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5.3.5 DOASA

We now return to DOASA, in which a single scenario is re-sampled in each forward

pass, in contrast to the methods above when these are sampled once and then fixed.

Theorem 5 Under FPSP and BPSP, DOASA converges with probability 1 to an

optimal solution to [LP1] in a finite number of iterations.

Proof. By FPSP, each scenario in the finite collection of N =
QT−1
t=2 qt scenarios

will occur an infinite number of times in the course of the algorithm with probability

1. Thus with probability 1, DOASA will contain a sequence of iterations that are

equivalent to MSMBD applied to the universe of scenarios. We may then apply

Lemma 4 which shows that with probability 1, DOASA will converge in a finite

number of steps to an optimal solution to [LP1] in a finite number of iterations.

5.3.6 Discussion

The proof of almost-sure convergence above assumes the sampling procedures sat-

isfy FPSP and BPSP. The proof of convergence in [71] makes some different assump-

tions, namely the Cut Sampling Property and the Sample Intersection Property.

The Cut Sampling Property (CSP) states that there are only a finite number of

iterations in the algorithm where Ωkt is empty. Since we are investigating conver-

gence as k →∞, CSP is effectively the same as assuming that Ωkt is nonempty for

all k.

The Sample Intersection Property (SIP) states that for any t, each ωti ∈ Ωt and

each k (given Ωkt 6= ∅),

Pr[(ωti ∈ Ωkt ) ∩ (ωkt = ωti)] > 0.

SIP is sufficient to guarantee FPSP and BPSP if it is accompanied by independent

sampling in the forward pass and the backward pass. We state this formally.

Lemma 6 Given independent sampling in the forward pass, SIP implies FPSP.

Given independent sampling in the backward pass, SIP implies BPSP.
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Proof. By SIP, for each ωti ∈ Ωt and each k (given Ωkt 6= ∅),

Pr[ωkt = ωti] > 0, (5.5)

Pr[ωti ∈ Ωkt ] > 0. (5.6)

By (5.5) and independent sampling in the forward pass, for any scenario ω(j) with

ωti ∈ ω(j), t = 2, 3, . . . , T − 1,

Pr[{ωkt } = ω(j)] =
T−1Y
t=2

Pr[ωkt = ωti] > 0.

Then with independent sampling in the forward pass, by the Borel-Cantelli lemma,

there are infinite traversals of each scenario ω(j), j = 1, 2, . . . ,
QT−1
t=2 qt with prob-

ability 1, and thus FPSP is satisfied.

With (5.6) and independent sampling in the backward pass, by the Borel-

Cantelli lemma, there are infinite visits to each ωti with probability 1, and thus

BPSP is satisfied.

Independent sampling is necessary in Lemma 6. If independent sampling in the

forward pass is not assured, then FPSP is not guaranteed. For example, suppose

for t = 2, 3, . . . , T − 1, Ωt = {ω1,ω2} and we choose ωkt with

Pr[ω1t = ω1] = Pr[ω
1
t = ω2] =

1

2
,

ωkt = ω1t , k ≥ 2.

Then for ω1,

Pr[ωkt = ω1] = Pr[ω
1
t = ω1] > 0,

and it is easy to show that Pr[ωkt = ω2] > 0 for each k, and thus this sampling

method satisfies (5.5). But obviously some of the scenarios will never be visited,

and thus the sampling method does not satisfy FPSP.

Similarly if independent sampling in the backward pass is not assured, then

BPSP is not guaranteed. For example, suppose for t = 2, 3, . . . , T , Ωt = {ω1,ω2},
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and we choose Ωkt with

Pr[Ω1t = {ω1}] = Pr[Ω1t = {ω2}] =
1

2
,

Ωkt = Ω1t , k ≥ 2.

Then for example for ω1 and k ≥ 2,

Pr[Ωkt = {ω1}] = Pr[Ω1t = {ω1}] > 0.

Similarly Pr[Ωkt = {ω2}] > 0 for each k, and thus this sampling method satisfies

(5.6), but does not satisfy BPSP.

The CUPPS algorithm ([16]) comprises independent sampling in the forward

pass, and cuts computed using Ωkt = {ωkt }. This is easily seen to satisfy SIP, and

FPSP and BPSP, even though the backward pass is not sampled independently,

but constructed from the forward pass. However, SIP is not necessary for FPSP

and BPSP to hold. Consider a version of CUPPS in which cuts are computed using

Ωkt = Ωt \{ωkt }. This does not satisfy SIP, but it does satisfy FPSP and BPSP. The

algorithms SDDP1, AND, and ReSa all use independent sampling in the forward

pass, and set Ωkt = Ωt. In this case BPSP is trivially true, and FPSP follows by

the Borel-Cantelli lemma. These algorithms also satisfy SIP trivially.

Lemma 8 in [71] asserts that CSP, SIP and independent sampling in the forward

pass are sufficient for almost sure convergence. As discussed above there is an

implicit independence assumption in the proof of Lemma 8. It is tempting to

suppose that independent sampling in the forward pass and SIP give BPSP, which

would make Lemma 8 true. However this is not true in general as we have shown.

Thus, in the absence of independent sampling in the backward pass, Lemma 8 in

[71] remains unproven.

1We are assuming here that SDDP re-samples in its forward pass. Some commercial imple-

mentations of SDDP do not re-sample and so are more akin to MSMBD than DOASA.
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5.4 Convergence for quadratic programming

In solving our problem which has quadratic objectives, we could approximate the

linear price-demand curves by stepwise functions, which gives a problem with piece-

wise linear objectives. Since these objectives have finite number of pieces, this

problem resembles the linear objective case, and thus DOASA would converge in

solving this problem. However, since this approach may require many pieces in

the stepwise functions approximating the price-demand curves to obtain a good

solution to our problem, we solve our problem with quadratic objectives directly.

In quadratic programming, the optimal solution satisfies the Karush-Kuhn-

Tucker conditions. For instance, the optimal solution to [AP kt ] satisfies the following

equations

Atxt − ωkt +Bt−1x
k
t−1 = 0,

θt+1 + (β
j
t+1)

>xt ≥ αt+1,j, j = 0, 1, . . . , k − 1,

xt ≥ 0,

Dtxt + ct +A
>
t π

k
t −

Xk−1

j=0
ρjtβ

j
t+1 = 0,

1−
Xk−1

j=0
ρjt = 0,

ρjt ≥ 0, j = 0, 1, . . . , k − 1,

ρjt(θt+1 + (β
j
t+1)

>xt − αjt+1) = 0, j = 0, 1, . . . , k − 1,

where πkt is a vector of Lagrange multipliers, and ρ
j
t , j = 0, 1, . . . , k−1, is a Lagrange

multiplier. This can be solved using simplex method for quadratic programming

(see[112]), or primal-dual interior-point methods (see [113]), for example the Barrier

optimizer in CPLEX.

Note that the Lagrange multipliers πkt and ρjt , j = 0, 1, . . . , k−1, are dependent

on ωkt and x
k
t−1. Thus all stage problems for ωt ∈ Ωt are solved to calculate the

subgradients to generate a cut. Since the set of subgradients is infinite, the finiteness

of the set of distinct cuts is not guaranteed and thus the proof of convergence of

DOASA for linear programming problems cannot be applied.
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Although we have no mathematical proof of the almost-sure convergence of

DOASA for quadratic programming problems, we can check its convergence in

practice using a convergence criterion described in [53]. If the lower bound obtained

in cut generation is contained by a 95% confidence interval of the sample average

in a large sample simulation2 using the cuts, then we claim that the algorithm has

converged.

5.5 Quadratic programming with Markov states

and independent random variables

We define the properties of the multistage stochastic programming models assuming

milk supply from the multiplicative model which has Markov states and indepen-

dent random variables as follows:

(A1) Random variables appear only on the right-hand side of the constraints in

each stage.

(A2) A set Φt of random outcomes in each stage t = 2, 3, . . . , T are discrete and fi-

nite, and are dependent on those in the previous stage, that is, Φt = {φtn| n =

1, . . . ,mt <∞} with probabilities pt(φtn | φt−1) > 0 for all n given any φt−1.

(A3) A set Ωt of random outcomes in each stage t = 2, 3, . . . , T are discrete, finite

and independent, that is, Ωt = {ωti| i = 1, . . . , qt < ∞} with probabilities

pt(ωti) > 0 for all i.

(A4) The random variables are in multiplicative form.

(A5) The feasible region of the quadratic program in each stage is non-empty and

bounded.

2The lower bound of a 95% confidence interval is computed by subtracting two times the

standard error from the sample average, and the upper bound is by adding that to the sample

average.
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Then a multistage stochastic programming model for a quadratic problem can be

written in the following form:

Solve the problem defined by

[QP1] ∆1 = minx1
1
2
x|1D1x1 + c

|
1x1 +Θ2(x1)

subject to A1x1 = b1,

x1 ≥ 0,

where for all t = 2, . . . , T,

Θt(xt−1,φt−1) =

qtX
i=1

mtX
n=1

pt(φtn | φt−1)pt(ωti)∆t(xt−1,φtn,ωti),

∆t(xt−1,φtn,ωti) is defined by the problem

[QPt] ∆t(xt−1,φt,ωt) = minxt
1
2
x|tDtxt + c

|
t xt +Θt+1(xt,φt)

subject to Atxt = φt · ωt −Bt−1xt−1,

xt ≥ 0,

where φt · ωt means the two vectors are multiplied component-wise, and we set

ΘT+1 ≡ 0.

The problem [QPt] depends on the choice of φt, ωt and xt−1, and so we could

write [QPt(xt−1,φt,ωt)], but we choose to suppress this dependence in the notation.

By Assumptions (A2) and (A3), [QPt] is dependent on φt−1 but independent of

ωt−1,ωt−2 . . . .

The functions Θt(xt−1,φt−1) in each stage are approximated by the maximum

of a collection of cuts. In each iteration k = 1, 2, . . . , the algorithm computes a

set of feasible solutions {xkt : t = 1, 2, . . . , T − 1}, and a set of cuts, one for each

stage t = 1, 2, . . . , T − 1, which is dependent on φt. This gives rise to a sequence

of approximate problems [AP kt ], k = 1, 2, . . . , for each stage, which are defined as

follows:
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For t = 1, we solve the quadratic program

[AP k1 ] C
k
1 = minx1,θ2

1
2
x|1D1x1 + c

|
1x1 + θ2

subject to A1x1 = b1,

θ2 + (β
j
2)
>x1 ≥ α2,j, j = 0, 1, . . . , k − 1,

x1 ≥ 0,

and, for t = 2, . . . , T − 1, we solve

[AP kt ] C
k
t (xt−1,φt,ωt) = minxt,θt+1

1
2
x|tDtxt + c

>
t xt + θt+1

subject to Atxt = φkt · ωkt −Bt−1xkt−1,

θt+1 + (β
j
t+1(φ

k
t ))

>xt ≥ αt+1,j(φ
k
t ), j ∈ Nt(φkt ),

xt ≥ 0.

where Nt(φ
k
t ) defines the set of iterations such that a cut constructed in iteration

h for h = 0, 1, . . . , k − 1 is in the set only if φht = φkt . Finally for every k, we set

[AP kT ]=[QPT ]. The problems [AP
k
t ] are approximations of [QPt] in the sense that

Θt+1(xt,φt) is approximated (below) by the polyhedral function

max
j∈Nt(φkt )

{αt+1,j(φkt )− (βjt+1(φkt ))>xt}.

which has been illustrated in Figure 5.1, and thus any solution to [AP kt ] has a value

that is a lower bound on the optimal value of [QPt].

For all stages, the first cut (j = 0) is set as the trivial cut θt+1 ≥ −∞. We use the

notation Ckt (xt−1,φt−1) to denote
Pqt

i=1

Pmt

n=1 pt(φtn | φt−1)pt(ωti)Ckt (xt−1,φt,ωt). In

the last stage, T , we have [AP kT ] = [QPT ], and so for every xT−1, φT and ωT

CkT (xT−1,φT ,ωT ) = ∆T (xT−1,φT ,ωT ), k = 1, 2, . . . .

Since cuts are added by iterations, and no cuts are taken out, the optimal values

of [AP kt ] for the same φ
k
t−1 form a monotonic sequence, i.e. for j ∈ Nt−1(φkt−1),

Cjt (xt−1,φt,ωt) ≥ Cj−1t (xt−1,φt,ωt), t = 2, 3, . . . , T,

and

Cj1 ≥ Cj−11 .
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Observe that under Assumption (A5),

{xt | Atxt = φt · ωt −Bt−1xkt−1, xt ≥ 0}

is nonempty and bounded. So [AP kt ] always has a nonempty feasible set and hence

an optimal solution. Thus we have a vector of Lagrange multipliers πt for the

equality constraints and a vector of Lagrange multipliers ρt for the cut constraints,

which are used to calculate the cuts at xkt−1 for φ
k
t−1 as follows.

Initially set the iteration count k = 0. At any subsequent iteration k the coeffi-

cients of the cuts at each stage t = 1, 2, . . . , T − 1, are calculated as follows.

Cut Calculation Algorithm (CCA)

1. Given φt−1, solve [AP
k
t ] for all φtn ∈ Φt and ωti ∈ Ωt for the Lagrange

multipliers (πt(x
k
t−1,φtn,ωti), ρt(x

k
t−1,φtn,ωti)).

2. The cut at stage t− 1 has the formula

θt ≥ αt,k(φt−1)− (βkt (φt−1))>xt−1,

where

βkt (φt−1) =

qtX
i=1

mtX
n=1

pt(φtn | φt−1)pt(ωti) B>t−1 πt(xkt−1,φtn,ωti), for 2 ≤ t ≤ T,

αt,k(φt−1) =

qtX
i=1

mtX
n=1

pt(φtn | φt−1)pt(ωti)[(φt · ωt)> πt(x
k
t−1,φtn,ωti)

+ (αk−1t+1 (φt−1))
>ρt(x

k
t−1,φtn,ωti)], for 2 ≤ t ≤ T − 1,

αT,k(φT−1) =

qtX
i=1

mtX
n=1

pT (φTn | φT−1)pT (ωTi) (φT · ωT )> πT (x
k
T−1,φTn,ωTi).

Observe that αt,k(φt−1) is a scalar, whereas α
k−1
t+1 (φt−1) denotes a vector with

the length of Nt−1(φt−1), which grows as the iteration count k increases. This

means that the dimensions of αk−1t+1 (φt−1) and ρt(x
k
t−1,φtn,ωti) are increasing as the

iteration count k increases, and thus the collection of (αt,βt) may be infinite.

With Markov states and independent random variables, the DOASA algorithm

is adapted and has the following steps.
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Step 0: (Initialization) Set k = 1.

Step 1: (Forward pass)

Sample a single outcome φt and ωt of the random variable in each stage

t = 2, 3, . . . , T − 1, to give a single scenario {φkt ,ωkt }. For each stage t =

1, 2, . . . , T − 1, compute the primal solution (xkt , θkt+1) of the problem [AP kt ].

Step 2: (Cut Generation)

For each stage t = T, T − 1, . . . , 2, apply CCA to generate a cut at xkt−1 for

φkt−1 with Ωt.

Step 3: Set k = k + 1 and go to Step 1.

In solving our multistage stochastic quadratic programming models, the algo-

rithm has converged based on the same convergence criterion.
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Chapter 6

Implementation

In this chapter we describe the implementation facilities, the implementation of the

optimization models and DOASA, and present the convergence check of DOASA for

the multistage stochastic programming models (the MSPF model and the MSPE

model).

6.1 Implementation facilities

The models are implemented in a mathematical modelling language AMPL in text

format files. The data is import from spreadsheet tables by the AMPL ODBC

driver. The models are solved by the QP Simplex algorithm in CPLEX solver of

version 10.0. This is performed on a computer with a Window XP Professional plat-

form, a Core Dual 2.4GHz CPU and a 2GB RAM. The solutions of the optimization

models for the forecast milk supply are output to spreadsheet tables. For the opti-

mization models for uncertain milk supply, the set of cut coefficients for the MSPF

model and the MSPE model are output to text format files in AMPL-readable for-

mat, which are used in the simulation. The simulation results are written to text

format files.
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6.2 Implementation of optimization models

We solve our multistage stochastic programming models (the MSPF model and

the MSPE model) using DOASA. Hence we replace the future cost Θ in each

stage problem by θ, the minimum of the approximation by the cuts, and replace

constraint (4.28) by the collection of cut constraints. The state variables xt−1 in

these constraints are the inventory variables, the contracts, and the random error

observed in the previous month.

To compute these cuts, we need the Lagrange multipliers of the constraints with

the past contract variables, past inventory variables and past random errors on the

right hand side. For past contract variables zp̄,t−3, zp̄,t−2 and zp̄,t−1, we add the

following constraints to the problem:

z̄p̄,t−1 = zp̄,t−1, ∀p̄ ∈ P̄ , (6.1)

z̄p̄,t−2 = zp̄,t−2, ∀p̄ ∈ P̄ , (6.2)

z̄p̄,t−3 = zp̄,t−3, ∀p̄ ∈ P̄ , (6.3)

and replace the past contract variables by the dummy variables z̄ in other con-

straints of the problem, including the cut constraints. Then we use the Lagrange

multipliers of these constraints for past contract variables, and the coefficients in

Bt−1 in cut calculation are −1. For past inventory variables vp,t−1, we use the

Lagrange multipliers of constraints (4.7) and (4.8) for contract products and non-

contract products respectively, and the coefficients in Bt−1 are −1. For past random

errors εi,t−1, we use the Lagrange multipliers of constraint (4.22) and the coefficients

in Bt−1 are −ρ.

For example, suppose in iteration k, we solve a stage t problem given zkp̄,t−3,

zkp̄,t−2, z
k
p̄,t−1, v

k
p,t−1, ε

k
i,t−1 and ωt. Let γ

k
pt(ωt) for p ∈ P̄ be the Lagrange multiplier of

constraint (4.7), and γkpt(ωt) for p ∈ P̃ be the Lagrange multiplier of constraint (4.8).

Let δkp̄t(ωt), λ
k
p̄t(ωt) and μkp̄t(ωt) be the Lagrange multipliers of constraints (6.1),

(6.2) and (6.3) respectively. Let πkit(ωt) be the Lagrange multiplier of constraint

(4.22). Then after solving all stage t problems, the cut generated for the stage t−1

90



problem is

θt ≥
X
ωt∈Ωt

PrΩt(ωt)∆t(z
k
p̄,t−3, z

k
p̄,t−2, z

k
p̄,t−1, v

k
p,t−1, ε

k
i,t−1,ωt)

+
X
ωt∈Ωt

X
p∈P

PrΩt(ωt)γ
k
pt(ωt)(vp,t−1 − vkp,t−1)

+
X
ωt∈Ωt

X
p̄∈P̄

PrΩt(ωt)δ
k
p̄t(ωt)(zp̄,t−1 − zkp̄,t−1)

+
X
ωt∈Ωt

X
p̄∈P̄

PrΩt(ωt)λ
k
p̄t(ωt)(zp̄,t−2 − zkp̄,t−2)

+
X
ωt∈Ωt

X
p̄∈P̄

PrΩt(ωt)μ
k
p̄t(ωt)(zp̄,t−3 − zkp̄,t−3)

+
X
ωt∈Ωt

X
i∈I
PrΩt(ωt)ρπ

k
it(ωt)(εi,t−1 − εki,t−1).

For inequality constraints, except the constraints with distress trading and the

cut constraints, we add non-negative penalty variables to ensure feasibility. For

inequality constraints with a greater-equal sign, we add a penalty variable to the

left hand side, and for those with a less-equal sign, we add a minus penalty variable

to the left hand side. These penalty variables are decision variables and we set

penalty costs on them, so that they are positive only for ensuring feasibility.

Since the MSPE model solves fewer stage problems in cut generation and its

policy generated is feasible for the MSPF model, we can use some cuts of the former

at the beginning of cut generation of the latter to speed up the cut generation.

In practice we found this is very useful in reducing computational effort in cut

generation of the MSPF model.

6.3 Implementation of DOASA

In the cut generation, we can bias sampling to improve convergence, as long as the

method satisfies the forward pass sampling property (FPSP). For example, using

higher probabilities for rare scenarios with big impacts will enable their effects to

be captured by the cuts. Antithetic sampling (i.e. sampling a pair of opposite

values for the random variable, see [75]) is useful as a variance reduction technique.
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We can also fix some scenarios in some iterations, for example, fix a scenario that

results in the lowest milk supply throughout the year for twenty iterations, so that

more cuts for these scenarios are generated.

Notwithstanding these observations, in simulation we need unbiased sampling

so that the sample average is unbiased. The simplest approach is to sample milk

scenarios from the probability distribution that we have used to generate the set

of milk scenarios. Importance sampling is also an option (see [40]), in which we

use higher probabilities in sampling for the scenarios that rarely occur and then

calculate the sample average with proper weights on the cost for these scenarios to

scale down their effect. Antithetic sampling may also be used.

The DOASA algorithm does not specify a stopping criterion. Stopping criteria of

sampling-based algorithms for solving multistage stochastic problems are discussed

in [80] and [53]. In [53], a non-statistical stopping criterion suggests the termination

of an algorithm if the lower bound hasn’t improved for more than a pre-defined

percentage of the one in the previous iteration for some successive iterations, and

a statistical stopping criteria suggests the termination of an algorithm if a 95%

confidence interval of the sample average in a large-sample simulation contains

the lower bound in cut generation which can be used as a convergence criterion.

In implementation, we use both stopping criteria for the termination of DOASA.

First we terminate DOASA when the lower bound hasn’t improved by 0.1% of

its previous iterate for 100 iterations. Then we perform a large-sample simulation

and then test the convergence criterion. If the algorithm hasn’t converged, we run

DOASA for some more iterations and then test the convergence criterion again.

We repeat this process until the criterion is satisfied.

In solving the stage problems with a large number of cuts, the barrier method

in the CPLEX solver has primal infeasibility problems, but the dual QP simplex

method works fine. Thus we use the dual QP simplex method.
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6.4 Convergence check of DOASA

The convergence criterion for DOASA for the MSPF model and the MSPE model

is that if the 95% confidence interval of the sample average (in cost) in simulation

contains the lower bound obtained in cut generation. We use DOASA to generate

cuts for the test problem described in the next chapter, and check the convergence

in simulation with 1,000 milk scenarios.

For milk supply from the additive model, we display the number of iterations

and the CPU time measured in seconds at the convergence of DOASA for the MSPF

model and the MSPE model in Table 6.1.

Iterations Time

MSPF 1, 500 45, 955

MSPE 600 5, 082

Table 6.1: Number of iterations and CPU time for the additive model.

To preserve the confidentiality of data, we give a value of −100 to the lower

bound and we index the results relative to this value. For the MSPF model, at

the termination of DOASA, the 95% confidence interval of the upper bound in

simulation with a sample of 1,000 is (−100.1, −99.8). The 95% confidence interval

contains the lower bound, and thus DOASA has converged. For the MSPE model,

the annual cost with the expected milk scenario (the only scenario in simulation)

is −100. This is the same as the lower bound in cut generation of −100, and thus

DOASA has converged. DOASA requires 900 more iterations and 11 hours and 20

minutes more to converge in the cut generation of the MSPF model.

On the other hand, for milk supply from the multiplicative model, we present

the number of iterations and the CPU time at the convergence of DOASA for the

two models in Table 6.2.

For the MSPF model, the 95% confidence interval of the sample average in

simulation is (−100.6, −99.6). This contains the lower bound obtained in cut gen-

eration, −100. Thus DOASA has converged. For the MSPE model, the 95% confi-
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Iterations Time

MSPF 2, 700 77, 213

MSPE 2, 100 28, 530

Table 6.2: Number of iterations and CPU time for the multiplicative model.

dence interval of the sample average with the expected milk scenarios in simulation

is (−100.5, −99.5). This contains the upper bound in cut generation, −100, and

thus DOASA has converged. DOASA for the MSPF model requires 600 iterations,

and 13 hours and 20 minutes more to converge.

Note that the DE model for either of the additive model and the multiplicative

model is impossible to solve, due to the huge scale of the problem, which has 22

billion constraints and 21 billion decision variables.
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Chapter 7

Policy simulation

In this chapter, we present the results of testing policies in simulation that are

defined by solutions of the optimization models. First we define the policies, and

describe the data that we used. We use the DS model and DN model to compute

the start-of-year inventory, the start-of-year contracts and the penalty cost on dis-

tress trading. Using these values we compute results for the policies in simulation

assuming milk supply from the additive model, namely additive policies, and as-

suming milk supply from the multiplicative model, namely multiplicative policies.

We compare the additive policy and the multiplicative policy that use the MSPF

model. We then assume extra storage capacity can be obtained with a penalty cost

and evaluate the additive policies. Finally we assess the cost of not accounting for

elastic price in making decisions.

7.1 Policies

The policies are defined by solutions of the optimization models described in chapter

4. We list the policies in Table 7.1, and describe how they are computed.

An ADO policy is obtained by solving the stage problems of the ADO model in

each successive month until the end of the year. In each month, after milk supply is

realized, a stage problem in the ADOmodel for the current month is solved, in which

milk supply for the future months in the shortening decision horizon is forecast.
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Abbreviation Policy

ADO Adaptive deterministic optimization policy

ADOS Adaptive deterministic optimization sales-projections policy

MSPF Multistage stochastic programming full-scenario policy

MSPE Multistage stochastic programming expected-scenario policy

PF Perfect forecast policy

Table 7.1: Policies.

The solution of the current month is implemented, the earnings are computed, and

contracts, inventory and random errors are passed to the next month. At the end

of the year, a sum of the earnings in each month gives the annual earnings. An

ADOS policy is obtained in a similar way, except that it solves a stage problem in

the ADOS model in each month.

Prior to computing an MSPF policy, we use DOASA to generate cuts from

the MSPF model. In simulation, for a particular milk scenario, we repeat the

following process in each month throughout the year. In each month, after milk

supply is realized (note that the one in the first month is known beforehand), the

corresponding stage problem of the MSPF model with the cuts is solved. The

solution in the current month is implemented and the earnings are calculated.

Contracts, inventory and random errors are passed to the next month. At the end

of year, we sum up the earnings in each month to obtain the annual earnings. We

compute an MSPE policy in a similar way, except that in solving the stage problems

of the MSPF model we use cuts generated from the MSPE model by DOASA.

Note that we may use the MSPF model in different ways to compute a policy.

For example, in each month, after milk supply is realized, we may run DOASA to

re-generate a new set of cuts for the decision horizon from the current month to the

end of year. Then we solve the stage problem in the current month with the new

cuts, and then implement the solution. This requires eleven sets of cuts for one milk

scenario, and thus a huge amount of time in simulation. However, in experiment,

96



we have observed no significant advantage of this policy over the MSPF policy.

A PF policy is obtained by solving the PF model for the year assuming milk

supply to be realized in each month is known at the beginning of the year, and then

evaluating the solution assuming this perfect information. The expected earnings

of a PF policy give an upper bound on the value of an optimal policy.

We evaluate the policies in simulation. We sample 1,000 milk scenarios of the

year, and compute the above policies for each milk scenario to obtain their annual

earnings. For a particular policy, we compute the average of the annual earnings.

To compare two policies, we compute the difference of their annual earnings for

each milk scenario and then compute the average of the differences. The PF policy

is anticipative and so is not implementable, but we use its sample average as a

benchmark. Note that we have used different samples in testing and obtained

similar results, but we will report the result of one sample in this chapter.

7.2 Data

As we have described in chapter 3, a production year has twelve months starting

from June, and the first month with unpredictable milk supply is November.

There are six regions in New Zealand, which are the upper North Island, central

North Island, lower North Island, upper South Island, central South Island and

lower South Island. Given the historical milk supply for nine years from the 1997

production year to the 2005 production year, we model the 2006 production year.

For the model for uncertain milk supply, we use the set of milk scenarios in the

example in processing the real data in chapter 3.

Each factory operates five processes, which are the casein mix, cheese mix,

milk protein concentrate mix, skim milk powder mix, and whole milk powder mix.

Each factory produces five main products which are casein and caseinate (denoted

casein), cheese, milk protein concentrate (MPC), skim milk powder (SMP), whole

milk powder (WMP), and four by-products which are buttermilk power (BMP),
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butter and anhydrous milk fat (butter), lactose, and whey protein concentrate

(whey). Production is measured in metric tonnes, and costs (as well as prices and

earnings) are in New Zealand dollars ($).

There are four international spot markets, which are America, Europe, Japan

and Oceania. We use a linear price-demand curve for each product in each market

and month. A linear price-demand curve is of the form of p = a − bq, where p

and q are the market price and demand, a and b are the intercept and negative

slope. To derive the price-demand curves for the markets in each month, we use

the demand data provided by Fonterra as the reference demands and a global base

price data provided by Fonterra as the reference price. The market price at a zero

demand is 105% of the reference price and that at the reference demand is 95% of

the reference price (see Figure 7.1 for an illustration). As a result, the price-demand

curves at different markets have the same intercepts but different negative slopes

in each month. Fonterra has segmented the demand in order of the importance

of customers, and we use the first segment as the minimum demand. The market

capacity is such that sales at the market capacity result in a zero market price, and

thus the sales can be above the reference demand.

Demand

Price
p: reference price
d: reference demand

d

1.05p

0.95p

Demand

Price
p: reference price
d: reference demand

d

1.05p

0.95p

Figure 7.1: Linear price-demand curve.

We assume the contract products are butter, SMP andWMP. The contract price
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in each month is assumed to be the intercept of the price-demand curve for the spot

market, so that in each month selling products by contract always generates a higher

revenue. We obtain the start-of-year contracts and the start-of-year inventory by

solving the DS model.

We assume the penalty cost on distress trading to be a multiple of the contract

price in each month. It is the lowest value such that no distress trading occurs in

the solution to the DN model.

Since we use a linear price-demand curve for the sales in a spot market, the

revenue generated is a quadratic function of sales, which gives rise to a quadratic

objective function. The objective in the optimization models minimizes cost, but

we will use earnings in reporting the results.

The MSPF model assuming milk supply from the additive model has 380 vari-

ables with 24 state variables, 270 constraints and 9 scenarios in each stage. With

12 stages this gives 4.8 million scenarios in total, resulting in 22 billion variables

and 21 billion constraints in the DE model which is impossible to solve. The MSPF

model assuming milk supply from the multiplicative model has 368 variables with

20 state variables, 252 constraints and 9 scenarios in each stage. With 12 stages,

this gives 4.8 million scenarios, and results in 21 billion variables and 20 billion

constraints in the DE model which is also impossible to solve.

7.3 Start-of-year inventory, start-of-year contracts

and penalty cost on distress trading

We solve the DS model with a high penalty cost so that no distress trading occurs,

and so obtain a start-of-year inventory position and start-of-year contract position

from the solution. The start-of-year inventory is displayed in Table 7.2 and the

start-of-year contracts are displayed in Table 7.3. These would be the values ob-

tained in a steady-state deterministic solution for a forecast milk supply. We solve

the DN model to search for the lowest penalty cost so that no distress trading
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occurs. The value chosen is roughly five times the contract price for each product

in each month. The sales in spot markets and contracts in the solution are the

sales-projections for the ADOS model.

BMP Butter Casein Cheese Lactose MPC SMP Whey WMP

5, 098 180, 873 705 18, 992 139 2, 391 3, 682 167 224, 321

Table 7.2: Start-of-year inventory (metric tonnes).

Butter SMP WMP

The first month 0 0 233, 764

The second month 183, 162 0 17, 904

The third month 15, 959 5, 714 107, 914

Table 7.3: Start-of-year contracts to be delivered in the first three months (metric

tonnes).

7.4 Additive policy simulation

For the policies assuming milk supply from the additive model, namely the additive

policies, we perform in-sample simulation and synthetic out-of-sample simulation.

In an in-sample simulation, milk supply scenarios are sampled from a set of milk

scenarios constructed by using two principal components with each random variable

sampled from a discrete distribution, which has been described in chapter 3. Note

that the cut generation for the MSPF model and MSPE model uses a sample from

this set of milk scenarios.

An out-of-sample simulation would ideally use a historical data set that had

not been used in the model development. Because of a lack of suitable data we use

instead a synthetic time series in which milk supply scenarios are sampled from a

set of milk scenarios constructed by using all six principal components with each

random variable sampled from a standard normal distribution, which has been

described in the same chapter. We call this a synthetic out-of-sample simulation.
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7.4.1 In-sample simulation

To preserve the confidentiality of data, we index all results relative to the ADO

policy which we give a value of 100. In the simulation, the PF policy has a sample

average of 103.4, and is used as a benchmark for the other policies1.

We compare the ADO policy and the ADOS policy to assess the cost of com-

mitting to a set of sales-projections at the beginning of the year, which are the

sales in spot markets and contracts in the solution to the DN model. The ADOS

policy has a sample average objective value of 99.0. The distribution of earnings

in simulation is displayed in Figure 7.2. This figure (as well as those displayed

later) is a modified histogram of the earnings in simulation, with the conventional

columns replaced by points indicating the heights and then the points fitted by a

smooth curve, and with the counts on the vertical axis and the earnings on the

horizontal axis. The figure shows that both policies have large downside risks (long

thick lower tail). With 95% confidence, the ADO policy achieves higher expected

earnings than the ADOS policy by 0.87% to 1.10% of the benchmark value. This

indicates that committing to a set of sales-projections at the beginning of the year

could be very expensive.

We now compare the MSPF policy and the ADO policy. The MSPF policy has

a sample average of 102.6. We display the distribution of earnings in simulation in

Figure 7.3. It shows that the MSPF policy has a smaller downside risk. With 95%

confidence, the MSPF policy results in higher expected earnings than the ADO

policy by between 2.34% and 2.71% of the benchmark value, and thus the MSPF

policy has an advantage over the ADO policy.

Next we compare the result for the MSPF policy and the MSPE policy to

assess the trade-off between less computational effort and a sub-optimal policy.

1The earnings reported in the results have excluded some costs, such as the transportation

costs of milk to factories, the transportation costs of products from factories to storage, and thus

the earnings have been overestimated. Given the fact that these costs are roughly constant, the

advantage relative to the benchmark value in comparing two policies should be larger than that

reported in these results.
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Figure 7.2: Distribution of earnings of ADO and ADOS in simulation.

The sample average of the MSPE policy is 99.9. With 95% confidence, the MSPF

policy is better than the MSPE policy by 2.39% to 2.77% of the benchmark value.

Figure 7.4 displays the distributions of their earnings in simulation, which shows a

large downside risk in the MSPE policy.

The cut generation for the MSPE policy saves 11 hours and 20 minutes in CPU

time (shown in Table 6.1 in chapter 6), but this is insignificant compared with the

loss in expected earnings. Note that the MSPE policy even has lower earnings in

expectation than the ADO policy, and thus the MSPE policy has no advantage

over the ADO policy. Hence, the trade-off is not worthy.

Finally, we compare the MSPF policy with the best possible policy, the PF

policy. The PF policy has a sample average of 103.4. As shown in Figure 7.5, these

two policies have similar distributions of earnings. Observe that the PF policy (an

unattainable solution) is 3.4 better in expectation than the ADO policy. Almost

76% of this difference (2.6) can be captured using the MSPF policy.
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Figure 7.3: Distribution of earnings of MSPF and ADO in simulation.
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Figure 7.4: Distribution of earnings of MSPF and MSPE in simulation.
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Figure 7.5: Distribution of earnings of MSPF and PF in simulation.
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7.4.2 Advantage of the MSPF policy over the ADO policy

In the previous result, the MSPF policy is the best attainable policy using multi-

stage stochastic programming, while the ADO policy is a deterministic policy. To

understand the advantage of the MSPF policy over the ADO policy, we investigate

the difference of these two policies.

We choose two milk scenarios, and display them for a particular region in Figure

7.6. The blue curve is the forecast milk supply scenario, and the pink curve is a

scenario that has lower milk supply than forecast in month six and seven.
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Figure 7.6: Two milk supply scenarios in a particular region.

For the forecast milk supply scenario, we observe that the contract decisions

between the two policies have large differences, which are marked by blue in Figure

7.7. We observe no distress trading for either policy. Since the ADO policy has

a perfect forecast of milk supply in this scenario, it has higher earnings than the

MSPF policy as expected.

On the other hand, for the other milk scenario, we display the contract decisions

and distress trading in Figure 7.8. We observe that the contract decisions also have
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MSP Jun Jul Aug Sep Oct Nov Dec Jan Feb
Butter 47,154 58,873 55,697 303 0 0 0 0 267
SMP 0 110,465 60,178 53,226 659 84,402 656 456 225
WMP 0 303,842 147,216 151,795 153,640 0 0 2,040 17,656

No distress trading

ADO Jun Jul Aug Sep Oct Nov Dec Jan Feb
Butter 47,156 58,870 57,569 0 0 0 0 0 0
SMP 0 110,469 63,290 56,946 0 73,190 0 0 0
WMP 0 303,846 147,495 152,533 153,375 0 0 60,273 0

No distress trading

Figure 7.7: Contract decisions and distress trading for the forecast milk supply

scenario.

large differences which are marked by pink in the figure, but the ADO policy has

more distress trading, by about 9,000 tonnes in total. Hence the MSPF policy has

higher earnings.

The large differences in contract decisions and distress trading indicate that the

MSPF policy is conservative in making contracts, and on average, the gains for the

MSPF policy from conservative contracting outweigh any losses that this policy

might sustain in the more predictable scenarios.

To test the sensitivity of the model to the penalty costs on distress trading, we

perform the following experiment: suppose the penalty cost of distress trading is

low, say 120% of the contract price of each product in each month. Since with a

lower penalty cost the policies may change, we run DOASA to generate a new set

of cuts from the MSPF model, and re-assess the policies in simulation.

The distribution of earnings of the MSPF and ADO policies with a low penalty

cost is displayed in Figure 7.9. The sample average of the MSPF policy is 100.1.

With 95% confidence, the MSPF policy is better than the ADO policy by only

between 0.05% and 0.06% of the benchmark value.

The result shows that the main advantage of the MSPF policy over the ADO

policy comes from considering distress trading at high costs. In this circumstance
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MSP Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
Butter 47,154 58,873 55,697 303 0 0 0 460 0
SMP 0 110,465 60,178 53,226 659 72,215 632 1,117 7,682
WMP 0 303,842 147,216 151,795 153,640 0 0 111 18,809

Butter 31
Lactose 139
SMP 71
Whey 46
WMP

ADO Jun Jul Aug Sep Oct Nov Dec Jan Feb
Butter 47,156 58,870 57,569 0 0 0 0 0 771
SMP 0 110,469 63,290 56,946 0 75,050 5,752 0 0
WMP 0 303,846 147,495 152,533 153,375 0 0 46,227 9,410

Butter 1,297 0
Lactose 117
SMP 1,841 3,919
Whey
WMP 2,208 0

Figure 7.8: Contract decisions and distress trading for a scenario with lower milk

supply.

the MSPF policy achieves higher expected earnings by being conservative in making

contracts.

7.4.3 Synthetic out-of-sample simulation

The tests described above simulate the policies using the same set of milk scenarios

used in cut generation (i.e., generated from two principal components as described

in chapter 3), and so the results may suffer from in-sample bias. To test this, we

assess the MSPF policy against the ADO policy in a set of synthetic milk scenarios

generated from all six principal components with each random variable sampled

from a continuous normal distribution (as described in the discussion on out-of-

sample testing in the same chapter).

With synthetic scenarios constructed in this way, the MSPF policy has a sample

average of 102.7 and the PF policy has a sample average of 103.5. The distribution

of earnings for the MSPF policy and ADO policy are presented in Figure 7.10. The

large lower tail of the ADO policy indicates a large downside risk of this policy.

With 95% confidence, the MSPF policy is better than the ADO policy by 2.42%
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Figure 7.9: Distribution of earnings of MSPF and ADO with a low penalty cost.

to 2.78% of the benchmark value. This shows that most of the variation in the

synthetic milk supply scenarios has been captured by the two principal components.

(The performance of the MSPF policy would have been much worse if the scenario

tree construced with the two principal components had not captured the major

variations in the synthetic milk supply scenarios.)

The distribution of earnings for the MSPF policy and PF policy is displayed in

Figure 7.11. Almost 77% of this difference (2.7) can be captured using the MSPF

policy.

The synthetic out-of-sample result confirms the result from the previous in-

sample simulations, and thus the advantage of the MSPF policy is not attributed

to in-sample bias.
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Figure 7.10: Distribution of earnings of MSPF and ADO in synthetic out-of-sample

simulation.
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Figure 7.11: Distribution of earnings of MSPF and PF in synthetic out-of-sample

simulation.
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7.5 Multiplicative policy simulation

We perform in-sample simulation experiments for the policies assuming milk supply

from the multiplicative model, namely the multiplicative policies. The PF policy

has a sample average of 111.7, which is the benchmark for the other policies.

We display the distribution of earnings of the ADO policy and the ADOS pol-

icy in Figure 7.12. The ADOS policy has a sample average of 100.7. With 95%

confidence, the ADOS policy has higher expected earnings than the ADO policy

by 0.15% to 1.03% of the benchmark value. This indicates that committing a set

of sales-projections set at the beginning of the year gives better earnings in expec-

tation, which is a different result from that in the additive policy simulation.
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Figure 7.12: Distribution of earnings of ADO and ADOS in simulation.

Note that the milk scenarios in the multiplicative model has small variations,

as shown in Figure 7.13 which is a re-produced figure in the example of processing

real data in chapter 3. Compared to the ADOS policy, the ADO policy can make

adaptive contract decisions based on the milk supply that has realized. This would
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give a benefit if the milk supply realized in the future months roughly matches what

the ADO policy has forecast, but may result in a loss if the milk supply realized in

the future months has large deviation which requires distress trading to meet the

contracts. With milk scenarios with low uncertainty, the adaptability may not be

beneficial, which is what this result has shown. However, the differences are very

small.
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Figure 7.13: Coverage of a sample of milk scenarios from the multiplicative model.

We now compare the result of the MSPF policy and the ADO policy. The MSPF

policy has a sample average of 110.7. With 95% confidence, the MSPF policy is

better than the ADO policy by between 9.18% and 10% of the benchmark value.

The distributions of earnings are displayed in Figure 7.14. The MSPF policy has a

shorter lower tail, and thus a smaller downside risk.

The MSPE policy also has a sample average of 110.7, and with 95% confidence,

the MSPF policy only results in higher earnings in expectation by only up to

0.04% of the benchmark value. Figure 7.15 shows that these two policies have

similar distribution of earnings. Note that the cut generation for the MSPE policy

is shorter than that for the MSPF policy by over 13 hours and 20 minutes (see
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Figure 7.14: Distribution of earnings of MSPF and ADO in simulation.

Table 6.2 in chapter 6).

Finally, we compare the MSPF policy and the PF policy. As shown in Figure

7.16, these two policies have similar distributions of earnings. Observe that the

MSPF policy captures 91% (10.7) of the difference between the PF policy and the

ADO policy (11.7).

112



0

50

100

150

200

250
C

ou
nt MSPF

MSPE

110.7

110.7

Figure 7.15: Distribution of earnings of MSPF and MSPE in simulation.
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Figure 7.16: Distribution of earnings of MSPF and PF in simulation.
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7.6 Additive and multiplicative MSPF policies

Each of the additive MSPF policy and the multiplicative MSPF policy uses a set

of cuts generated from the corresponding MSPF model. To compare these two

policies, we evaluate them in a synthetic out-of-sample simulation. We sample

1,000 milk scenarios from the additive model. Note that each milk scenario defines

the milk supply in each region. We compute the total milk supply and the total

forecast milk supply over the regions in each month. Then we compute the ratio

of these two to give the value of the random error in the multiplicative model, and

then compute the values of the Markov state and the independent random variable.

We run DOASA to generate 2, 700 cuts from the corresponding MSPF model for

both policies. The two policies are also evaluated against the ADO policy, with a

benchmark from the PF policy.

In simulation, the PF policy has a sample average of 103.5. The sample average

of the additive MSPF policy is 102.7, and that of the multiplicative MSPF policy

is 102.5. We display the distribution of earnings of the ADO policy, the additive

MSPF policy and the multiplicative MSPF policy in Figure 7.17.

Compared to the ADO policy, with 95% confidence, the additive MSPF policy

has higher expected earnings by between 2.43% and 2.79% of the benchmark value,

and the multiplicative MSPF policy has higher expected earnings by between 2.27%

and 2.6% of the benchmark value. Thus both MSPF policies have advantages over

the ADO policy. Note that even though the multiplicative MSPF policy uses cuts

generated based on the total milk supply, it is better than the ADO policy in

simulation with (regional) milk supply.

We observe that with 95% confidence the additive MSPF policy is better than

the multiplicative MSPF policy by 0.13% to 0.21% of the benchmark value. This

is attributed to the fact that the multiplicative MSPF policy does not take into

account the variation of milk supply in each region. Accounting for this in our

policies yields approximately 0.2 in value. (Note that the additive MSPF policy is

expected to be better than the multiplicative MSPF since the scenarios from the
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Figure 7.17: Distribution of earnings of ADO, additive MSPF and multiplicative

MSPF in simulation.

additive model are used in simulation, and the test result shows by how much.)

7.7 Policy allowing extra storage capacity

In the previous results, we have assumed a fixed storage capacity. However, we have

observed that the total inventory of powder products is at the storage capacity in

some milk scenarios. In these circumstances, the shadow price for storage capacity

tells us how much will be gained in earnings if the storage capacity increases by one

tonne. For example, if the maximum shadow price is $14,000, then the earnings can

be up to $14,000 more in some milk scenarios by getting one more tonne in storage.

To model the ability to increase storage, we assume that extra storage capacity for

powder products can be obtained, say from third party, with a penalty cost of $300

per tonne, and we evaluate the additive MSPF policy against the ADO policy in a

synthetic out-of-sample simulation.
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We add a decision variable v0t, the extra storage capacity measured in metric

tonnes, into the constraint for the maximum inventory for powder products in the

stage problems,

Maximum inventory level for powder products:X
p̌∈P̌

vpt − v0t ≤ v̌, ∀t ∈ T,

and add the cost to the objective functions. We use DOASA to generate a new set

of cuts for the additive MSPF policy (1, 500 cuts).

When indexed against the ADO policy in the previous synthetic out-of-sample

simulation, the ADO policy has expected earnings of 100.4 and the MSPF policy

has expected earnings of 103.1. This shows that extra storage capacity (with a

penalty cost) improves the earnings of both policies.

With a sample average of 100 for the ADO policy, the sample average of the

MSPF policy is 102.6 and that of the PF policy is 103.5. With 95% confidence, the

MSPF policy is better than the ADO policy by 2.38% to 2.73% of the benchmark.

The distribution of earnings is displayed in Figure 7.18. The MSPF policy captures

76% of the benefit of the PF policy over the ADO policy. These results are only

slightly lower than the previous results, which implies that the MSPF policy cannot

be replaced by using extra inventory in the ADO policy.

Note that the penalty cost of $300 per tonne for storage is much higher than the

real marginal cost of obtaining extra capacity, and thus the earnings of the policies

in expectation would be even higher. In this circumstance, the advantage of the

MSPF policy relative to the benchmark value would be lower.

7.8 Fixed-price MSPF policy

In the final section of this chapter, we will investigate the cost of not accounting for

price variation. To illustrate this, we compare three policies, the ADO policy and

the MSPF policy with linear price-demand curves, and an MSPF policy with fixed

prices. For the MSPF policy with fixed prices, we generate 1,500 cuts from the
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Figure 7.18: Distribution of earnings allowing extra storage capacity in simulation.

MSPF model but assuming that the market prices are fixed at the reference prices.

Then we evaluate these three policies in a synthetic out-of-sample simulation with

linear price-demand curves.

The linear-price-demand MSPF policy has expected earnings of 102.7, the fixed-

price MSPF policy earns 98.9, and the PF policy earns 103.5. With 95% confidence,

the linear-price-demand MSPF policy is better than the fixed-price MSPF policy

by 3.55% and 3.79% of the benchmark. The distribution of earnings in Figure

7.19 shows that the fixed-price MSPF policy not only has lower earnings in many

scenarios, but also has a higher downside risk. Note that the fixed-price MSPF

policy also has lower earnings than the ADO policy. These results show that not

accounting for price variation in the market will incur a loss in earnings.
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price MSPF in simulation.
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Part II

Game-theoretic inventory model

for the European dairy market
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Chapter 8

European dairy market

In Part I we have assumed that Fonterra is a monopoly supplier. In this part of the

thesis we assume that there are other agents selling products in the markets, and

their sales have an impact on the market prices. The uncertainty in market prices

needs to be properly assessed in production planning, so that Fonterra’s expected

price matches the market price.

One of the main target markets for Fonterra is the European dairy market where

they compete with companies from, for example, Australia, the European Union

and USA. The European Union Commission (denoted EUC) regulates the market

and this has an impact on Fonterra’s decision making. Under current regulations

which includes intervention system and tariffs, the opportunities for strategic sell-

ing are very limited. However the EUC continually faces pressure to reform the

regulations in favour of free-trade. Eventually such reform will give enough free-

dom to the players to incentivize strategic selling. To understand how this might

evolve, we develop a game-theoretic inventory model to assess Fonterra’s strategy

in the European dairy market. We will describe the European dairy market in this

chapter, and present the model in the next chapter.

In the European dairy market, the EUC aims to maintain the market price

during fluctuations of short-term supply, that is, it reduces products in the market

if the market price is low and sells products to the market if the market price is high.
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The intervention system is a core mechanism for the regulations. Private storage

aid, tariffs for import controls and export refunds are also important mechanisms.

The intervention system is open from March 1st to August 31st in each year,

when production in the European Union (denoted EU) is at a peak. The EUC

observes the market, and buys products from the market if the market price is lower

than a pre-determined price, the intervention price. As a result, the market price

is not much lower than the intervention price. Thus, even though the intervention

price is not a threshold for the market price, it acts as a floor price in the European

market. The intervention price for a production year is set and announced by the

EUC and thus is common knowledge at the beginning of the production year. It is

typically higher than the prices in the world market.

The intervention system applies to butter and SMP. The EUC sets limits on the

amount of butter and SMP in intervention. If these limits are reached, intervention

purchase will be by tender to the dairy producers in the EU, in which the EUC

buys products at the lowest price that the producers bid, and thus the intervention

stocks may go above the limits. When the market prices are good, products in the

intervention stockpile are put onto the market for sales.

Private storage aid is a scheme used for a similar purpose. This scheme sub-

sidises the producers in the EU in the storage of dairy products, which incentivizes

them to put less products onto the market. The scheme is available for both butter

and SMP, and is open from March 15 to August 15.

Since the market price responds to the sales in the market, the intervention

price defines a maximum market size. We illustrate this effect in Figure 8.1. If the

intervention price is low, then the European market capacity is large, so suppliers

can sell all products to the European market, and the market price is above the

intervention price. If the intervention price is high, then the European market

capacity is small, and the total sales in the European market are only up to the

market capacity, where the market price is the intervention price. Observe that the

unsold EU production (blue) is held as storage for later sales.
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Figure 8.1: Intervention price.

Since the prices in the European market are substantially higher than those

in the world market, the EUC imposes tariffs on the imports from the non-EU

countries. The import tariffs are set by the EUC and agreed by the World Trade

Organization, and they are common knowledge at the beginning of a production

year. There are three types of tariffs. The market access allows unlimited volume

for any product but has a high tariff, which effectively prevents any imports. The

minimum access has a low tariff but is subject to a limited volume per annum which

is called quota, and it is available to each country. The current access has a even

lower tariff and is subject to a quota, but it is only available to some countries

that have historical trading relationships with the EU, such as Australia and New

Zealand.

We illustrate the effect of tariffs and quotas in Figure 8.2. When the intervention

price is low, if there were no tariff or quota, then Fonterra and other agents would

sell to the European market as much as possible, but in fact due to the tariffs and

quotas, Fonterra and other agents choose lower sales in the European market. On

the other hand, when the intervention price is high, if there were no tariff or quota,

then Fonterra and other agents would sell to the European market as much as

possible, but with large production the total sales may exceed the market capacity,

and thus the EUC would have to buy products from the market. In practice this

never happens due to the tariffs and quotas.
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Figure 8.2: Tariffs and quotas.

When the EUC decides to sell the intervention stocks to the world market to

reduce the stockpile, it sells to exporters by bidding. Since the world market prices

are much lower than the price in the European market, the EUC subsidises the

exporters with refunds. This is called the restitution system. The rate of refunds is

set by the EUC, or in a tender system to the exporters where the exporter who asks

for the lowest rate gets the refund. There are different rates of refunds for products

in four categories; butter, SMP, cheese and others. There are limits imposed by the

World Trade Organization on the volume of the products receiving export refunds

and the budget of refunds per annum.
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Chapter 9

Model and algorithm

In this chapter we describe a game-theoretic inventory model for the European

dairy market. We will first describe the assumptions that we have made. Then we

present the formulation of the model, which consists of an optimization problem

for each leader and an optimization problem for each follower. This results in an

equilibrium problem with equilibrium constraints (EPEC). To solve the model, we

implement an algorithm that uses a grid search and sequential best response.

9.1 Assumptions

We assume the players are Fonterra, Australia and EU, where EU is modelled as

a cartel of the European Union Commission and the companies in the European

Union that produce, sell and export dairy products. Note that the follower EU

delivers sales as a monopoly rather than under perfect competition of the companies

it represents. Fonterra and Australia make decisions simultaneously. Since under

the intervention system, the European Union Commission observes the market price

and then makes a sales decision, we assume EU to be a follower in decision making.

Note that there are other countries in the market, but we assume that they are

non-strategic players, that is, their sales are fixed.

The decision horizon is multistage in a production year which is from June to

May of the next calendar year. Since the production process will make the players’
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sales strategies difficult to analyse in all but simple cases, we choose to ignore the

production process and its costs and assume that each player has fixed production

in each stage. This has some validity for a dairy cooperative like Fonterra, who are

committed to producing from all the milk that they collect. Thus each player makes

decisions solely on inventory and sales to the European market (denoted UM) and

the world market (denoted WM). We assume that each player makes a policy at

the beginning of the year that defines the inventory and sales in each stage and

then commits to the policy throughout the year without review.

The intervention and the private storage aid are only open at the peak months

of production of the European Union countries in each production year. However,

if production at the off-peak months were largely increased, the European Union

Commission would use these mechanisms to maintain the market price. Thus we

assume in our model that the intervention and private storage aid is open for the

entire production year. We assume the intervention price is a floor on the market

price in UM, and it is a constant throughout the year.

The intervention stocks are the inventory for EU. Since the effect of the private

storage aid is similar to the intervention, the stocks in this scheme are assumed

to be part of the inventory. Since we do not know the limit on the amount of

intervention stocks purchased by tender, nor the limit on the stocks in the private

storage aid, we impose no limit on EU’s inventory. We assume each player has a

start-of-year inventory at the beginning of the first stage, and an inventory target

at the last stage.

Although the European Union Commission purchases products into intervention

only if the market price falls to the intervention price level, since EU represents the

companies in the European Union that can store products even if the intervention

price is high, we assume that EU is also able to do so.

We assume that for each market and stage there is a linear price-demand curve.

Note that these price-demand curves represent the residual demand given that

the non-strategic players’ sales are fixed. There is a floor price for each market and
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stage, which is the intervention price for UM and zero for WM. A floor price defines

a market capacity, which is the sales for the floor price defined by the price-demand

curve.

The minimum access tariff and the current access tariff are effectively used. We

assume that the quota for a leader is the total of the two quotas, and the tariff is the

average of the total payment to tariffs from sales at the total quota. Since in reality

Fonterra and Australia’s total sales do not exceed the market capacity in UM, for

validity of the solution, we assume that the total sales of Fonterra and Australia in

each stage are below the market capacity, which implies that the market prices for

their total sales are above the intervention price.

The refund scheme, under which the EUC provides incentives to exporters is

not represented in our model, since the exporters and the EUC are assumed to be

the same agent. On the other hand, the volume and budget limits imposed by the

World Trade Organization are modelled.

Each player has an inventory holding cost, and each player has a marginal

transportation cost for selling products to the markets. Since the players have

fixed production, the players can make decisions on sales and inventory for each

product separately, and thus we treat each product separately.

9.2 Notation

We present the notation as follows.

Sets and indices

i, i0 ∈ I set of leaders.

j, j0 ∈ J set of followers.

k ∈ K set of markets.

t ∈ T stages.

Parameters

cit, cjt inventory holding cost of leader i/follower j in stage t.
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dikt, djkt marginal transportation cost to market k of leader i/follower j

in stage t.

git, gjt production of leader i/follower j in stage t.

mjkt rate of refund on sales to market k in stage t for follower j.

p̂k floor price at market k.

qik annual quota for sales in market k by leader i.

qjk annual volume limit for sales in market k by follower j.

rjk annual budget limit for refund on sales in market k by follower j.

sikt tariff on sales in market k by leader i in stage t.

t̂ the last stage.

ui,0, uj,0 start-of-year inventory of leader i/follower j in stage t.

ûi, ûj inventory target of leader i/follower j.

Variables

pkt market price at market k in stage t, as a linear function of sales.

uit, ujt inventory of leader i/follower j in stage t.

uJ,t the vector of inventory of the followers in stage t.

xikt, xjkt sales in market k by leader i/follower j in stage t.

xJ,kt the vector of sales in market k by the followers in stage t.

αjt Lagrange multiplier for a constraint of product flow for

follower j in stage t.

βkt Lagrange multiplier for a constraint of market floor price

in market k in stage t.

γjk Lagrange multiplier for a constraint of annual volume limit

on sales in market k by follower j.

λjk Lagrange multiplier for a constraint of annual budget limit

on refund for sales in market k by follower j.

μj Lagrange multiplier for a constraint of meeting inventory

target by follower j.
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9.3 Formulation

In the game-theoretic inventory model, each leader solves an optimization problem

assuming that the other leaders’ strategies are fixed, and the optimal responses

of the followers to the leaders’ strategies are known, and each follower solves an

optimization problem given that the leaders’ strategies and the other followers’

strategies are fixed. The game-theoretic inventory model solves the leaders’ op-

timization problems simultaneously. If each leader’s strategy is optimal given the

others’ fixed strategies, then the set of strategies is a Nash equilibrium for the game.

We present the optimization problem for a leader i ∈ I as follows.

max
xikt,uit

P
kt

³
pkt
³P

i0 xi0kt +
P

j xjkt(xI,kt)
´
− sikt

´
xikt −

P
kt

cituit

−
P
kt

diktxikt, (9.1)

s.t. Product flow:P
k

xikt + uit − ui,t−1 − git = 0, ∀t ∈ T, (9.2)

Market floor price:

pkt (
P

i0 xi0kt)− p̂k ≥ 0, ∀k ∈ K, t ∈ T, (9.3)

Annual quota for sales:

qik −
P

t xikt ≥ 0, ∀k ∈ K, (9.4)

Meeting inventory target:

uit̂ − ûi ≥ 0, (9.5)

Decision variable domain:

xikt, uit ≥ 0, ∀k ∈ K, t ∈ T. (9.6)

The decision variables are the sales xikt and inventory uit. Expression (9.1) defines

that the objective is to maximize the payoff, in which the other leaders’ sales are

fixed and the followers’ sales are optimal responses to the set of the leaders’ sales

xI,kt. Note that pkt is a linear function of sales which gives rise to a quadratic

optimization problem. Constraint (9.2) defines the product flow, in which the sales
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and inventory are balanced with the past inventory and the production in each

stage. Constraint (9.3) defines that the market price for the total sales of the

leaders are above the market floor price. This implies that the leader needs to

ensure its sales do not exceed the residual market capacity given the other leaders’

sales. Constraint (9.4) states that the total sales in a market are below the annual

quota. Constraint (9.5) states that the inventory in the last stage is above the

inventory target, and constraint (9.6) defines the domain of the decision variables.

The optimization problem for a follower j ∈ J is as follows.

max
xjkt,ujt

P
kt

³
pkt

³P
i xikt +

P
j0 xj0kt

´´
xjkt −

P
kt

cjtujt −
P
kt

djtxjkt, (9.7)

s.t. Product flow:P
k

xjkt + ujt − uj,t−1 − gjt = 0, ∀t ∈ T, (9.8)

Market floor price:

pkt
³P

i xikt +
P

j0 xj0kt
´
− p̂k ≥ 0, ∀k ∈ K, t ∈ T, (9.9)

Annual volume limit for sales:

qjk −
P

t xjkt ≥ 0, ∀k ∈ K, (9.10)

Annual budget limit for refund on sales:

rjk −
P

tmjktxjkt ≥ 0, ∀k ∈ K, (9.11)

Meeting inventory target:

ujt̂ − ûj ≥ 0, (9.12)

Decision variable domain:

xjkt, ujt ≥ 0, ∀k ∈ K, t ∈ T. (9.13)

The decision variables are the sales xjkt and inventory ujt. Expression (9.7) defines

that the objective is to maximize the payoff, given that the leaders’ sales and the

other followers’ sales are fixed. Constraint (9.8) describes the product flow, in

which the sales and inventory are equal to the past inventory and the production

in each stage. Constraint (9.9) states that the market prices for the total sales of
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the leaders and followers are above the market floor price, which implies that the

follower needs to ensure its sales do not exceed the residual market capacity given

the other players’ sales. Constraint (9.10) states that the total sales in a market

are below the annual volume limit, and constraint (9.11) states that the refund for

the total sales in a market are below the annual budget limit. Constraint (9.12)

states that the inventory in the last stage meets the inventory target, and constraint

(9.13) defines the domain of the decision variables.

9.4 Equilibrium problem with equilibrium con-

straints

Since each of the followers’ optimization problems can be reformulated as a set of

equilibrium constraints, our model can be reformulated as an equilibrium problem

with equilibrium constraints (denoted EPEC) (see [55]). The EPEC is a set of

mathematical programs with equilibrium constraints (denoted MPECs) with one

for each leader. The MPEC for a leader is its optimization problem with the set of

equilibrium constraints for the followers’ optimization problems. In the EPEC, the

set of MPECs are simultaneously solved for a solution.

The formulation of the MPEC for a leader i ∈ I is as follows.

max
xikt,uit,xJ,kt,uJ,t

P
kt

³
pkt
³P

i0 xi0kt +
P

j xjkt
´
− sik

´
xikt −

P
kt

cituit

−
P
kt

diktxikt, (9.14)

s.t. constraints (9.2), (9.4)-(9.6), and

Equilibrium constraints for the followers’ problems:P
k

xjkt + ujt − uj,t−1 − gjt = 0 ⊥ αjt free, ∀j ∈ J, t ∈ T, (9.15)

pkt

³P
i0 xi0kt +

P
j xjkt

´
− p̂k ≥ 0 ⊥ βkt ≥ 0, ∀k ∈ K, t ∈ T, (9.16)

qjk −
P

t xjkt ≥ 0 ⊥ γjk ≥ 0, ∀j ∈ J, k ∈ K, (9.17)
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rjk −
P

tmjktxjkt ≥ 0 ⊥ λjk ≥ 0, ∀j ∈ J, k ∈ K, (9.18)

ujt̂ − ûj ≥ 0 ⊥ μj ≥ 0, ∀j ∈ J, (9.19)

djkt −
µ

∂

∂xjkt
pkt
³P

i0 xi0kt +
P

j xjkt
´¶
(xjkt + βkt)−

pkt
³P

i0 xi0kt +
P

j xjkt
´
+ αjt + γjk +mjktλjk ≥ 0 ⊥

xjkt ≥ 0, ∀j ∈ J, k ∈ K, t ∈ T, (9.20)

αjt − αj,t+1 + cjt ≥ 0 ⊥ ujt ≥ 0, ∀j ∈ J, t < t̂, (9.21)

αjt − μj + cjt ≥ 0 ⊥ ujt ≥ 0, ∀j ∈ J, t = t̂, (9.22)

The decision variables are the sales xikt and inventory uit of the leader and the set

of sales xJ,kt and inventory uJ,t of the followers. Expression (9.14) defines that the

objective is to maximize the payoff, in which the sales of the other players are fixed.

Constraints (9.15) to (9.19) are the equilibrium constraints for the constraints in the

followers’ problems, and constraints (9.20) to (9.22) are the equilibrium constraints

for the derivatives of the objectives over the decision variables in the followers’

problems. In constraint (9.15), the left hand side of ⊥ is an equality constraint,

and the Lagrange multiplier is a free variable, that is, its domain is unrestricted. In

each of constraints (9.16) to (9.22), at least one of the constraints in the two sides

of ⊥ is an equality in a solution to the MPEC.

There is large amount of literature on using EPECs, MPECs, and MCPs (mixed

complementarity problems), particularly in the electricity industry. For example,

a recent paper [15] solves a leader-follower game using an EPEC, and [54] solves

a competing-firms game using an MCP. However, due to the non-convexity of the

feasible region, any MPEC may have local optima, and so a candidate solution for

the EPEC found by mathematical programming software may not be an equilibrium

for the game. A recent development in solving MPECs is the sequential quadratic

programming approach (SQP) presented in [32]. But it can only find a stationary

point and thus does not guarantee to find a global maximum point to an MPEC.
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In our computational experiments in chapter 10, we will show that the EPECs

are difficult to solve in all but simple cases. Hence we have not used the EPECs

approach to solve our model.

9.5 Algorithm

To solve the model, we implement an algorithm that uses a grid search followed by

a sequential best response. In a grid search, we divide the strategy space of each

leader into a discrete grid. We then fix the strategy of each leader i0, i0 6= i, and

solve the followers’ optimization problems for each point in i’s grid to search for the

optimal point for leader i. We use a coarse grid, for example with an increment of

1, and a fine grid, for example with an increment of 0.01. Sequential best response

means that we repeatedly solve each leader’s optimization problem in turn, keeping

the others’ strategies fixed until the set of leaders’ strategies converges (see [33]).

This algorithm aims to find one equilibrium of the game at termination.

Define Xi as a grid in the strategy space of leader i, i ∈ I, and define xi ∈ Xi
as a point of Xi. Define k as the iteration count. Define zi as the payoff of leader i

after solving the followers’ optimization problems. Define x∗ik as the optimal point

on Xi and z
∗
ik as the optimal payoff for leader i in iteration k. Then the algorithm

performs the following steps.

Coarse grid search

1. For each i ∈ I, initialize a coarse grid Xi for the entire strategy space of i.

2. Set k = 0, initialize x∗i0 = 0 for i ∈ I.

3. For each i ∈ I,

(a) set z∗ik = −∞, and fix xi0 as x∗i0,k−1 or x∗i0,k if x∗i0,k exists, i0 ∈ I, i0 6= i,

(b) for each xi ∈ Xi,
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i. solve the followers’ problems to give zi,

ii. if zi > z
∗
ik, then let z

∗
ik = zi and x

∗
ik = xi.

4. If x∗ik 6= x∗i,k−1 for any i ∈ I, then set k = k + 1 and return to step 3.

Fine grid search

5. For each i ∈ I, initialize a fine grid Xi for a neighbourhood around x∗ik.

6. Repeat step 3 and step 4.

Coarse grid verification

7. For each i ∈ I, initialize a coarse grid Xi for the entire strategy space of i.

8. For each i ∈ I,

(a) fix xi0 as x
∗
i0,k, i

0 ∈ I, i0 6= i,

(b) for each xi ∈ Xi,

i. solve the followers’ problems,

ii. if zi > z
∗
ik but xi 6= x∗ik , then go back to step 1.

The coarse grid search uses sequential best response with a coarse grid and re-

sults in an equilibrium in the coarse grid. Starting from this equilibrium, the fine

grid search uses sequential best response with a fine grid and results in an equilib-

rium in the fine grid. Given this equilibrium, the coarse grid verification searches for

the global optimal strategy for each leader with the other leaders’ strategies fixed

at the equilibrium solution, and compare this to the leader’s equilibrium strategy to

examine the validity of the equilibrium. If the algorithm cannot find an equilibrium,

we need to run the algorithm for different sized grids.

Note that this algorithm has two main limitations. An optimal solution obtained

in a discrete grid may not be a true optimum in a continuous strategy space, and
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thus an equilibrium obtained may not be a true equilibrium. On the other hand,

since the dimension of a grid depends on the leader’s strategy space, the CPU time

grows exponentially as the dimension of the grid increases, so this approach is only

feasible for problems having low dimension.
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Chapter 10

Computational experiments

In this chapter, we will perform computational experiments on the game using two

sets of data. At first, we present the result for a game with a set of real data, and

investigate the impact of intervention price, tariffs and quotas and inventory holding

costs on the leaders’ strategies in equilibrium. We observe that the result of this

game is very simple. We consider that the game could be far more complicated, say

if the current situation of the market is changed, and to illustrate this, we use a set

of fictitious data. To illustrate the nature of this game, we will present a simplified

version of the game where the leaders act together as a single leader and present its

optimal strategies. Then we show that the strategies are different when the leaders

compete, where simultaneous optimization leads to an equilibrium. We describe

five equilibria, and illustrate the equilibria using the leaders’ best responses. Then

we use sequential best response to illustrate how the leaders’ strategies evolve given

their starting strategies. Finally we investigate the impact of inventory holding cost

on equilibrium.

10.1 A game with real data

In this section, we describe the real data, and present the result of the game as well

as the impact of intervention price, tariffs and quotas and inventory holding costs

on the leaders’ strategies.
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10.1.1 Data

In our experiment there are three players with Fonterra and Australia being leaders

and EU being a follower in decision making. There are two markets, the European

market (denoted UM) and the world market (denotedWM). We assume the decision

horizon is two-stage, with stage 1 being the first half of the year and stage 2 being

the second half. For simplicity, we restrict attention to only one product, butter,

which is one of the main products in the dairy market and is regulated by the

intervention system.

We obtain data from two sources, the United States Department of Agriculture

(USDA)1, and Datum2. We use the data from USDA for annual exports, consump-

tions and ending stocks, and the data from Datum for the other data. The data

from USDA is for some selected countries only, which are (in the order of continents

they are in) Canada, Mexico, USA, Brazil, European Union (excluding Bulgaria

and Romania), Russia, Ukraine, India, Japan, Taiwan, Australia and New Zealand.

We use the data for New Zealand as identical to that for Fonterra. The data for

New Zealand are for the year ending in May which coincides with Fonterra’s pro-

duction year, the data for Australia are for the year ending in April, and the data

for the European Union are for the year ending in December.

The prices in the data for the European Union are measured in Euros. These

are converted to NZ dollars with an exchange rate of 1.9, which is the average of

the exchanges rates in 2006/7. The world market prices in the data are measured

in US dollars. These are converted to NZ dollars with an exchange rate of 1.45,

which is also the average in 2006/7. Henceforth all prices and costs are expressed

in New Zealand dollars.

We assume that for each country outside the European Union, domestic con-

sumption is its first priority, and thus its exports are what it will sell to the rest

1The home page of USDA is http://www.usda.gov/.
2Datum is the information service of DairyCo, which is the dairy sector company of British

dairy farmers. The home page of Datum is http://www.mdcdatum.org.uk/.
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of the world. Hence we use the exports as the productions of the leaders in the

model. The annual export from New Zealand in 2006 is 400 thousand tonnes, and

the annual export from Australia is 70 thousand tonnes. We have no exact data

about the exports in each half of a year. We cannot estimate them either, since the

countries may use inventory to smooth the supply to the market, even though milk

supply has peak and off-peak months. Hence we assume that the export in each

stage is half of the annual export. This gives 200 thousand tonnes per stage for

Fonterra, and 35 thousand tonnes per stage for Australia. On the other hand, the

annual production from the European Union is 2,055 thousand tonnes (average of

productions in 2006 and 2007). We use this as the production of EU, and assume

that the production in each stage to be half of this quantity, which gives roughly

1,027 thousand tonnes per stage. Note that in the optimization models in Part I,

the solution of the DN model gives an annual export of 367 thousand tonnes, which

is 90% of the real data.

We observe that each country has an ending stock in each year. We use the

ending stock in year 2005 as the start-of-year inventory for Fonterra and Australia,

which is 23 thousand tonnes for Fonterra, and 16 thousand tonnes for Australia.

On the other hand, the data from Datum gives 188 thousand tonnes for the total

stock in intervention and private storage aid on June 15, 2006. This is used as

EU’s start-of-year inventory. We assume the inventory target for each player is its

start-of-year inventory.

The average wholesale price in the European Union in year 2006 is $4,849 per

tonne, and the average wholesale price in the world is $2,797 per tonne. The annual

domestic consumption in the European Union is 1,950 thousand tonnes, and we use

this as the demand in UM. The total annual exports from the selected countries

including the European Union is 778 thousand tonnes, and we use this as the

demand in WM. We have no information about the consumptions in each half of

the year, but we assume the demands are roughly equal. Thus the demand in UM

is 975 thousand tonnes in each stage, and that in WM is 389 thousand tonnes in
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each stage.

We use the wholesale prices and demands to derive price-demand curves for the

markets. We assume that there is a reference price in each market. The market

price for sales at the demand is 95% of the reference price, which is the wholesale

price that we have, and the market price for zero sales is 105% of the reference

price. For UM, the reference price is 5,104. 105% of this price gives the intercept

in the price-demand curve which is 5,359, and 10% of this price over the demand

gives the negative slope which is roughly 0.5 per thousand tonnes. For WM, the

reference price is 2,944, which gives an intercept of 3,091 and a negative slope of

roughly 0.75 per thousand tonnes.

The intervention price for the year 2006 is $4,931 per tonne, which was set on

July 1, 2006. Note that this price is higher than the average wholesale price 4,849 in

the year, but by only a small difference. This implies that as we have described in

the chapter of the European dairy market, the intervention price is not a threshold

on the price in the market, but it does maintain the market price. Hence the

modeling assumption that the intervention price is a floor price is reasonable.

The current access tariff for New Zealand is 1,651 per tonne and the annual

quota is 77 thousand tonnes. The current access tariff for Australia for butter is

not available. The minimum access tariff for each country is 1,801 per tonne and

the annual quota is 10 thousand tonnes. For Fonterra, the annual quota is the total

of the two quotas, which is 87 thousand tonnes, and the tariff is the average of the

total tariff paid for sales at the total quota, which is 1,681. For Australia, we use

the minimum access tariff and quota.

In the restitution system, the annual volume limit on the exports of the Euro-

pean Union is 393 thousands tonnes, and the annual budget limit is 1,801 million

dollars, which are used for EU in the model.

We assume that Fonterra, Australia and EU have the same marginal trans-

portation costs. The transportation cost to UM is assumed to be that used in the

optimization models in Part I, which is $300 per tonne, and the cost to WM is the
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average of the cost to the other three markets, America, Japan and Oceania, which

is $360 per tonne. We also assume that they have the same inventory holding cost

in each stage. This is six times the monthly storage cost in the optimization models

in Part I (since it is for six months), which is $210 per tonne.

In the result we measure the sales in units of thousands of tonnes, and measure

the payoffs in millions of NZ dollars.

10.1.2 Result

We solve the game and display the players’ strategies in Table 10.1. The leaders’

sales in UM in stage 1 are at their quotas. They have no inventory in stage 1 to save

inventory holding costs, and their inventory in stage 2 is at the inventory target.

EU takes the residual capacities in UM in both stages, and thus the market prices

are at the intervention price 4,931. EU has an inventory higher than the inventory

target in stage 2, since its total sales to WM are at the annual volume limit. The

market prices in WM are 2, 755 and 2, 853. Fonterra has a payoff of $1, 019 million,

Australia has a payoff of $170 million, and EU has a payoff of $8, 344 million.

Fonterra’s sales Australia’s sales EU’s sales

stage 1 stage 2 stage 1 stage 2 stage 1 stage 2

UM 87 0 10 0 759 856

WM 136 177 41 19 271 122

Table 10.1: The players’ sales (in thousand tonnes).

Since the leaders’ total sales in UM are at their quota, a varying intervention

price has no impact on the leaders’ sales in UM, unless the intervention price is

above 5,310, where the market capacity in UM in stage 1 would be lower than the

total quota of the leaders. However, observe in the solution that EU is not able

to sell all products to UM, so a lower intervention price will allow EU to sell more

products in UM, resulting in a higher payoff. The leaders’ payoffs are also higher,

since EU sells less in WM resulting a higher market price in WM. If the intervention
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price is below 4,757, then EU can sell all products to UM and thus its payoff is

at its maximum which is $9, 214 million, and the leaders also have their maximum

payoffs which are $1, 047 million and $179 million. This implies that all players

prefer a low intervention price.

We observe that the market prices in UM and WM differ by 2,176 and 2,078 in

each stage. These are higher than the tariffs for the leaders, which are 1, 681 for

Fonterra and 1, 801 for Australia. This implies that if the tariffs were lifted, the

leaders would not transfer sales in UM to WM in either stage. Setting the tariffs to

zero gives the same solution, but Fonterra’s payoff increases from $1, 019 million to

$1, 165 million (by $146 million), and Australia’s payoff increases to $188 million.

Now suppose the quotas are lifted but the tariffs remain. As shown in Table

10.2, the leaders only sell products to UM. They have no inventory thereby saving

holding cost. EU takes the residual capacity in UM and the market prices in UM

are at the intervention price. Fonterra’s payoff is $1, 173 million (an increase of

$154 million), and Australia’s payoff is $195 million.

Fonterra’s sales Australia’s sales

stage 1 stage 2 stage 1 stage 2

UM 223 177 51 19

WM 0 0 0 0

Table 10.2: Leaders’ sales (in thousand tonnes) if quotas are lifted.

If both quotas and tariffs are lifted, then the leaders have the same strategies as

those when only the quotas are lifted, and their payoffs increase to $1,848 million

(by $829 million) and $321 million. These results show that quotas and tariffs have

seriously eroded Fonterra’s payoff.

We observe that in the result, the market prices in WM are 2,755 and 2,853 in

each stage. If the inventory holding cost for EU is low, then EU will have a large

inventory to sell more in WM in stage 2 resulting in closer market prices in WM

in the two stages. The leaders’ sales remain unchanged, even if the leaders holding
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costs are also low. In these circumstances, the leaders have higher payoffs.

However, if the holding costs of the leaders are zero, then there are many equi-

libria. In each of these equilibria, the leaders’ sales are at the quotas in UM, and

they have different sales in UM in two stages. For example, in one equilibrium,

Fonterra sells 32 in stage 1 and 55 in stage 2, and Australia sells 0 and 10, and in

another equilibrium, Fonterra sells 66 in stage 1 and 21 in stage 2, and Australia

sells 10 and 0. In response, EU takes the residual market capacity in UM. In WM,

Fonterra’s sales are 156.5 and Australia’s are 30 in each stage, and the market price

is 2,804 in each stage. The leaders have the same payoffs in each equilibrium.

Note that if we fix Australia’s strategy as the equilibrium solution, and solve

an MPEC for Fonterra, then we obtain a solution in Table 10.3, where the sales of

Fonterra and EU are displayed. In this solution, Fonterra’s sales are not at the quota

level, but its payoff is $992 million, which is lower than the payoff $1, 019 million

that we have found using our algorithm. This shows that the MPEC solution is not

a global optimal solution to Fonterra, and thus it shows that, as we have stated in

chapter 9, treating even this simple game as an EPEC and applying mathematical

programming techniques such as GAMS/PATH will not yield an equilibrium.

Fonterra’s sales EU’s sales

stage 1 stage 2 stage 1 stage 2

UM 4.5 36.5 841.5 819.5

WM 174 185 193.75 199.25

Table 10.3: The sales of Fonterra and EU in an MPEC solution.

10.2 A game with fictitious data

The game with real data in the previous section gives a single intuitive equilibrium.

This emerges because both leaders are too small to have a major effect on the

follower’s strategy. When the leaders have more market power, the game structure
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is actually far more complicated than the result has shown. To illustrate this, we

solve the game with some fictitious data.

10.2.1 Data

In our fictitious game, we assume that Fonterra’s exports are 1,830 thousand tonnes

in stage 1 and 923 thousand tonnes in stage 2. This might result from the acquisition

of other producers, or collaboration in a cartel with others. In a similar vein,

we assume Australia forms a cartel with some large producers in the world, say

America, and Australia acts for the cartel. The cartel’s exports are lower than the

Fonterra group, say 1,445 thousand tonnes in stage 1 and 695 tonnes in stage 2.

Henceforth we shall refer to the Australian cartel as Australia and the Fonterra

group the name Fonterra. On the other hand, we assume that the European Union

lifts the milk production quotas on its member countries (which currently limits

their production), which results in large increases in production for EU, to 2,403

thousand tonnes in stage 1 and 1,157 thousand tonnes in stage 2. Notwithstanding

this increase, the greater increase in capacity of Fonterra and Australia gives them

more market power than previously, which they exploit in equilibrium.

We relax the inventory target at the end of stage 2 to be zero, so that there

are more options in the players’ sales. We assume a smaller inventory holding cost

of $72 per tonne. We use the same marginal transportation costs as those in the

game with the real data.

We assume a linear price-demand curve in each stage in UM and WM. The

intercepts in the price-demand curves for WM are 3,042 for stage 1 and 2,908 for

stage 2. Then we assume the intercepts for UM are 3,750 higher than those for

WM, which gives 6,792 for stage 1 and 6,658 for stage 2. On the other hand, we

use the same negative slopes for both UM as those in the real data, which are 0.5

per thousand tonnes. We also use this for the price-demand curves for WM.

We use the intervention price in the real data as the intervention price in this

game, which is $4,931 per tonne. To give more options to the players’ sales decisions,
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we assume there are large quotas and zero tariffs for the leaders, and large volume

limit and budget limit on EU’s exports.

In the results, the sales will be measured in units of thousands of tonnes, and

the payoffs will be in million of NZ dollars.

10.2.2 A single-leader-follower game

To illustrate the nature of the leader-follower game, we examine a simplified ver-

sion of the game in which the leaders Fonterra and Australia act together as a

single leader. We observe five optimal strategies for the leader (henceforth denoted

Fonterra) for different intervention prices. Hereby we define a strategy by its gen-

eral characteristics but we do not quantify it. Thus at different intervention prices

a strategy may have different sales decisions. One common characteristic of these

strategies is that Fonterra sells all products to UM due to the high market price,

and thus sells nothing to WM. Then given its sales in UM in stage 1, Fonterra’s

sales in UM in stage 2 are fixed, and thus its strategy can be represented by its

sales in UM in stage 1.

When the intervention price is lower than 4,515, Fonterra’s optimal strategy is

an unconstrained strategy. We illustrate this strategy in Figure 10.1, where the

UM capacities in the two stages are represented by rectangles, each containing a

green rectangle denoting Fonterra’s sales, and a blue one representing EU’s sales.

The coloured arrows represent transfers of butter though inventory.

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Figure 10.1: Unconstrained strategy.
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In this strategy, Fonterra sells all products to UM in both stages and has a small

amount of inventory. In response, EU sells all products to UM in both stages and

has inventory. Note that in each stage the total sales are below the market capacity

and thus the market price is above the intervention price. The sales in this strategy

are constant for each intervention price, since the market price is not constrained

by the intervention price.

When the intervention price reaches 4,515, Fonterra changes to a large-inventory

strategy, which is illustrated in Figure 10.2. In UM, Fonterra has small sales in stage

1, and has a large inventory for large sales in stage 2. EU takes the residual UM

capacity in stage 2 and thus sells the remaining production in stage 2 to WM. The

market price in stage 2 is at the intervention price. Thus Fonterra has small sales

for a high market price in stage 1 and has large sales in stage 2 for the intervention

price, thereby incurring a large storage cost. This implies that Fonterra exploits

the intervention price in stage 2.

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Figure 10.2: Large-inventory strategy.

We observe Fonterra’s payoff curves with respect to its sales in UM in stage

1 with the intervention price at 4,514 and 4,515. These two payoff curves have

two local maxima, as shown in Figure 10.3. (Other parts of the curves are ignored

since they are lower.) The unconstrained strategy gives the maximum at B, and

the large-inventory strategy gives the maximum at A (having small sales). As the

intervention price increases to 4,515, the global maximum switches from B to A,

and thus Fonterra’s optimal strategy changes to the large-inventory strategy.
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Figure 10.3: Fonterra’s payoff curves for intervention price at 4,514 and 4,515.

The large-inventory strategy remains Fonterra’s optimal strategy, until the in-

tervention price reaches 4,844, where Fonterra changes to a zero-inventory strategy.

As shown in Figure 10.4, Fonterra has a zero inventory, and sells its entire produc-

tion in UM in each stage. Due to the high intervention price and thus a low market

capacity, EU takes the residual UM capacity in both stages, and thus the market

prices are at the intervention price.

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Stage 1 Stage 2

Fonterra’s sale

EU’s sale

Figure 10.4: Zero-inventory strategy.

We observe that when the intervention price increases from 4,843 to 4,844,

Fonterra’s sales in UM in stage 1 switch between two local maxima. We display

the payoff curves in Figure 10.5. (Other parts are ignored.) The large-inventory
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strategy gives the maximum at A (having small sales), and the zero-inventory

strategy gives the maximum at B (having maximum sales). As the intervention

price increases from 4,843 to 4,844, the global maximum changes from A to B,

which induces the change of Fonterra’s optimal strategy.
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Figure 10.5: Fonterra’s payoff curves for intervention price at 4,843 and 4,844.

The zero-inventory strategy is Fonterra’s optimal strategy for the intervention

price between 4,844 and 5,155. When the intervention price is between 5,155 and

5,501, Fonterra’s optimal strategy is a forced-inventory strategy, which is illustrated

in Figure 10.6. Due to the low market capacity of UM in stage 1, Fonterra has to

store in stage 1. EU takes the residual UM capacity in stage 2 and the market

prices in both stages are at the intervention price.

When the intervention price is at 5,501, the total market capacity in UM in

two stages is equal to Fonterra’s total production. As illustrated in Figure 10.7,

Fonterra takes the entire market in UM in both stages, and is forced to sell products

to WM. We call this a forced-sales strategy. This strategy is Fonterra’s optimal

strategy for an intervention price from this point to the maximum 6,658, which is

the intercept of price-demand curve for UM in stage 2.
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Stage 1 Stage 2

EU’s sale

Fonterra’s sale

Stage 1 Stage 2

EU’s sale

Fonterra’s sale

Figure 10.6: Forced-inventory strategy.

Stage 1 Stage 2

Fonterra’s sale

Stage 1 Stage 2

Fonterra’s sale

Figure 10.7: Forced-sales strategy.

We observe that the switches of Fonterra’s strategies have a large impact on

EU. When Fonterra changes its optimal strategy to the large-inventory strategy at

4,515, some of EU’s sales in UM in stage 2 are pushed out and thus sold to WM at

a low market price. Thus there is a jump in EU’s payoff curve at this intervention

price, which is point A in Figure 10.8. Then as Fonterra changes from the large-

inventory strategy to the zero-inventory strategy at 4,844, which is point B in the

figure, EU is able to capture the residual market capacities in UM by selling more

products, and thus its payoff jumps up.
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Figure 10.8: EU’s payoff curve with two jumps.
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10.2.3 A two-leader-follower game

The previous result assumes Fonterra and Australia act together as a single leader,

but in reality they compete. To illustrate the effect of competition, we compute

Fonterra’s payoff with respect to its sales in UM in stage 1 if Australia plays an un-

constrained strategy. This is displayed in Figure 10.9, which shows that Fonterra’s

optimal strategy is to have large sales of 1,445, which is its unconstrained strategy.
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Figure 10.9: Fonterra’s payoff if Australia plays an unconstrained strategy.

On the other hand, in Figure 10.10 we display Fonterra’s payoff with respect to

its sales in UM in stage 1 if Australia plays a large-inventory strategy, of which the

two local maxima are displayed in detail in Figure 10.11. The later figure shows

that Fonterra’s optimal strategy is to have small sales in stage 1 and thus a large

inventory, which is its large-inventory strategy.

These show that a leader may have a different optimal strategy if the other

leader plays a different strategy, and thus each leader should take into account the

other leader’s strategy when making decisions. Since the leaders are seeking their

optimal strategies simultaneously, a Nash equilibrium is sought. At equilibrium,
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Figure 10.10: Fonterra’s payoff if Australia plays a large-inventory strategy.

the leaders have different strategies from those in the optimal solution described in

the previous section.

For example, for an intervention price at 4,564, if the leaders compete, there are

two equilibria. In Table 10.4, we display their sales in UM in two stages (sales in

WM are zero) in the optimal solution when the leaders act as a cartel, and those

at the equilibria when they compete.

Fonterra’s sales Australia’s sales

Cartel solution 1,098 and 3,795

Equilibrium A 732 and 2,021 732 and 1,408

Equilibrium B 1,445 and 1,308 1,139 and 1,001

Table 10.4: Optimal solution and equilibrium.

At both equilibria, the total sales of the leaders in each stage are different from

that in the cartel solution, and thus the leaders have used different strategies. The

total payoff of the leaders in competition is lower than the payoff in the cartel
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Figure 10.11: Local maxima in Fonterra’s payoff.

solution, which implies competition hurts the total benefit of the leaders.

In the next section, we will describe the leaders’ strategies at the equilibria for

different intervention prices.

10.2.4 Equilibrium

We observe five equilibria at different intervention prices, in which the leaders use

one of the strategies described in the single-leader-follower game, which are the

unconstrained strategy, large-inventory strategy, zero-inventory strategy, forced-

inventory strategy and forced-sales strategy. Note that the leaders sell all products

to UM, and thus their strategies can be represented by their sales in UM in stage

1.

The first equilibrium exists when the intervention price is below 4,578. At

this equilibrium, each leader plays an unconstrained strategy. We illustrate this

equilibrium in Figure 10.12.

In the figure, the UM capacities in the two stages are represented by rectan-
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Stage 1 Stage 2

Fonterra’s sale

Australia’s sale

EU’s sale

Stage 1 Stage 2Stage 1 Stage 2

Fonterra’s sale

Australia’s sale

EU’s sale

Figure 10.12: An equilibrium at which each leader plays an unconstrainted strategy.

gles, Fonterra’s sales and inventory are denoted by green rectangles and arrow,

Australia’s sales and inventory are denoted by yellow rectangles and arrow, and

EU’s sales and inventory are denoted by blue rectangles and arrow. In each stage,

the total sales are below the market capacity and the market price is above the

intervention price. The players’ sales do not change with a varying intervention

price.

A second equilibrium which is displayed in Figure 10.13 appears when the inter-

vention price is at 4,564 but disappears at 4,901. In this equilibrium, both leaders

play a large-inventory strategy. In response, EU takes the residual UM capacity in

stage 2 and thus the market price in stage 2 is at the intervention price.

Stage 1 Stage 2

Fonterra’s sale

Australia’s sale

EU’s sale

Stage 1 Stage 2Stage 1 Stage 2

Fonterra’s sale

Australia’s sale

EU’s sale

Figure 10.13: An equilibrium where both leaders play a large-inventory strategy.

A third equilibrium emerges for an intervention price between 4,576 and 5,155.

As shown in Figure 10.14, each leader plays a zero-inventory strategy by selling its

production in UM in each stage. EU sells products in UM in both stages.

A fourth equilibrium appears when the intervention price is above 5,155 and
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Australia’s sale
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Figure 10.14: An equilibrium where each leader plays a zero-inventory strategy.

below 5,501, which is illustrated in Figure 10.15, where the leaders play a forced-

inventory strategy. In stage 1, the leaders’ total production exceeds the market

capacity, and thus they have some inventory to sell in UM in stage 2. EU takes the

residual UM capacity in stage 2, and sells products in WM in both stages.

Stage 1 Stage 2

Fonterra’s sale

Australia’s sale EU’s sale

Stage 1 Stage 2

Fonterra’s sale

Australia’s sale EU’s sale

Figure 10.15: An equilibrium where each leader plays a forced-inventory strategy.

The last equilibrium appears when the intervention price is at and above 5,501,

which is illustrated in Figure 10.16. The total market capacity in UM is lower

than the total production of the leaders, and thus each leader plays a forced-sales

strategy selling some productions to WM. EU has to sell all products to WM.

We observe that there is one equilibrium when the intervention price is below

4,564 and above 4,901, two equilibria between 4,564 and 4,576 and between 4,678

and 4,901, and three equilibria between 4,576 and 4,578. The equilibria at one

particular intervention price can be illustrated using a plot of best responses of the

leaders, which is described in the next section.
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Figure 10.16: An equilibrium where each leader plays a forced-sales strategy.

10.2.5 Best response

The equilibria for an intervention price can be illustrated by plotting the best re-

sponses of the leaders. In the best response, each leader’s optimal strategy is a

function of the other leader’s strategy. If the best responses intersect, say at some

points, then each of these points is an equilibrium, otherwise there is no equilib-

rium. We display the best responses for three intervention prices, where one, two

and three equilibria exist respectively.

When the intervention price is at 4,550, we obtain the best responses in Figure

10.17. Fonterra’s best response defines its optimal strategy given Australia’s sales

in UM in stage 1 between 0 and 1,445, and Australia’s best response defines its

optimal strategy given Fonterra’s sales in UM in stage 1 between 0 and 1,830. Note

that the maximum sales are their production in stage 1.

We observe that the best responses are discontinuous and they intersect at

point A. At point A, Fonterra’s strategy is 1,445 and Australia’s strategy is 1,139,

which are their unconstrained strategies. There is only one equilibrium for this

intervention price.

If the intervention price is 4,564, as shown in Figure 10.18, the best responses

intersect at point A and point B. At point A, the leaders play unconstrained strate-

gies, and at point B, they play large-inventory strategies having small sales in UM

in stage 1. Hence, there are two equilibria for this intervention price.

When the intervention price is at 4,578, we observe three equilibria, since the
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Figure 10.17: Best responses if the intervention price is at 4,550.

best responses shown in Figure 10.19 intersect at three points. The new equilibrium

is at point C, where both leaders are selling their production and thus have zero

inventory, which are their zero-inventory strategies.

Note that since in the unconstrained strategy and the zero-inventory strategy,

the leaders’ sales decisions do not change with a varying intervention price, the

positions of point A and point C are fixed. But in the large-inventory strategy,

the leaders’ sales change as the intervention price changes, and thus the position of

point B varies.
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Figure 10.18: Best responses if the intervention price is at 4,564.
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Figure 10.19: Best responses if the intervention price is at 4,578.
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10.2.6 Sequential best response

With the best responses, we can not only identify an equilibrium, but also illustrate

why a pair of strategies is not an equilibrium. For example, Figure 10.20 shows the

best responses for intervention price at 4,579, just one above the intervention price

in the previous example. The best responses intersect at point B and C, but not at

point A.
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Figure 10.20: Sequential best response with the intervention price at 4,579.

If Fonterra’s sales are at point A, then Australia’s best response are the sales

at point A. But then in response, Fonterra’s sales will change to point E, and then

Australia’s sales will change to point C. Hence, the pair of strategies at point A is

not an equilibrium for this intervention price.

Using sequential best response, we can also identify which equilibrium the lead-

ers’ strategies will converge to given a starting value of a leader’s strategy, say X.

For example, in the best responses of the leaders at the intervention price of 4,564,

as shown in Figure 10.21, we divide the feasible space of Fonterra’s sales in UM in

stage 1 into three ranges by point M and point N. Point M is where Fonterra’s sales
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are discontinuous. Note that Fonterra’s sales at point M are slightly lower than its

sales at the equilibrium at point B. Point N is where Australia’s best response is

discontinuous.
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Figure 10.21: Sequential best response given that Fonterra has low starting sales.

If Fonterra’s starting sales X are lower than point M, as shown in the figure,

Australia would respond with sales at point F. In response, Fonterra’s sales would

be at point G, and then Australia’s sales would be at point H, and so on. It is easy

to see that their sales would converge to the equilibrium at point A.

But suppose Fonterra starts with sales between point M and N, as shown in

Figure 10.22, which is an enlarged picture of the previous figure. In response,

Australia would have sales at point R, and then Fonterra would have sales at point

S. Australia then would have sales at point T, and so on. This would converge to

the equilibrium at point B.

However, if Fonterra’s starting sales are higher than point N, then as shown

in Figure 10.23, Australia would have sales at point U. Then in response Fonterra

would have sales at point V, and then Australia would have sales at point W, and

so on. The sequential best response would lead to the equilibrium at point A.
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Figure 10.22: Sequential best response given that Fonterra has medium starting

sales.

0

200

400

600

800

1,000

1,200

1,400

1,600

0 500 1,000 1,500 2,000

Fonterra's sales in UM in stage 1

Au
st

ra
lia

's
 s

al
es

 in
 U

M
 in

 s
ta

ge
 1

Fonterra

Australia

NM

U V

W

B

A

X0

200

400

600

800

1,000

1,200

1,400

1,600

0 500 1,000 1,500 2,000

Fonterra's sales in UM in stage 1

Au
st

ra
lia

's
 s

al
es

 in
 U

M
 in

 s
ta

ge
 1

Fonterra

Australia

NM

U V

W

B

A

X

NM

U V

W

B

A

X

Figure 10.23: Sequential best response given that Fonterra has high starting sales.
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10.2.7 Inventory holding cost

In the game with real data, we have shown that the impact of inventory holding

cost on equilibrium is simple. In this section, we will show that in this game, the

impact of inventory holding cost on the equilibrium is more complicated. Suppose

that the inventory holding costs of the players are low, say zero. We observe that

the first three equilibria described in the game with the original costs now exist at

different intervention prices. We present the range of intervention prices supporting

these three equilibria for the two holding costs in Table 10.5, where the equilibria

are defined by the strategies that both leaders play.

Original Zero

Unconstrained (0, 4,578) (0, 4,573)

Large-inventory (4,564, 4,901) (4,533, 5,155)

Zero-inventory (4,576, 5,155) (4,901, 5,155)

Table 10.5: Range of intervention prices supporting equilibria.

With zero holding costs, the equilibrium with the leaders playing unconstrained

strategies disappears at a lower intervention price. The equilibrium where leaders

play large-inventory strategies appears at a lower intervention price but disappears

at a higher intervention price. The equilibrium with leaders playing zero-inventory

strategies emerges at a higher intervention price. Note that the sales are different

between the same strategies with the two holding costs.
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Chapter 11

Conclusion

In this chapter, we give a summary of the thesis, describe the benefits of the research

to Fonterra and how it can be integrated into Fonterra’s system, and outline the

limitations and suggestions for future research.

In Part I of this thesis, we have developed a set of optimization models to assess

the effect of uncertain milk supply on Fonterra’s earnings, assuming that Fonterra is

a monopoly supplier in the market. The important features that our models include

are uncertain milk supply, inventory, price-demand curves in the spot markets and

contracting. We are the first to model a dairy industry supply chain with these

features using multi-stage stochastic programming.

We have derived a forecast milk supply for a production year that assumes linear

regional growth in milk supply over years, and based on this we have derived two

models for uncertain milk supply. The first model is an additive model, where the

forecast milk supply and the random error are in an additive form. We have used

an autoregressive model for the random error, which is generated from a vector of

independent random variables. We construct a discrete distribution for sampling

the independent random variables by minimizing the Wasserstein metric.

The second model is a multiplicative model, where the forecast milk supply and

the random error are in a multiplicative form. The random error is modelled by a

Markov state and an independent random variable.
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For uncertain milk supply from each of the two models, we have presented six

optimization models, which are the ADO model, the ADOS model, the MSPF

model, the MSPE model, the DE model and the PF model. We have described

an algorithm DOASA to solve the multistage stochastic programming models (the

MSPF model and the MSPE model). We have given a mathematical proof of the

almost-sure convergence of DOASA for linear objective functions.

In an in-sample simulation for the additive policies,

1. the ADO policy has a significant advantage over the ADOS policy, and thus

it is very expensive to commit to a set of sales-projections at the beginning

of the year,

2. the MSPF policy has a significant advantage over the MSPE policy,

3. the MSPF policy has an advantage over the ADO policy and the MSPF policy

has captured most of the difference in earnings in expectation between the

best possible policy and the ADO policy.

We have shown that the main advantage of our policy comes from considering

distress trading at high costs, and in this circumstance it achieves higher expected

earnings by being conservative in making contracts. A synthetic out-of-sample

simulation for these two policies confirms this result.

In an in-sample simulation for the multiplicative policies,

1. the ADO policy has lower earnings in expectation than the ADOS policy,

which implies committing a set of sales-projections at the beginning of the

year is beneficial with low uncertainty in milk supply scenarios generated in

the multiplicative model,

2. the MSPF policy has an insignificant advantage over the MSPE policy,

3. the MSPF policy has an advantage over the ADO policy and has captured

most of the gain by the best possible policy over the ADO policy.
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The additive model for uncertain milk supply takes into account regional cor-

relation in milk supply. On the other hand, the multiplicative model for uncertain

milk supply assumes univariate random variation over the regions, and thus it does

not take account of the variation in each region. In processing the real data, the milk

scenarios generated from this model have small variation. We have shown that the

additive MSPF policy is better than the multiplicative MSPF policy, which implies

that accounting for variation in milk supply between regions is beneficial.

We have shown that allowing extra storage capacity gives gains to both the

ADO policy and the additive MSPF policy, and the MSPF policy maintains its

advantage over the ADO policy which implies that the advantages of the MSPF

policy cannot be replicated by allowing more inventory in the ADO policy. We

have assessed the fixed-price MSPF policy against the MSPF policy with linear

price-demand curves and the ADO policy and shown that not accounting for price

variation in decision making incurs a loss in earnings.

We have extended the portfolio of stochastic programming models with demand

curves to a multistage setting. This has produced promising results in policy sim-

ulation, which supports our hypothesis that our policy from solving a multistage

stochastic programming model is an improvement over a deterministic policy.

In Part II of the thesis, we have described some game-theoretic inventory mod-

els for the European dairy market. We have described the European dairy market

outlining the important regulations on the market which are the intervention sys-

tem, and tariffs and quotas, and have presented a game-theoretic inventory model

for the European dairy market. In the model, we have assumed that Fonterra and

Australia are leaders and the European Union is a follower, and each player has

fixed production and has sales to the European market and the world market. We

have taken into account the intervention system and the tariffs and quotas, and we

have assumed linear price-demand curves for sales.

We have discussed an approach using EPECs, which are difficult to solve in

all but simple cases. To our knowledge, there is no algorithm for solving a gen-
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eral EPEC which can guarantee the solution to be a Nash equilibrium. We have

implemented an algorithm that uses a grid search followed by a sequential best re-

sponse to solve the model, which gives an equilibrium at discrete strategy space at

termination.

We have performed computational experiments to investigate players’ strategies

in different game settings. In a game with real data, we have presented the result

and investigated the impact of intervention price, tariffs and quotas, and inventory

holding cost on the equilibrium. We have shown that all players prefer a lower

intervention price, and that the tariffs and quotas have seriously eroded Fonterra’s

payoff and only zero inventory holding cost will change Fonterra’s strategy in equi-

librium.

We have used fictitious data to illustrate that the game can be far more compli-

cated than the one with real data. In a simplified version of this game, where the

leaders act as a single leader, we have presented five strategies, and the switches

between optimal strategies at different intervention prices. In the game where the

leaders compete, we have described five equilibria. We have shown that there are

different numbers of equilibria at changing intervention prices, and illustrated them

using the best responses of the leaders. We have also computed a sequential best

response to illustrate how the leaders’ strategies will converge to one of the equi-

libria given a leader’s starting strategy. We have also shown that a zero inventory

holding cost will change the range of intervention prices supporting the equilibria.

These results in computational experiments have shown that strategic consid-

erations are important to Fonterra in the European dairy market. Of course these

results are limited by the simplifying assumptions made in the model, and the in-

sights gained from this study are accompanied by this caveat. It appears from the

results that

1. The leaders would prefer low tariffs and large quotas. Any reform by the

European Union Commission to reduce the impact of tariffs and quotas will

benefit the leaders.
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2. The European Union, as a cartel, would prefer a low intervention price as

it may sell more in the European dairy market for high market prices. The

reform will lower the intervention price and thus will benefit the European

Union.

3. If the leaders have small market powers, as those in the simple game, then

the players’ strategies in equilibrium are simple. But if the leaders have large

market powers, as those in the fictitious game, then the result is much more

complicated. Multiple equilibria may exist, and the strategies and equilibria

are sensitive to the market conditions such as the intervention price and the

players’ conditions such as their inventory holding costs.

The supply chain model captures the important features in Fonterra’s produc-

tion planning, such as uncertain milk supply, coordination of production over mul-

tiple regions, processes and products, inventory to smooth variation in demands,

sales over multiple spot markets with price-demand curves, contracting that has

an impact on inventory for several months, and a penalty cost that imitates the

implicit cost to avoid distress trading. Thus it can be used as a benchmark model

of a real problem for Fonterra. It is a monthly-based multistage problem assuming

fixed production capacity and thus can be used as a tool for tactical production

planning. It can be easily extended to a model with a shorter or a longer deci-

sion horizon (for example, eighteen months, the tactical planning horizon used in

Fonterra), manufacturing sites and storage places in each region, and some spe-

cial plants and highly profitable special products, and thus it is very flexible to be

adapted to a real problem.

Note that there are other possible strategies in contracting that have not been

included in this model. For example, we have assumed that contracts are made in

three months in advance, but contracts may have different leading times, say one

month to three months. Delivery of contracts may be delayed through negotiation

with the customers, say by one month. Contract sizes may also be flexible, say

within a range in volume but not a fixed quantity. These strategies in contracting
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may be looked at in future research.

The forecast milk supply is derived by assuming linear regional growth over years

and its estimation takes account of the regional correlation in random variation.

Note that we use this assumption just for convenience, and thus other models could

be used. For example, we observe in some regions the growths are quadratic.

The additive model for milk supply uses an autoregressive model to capture

the serial correlation in random variation. The random variables are independently

sampled, which makes the additive model easy to be implemented. A sample of

milk scenarios shows good coverage of residuals on the residuals of the historical

data, and thus this model can be used to improve the modelling of milk supply and

thus prediction of future milk supply for Fonterra. This would reduce the variation

of milk supply scenarios, and thus improve the earnings of policies. However, we

have only nine years of historical data in deriving the models for uncertain milk

supply, and thus more data, say twenty years of real data, are needed for better

estimates in the model.

If we obtain a better forecast model with more data which results in smaller

variation in milk supply scenarios, then we may assess the difference of earnings of

policies evaluated in the milk scenarios form the two models. This difference gives

the value of reducing variance in forecasts, and thus indicates that if investment for

a better model for forecast is worthy. Furthermore, we may compare the earnings

of policies using our forecast model to those using Fonterra’s clever forecasts to

estimate the value of our forecast model.

We have developed a set of optimization models assuming uncertain milk supply,

and we have assessed the policies by solving these models in simulation experiments.

The main result is that a policy from solving a multistage stochastic programming

model, the MSPF policy, is an improvement over the deterministic policy that

Fonterra currently implements, the ADO policy. This policy captures most of

the difference in earnings between the best possible policy (which is impossible to

attain) and the ADO policy.
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The benefits of the MSPF policy accrue from avoiding distress trading, which

we have modelled inexactly with a single price multiplier. The exact cost may be

lower than the estimates that we have used. As we have shown, if the penalty cost

is low, then the MSPF policy does not have an advantage over the ADO policy.

In practice, distress trading would be only one of many actions that can be taken

by Fonterra to mitigate the losses incurred by not meeting contracts or targets. For

example, it may negotiate with the customer for a delay of contract or a smaller

contract, which incurs a lower loss in earnings than using distress trading. A more

detailed model of the recourse decisions available to Fonterra will provide a better

estimate of the potential savings from a stochastic programming model.

We have shown that Fonterra can achieve higher earnings by obtaining extra

(expensive) storage places. This suggests that Fonterra may be better off by build-

ing extra storage capacity, which gives a lower ongoing cost. To model this, we may

extend our model by allowing such a decision to be made at the beginning of the

year in our policies, and evaluate them in simulation to assess the benefits.

Currently in Fonterra’s production planning, price variation is not taken into

account. We have shown that accounting for prices that depend on sales levels is

important. This may improve Fonterra’s earnings, given that a better estimation

of price-demand curves are obtainable. On the other hand, we have assumed that

price-demand curves are known and fixed, but they may be uncertain, say due to

fluctuation of exchange rates and random shocks in demand. Accounting for this

in our model gives more uncertainty in production planning and may give more

benefit to the MSPF policy.

In the markets, SMP and WMP are substitutes to each other, that is, customers

may purchase either product and thus the market prices for both products depend

on the sales of both products. This would give a different form of price-demand

curve. For example, suppose the sales of SMP are m and the sales of WMP are

n. Then the price-demand curve for SMP is p = a− bm− cn, and that for WMP

is q = d − em − fn. We may assume the price for a product is more sensitive to
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the sales of this product than to the sales of the other, which means b > c and

e < f . The problem can be solved using current mathematical software, say the

QP Simplex method in CPLEX.

We have developed the DOASA algorithm in solving the multistage stochas-

tic programming models. We have given a mathematical proof of the almost-sure

convergence of DOASA for the linear problem, and have shown that it converges

in solving our quadratic problems. This gives support on the applicability of the

algorithm, and would increase confidence in the MSPF policy generated by the

algorithm. The MSPF policy can be generated within 24 hours for our huge scale

problem that is equivalent to a deterministic equivalent problem of billions of con-

straints and variables. Thus the MSPF policy is a good option for Fonterra in

production planning. However, the performance of the algorithm depends on the

dimension of the state variables. For example, if we use all nine products as con-

tract products, then the number of state variables would increase from 24 to 42

and the algorithm does not converge within the same number of iterations.

Note that the cut generation and simulation experiment for a policy from a mul-

tistage stochastic programming model is somewhat lengthy, and thus some methods

are needed to speed up the processes. For example, we observe that some cuts in

cut generation are inactive as new cuts are added in, and thus can be reduced by

re-defining to a trivial cut to reduce computational time. To do this, at the conver-

gence of DOASA, for each cut we may compare its intercept and slope to the other

cuts. If both values are lower than those of the other cuts, then this cut is inactive

and thus can be reduced. Note that if the state variables have negative values, then

prior to cut generation we can set the lowest value of the state variables to zero

and index the others against it. This method could be tested in future research.

The game-theoretic model for the European dairy market has taken account of

the important mechanisms in the regulations of the European Union Commission,

which are the intervention system, and the tariffs and quotas. The model has some

important features, such as two leaders and a follower in decision making, and
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price-demand curves for sales in the market. Although somewhat unrealistic, the

model could be used as a pilot model for future improvement.

We have developed an algorithm to solve the model for an equilibrium of the

game. This algorithm results in an equilibrium, which has an advantage over a

common approach which solves an EPEC but does not guarantee a solution to

be an equilibrium. However, as we have described, this algorithm has two main

limitations. The equilibrium solution obtained in the discrete grids may not be an

equilibrium in continuous strategy spaces, and the algorithm is only feasible for low

dimension.

The computational experiments have shown that all players prefer a low in-

tervention price, and Fonterra can be much better off if the tariffs and quotas

are relaxed. Hence the reform on regulations by the EUC would be beneficial to

Fonterra.

In the European market, the companies in the European Union sell products at

the same time as Fonterra and Australia, but the EUC then observes the market

price and buys back products if the market price is at the intervention price. Based

on this fact, we have assumed EU, which represents the EUC and these companies,

to be a follower in decision making in the game-theoretic model for the European

dairy market. This assumption would be reasonable if intervention purchase occurs.

However, we observe that the market prices sometimes are above the intervention

price, and thus the EUC takes no action. This implies that the player EU would

be a simultaneous player with Fonterra and Australia. Hence it would be more

realistic to relax this assumption when this occurs. This will be looked at in future

research.
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