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Structured abstract 

Aims 

Type 2 diabetes is common and is associated with an approximate 80% increase in the rate 

of mortality.  Management decisions may be assisted by an estimate of the patient’s 

absolute risk of adverse outcomes, including death. This study aimed to derive a predictive 

risk model for all-cause mortality in type 2 diabetes. 

Methods 

We used primary care data from a large national multi-ethnic cohort of patients with type 2 

diabetes in New Zealand and linked mortality records to develop a predictive risk model for 

5-year risk of mortality.  We then validated this model using information from a separate 

cohort of patients with type 2 diabetes. 

Results 

26,864 people were included in the development cohort with a median follow up time of 9.1 

years. We developed three models initially using demographic information and then 

progressively more clinical detail.  The final model, which also included markers of renal 

disease, proved to give best prediction of all-cause mortality with a C-statistic of 0.80 in the 

development cohort and 0.79 in the validation cohort (7,610 people)   and was well 

calibrated. Ethnicity was a major factor with hazard ratios of 1.37 for indigenous Maori, 0.41 

for East Asian and  0.55 for Indo Asian compared with European (p<0.001).  

Conclusions 

We have developed a model using information usually available in primary care that 

provides good assessment of patient’s risk of death.  Results are similar to models previously 
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published from smaller cohorts in other countries and apply to a wider range of patient 

ethnic groups.   
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Survival analysis 
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Introduction 

In 2010 about 285 million people worldwide had diabetes and this could rise to 439 million 

by 2030. [1] People with diabetes have been found to have a 70-80% increase in overall 

mortality rates and, if aged 50, will on average die 6 years earlier than those without 

diabetes.[2, 3] About 60% of this excess mortality is due to cardiovascular disease (CVD) 

including stroke, with the remainder being attributable to cancers and other conditions. 

Many causes of these excess deaths are potentially preventable by self-care and medical 

management.[4] It is therefore important to identify people with diabetes who are at 

particularly high risk of death so as to allow focussed and intensive intervention.   Several 

predictive risk models have been developed to predict mortality in patients with diabetes.[5-

8] De Cosmo's study, published in 2013, was the first to be validated with an external cohort.  

However this involved comparatively small cohorts with only 133 and 169 deaths in the 

development and validation cohorts respectively.   

The aim of the current study was to develop a predictive risk model for all-cause mortality in 

a large cohort of ethnically diverse people with type 2 diabetes in New Zealand (NZ) using 

information usually available in a general practice context, and to validate it in a separate 

cohort.   

Subjects and methods 

Settings and subjects 

This study uses a prospective cohort design. It uses information from two NZ general 

practice-based cohorts of patients with type 2 diabetes. In New Zealand almost all patients 

with type 2 diabetes receive care in general practice. 
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Development cohort 

Between 2000 and 2012, general practitioners were funded to provide a free annual review 

for their patients with diabetes (‘Get Checked’ programme). Data from these reviews were 

recorded using a standardised template and collected regionally to provide aggregated 

statistics about diabetes management in primary health care.  The NZ Diabetes Cohort Study 

(NZDCS) invited 26 of the largest organisations collecting ‘Get Checked’ data to participate in 

a cohort study. Of these, 24 organisations (92%) agreed and contributed data on primary 

care patients collected between 2000 and 2006.[9] 

Validation cohort 

The Diabetes Care Support Service (DCSS) is an independent provider that carries out a 

manual systematic clinical audit of diabetes care in primary care practices in south and west 

Auckland, New Zealand's largest city.[10]  The audit data provide a summary of diabetes care 

over the preceding year. Patients whose care had been audited between 1994 and 2003 

were included. 

 

In both cohorts all people with Type 2 Diabetes, as determined by their primary health care 

physician, were included if they had complete data on the independent variables we wished 

to examine. The NZDCS study received ethical approval in 2004 and has on-going multi-

centre approval in New Zealand (WGT/04/09/077). 

Outcomes 

All patients in New Zealand have a unique National Health Index (NHI) number, which is 

consistent across all health datasets. Patients in both cohorts were linked to New Zealand's 
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mortality database by an encrypted NHI number to identify all deaths that occurred over the 

follow-up period. To develop the models, time to death was used as the outcome.  To 

validate the models, death during the five years following baseline audit was the outcome.  

In both cases we assume complete attainment of outcomes was achieved, although in rare 

instances patients may have emigrated during the follow up period.  

Risk variables 

All risk variables except prior cardiovascular disease were obtained from the primary care 

cohort datasets. Demographic variables were age of onset and duration of diabetes, gender, 

ethnicity, smoking and socioeconomic status. We used primary care ethnicity records and 

categorised as European, Māori (the indigenous people of NZ), Pacific, Indo-Asian, East 

Asian, and ‘Other’.  Body mass index (BMI) was calculated from weight and height 

recordings.  Other clinical variables included blood pressure, glycosylated haemoglobin 

(HBA1c), total cholesterol/HDL ratio and renal function. Estimated glomerular filtration rate 

(eGFR) was calculated from serum creatinine using the Chronic Kidney Disease Epidemiology 

Collaboration formula.[11] Clinically relevant categories were used for urine albumin 

creatinine ratio (UACR) because the variable was highly skewed and simple transformations 

did not create a useful variable. The predictive performance of the models was better using 

these categories than when using log-transformation. Categories were ‘no albuminuria’ 

(<2.5 mg/mmol in men or <3.5 mg/mmol in women), ‘microalbuminuria’ (≥2.5 - < 30 

mg/mmol in men or ≥3.5 - <30 mg/mmol in women), ‘macroalbuminuria’ (≥30 and <100 

mg/mmol), and ‘advanced albuminuria’ (≥100 mg/mmol). We also tested models that 

included as variables whether patients were on insulin, oral hypoglycaemics, statins, 
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antihypertensives, and angiotensin converting enzyme inhibitors (ACE inhibitors) or 

angiotensin receptor blockers (ARBs). 

Prior cardiovascular disease was identified by the presence of any hospitalisation or death 

from myocardial infarction, angina, other ischemic heart disease, coronary artery bypass or 

angioplasty, cerebrovascular accident or transient ischaemic attack, or any significant 

peripheral arterial disease that occurred before the baseline review date and after 1 January 

1988.  Details are available from previous publications.[12]  

Analysis 

Descriptive statistics including means, medians, and proportions were used to describe the 

characteristics of the derivation and validation cohorts. We also examined the differences 

between patients with complete and missing data in both cohorts. 

We developed Cox proportional hazards models for time to death to develop our predictive 

risk models. We first developed a model using just demographic variables and information 

on the onset and duration of diabetes (the ‘demographic’ model).  We then sequentially 

added and tested clinical variables (smoking status, history of CVD, systolic blood pressure, 

BMI, HbA1c, and total cholesterol /HDL ratio) to develop a 'clinical’ model.  We then 

developed a 'renal’ model by further adding eGFR and UACR.  Finally, we examined the 

impact of adding information on whether patients were on particular drugs or combinations 

of drugs. For all continuous variables, we tested quadratic as well as linear relationships. We 

also tested a number of clinically plausible interactions such as the relationship between 

gender or ethnicity and age of onset or CVD history, although we did not include these in our 

final models. 
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Performance of alternative models to inform the inclusion of variables was assessed using 

Wald tests, likelihood ratios, and Akaike and Bayesian information criterion statistics. In all of 

these models, the assumptions of proportional hazards were checked using log-log plots of 

survival and examining Schoenfield residuals. We calculated the baseline hazard at five years 

for each of the three models. 

Five year risk was calculated for each individual in the validation dataset using the three 

models developed. Discrimination was assessed using receiver operating curves and C-

statistics. Net reclassification improvement was also calculated to compare the three models 

using 10, 15, and 20% cut-offs for 5 year risk of mortality.[13] Bar charts of observed versus 

predicted event rates and Hosmer-Lemeshow χ2 tests are reported to show calibration of the 

models.  

All analyses used the Stata 13.1 statistical package (StataCorp, College Station, TX, USA).  

Results 

Development cohort 

The development cohort included 26,864 people with type 2 diabetes who had a record 

with complete data.  This was 37% of all patients who had any record.  In the original dataset 

56% of patients had missing information on serum creatinine as this was not routinely 

reported to the “Get Checked” programme by all primary care organisations.  All other 

variables were missing in less than 10% of people. Table 1 shows the baseline characteristics 

of people who were included and excluded from the development cohort. The 

characteristics of the two groups are generally very similar although the excluded group 

were less likely to have a history of CVD, smoking, or microalbuminuria, and had slightly 
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better glycaemic control on average.  Fifty-seven per cent of the cohort was of European 

ethnicity but there were significant numbers of Māori and Pacific people, and smaller 

numbers of Asians. 

Patients in the development cohort had a mean age of 62 years and were followed for a 

median of 9.1 years (interquartile range: 7.4-10.4 years) with a total follow up time of 

228,904 years. During follow-up, 6,333 (23.6%) people died. 

Validation cohort 

7,610 people with type 2 diabetes had a record with complete data and were included in the 

validation cohort, which was 53% of all patients who had a record. Variables that had more 

than 10% missing data included serum creatinine, urine albumin creatinine ratio, BMI, 

HbA1c, and Total/HDL cholesterol ratio.   Again the excluded patients were generally similar 

to the included patients although they were on average older, had slightly poorer eGFR and 

were more likely to have albuminuria (Table 1). Patients in the validation cohort were also 

similar to the patients in the development cohort although they were twice as likely to be of 

Pacific ethnicity (Auckland has a large Pacific population). During the 5 years of follow up 

759 people died, 10.0% of the total cohort. 

Models 

Three final models were developed and tested (Table 2 and online appendix). In all models 

being Māori significantly increased risk of death, whilst being Indo-Asian or East Asian was 

strongly protective (all P<0.001).  Longer duration of diabetes, being a smoker, and having 

any degree of albuminuria was also associated with higher mortality (all P<0.001). 
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For most continuous variables, quadratic forms were preferred indicating that relationships 

with mortality were not linear.  An example of the difference between a linear and a 

quadratic model (for how mortality varies with eGFR) is provided in the on line appendix.  

Interactions terms were often statistically significant but were never strong and did not lead 

to improvements in Akaike statistics so were excluded from the final models. 

We also tested models that included medications that patients were on at the time of 

baseline assessment.  Whilst these drugs, either individually, or together, had statistically 

significant effects, the additional discrimination was very small and therefore they were not 

included in the final models presented.  The model including Insulin was potentially the 

most useful and the discrimination and calibration are depicted for both the development 

and validation cohorts in Table 3. 

Model performance 

Table 3 shows the models’ performances in predicting mortality in both the development 

and validation cohorts.  The discrimination of the models were good with the C-statistic in 

the validation cohort ranging from 0.77 (95% CI 0.76-0.78) in the ‘demographic’ model to 

0.80 (95% CI 0.79-0.81) in the ‘renal’ model.  In each case the performance in the validation 

cohort was slightly less good.  Calibration of the models was good in both development and 

validation cohorts with all Hosmer-Lemeshow χ2 tests being non-significant (and on line 

appendix).  Discrimination and calibration in the validation cohort was also checked for 

males and females separately, and for different ethnic groups and remained constant except 

for Pacific people where discrimination was generally slightly lower; for example the renal 

model had a C-statistic of 0.76 (95% CI, 0.72-0.80) in Pacific.  
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We also compared the models using net reclassification indices (NRI) summing over three 

different cut-offs (10, 15, and 20% five year risk of mortality). Moving from the 

‘demographic’ model to the ‘clinical’ model resulted in an improvement of the NRI of 8.8% 

(95% CI, 4.9-12.8%), and from the ‘clinical’ to the ‘renal’ model’ a further improvement of 

6.8% (95% CI, 3.2-10.3%).  There was no change in the NRI when Insulin status was added to 

the ‘renal model’ (0.8%, 95% CI, -1.1-2.7%). Table 4 provides information on the diagnostic 

test characteristics of the three final models at three different risk cut-offs.   

Figure 1 shows how predicted risk of death increases for increasing HbA1c and for a number 

of other risk factors for an example of a 60 year old man. 

Discussion 

In this analysis we have developed predictive risk models for all-cause mortality that show 

good discrimination and are well calibrated.  They use information that is typically available 

to primary care clinicians.  The model including only demographic information and history of 

diabetes onset and duration performs well, while those that add other clinical and then 

renal information provide modest but useful improvements in discrimination.  There was 

minimal loss of discrimination ability in the validation cohort in comparison to the 

development cohort suggesting that our model has external validity, at least to the NZ 

community. 

A number of other models for predicting mortality in patients with diabetes have being 

published. [5, 6, 8, 14]  These have included a wide range of variables, often including those 

not widely available in primary care.  Like our models, all have included demographic 

variables and BMI.  Smoking status, clinical cardiovascular risk factors such as blood 



12 
 

pressure, HbA1c, lipids, renal disease measures, and history of macrovascular disease were 

also often included. Unlike our model, all others include treatment with at least insulin and 

sometimes other drugs, and some included history of microvascular complications and other 

diseases. We did not find including drug treatment significantly improved our model and 

unfortunately we did not have information on microvascular disease other than renal. Figure 

2 demonstrates how important risk factors, other than clinical variables such as HbA1c, are 

to predicting all-cause mortality.  Ethnicity, the presence of a past history of CVD, or 

evidence of renal disease substantially changes a patient’s risk profile. 

Our study has a number of strengths.  We are able to include a large number of participants 

with a long duration of follow-up in our development cohort and validate our model in a 

separate cohort.  Only one other previous model has been validated using a separate cohort; 

in that instance both cohorts were far smaller than ours and were of purely European 

ethnicity.   Secondly, our cohorts were based on primary care collected data and the models 

therefore reflect the information typically available, and are likely to have strong validity in 

the setting where risk prediction will most often be used. 

Our study was also able to include a diverse range of ethnic groups. The size of the effect of 

ethnicity in our model is important, with hazard ratios of 1.37 for Maori, compared with 

Europeans, in the renal model. Failure to include this information could lead to under 

treatment of Maori.  The hazard ratios of 0.41 and 0.55 for East Asian and Indo-Asian people 

respectively, is more problematic. Many Asian people are recent immigrants to NZ (over 50% 

have moved to NZ within 10 years [15]) so low mortality risk may reflect a health migrant 

effect which may not persist into the future. However, a lower mortality risk for Indo-Asian 

people is not inconsistent with a recent UKPDS study that showed that, while Asian Indian 
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with type 2 diabetes had an increased risk of complications, they had a reduced risk of all-

cause mortality compared with Europeans.[16] 

A weakness of the study is that, in both the development and the validation cohorts, we 

needed to drop a significant proportion of potential participants because of missing data.  It 

is possible that the model would have lower predictive ability in these patients, and 

therefore lower in the overall population.  The baseline comparison of those included and 

excluded in the cohorts however suggests that these groups were similar. Differences 

between patients with complete and incomplete data are likely to reflect both patient and 

practitioner factors which have not been measured and we cannot be sure whether these 

would also be associated with mortality. 

Our group has previously developed predictive risk models for both first cardiovascular 

events and end-stage renal failure [12, 17] as have a number of other investigators [18-22].  

The main reason for developing predictive risk models for adverse outcomes is to develop 

treatment strategies based upon absolute risk assessment.  Is it more useful to base this 

upon risk of CVD or other disease specific end-points or mortality?  A major opportunity for 

clinical management of people with diabetes is reducing the risk of the development of CVD 

and renal complications, and models for these end-points might seem an obvious choice 

where risk of the outcome is most closely related to the opportunity for intervention.  

However, other considerations may favour mortality as the outcome of choice.  It is certainly 

of great significance to patients.  It also assumes that the clinician will consider every 

opportunity to reduce risk for the patient, rather than focussing on, an admittedly 

important, subset of interventions. It is also important to recognise that predictive risk 

models are validated for measured degree of risk, and are not validated for measuring 
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amenability to treatment.  A further technical reason for preferring all-cause mortality as an 

outcome is that it is very well defined with very low risk of misclassification.  The same is not 

necessarily the case for other outcomes.  This may be the reason for mortality predictive risk 

models usually having better discrimination than those for CVD.  For example the model our 

group developed for CVD prediction had a C-statistic of 0.68, compared to 0.80 for the 

model for mortality in this model.[12] 

It is likely that clinicians will be interested in different risks depending upon the clinical 

situation they face; thus perhaps the most useful approach is to make all the information 

available.  With the ability to build risk models into computer systems that are often 

integrated into patient management systems this is easily done in an informative way.  

Alternatively, online risk calculators can be made available, as for our previously published 

equations for predicting first cardiovascular events in people with type 2 diabetes.[23][23] 

In summary, we have developed three 5-year all-cause mortality risk models that performed 

well in two large cohorts with type 2 diabetes, and use information usually available in 

primary care.  Routine, systematic or opportunistic risk estimation can provide a useful tool 

for prioritising and optimising management for individual patients.  
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Tables 
Table 1. Baseline characteristics of the development and validation cohorts, comparing 
patients included with those excluded due to missing data on some variables.   

  

  
 

Development Validation 

Category Study cohort Excluded P value Study cohort Excluded P value 

n 26,864 44,266   7,610 6,758   

Demographics             

Age (years) - mean(SD) 62 (13) 62 (13) 0.379 59 (12) 61 (14) <0.001 

Female - %(n) 51 (13,620) 48 (22,057) <0.001 51 (3,851) 51 (3,872) 0.287 

Ethnicity             

European - %(n) 57 (15,221) 54 (22,122) 

<0.001 

40 (3,166) 42 (3,166) 

<0.001 

Maori - %(n) 15 (3,943) 15 (6,122) 16 (1,244) 15 (1,098) 

Pacific - %(n) 15 (4,036) 15 (5,984) 30 (2,279) 23 (1,759) 

Indo-Asian - %(n) 3 (840) 5 (2,163) 6 (442) 6 (438) 

East Asian - %(n) 3 (746) 4 (1,829) 3 (259) 4 (281) 

Other - %(n) 8 (2,078) 7 (3,001) 4 (320) 10 (781) 

History of diabetes             

Age at onset (years) - mean(SD) 55 (14) 56 (14) <0.001 51 (13) 54 (14) <0.001 

Duration of diabetes (years) - 
median(p25-p75) 4 (1-9) 3 (1-8) <0.001 5 (2-10) 4 (2-9) <0.001 

Clinical             

BMI  (kg/m2) - median(p25-p75) 31 (27-35) 30 (26-35)   31 (27-36) 31 (27-36) 0.080 

Systolic BP (mmHg) - mean(SD) 138 (19) 138 (19) <0.001 137 (18) 138 (19) <0.001 

Smoking             

Smoker - %(n) 15 (4,086) 14 (6,070) 

<0.001 

16 (1,255) 13 (933) 

<0.001 Ex-smoker - %(n) 28 (7,609) 24 (10,707) 16 (1,217) 11 (808) 

Non-smoker - %(n) 56 (15,169) 63 (10,707) 67 (5,111) 76 (5,407) 

Metabolic             

HbA1c ( %) - median(p25-p75) 7.2 (6.4-8.6) 7.0 (6.3-8.2) <0.001 7.6 (6.7-8.9) 7.3 (6.4-8.7) <0.001 



19 
 

HbA1c (mmol/mol) - median(p25-p75) 55 (46-71) 53 (45-66) <0.001 60 (50-74) 56 (46-72) <0.001 

Total/HDL cholesterol ratio - mean(SD) 4.4 (1.5) 4.3 (1.5) <0.001 4.7 (3.8-5.7) 4.8 (3.9-5.8) <0.001 

Renal             

Serum creatinine (µmol/L) - 
median(p25-p75) 81 (70-100) 82 (70-100) 0.073 84 (72-99) 89 (75-105) <0.001 

eGFR (CKD) (mL/mim/1.73m2 ) - 
median(p25-p75) 76 (59-91) 76 (59-91) 0.359 77 (61-92) 71 (55-87) <0.001 

Microalbuminura - %(n) 27 (7,361) 21 (9,613) 

<0.001 

29 (2,246) 35 (1,128) 

<0.001 Macroalbuminuria - %(n) 5.6 (1,492) 4.5 (2,041) 7 (535) 7 (215) 

Advanced macroalbuminuria - %(n) 3.6 (963) 3 (1,372) 5 (411) 5 (170) 

History of CVD             

Past hospitalisation for CVD - %(n) 24 (6,516) 22 (9,882) <0.001 19 (7,610) 21 (1,608) 0.001 
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Table 2: Hazard Ratios and P-values for the three different models presented 

  

Demographic Clinical Renal 
Haz. 
Ratio 

P -
value 

Haz. 
Ratio 

P -
value 

Haz. 
Ratio 

P -
value 

Demographic 
Age of onset (10 years) 1.402 <0.001 1.654 <0.001 1.737 <0.001 
Age of onset squared 1.038 <0.001 1.027 1.019 
Duration (10 years) 3.243 <0.001 3.171 <0.001 2.731 <0.001 
Duration squared  0.923 <0.001 0.932 0.951 
Female 0.739 <0.001 0.792 <0.001 0.817 <0.001 
Maori 1.717 <0.001 1.552 <0.001 1.372 <0.001 
Pacific 0.946 0.255 0.924 0.118 0.793 <0.001 
East Asian 0.406 <0.001 0.439 <0.001 0.408 <0.001 
Indo Asian 0.544 <0.001 0.573 <0.001 0.553 <0.001 
Other 0.698 <0.001 0.775 <0.001 0.773 <0.001 
Clinical 
Smoker 

  

1.643 <0.001 1.622 <0.001 
Ex-smoker 1.185 <0.001 1.180 <0.001 
History of CVD 1.547 <0.001 1.440 <0.001 
Systolic BP (per 10 mmHg) 0.674 <0.001 0.682 <0.001 
Systolic BP squared 1.013 1.012 
HbA1c  (per 10 mmol/mol) 0.952 <0.001 0.955 <0.001 
HbA1c squared 1.006 1.005 
Total/HDL cholesterol ratio 1.056 <0.001 1.045 <0.001 
BMI (per 10 kg/m2) 0.617 <0.001 0.590 <0.001 
BMI squared 1.074 1.008 
Renal 
eGFR (per 10 mL/mim/1.73m2) 

  

0.859 <0.001 
eGFR squared 1.007 
Microalbuminuria 1.388 <0.001 
Macroalbuminuria 1.653 <0.001 
Advanced albuminuria 2.367 <0.001 
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Table 3 Discrimination and calibration for the three models and with one including in the 
development and validation cohorts  

Model 
Development cohort Validation cohort 

n AUC 95% CI HL Test n AUC 95% CI HL Test 
Demograph
ic 26,864 0.770 0.762-0.779 0.342 7,610 0.751 0.733-0.769 0.745 
Clinical 26,864 0.790 0.782-0.798 0.139 7,610 0.774 0.757-0.791 0.483 
Renal 26,864 0.802 0.794-0.810 0.700 7,610 0.793 0.776-0.810 0.272 
Insulin 20,816 0.808 0.799-0.817 0.645 7,610 0.794 0.777-0.811 0.177 

(AUC – area under the receiver operator curve; HLTest - Hosmer-Lemeshow χ2 tests) 
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Table 4 Diagnostic test characteristics for the three different models at three different cut-
offs 

Model Cut-off Sensitivity Specificity PPV NPV 

Demographic 
10 66.0 70.0 19.6 94.9 
15 51.6 82.6 24.7 93.9 
20 38.2 90.0 29.6 92.9 

Clinical 
10 69.4 71.7 21.4 95.5 
15 52.2 84.1 26.6 94.1 
20 41.2 90.9 33.3 93.3 

Renal 
10 71.5 73.3 22.9 95.9 
15 56.0 84.5 28.6 94.6 
20 43.2 90.7 34.1 93.5 

(All figures are percentages, PPV – positive predictive value, NPV – negative predictive value) 
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Figures 
 

Figure 1 Calculated 5 year mortality risk for a man depending upon his HbA1c result and 
various other important risk factors 

 

Notes: Macroalbuminuria  (≥30 and <100 mg/mmol)  & Stage 4 CRD (Chronic Renal Disease) calculated as  
eGFR of 20 ml/min/1.73m2 

(Baseline: 60 years old man with diabetes for 5 years, systolic blood pressure  140mmHg,  Total/HDl ratio 4.0, 
no albuminuria, and eGFR  75 ml/min/1.73m2) 
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