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Abstract 

The objective was to explore the definition, sources, quantification, and management of 

uncertainty in bio-physical agricultural deterministic computer simulation models (crop 

models). One aim was to provide recommendations from a formalised statistical viewpoint 

on management of uncertainty for a small pool of crop model researchers in New Zealand. 

These researchers face unique issues with models that describe temperate, island-based 

conditions. An equally important goal was to identify ways to provide predictions complete 

with uncertainty bounds beyond those offered by sensitivity analysis. Given these objectives, 

my focus was on a single model. Section I proposes an uncertainty evaluation (UE) 

framework to explore how the combined components of a crop model contribute to the 

overall output uncertainty. Tools to curate information, diagnose the most important sources 

of uncertainty, and identify UE objectives have been developed. The framework links 

qualitative and quantitative analysis through a review of techniques for generating and 

analysing data from such models. Although many elements considered appear in the 

literature, amalgamation into a united framework is an original contribution. In Section II a 

detailed description of a case-study model that simulates wheat development is provided. 

This model provides a concrete foundation by which to demonstrate the UE framework, and 

illustrates the nature of crop models as constructs upon which mechanistic understanding of 

real-world systems continues to develop. A theoretical addition to a recent model that 

combines physiological and genetic characteristics of wheat is proposed based on laboratory 

based experimental work, reducing structural uncertainty. Finally, Section III is centred on 

the analysis of simulated data. In particular, it addressed the desire to provide credible 

intervals for state-space model estimates. This was achieved through fitting a probabilistic 

Bayesian hierarchical model with MCMC, a general form of data assimilation that 

recursively updates state predictions based on available data. Credible bounds of both an 

observed and a latent state variable were estimated for the case-study model. Finally, I 

summarise how these three sections tie together to resolve research objectives. I discuss the 

benefits of this research, recommendations and limitations, and propose directions for future 

work.  
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Glossary of Crop Physiology Terms 

Apical Meristem 
A meristem at the tip of a plant shoot or root that 

causes the shoot or root to increase in length. 

Anthesis The action or period of opening of a flower. 

Crop Physiology 

Complementary studies of plants growing singly and 

in stands, with emphasis being placed on the major 

crops (wheat, rice, maize, barley, soybean and some 

pasture grasses). 

Determinate 
Leaf production by a stem ceases once spikelet 

initiation has begun. 

Development 
The sequential production, differentiation, expansion 

and loss of the structural units of a plant. 

Facultative 
Occurring optionally in response to circumstance 

rather than by nature. 

Flag Leaf 
The uppermost leaf on a fertilised stem; the leaf 

immediately below the flowers or seed head. 

Final Leaf See Flag leaf. 

Genotype 
The genetic constitution of a cell, an organism or an 

individual. 

Growth 
Increase in plant or crop dry weight, the net result of 

acquisition and loss of resources. 

Haun Stage Number of fully developed leaves. 

Intercepted Radiation 
Amount of available solar radiation intercepted by the 

crop. 

Internode Stem between nodes. 
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Lateral Shoot 
Shoots originating from vegetative buds in the axis of 

leaves or from the nodes of stems. 

Leaf axis 
The lower surface of a lateral organ such as a leaf or 

petal. 

Meristem 
A localised group of actively diving cells from which 

the permanent tissue systems are derived. 

Node Primordia locations. 

Phenology 

The physical constitution of an organism as determined 

by the interaction of its genetic components and 

environment. 

Photoperiod The period of daylight in every 24 hours. 

Phyllochron 
The interval between the appearance of successive 

leaves. 

Plastochron 
The interval between the appearance of successive 

organs. 

Plant Physiology 

A sub-discipline of botany concerned with 

fundamental processes such as photosynthesis of 

plants. 

Primordium The earliest detectable stage of a plant organ. 

Spikelet 
Modules of the ear, each generating several florets 

which, upon fertilisation, become grains. 

Senescence 
The onset and duration of the derogation of a plant or 

plant organ eventually leading to its death. 

Thermal Time 

Integral of time of environmental temperature above a 

base temperature. In practice a daily mean of 

maximum and minimum temperatures is normally 

used. 

Vegetative 

Development 

Stem and leaf development, in contrast to flower and 

seed (reproductive) development. 
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Vegetative Stage 
The developmental stage prior to the appearance of 

fruiting structures. 

Vernalisation 
The cooling of seed and plant during germination and 

development in order to accelerate flowering. 
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Chapter One: Motivation, Outline, and 

Research Justification 
1.   Motivation, Outline and Research Justification 

1.1 Research Motivation  

Bio-physical agricultural models are used to inform and support farm-level 

decision making, agronomic research, breeding strategies, and government 

policy (Rosenzweig et al. 2013). Colloquially known as crop models, they are 

simplified mathematical representations of physiological and physical processes 

that occur in plants and soils in response to environmental and management 

drivers. Crop model applications include the areas of food security and climate 

change impact and adaptation assessments (Boote et al. 1996; Sinclair and 

Seligman 2000; Jamieson et al. 2007; Cooper et al. 2009; Hochman et al. 2009; 

Bezlepkina et al. 2010; Teixeira et al. 2011; Teixeira et al. 2013; Holzworth et al. 

2014). 

Although crop models are mathematically deterministic, there are many possible 

sources of uncertainty that can contribute to overall model uncertainty. Recently, 

there has been increasing recognition in the agricultural (and wider) modelling 

community that the impact of uncertainty on crop model results needs to be 

considered (Hammer et al. 2002; O'Hagan 2008; Rotter et al. 2011; O'Hagan 2012; 

Rosenzweig et al. 2013; Wallach et al. 2014; Holzkämper et al. 2015; Uusitalo et al. 

2015). The New Zealand Institute of Plant & Food Research Limited has therefore 

funded this PhD research project to describe and quantify uncertainty in crop 

models to help grow institute capability in this area. 

The development of methods to evaluate uncertainty in deterministic models is 

an active area of research both within and outside of the agricultural sector, and 

many approaches have been proposed including multi-model ensembles (Ewert 
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et al. 2009; Asseng et al. 2013; Bassu et al. 2014), sensitivity analysis (Saltelli et al. 

2000; Teixeira et al. 2015)  and emulators (O'Hagan 2006; Stanfill et al. 2014). 

However, the large number of methodological options for model uncertainty 

evaluation (UE) makes it difficult to identify the most fit-for-purpose 

technique(s). 

The objective of this PhD dissertation is therefore to explore the definition, sources, 

quantification, and management of uncertainty in bio-physical agricultural 

deterministic computer simulation models. 

The body of this dissertation consists of three sections, each with a clear 

independent focus that ties back to the overall objective. Section I proposes a 

framework by which to manage uncertainty in bio-physical agricultural computer 

simulation models. Section II explores the conceptualisation, experimental and 

coding stages of building a bio-physical agricultural model. A single model is 

used as a case study throughout. A gap in current physiological understanding of 

the model is identified, and further experimental work to investigate this gap is 

described. Section III utilises the case study model described in Section II to 

demonstrate uncertainty evaluation through sensitivity analysis. It exploits data 

that updates through time and expert opinion to quantify uncertainty in a non-

normal, non-linear context for observable and latent variables. A visual 

representation of the framework for this thesis can be seen in Figure 1. 
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Figure 1: Schematic of dissertation. 
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1.2 Outline 

1.2.1 Section I – An Uncertainty Evaluation Framework 

A deterministic computer simulation model is defined by a series of equations, 

decisions,and input information that aims to characterise a real world process. In 

Chapter Two I introduce and define computer simulation models, and the impact 

of uncertainty on their use. The unambiguous state-space structure upon which 

the remainder of the thesis is based is also described in this chapter. 

Those who rely on models increasingly wish to know how much they can trust 

their outputs, and the development of tools for evaluation uncertainty in 

deterministic models is an active area of research both within and outside of the 

agricultural sector. Different disciplines focus on different areas as deemed most 

appropriate to handle the types and sources of uncertainty of primary concern in 

each area. The agricultural sector has not been left behind, with an increasing 

number of research efforts being focussed on UE of computer simulation models. 

However the large number of methodological options makes it difficult to 

identify the most appropriate technique(s) for a given situation. With time, the 

methodologies will likely begin to become more unified (Strogatz 2014). There 

seems to have been a shift in recent years from optimisation of a model by 

finding a single set of input parameters that best match the data, to exploration of 

possible outcomes and a more holistic evaluation of different sources of 

uncertainty. This fundamentally requires an understanding of the sources and 

types of uncertainty in their model. An Uncertainty Evaluation (UE) framework 

to explore the definition and sources of uncertainty in a computer simulation 

model is therefore proposed in Chapter Three. Tools to help to curate 

information, to diagnose the most important sources of uncertainty, and to 

identify uncertainty evaluation objectives have been developed. Finally, Chapter 
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Four reviews a suite of techniques for the quantification of uncertainty, and links 

these techniques to the Uncertainty Evaluation (UE) framework proposed in 

Chapter Three. Together, Chapters Two, Three and Four provide a conceptual 

system to manage uncertainty in computer simulation models. 

This framework can be used to ensure that whenever an evaluation of model 

uncertainty is carried out, a consistent structure to summarise and document the 

results can be expected. 

1.2.2 Section II – Case Study: SIRIUS - A Bio-Physical Agricultural 

Model 

A case-study model is introduced to provide a concrete foundation by which to 

demonstrate the uncertainty evaluation framework. It also illustrates the nature 

of crop models as constructs upon which researchers continue to develop 

mechanistic understanding of real-world systems. The wheat development sub-

model SIRIUS (Brooking et al. 1995; Jamieson et al. 1995a; Jamieson et al. 1995b; 

Brooking 1996; Brooking and Jamieson 2002; Jamieson et al. 2007; Jamieson et al. 

2008)  was selected as the case-study for this project because of its importance as 

a physiological developmental model, and its accessibility as a major tool within 

The New Zealand Institute for Plant & Food Research Limited (PFR), by whom 

this project is funded. Research building upon this model is on-going within PFR 

(Brown et al. 2013), as part of this project, and also externally (He et al. 2012). As 

such, in the final Chapter of Section II, I describe lab-based experimental work 

that assesses the physiological development of wheat prior to emergence. I 

propose a new, theoretical addition to a recent model that combines 

physiological and genetic characteristics of wheat such that the function of 

vernalisation genes in spring wheat varieties prior to exposure to light is more 

complex than previously supposed. 
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1.2.3 Section III – Computation of Performance Statistics 

The research focus for the final Section will be on computing performance 

statistics for the case study model SIRIUS. SIRIUS, like many agricultural models, 

is a process based, time-step model. Importantly, the simulated data are non-

Normal and non-linear. In Chapter Eight, the UE framework is illustrated and a 

traditional sensitivity analysis for spring and winter varieties of wheat is carried 

out. Conclusions are compared and contrasted with those found by a recent 

paper by He et al. (2012). In Chapter Nine, a Bayesian hierarchical model fitted in 

a state-space framework is implemented to take advantage of data that has been 

collected through time. This approach allows quantification of input parameters, 

expert opinion and observed data in a unified setting. It provides filtered 

estimates of the state variable (Leaf Number) that updates through time in 

response to observed data. These estimates are presented with the usual 

performance statistics that are available when fitting a Bayesian hierarchical 

model. Probabilistic sensitivity analysis of input parameters is carried out within 

this framework. In Chapter Ten, the flexibility of the framework is demonstrated 

in two ways. First, it is extended to estimate uncertainty for a latent dynamic 

(updates through time) state variable. Second a probabilistic sensitivity analysis 

of structural uncertainty (state equations) is carried out. This last analysis reflects 

recent uncertainty research directions (Strong et al. 2012). 

1.3 How the Research Fits In 

Research into model uncertainty evaluation in the US, Europe, and even 

Australia may not provide all the desired outcomes for New Zealand specific 

conditions. In the agricultural sector, particularly in the EU region, multi-model 

ensemble techniques to assess uncertainty have been of particular interest to 

researchers. However, in New Zealand, agricultural systems are subject to 
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unique environmental conditions, and our smaller population means a smaller 

number of researchers usually dictate a smaller pool of appropriate models to 

which to apply such methods. Further, this approach does not naturally facilitate 

continued learning about the model and the system’s mechanisms. For these 

reasons, my particular focus is upon improved understanding of uncertainty in a 

single dynamic model. 

A detailed description of a wheat development model used as a case-study 

throughout this thesis is provided. Many agricultural models are process based, 

time-step models. These models can be evaluated through data assimilation 

techniques if appropriate data is available. This can be an invaluable tool to 

assess uncertainty, not only at the end, but also through time to confirm that the 

conceptual understanding of the updating process is accurate. This is extremely 

important because if we wish to forecast into unknown scenarios (i.e. under 

climate change research situations, for example), then a higher degree of certainty 

in the accuracy of latent processes is an obvious requirement. 

1.4 Summary 

The purpose of this first Chapter was to provide the research motivation, outline, 

and justification. This dissertation is set up in three main sections that will be 

explored and then tied together in the concluding chapter. Themes have been 

introduced relating to model uncertainty, particularly in the context of crop 

models in New Zealand. There is a case-study model that has been selected to 

allow a detailed description of the scientific approach to building and using such 

a model; and to allow uncertainty evaluation to be carefully studied and 

illustrated. Section I next consists of three chapters that jointly present the UE 

framework based on a state-space structure and including a review of UE 

techniques considered most pertinent to crop model UE. 
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Section I – An Uncertainty Evaluation 

framework 
Section I - An Uncertainty Evaluation Framework 

This Section provides a detailed discussion of UE for computer simulation 

models. This includes an introduction to and definition of computer simulations 

models, and the impact of uncertainty in their use (Chapter Two). Once the state-

space framework has been defined, this is further extended to describe how (in 

general) a deterministic model might fit within a Bayesian Hierarchical Model 

framework. As such, some background is provided to Bayesian Data Analysis. In 

Chapter Three, the UE framework is proposed. This requires clear definition of 

the components of a computer simulation model, and how uncertainty in model 

outputs may be traced back to one or more of these components. A seven-step 

UE framework, complete with tools to curate information, diagnose uncertainty 

and set analysis objectives based on available information is then laid out. 

Finally, in Chapter Four, steps six and seven from the UE framework are linked 

to current, quantitative approaches described in the literature for sampling from 

and analysing output data from the model. This allows the research contribution 

of the UE framework Section to be placed within the current themes in the 

literature relating to uncertainty analysis. This Section therefore provides the 

tools by which to define, compartmentalise (based on the sources of uncertainty) 

and manage uncertainty in computer simulation models. Tools to quantify 

uncertainty are also introduced, but will be expanded upon in Section III. 
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Chapter Two: Setting the Scene 
2. Setting the Scene 

2.1 Executive Summary 

In Chapter Two computer simulation models are introduced, particularly in the 

context of agricultural research and development. The effect of uncertainty on the 

use of these models was discussed in terms of the disciplines historical and 

current approaches to management. A state-space framework is  proposed to 

help combine  deterministic models, probability, and data in a Bayesian setting. 

This state-space framework allows the types of uncertainty that can be 

introduced by each model component in Chapter Three. 

2.2 Introduction to Computer Simulation Models 

2.2.1 Models 

Models are a symbolic, simplified abstract representation of an object or system, 

and modelling is a typical human way of thinking about the world around them. 

There are few, if any, limits on what can be modelled, and definitions include 

conceptual, verbal, mathematical, physical or empirical models (Williams et al. 

2002). Any idea, or ‘theory’ is essentially a conceptual model, and all other 

models arise from that initial idea. For example, Neyman (1957) stated that 

‘scientific theories are no more than models of natural phenomena’; Hawking 

(1988) that ‘A theory is just a model of the universe…’;  and  Hillborn and Mangel 

(1997) that  ‘One can think of hypotheses and models in a hierarchic fashion with 

models simply being a more specific version of a hypothesis’. 

The invention of deliberately oversimplified theories is one of the major 

techniques of science (Williams et al. 2002), and today, carefully developed 

system-specific mathematical deterministic models are common. This type of 
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model is utilised across almost all areas of scientific discovery including 

engineering, meteorology, hydrology, medicine, oceanography, and agriculture. 

A computer simulation model is the implementation in code of such a 

mathematical description of a real world process. 

2.2.2 Computer Simulation Models 

Bayarri et al. (2009) defined a computer simulation model as ‘a computational 

representation of a complex real-world process’. They further comment that ‘a 

computer simulation model is usually developed to approximately describe and 

allow direct simulation of the real-world process’. Although often denoted a 

simulator in the literature (O'Hagan 2006), this is not common in the agricultural 

modelling literature, so the terms ‘computer simulation model’, ‘crop model’ and 

‘model’ to denote a bio-physical agricultural computer simulation model will be 

used throughout this dissertation. In the context of the Bayesian model described 

in this Chapter and implemented in Chapter Nine the term ‘state model’ is used 

to differentiate between the data and parameter models. When referring to a 

conceptual or mathematical representation that has not yet been implemented 

into code the term model is retained. 

A computer simulation model is defined by a series of equations, decisions and 

input information that aims to characterise a real world process (Saltelli et al. 

2000; McFarland 2008). When run, the outputs of a computer simulation model 

are a simplified prediction of the real world phenomena. Often these models are 

dynamic and update through time whilst responding to environmental 

information such as rainfall or nutrient management input. An important 

characteristic is that although outputs are deterministic function of the inputs, in 

practice the computer simulation model can be sufficiently complex that the 

outcome cannot be known prior to simulation (Kennedy and O'Hagan 2001). 
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2.2.3 The Empirical Foundation of Computer Simulation Models 

The scientific method is a procedure that characterises modern scientific research. 

It consists of systematic observation, measurement, experiment; and the 

formulation, testing, and modification of hypotheses (Simpson and Weiner 1989). 

A central concept is that all evidence must be dependent on observed evidence 

(Skinner 1956; Popper 1959, 1972). Thus an empirical model is one that describes 

a system that is amenable to experimentation by the collection of empirical data 

(Williams et al. 2002). Although computer simulation models that represent 

detailed scientific understanding of real-world systems are called deterministic 

models rather than empirical models, the distinction is rather artificial because 

nearly all process models contain equations whose forms or coefficients are 

empirically determined (Sinclair and Muchow 2001; O'Hagan 2006). 

2.2.4 Use of Computer Simulation Models 

Deterministic models are often used as a research tool to investigate how a 

specific set of mechanisms (system) work together (Williams et al. 2002), and to 

test innovative hypotheses to help understand specific aspects of a system e.g. 

Jamieson and Munro (1999), Sinclair and Seligman (2000). An example of this is a 

recent paper by Brown et al. (2012b), who used the crop model APSIM  

(Holzworth et al. 2014) to characterise the developmental phenotype of different 

wheat varieties. Computer simulation models are also used to understand and 

predict the outcomes of complex processes, and for many kinds of decision and 

policy making (Boote et al. 1996). For example, some ways in which this can be 

implemented are suggested by Trucano et al. (2006): 

 Simulating an experiment without knowledge of its results or prior to its 

execution can save money and time, 
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 Making scientific judgements about phenomena that cannot currently be 

studied experimentally, 

 Using computation to extrapolate existing understanding into 

experimentally unexplored regions. 

Models are a vital part of research and development. However, as famously 

stated by Box (1976) ‘all models are wrong, but some are useful’. For computer 

simulation models, this is because there are  important sources of uncertainty and 

inaccuracy in the input parameters, data, and model structure (Montanari et al. 

2009). Those who rely on computer simulation models increasingly wish to know 

how much they can trust their outputs (O'Hagan 2008), and this requires an 

evaluation of the sources and types of uncertainty. 

2.2.5 Uncertainty in Computer Simulation Models 

The approaches chosen to describe the uncertainty in a given model depend on 

specific properties of that model, and any attempt to parameterise uncertainty 

cannot be general or universal. Thus, the evaluation of uncertainty in a computer 

simulation is an exploration that will be specific not only to the model but to the 

environment or scenario for which it is to be used (McFarland 2008). Research 

into evaluating computer simulation model uncertainty is very topical across 

many research areas, and as a consequence it is not straightforward to 

definitively designate a single set of procedures for UE; rather, a selection of 

techniques best suited to each situation (e.g. type of model, data, model’s life 

stage) is more likely to be useful. There are widely accepted norms in the 

uncertainty literature in around terminology. Sources and types of uncertainty in 

computer simulation models, and a framework to evaluate these are more fully 

discussed in Chapters Three and Four. 
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2.3 Terminology 

There are widely accepted norms in the uncertainty literature in around 

terminology. Some of these are not consistent across disciplines, so some terms 

are defined here. 

2.3.1 Calibration and History Matching 

Kennedy and O'Hagan (2001) defined calibration as ‘the process of fitting the 

model to the observed data by adjusting the parameters,… typically affected by 

ad hoc fitting... and after calibration the model is used...to predict the future 

behaviour of the system’. In the oil and gas industry, when reservoir models are 

used to simulate values and then compare them with historical data, the term 

‘history matching’ is commonly used as in González-Rodríguez et al. (2005), 

Gharib Shirangi (2014): ‘The history matching problem consists in adjusting a set 

of parameters,…in order to match the data obtained with the computer 

simulation model to the actual production data in the reservoir’. The term 

calibration will be used in this dissertation to describe any activities where the 

model is challenged in some way with observed data. 

2.3.2 Equifinality 

In the oil and gas industry it is generally recognised that calibration is a non-

unique problem, i.e. that multiple combinations of input parameters can result in 

an equally-good history match (Streamsim Technologies 1999-2014). In 

hydrological modelling this phenomenon is termed ‘equifinality’ (Beven and 

Binley 1992) and recently in the literature efforts in calibration/history matching 

have begun to emphasise exploration rather identification of the single best 

combination of parameters which minimise the total error between observed data 



16 

 

and simulated data, leading toward more of a focus on uncertainty quantification 

and decision making (Streamsim Technologies 1999-2014). 

2.3.3 Sensitivity Analysis 

Sensitivity Analysis refers to exploration of the effect of changes in input 

parameters, input data or model structure on the outcomes y. This approach is an 

exploration of the model, and does not relate model behaviour in relation to 

calibration data. 

2.4 Bio-physical Agricultural Computer Simulation Models 

2.4.1 Background 

Bio-physical agricultural models are made up of a set of processes that jointly 

describe a larger, real-world system. They are simplified mathematical 

representations of physiological and physical processes that occur in plants (e.g. 

leaf appearance rates) and soils (e.g. mineralisation of N) in response to 

environmental (e.g. temperature) and management (e.g. sowing dates) drivers. 

They will often be dynamic; that is, simulation is based on a set of decisions and 

steps to be taken at each time step based on environmental inputs such a mean 

daily temperature. 

The process of building agricultural models involves an iterative process of 

fitting a model and improving knowledge through further experimentation. In 

one sense, we can think of deterministic model building as a tool that helps 

iteratively define the question or hypothesis. A historical feature of crop models 

is the lack of holistic management of uncertainty, and the development of tools to 

evaluate uncertainty in deterministic agricultural models is an active area of 

research as discussed in the next section. 
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2.4.2 Uncertainty in Agricultural Computer Simulation Models 

In 1994 a special symposium was held at the annual meetings of the American 

Society of Agronomy in Seattle on 14 November 1994.  This symposium was 

entitled ‘Use and Abuse of Crop Simulation Models’, and four papers resulting 

from this symposium were published in volume 88(5) of the Agronomy Journal 

in 1996.  These papers, together with some others, resulted in the following 

discussion points in the agricultural computer simulation modelling literature.  

1. Since a whole model is a set of processes, or hypotheses,  they inherently 

cannot be easily tested in the sense normally accepted as good scientific 

method (Pease and Bull 1992; Oreskes et al. 1994). They contain a set of 

hypotheses that can only be rigorously tested with measurements that 

describe the performance of the crop over a wide range of environments. 

Such information is rarely available (Monteith 1996).  

2. To address this, modellers have adopted the words validation, calibration, 

and verification for the process of comparison of the output of a model with 

a new dataset, comparison between competing models, and objective 

assessment (Passioura 1996; Sinclair and Seligman 2000). However, care is 

needed as these tools are not as powerful a tool as hypothesis testing as 

they are an attempt to show the model (or hypothesis) is correct.  

3. Further, much of the validation practices were based on the assumption 

that the data used for validation represented the truth. The natural 

variability contained within data was enough that failing to recognise 

sources of variability due to experimental and observation error meant a 

reduction in ability to assess bias, accuracy or range of models (Sinclair 

and Seligman 1996).  

4. An assumption in many crop modelling efforts was that scientific rigour 

could be ensured by expressing processes only in basic physical, chemical 



18 

 

and physiological terms; with crops being modelled as deterministic, 

continuous systems (Sinclair and Seligman 1996). In reality the 

development is a complex combination of deterministic and stochastic 

processes (Sinclair and Muchow 2001). 

These discussion points resulted in the following set of seven outcomes which 

indicate uncertainty estimation may help facilitate progress: 

1. The primary value of the model is to force logical, quantitative thinking 

about the variables and processes that influence the performance of the 

organisms of interest (Innis et al. 1980), 

2. Models can justifiably be viewed as heuristic tools to aid our interpretation 

of reality (Wullschleger et al. 1994; Sinclair and Seligman 1996),  

3. The limits of crop models as surrogates for reality should be recognised 

and accepted as inevitable consequences of simplification (Sinclair and 

Seligman 1996), 

4. Research should be more than refitting a model to some new data (Sinclair 

and Seligman 2000; Rotter et al. 2011), 

5. Models have a continuing role to support scientific investigation,  facilitate 

decision making by crop managers, and to aid in education (Hammer et al. 

2002), 

6. Models are a prime contributor in understanding and advancing the 

genetic regulation of plant performance and plant improvement (Hammer 

et al. 2002; Brown et al. 2013),1 

                                                 

1 Chapter 6 
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7. And of particular consequence for this project; uncertainty estimation, 

particularly under changing climate conditions, is an important 

consideration (Rotter et al. 2011). 

The use of agricultural simulation models as research tools, crop system 

management and policy analysis tools are more valuable and defendable if 

tempered by recognition of uncertainty. This is reflected in current research. The 

discipline of agricultural modelling as a global discipline in the past several years 

has had an increasing focus on UE of computer simulation models. Areas of note 

include uncertainty in climate change (Clifford et al. 2013; Teixeira et al. 2015), 

multi-model ensemble forecasting (Ewert et al. 2009; Asseng et al. 2013; Bassu et 

al. 2014), emulators (Stanfill et al. 2014) and sensitivity analysis e.g. (Cichota et al. 

2013). 

2.5 State-space Modelling, Probability and Data 

2.5.1 State-space Framework 

Agricultural bio-physical computer simulation models often simulate processes 

through time (i.e. they are dynamic). This type of deterministic dynamic system 

is often represented as a state-space model e.g. (Spiegelhalter and Best 2002). 

Here, the state of a system is defined by a set of state variables, or collectively as 

the state process. In general, state variables may be physical variables defined at 

specific locations in physical space. Any system whose state changes with time 

over a state space according to a fixed rule is a dynamic system. The evolution of 

the system through state space is often called a trajectory. If the current state of the 

system uniquely determines the future states (perhaps with a first order Markov 
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property2), the system is referred to as a deterministic dynamic system. The 

transition function describes the behaviour of the state process as time evolves 

(Candy 2009; Cressie and Wikle 2011). State equations are therefore defined as a 

set of difference equations. A difference equation is defined as a set of formulas 

that together express the values of all variables at the next step in terms of the 

values at the current step (Lorenz and Emanuel 1998). Difference equations 

determine the transition function at each time step based on the state at the 

previous step such that each term of the sequence is defined as a function of the 

previous terms of the sequence (Gonze 2012): 

 1 2 0( , ,... )n n nX f X X X   

This formulation highlights the need to conceptually separate state equations 

(including the empirically determined coefficients for state processes) from input 

parameters3. This may not be an obvious step for some modellers, and selection 

separation of the two may not always be simple. A framework to help 

compartmentalise and frame an agricultural deterministic model in a state-space 

setting is provided in the Chapter Three. 

2.5.2 Probability 

It is not always obvious how real world processes or mechanisms can be directly 

incorporated with traditional statistical approaches, which can unfortunately 

lead to an understanding of the science being pushed into the background. 

                                                 

2 A process has the Markov property if the conditional probability distribution of future states of 

the process depends only on the present state. 

3 The term input parameter is defined in the Chapter Three. 
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However, since our knowledge is rarely complete, approaches that allow some 

incorporation of probabilistic effects can provide insight that would otherwise be 

impossible (Portier 2001; Williams et al. 2002; Greene 2005; Cressie and Wikle 

2011). Probability can add objectivity and rigour to what is at times essentially a 

subjective ‘best guess’ about a real world system. An ideal model could be one 

that both recognises the dynamic scientific aspects of the phenomenon under 

study, and allows uncertainties to be expressed through statistical probabilities 

(Giorlami 1997; Cressie and Wikle 2011)4. Bayesian approaches provide a 

relatively straightforward pathway to allow this. Bayesian analysis allows the 

quantification of all kinds of uncertainty, whether aleatory or epistemic, through 

probabilities (O'Hagan 2006). Information about parameters can be either 

expressed as a prior distribution, or derived as a posterior distribution given a 

synthesis of available data. Here, multiple sources of evidence can be 

differentially weighted according to their assumed quality (Spiegelhalter and 

Best 2002). 

2.5.3 Data 

Data is the best guide to the unknown. It follows that the most appropriate 

methods to explore uncertainty in computer simulation models should utilise 

data wherever practicable. An obvious limitation is that, at best, observation data 

is only available up until the present time. Careful consideration of data, 

probability and the model in an integrated manner is required to best evaluate 

computer simulation model uncertainty. I agree with the opinion of Cressie and 

                                                 

4 This is not a new idea; Laplace and many of his contemporaries believed that determinism and 

probability can be reconciled to create a greater whole. (Stigler 1986) 
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Wikle (2011) that a Bayesian analysis approach is the best paradigm to date in 

which to achieve this goal. 

2.6 Bayesian Data Analysis 

2.6.1 Bayes Theorem 

Bayesian inference is a very powerful tool for quantifying uncertainty when 

using observed data for parameter estimation. Bayesian analysis begins with 

what is known as a ‘prior’ distribution for uncertain parameters λ5, denoted by its 

probability P , that is, ( )P  . Knowledge about the uncertain parameters is then 

updated by observations, C6, to arrive at the ‘posterior’ distribution for λ, given C. 

This is expressed formally through Bayes theorem: 

 
( ) ( | )

( | )
( )

P P C
P C

P C

 
   

The probability of the observed data given the parameters, ( | )P C  , is the 

likelihood. Bayes theorem specifies that the posterior distribution of λ is 

proportional to the prior times the likelihood, since the denominator acts to 

normalise the posterior distribution so that it totals unity. The primary difficulty 

with Bayesian analysis lies in evaluating the denominator and in most situations 

numerical methods will be needed. The numerical integration technique known 

as Markov Chain Monte Carlo (MCMC) sampling is the most widespread 

approach (McFarland 2008). 

                                                 

5 The Greek symbol λ is used here as the more commonly used θ is utilised later in a more specific 

context. This usage of λ is restricted to this general overview of Bayesian modelling. 

6 C denotes ‘calibration data’ as distinct from input environmental data. This is discussed in detail 

in Chapter Three. 
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2.6.2 The Prior Distribution 

In Bayesian analysis, the prior distribution ( )P   is a representation of all the 

knowledge and information about the unknowns, before accounting for the 

observed data C. It is possible to use a prior distribution that represents a large 

amount of prior information thus dominating the effect of observed data. 

However logical choices also exist for prior distributions that capture the idea of 

a lack of prior information (McFarland 2008). 

2.6.3 Elicitation 

Elicitation is the term used to describe the process of extracting expert knowledge 

about an uncertain quantity. Elicited information has a particular role in forming 

the prior distribution for Bayesian data analysis. This is particularly (though not 

solely) relevant for quantifying input parameter uncertainty in the absence of 

data. There has been a considerable amount of research aimed at toward 

establishing robust methods for elicitation e.g. O'Hagan (2006). The basic idea 

was described as follows by Strong (2012): 

There are four roles, the decision maker (the individual who requires the 

probability distribution for the purposes of making some decision), the 

expert (the individual deemed to have useful subject matter knowledge), 

the statistician (an individual that can provide basic knowledge of 

probability and validate results) and the facilitator (manages the dialogue 

with the expert). Several steps are involved in the process: 

1. Identify uncertain quantities, 

2. Recruit expert, 

3. Explain process and train expert in basic probability, 



24 

 

4. Expert makes a series of statements about the unknown quantity 

or quantities, that reveal aspects of their underlying subjective 

distribution, 

5. Facilitator or statistician fits a probability distribution to these 

summaries, 

6. This is refined until the expert is confident that it reflects their 

judgements through an iterative process of feedback and checking 

the elicited distribution. 

2.6.4 Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) is a numerical simulation method that is 

often used in Bayesian analysis to construct the posterior distribution when no 

analytical expression of ( | )P C is available. It works by drawing values of λ 

from approximate distributions and then correcting those draws to better 

approximate the target posterior distribution, thus generating random samples 

from the target distribution, such that at each step of the process we expect to 

draw from a distribution that becomes closer and closer to ( | )P C . For a wide 

class of problems this appears to be the easiest way to get reliable results. The key 

to Markov chain simulation is to create a Markov process whose stationary 

distribution is the specified ( | )P C and run the simulation long enough that the 

distribution of the current draws is close enough to this stationary distribution. 

Convergence should always be checked by investigating trace plots, posterior 

densities for each node, and autocorrelation plots (Gelman et al. 2006). Two 

widely used Markov chain simulation algorithms are the Gibbs Sampler and the 

Metropolis Hastings algorithm. The Gibbs sampler is the simplest of the Markov 

chain simulation algorithms, and is the first choice for conditionally conjugate 

models. The Metropolis algorithm can be used for models that are not 
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conditionally conjugate; for example if some of the conditional posterior 

distributions in a model can be sampled from directly, and some cannot, then the 

parameters can be updated one at a time using the appropriate method. This type 

of approach is implemented in WinBUGS, the software used in this project 

(Spiegelhalter et al. 2004). 

2.7 Putting It All Together 

By unifying the ideas described in Sections 2.4 - 2.6 an agricultural computer 

simulation model can be set in a Bayesian state-space framework. This approach 

takes the conditional probabilities inherent in Bayesian hierarchical models 

(Carlin and Louis 2000; Gelman et al. 2006), and incorporates the ability to update 

(filter) state predictions using recursive Bayesian model properties. It 

independently allows the incorporation of a probability distribution function 

describing input parameter uncertainty when appropriate, perturbation of 

structural state equations if desired and up-to-date information from data when 

available (Cressie and Wikle 2011). 

The joint probability distribution function (pdf) of all the quantities in the model 

(i.e. the state model, and expert prior knowledge of input parameters) results 

from multiplying together the conditional pdf’s to provide an estimate of the 

process under study at time t based on all of the data available at that time  

(Gordon et al. 1993; Higdon 2007; Candy 2009; Vrugt et al. 2009a; Vrugt et al. 

2009b; Cressie and Wikle 2011; Murray 2013). 

A general solution that updates Bayes rule to allow inclusion of the state 

evolution model is provided by Berliner (1996), Candy (2009), and Cressie and 

Wikle (2011). This solution also allows the posterior at day t = 1 to become the 

prior at day t = 2. The hierarchical state-space framework uses an order one 

Markov assumption, and is referred to by Cressie and Wikle (2011), (Chapter 7) 
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as a dynamic spatio-temporal model (DSTM), and by  Candy (2009), (Chapter 2) 

as a sequential Bayesian filtering processor. The filter allows an enhanced signal 

with associated performance statistics to be estimated. 

It is helpful to follow the terminology of Cressie and Wikle (2011)  to help 

incorporate the state equations into the Bayesian framework. Instead of 

‘likelihood’, ‘prior’ and ‘posterior’ we will use ‘data model’ (C), ‘input parameter 

model’ (θ) and ‘filtering model’ (defined fully below). In addition, the ‘state 

evolution model’, or ‘state model’ (Z) enables the entrance of the mathematical 

model. The hierarchical structure of the model is given here: 

 The data model | ,C Z   is what is most likely to be true given conditional 

dependency upon the crop model in addition to the standard dependency 

upon the parameter model. An important feature of this framework is the 

lack of requirement for either linearity or normality in the data model. 

 The state model |Z   is represented by a series of unobserved/hidden or 

latent variables that are inferred through analysing the mathematical 

equations that describe the underlying scientific process of interest and are 

conditionally dependent on the parameters. A first order Markov model in 

time is assumed. 

 The input parameter model θ contains the parameters which are each 

described by a prior distribution usually represented by expert opinion or 

by independent ‘non-informative’ priors. The sequential estimation 

procedure additionally allows the prior at time t to be represented by the 

posterior pdf at time t-1. 

 The general form of the joint filtering model is then: 

 1: 1: 1( , | ) ( | , ) ( | , ) ( )t t t t t tP Z C P C Z P Z C P     
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This is derived in the context of the case-study model SIRIUS in Chapter Nine. 

2.8 Summary 

This Chapter introduced and defined computer simulation models, particularly 

in the context of agricultural research and development. One thread explored the 

concerns of the discipline as a whole that there is a need to properly estimate 

uncertainty in model outputs. This is becoming an important theme in 

agricultural research literature. The effect of uncertainty on the use of these 

models was then discussed in terms of the discipline’s historical and current 

approaches to management of uncertainty. The concept of a state-space 

framework was introduced and will be adopted to help combine deterministic 

models, probability, and data in a Bayesian setting. It allows the uncertainty 

inherent in the deterministic model estimates at each step to be carried forward 

through time, thereby combining what happened in the past with observed data 

and expert opinion in a seamless package. The next Chapter will build on these 

tools to carefully describe the types and sources of uncertainty in a computer 

model, and develop a UE framework to manage uncertainty in a methodical 

manner. 
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Chapter Three: Uncertainty Evaluation 

Framework 
3. Uncertainty Evaluation Framework 

3.1 Executive Summary 

 In order to utilise the tools described in the previous chapter, a clear 

compartmentalisation of the model into its components is necessary. Once this 

has been achieved, allocating the types and sources of uncertainty (whether 

epistemic or aleatory) to each component should be far more straightforward. For 

this, the state-space structure, ( )f  t tr ME,θ,E ,C ,  is defined such that the real 

world r is predicted to behave as a function f of the model’s state equations, ME, 

input parameters θ, calibration and environmental data tC  and tE , and residual 

stochasticity ε. Based on this state-space structure, tools to help curate 

information, to diagnose the most important sources of uncertainty, and to 

identify UE objectives have been developed. This clear UE framework will help 

save time and resources, and add confidence in conclusions by ensuring that no 

available resources are overlooked but are rather utilised as well as possible. 

3.2 A State-space Framework  

3.2.1 Components of a Computer Simulation Model 

Many bio-physical agricultural and agro-ecosystem computer simulation models 

are dynamic in nature. It is useful to adopt a state-space framework and follow 

the notation of authors such as Gordon et al. (1993) and Cressie and Wikle (2011) 

to compartmentalise the model. Each component defined in this Section can 

introduce uncertainty in the computer simulation model, and this is discussed in 

detail with respect to SIRIUS in Section III. Notation is used such that bold font 

indicates a vector and non-bold a single variable. 
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 Input Parameters 

Input parameters are denoted θ. θ represents independent input information that 

does not change during the sequential updating process of a dynamic computer 

simulation model. Examples of input parameters in an agricultural setting could 

be soil type, cultivar or other ‘scenario’ indicators as discussed by Teixeira et al. 

(2015) and Holzkämper et al. (2015).  

   State Equations 

The model’s state equations ME jointly define the processes that make up the 

model. The model outputs are then a function f of all the model components. 

State equations represent either experimentally derived relationships or 

theoretical constructs. State equations are mathematical equations that describe 

the underlying scientific processes of the model. Although the coefficients of 

these equations may have been derived via a calibration process during the 

model building phase (O'Hagan 2006), these coefficients and the equations to 

which they relate are distinct from the input parameters as they are usually 

constant for all scenarios under which the model might be expected to simulate 

crop responses. For example, the thermal-time calculation used to drive 

phenological development of lucerne (Teixeira et al. 2009) or the vernalisation 

requirement for wheat (Brooking 1996). 

   Observation Data 

Data which are observed are denoted tD . The subscript t identifies individual 

points at the time step the dynamic computer simulation model operates on (e.g. 

week/day/hour). Observation data may be present at each time point t, only at 

selected time points, or on some more or less precise scale. The notation t will be 

used to signify values that will update in some way related to the computer 
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simulation model’s time step. 
tD   is decomposed into 

 
  
 

t

t

t

C
D

E
 

where 
tC  

represents response or calibration data (possibly for multiple variables and/or  

scenarios hence the vector notation). This could also be available only as a single 

C e.g. yield at the end of the simulation process for a selection of scenarios or C 

for a single scenario. Similarly, 
tE  represents updating environmental or 

managerial inputs such as rainfall, irrigation, or temperature. 

   State Variables 

State variables,  as defined in the previous chapter, are the value of each state 

equation at each time-step t given the input parameters θ and the environmental 

input data tE . An important corollary of the structure of the model being 

allowed to depend upon theoretical constructs is that some components of  

may be latent, or unable to be observed in practice. 

3.2.2 Notation 

Computer simulation models are built for many different purposes and have 

many forms, but a generic model can be formally represented as the functional 

relationship: 

 = f( )y x   (1) 

where x is a vector of inputs and y a vector of outputs. The model structure ( )f   

specifies (mathematically or computationally) how the characteristics of y are 

determined by those of x. It specifies a formal statement of assumptions about the 

real world process (McKay and Morrison 1997). Strong (2012) additionally 

tZ

tZ
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identified an extra discrepancy term δ  as a linear, additive term to quantify the 

effect of structural error1 on the model’s ability to predict the true, unknown 

target quantity : f( )r r = x + δ . I extend this to include instead a general term    

that does not assume either linearity or additivity, and is used to ‘catch’ any form 

of uncertainty that cannot be otherwise allocated (i.e as discussed in Section III). 

Then: 

 = f( , )r x    (2) 

I do take some liberties with the notation here, of f in particular by changing it to 

some function (or model form) that describes the real world based on inputs and 

noise. But I am not aiming to change the process model itself.  Rather I would like 

to propose an alternate way of describing the model that directly defines each of 

the types of components that are likely to appear in a crop model. This is the 

beginning of a refinement process that will result in a more detailed expression of 

how the model represents the real world. 

Now, the possible inputs of the model x have been partitioned into input 

parameters θ and input environmental data tE . Then it is possible to define: 

 ( , , )tfr E    (3) 

Note that state equations have not been incorporated in this formal 

representation. The form of the model f is used instead, as it includes not only the 

equations in the model, but also their interactions. If f is restricted to apply only 

                                                 

1 Structural and other components of uncertainty in computer simulation model outputs y are 

discussed in Section III. 
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to the form of the model and not to the individual state equations it would then 

be equally correct to define a more complete state-space framework: 

                                        ( )f  tr ME,θ,E ,                                            (4) 

Finally,   is further decomposed to allow for the uncertainty associated with 

observed calibration data 
tC  separately from the remaining unidentified 

uncertainty to define:  

 ( )f  t tr ME,θ,E ,C ,                                (5) 

Here in this final refinement f is defined as the way in which these components 

together can describe the real world, which I have called model form. 

In the next Section sources of uncertainty in computer simulation models are 

described, and allocated to one of the three components on the right hand side of 

the simple representation in equation (5). 

3.2.3 Types and Sources of Uncertainty and Their Allocation to Model 

Components 

Computer simulation models represent detailed scientific understanding of real-

world systems. Although a vital part of research and development, they are 

simplifications of reality and hence imperfect. Imperfections may arise to 

epistemic uncertainty, or the lack of exact knowledge (Refsgaard et al. 2007). 

Imperfections can also arise because of random variation of a real world process 

(aleatory uncertainty). The types and sources of uncertainty in computer 

simulation models have been discussed extensively in the literature (O'Hagan et 

al. 1999; Kennedy and O'Hagan 2001; Katz 2002; Spiegelhalter and Best 2002; 

O'Hagan 2006; Cressie and Wikle 2011; Gupta et al. 2012). Epistemic and aleatory 
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sources of uncertainty are aligned with model components next and in Table 1. 

Elements of equation (5) are red to help identify where the source of each type of 

uncertainty is allocated. 

  Epistemic Uncertainty 

Input parameter uncertainty ( )f  t tr ME, ,E ,C ,θ  is also known as ‘state of the 

world’ uncertainty. It refers to uncertainty about the appropriate values to 

describe the scenario to be modelled. 

Data uncertainty ( )f  t tr ME,θ, C, ,E  may enter due to bias or 

scaling/aggregation. Scaling/aggregation uncertainty refers to situations in which 

the model is used on a scale different from that on which it was developed to 

operate. This is sometimes known as change of support (Katz 2002; Cressie and 

Wikle 2011). Bias occurs when the model is used on a scale different from which 

it was developed to operate. Calibration data, ( )f  t tr ME,θ, CE , , , is used when 

calibrating or updating predictions with actual observations. Environmental 

input data, ( )f  t tr ME,θ, ,C ,E , is used directly to inform state equations and 

can introduce uncertainty both as set of imperfectly measured observations, but 

also in a similar way to input parameters. 

Structural uncertainty, ( )f  t tr ,θ,E ,C ,ME , is also known as model inadequacy 

(Gupta et al. 2012), state equation uncertainty, or ‘ignorance’. It refers to our basic 

lack of knowledge concerning the structure of the model relative to the processes 

they represent. This may be in the nature of the state equations 

( )f  t tr ,θ,E ,C ,ME , or the more inclusive model form ( )f  t tr ME,θ,E ,C , . 

The obvious symptom is the difference between the true mean value of the real 

world process and the model output at the true values of the input data and 

parameters. 
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An additional source of uncertainty that must be discussed is code uncertainty 

which arises when the response surface of model outputs is sampled (Kennedy 

and O'Hagan 2001). This type of uncertainty is only briefly touched on through 

this dissertation and sits outside the UE framework proposed here as it is 

describes uncertainty from the truth of the model as opposed to truth of the real 

system. There exists situations in which a particularly large or complex model is 

difficult to evaluate due to the length of time taken to run a single simulation. In 

these situations an emulator approach can be used to predict how a computer 

simulation model (computer simulation model) might be expected to behave, 

based on a small number of actual runs of the computer simulation model. 

Estimates of the ‘code’ uncertainty around the computer simulation model 

expected values can then be obtained (Kennedy and O'Hagan 2001). 

 Aleatory Uncertainty 

Aleatory uncertainty ( )f  t tr ME,θ,E ,C , is usually thought of as an intrinsic, 

stochastic, random variation of a real world process even when the conditions are 

fully specified. The true process r is then defined as the mean value averaged 

over this intrinsic variation. It will only be able to be quantified as an aspect of 

the residual uncertainty in observed calibration.  

3.2.4 Consolidation of Sources of Uncertainty  

The information provided in Section 3.2 is summarised in Table 1, where the 

model form is expanded to include additional components as the type of 

uncertainty associated with that component is introduced. 

Table 1: Sources of uncertainty. 
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This clear partitioning of the components of the model is an important step for 

any UE of a computer simulation model. As pointed out by Gupta et al. (2012), 

the separation of errors into their source components is often difficult, 

particularly if the models are nonlinear and different sources of errors may 

interact. This is true both across different types of uncertainty (e.g. structural vs. 

input parameter) and within types (e.g. which input parameter has the greatest 

influence on the output). However, it is important in understanding where the 

greatest sources of uncertainties reside (Brown and Heuvelink, 2005). Although 

some of the partitions discussed in this Section may seem somewhat artificial, 

they are necessary to enable the objectives of the UE to be stated without 

confusion. 

3.3 Framework for Robust Computer Simulation Model UE 

I will use the term ‘model uncertainty evaluation’ or ‘uncertainty evaluation’ 

(UE) to refer to exploration of any of the sources of uncertainty described in this 

section. Note that specific subsets of these have their own name that is ubiquitous 

across the literature; for example sensitivity analysis usually refers to exploration 

of the effect of changes in input parameters and data θ, tE  on the model 

outcomes y. 

Source of uncertainty Notation

Aleatory uncertainty

Input parameter uncertainty

Environmental data uncertainty

Calibration data uncertainty

Model form uncertainty

State-equation uncertainty ( , , , , )t tr f  E CME 
( , , , , )t tfr  ME E C
( , , , )t tr f  E C
( , , )t tr f  E
( , , )tr f  E

( , )r f x 
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3.3.1 The Life of a Computer Simulation Model 

One thing to consider when approaching an UE of a crop model is the phases of 

model development and use. The model’s life is usually a continuum of phases 

starting with conceptualisation and implementation in code (Model Building), 

testing (Model Assessment) and use (Model Application). However, model 

building and assessment are not often considered ‘complete’, and adjustments 

are made as understanding of the system changes. It may be useful to 

conceptualise a simplified schematic of the life of a model as shown in Figure 2 

below. Explicit identification of the model phase during UE process is necessary 

when defining the objective of the UE to help identify the most appropriate UE 

techniques. 

 

Figure 2: Simplified schematic of phases of a computer simulation model's life. 

3.3.2 Outline of a Robust UE 

Several sampling and analysis techniques are reviewed in the next Chapter. 

Whilst many are complementary, not all will be suitable for all applications. The 

choice of which techniques to utilise is dependent upon what resources are 

Model Building

Model AssessmentModel Application
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available and the objectives (see Section 3.3.2.5) of the UE. Figure 3 outlines seven 

steps that, if followed, can help ensure a robust UE of a model. Figure 3 is not 

dissimilar to the framework put forward by Refsgaard et al. (2006). Each step in 

this outline is expanded upon in Sections 3.3.2.1 – 3.3.2.7. A clear UE framework 

will help save time and resources by ensuring that no available resources are 

overlooked but are utilised as well as possible. This will ensure that time spent 

back-tracking and re-doing simulations is minimised. The framework is 

illustrated for the case-study model in Chapter Eight. 

 

Figure 3: Seven steps for computer simulation model UE. 
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 Step 1: Verify and Validate the Model 

Figure 4 displays the iterative process that is central to computer simulation 

model building. As with any modelling exercise, it begins with an observation, 

from which hypotheses are derived, and then implemented in code. The joint 

processes of verification and validation, which are integral components of model 

building, are defined below. 

 

Figure 4: Schematic of the model building process. 

Verification is defined as the process of determining whether the model 

implemented in computer code accurately represents the algorithms that were 

intended (Carson 2002; Trucano et al. 2006). Since verification is usually 

considered a part of the minimum standard for the coding process it will not be 

Conceptual 

Model

Verify

Validate Code

Observation
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discussed further in this paper. Validation is more complex, with authors such as 

Oberkampf and Roy (2010) pointing out that different communities view 

validation from different perspectives. One such perspective is that validation is 

defined as ‘quantification of the accuracy of the computer simulation model’s 

results by comparing outputs with experimental data’. Another, that validation is 

‘determination of whether the estimated accuracy of the computer simulation 

model results satisfies some specified accuracy requirements’. In the first case 

some experimental data is required, whereas in the second it is not necessarily 

expected. However, as long as the process of validation is kept conceptually as 

‘confirmation of being fit for purpose’ then I enjoy the definition of Sargent 

(2005), ‘Validation is the process of determining the degree to which a simulation 

model and  its associated data are an accurate representation of the real world 

from the perspective of its intended uses’. Techniques for model UE during the 

validation stage are discussed in greater detail in the next Chapter. 

 Step 2: Identify Components of the Model 

Each component of the model defined in Equation 5 should be able to be 

assigned to one of the columns in Table 2. If not, another column should be 

added to allow for other types of components. 

 Step 3: Curate Available Information 

Data, expert opinion, phase of the computer simulation model’s life, model 

components, sources of uncertainty, and other relevant information can be 

identified in Table 3.   Extra rows should be added as required for each 

individual component; e.g. if there are 10 state equations then there should be 10 

rows in the first segment. If the computer simulation model is too large to easily 

enable this process a first step should be to identify which sub-component of the 

model structure is to be evaluated. 
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Table 2: Model component matrix. 

 

Table 3: Model information matrix (adjusted from (Refsgaard et al. 2007)). 

Calibration Variable Environmental Variable Model Form State Equation

r = f(ME, θ, Et,  Ct, ε) r = f(ME, θ, Et,  Ct, ε) r = f(ME, θ, Et,  Ct, ε) r = f (ME, θ, Et,  Ct, ε) r = f( ME , θ, Et,  Ct, ε) Zt - NA 

Observation Variable
Input Parameter State Variable

Structural Uncertainty

Context Notation Data Expert opinion Other

Structural Uncertainty r = f ( ME , θ, Et,  Ct, ε)

Model Inputs r = f( ME , θ, Et,  Ct, ε)

Aleatory Uncertainty or biased/scaled/aggregated observed data r = f(ME, θ, Et,  Ct, ε )
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 Step 4: Identify Principal Sources of Uncertainty in the Model 

Given the components identified in Steps 2 and 3 (Figure 3), assess which of the 

sources of information are likely to be of primary importance. 

 Step 5: State Objectives of Evaluation 

Any attempt to parameterise uncertainty cannot be general or universal; rather, it 

is an exploration that will be specific not only to the model but to the 

environment/scenario for which it is to be used (McFarland 2008). In most 

situations a selection of techniques will be likely to be helpful and should be 

combined to provide a heuristic view of the model; hence our use of the term 

‘uncertainty evaluation’. Which techniques will prove most insightful will vary 

depending on the phase of the computer simulation model’s life (Figure 2) that is 

under study. Further, during computer simulation model building, assumptions 

and simplifications are made. The techniques chosen to describe the uncertainty 

in a given model depend on specific properties of that model (Wallach et al. 2014) 

and these include: 

 Principal sources of uncertainty for that particular model, 

 Assumptions made during the model building process, 

 What information (data, expert opinion) is available. 

The key to any computer simulation model UE is to clearly state the objective of 

the analysis, allowing for the information and other resources available as 

summarised in Tables 1-3. Once the objectives have been written down, sampling 

and analysis can begin. 
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 Step 6: Generate Simulation Data 

Acquiring an appropriate sample of simulated data from the model is an 

important aspect of UE. A selection of sampling techniques to explore structural, 

input parameter, or environmental data uncertainty is shown in Figure 5. And 

discussed in greater detail in Section 4.3.  Simulated data provides information 

about how the computer simulation model responds to complex combinations of 

inputs, and is not synonymous with real-world, observed data. Simulation data 

generated from a computer simulation model using a technique such as those 

described in the next Chapter can be used either to explore ( )f ty ME,θ,E  

(sensitivity analysis) or ( )f  t tr ME,θ,E ,C ,   (calibration) (see Figure 6). The 

difference lies in whether there is real-world data tC  available to provide 

information about r, and hence ε. 

Given a large amount of time and computer resources for a particular problem, 

the ideal approach to data generation would be to sample evenly over all 

possible combinations of parameter values. However, this is usually impractical 

or even impossible, and the objective is therefore to reduce computational load 

whilst ensuring an appropriate representation of the response surface is 

obtained. The objectives of the evaluation defined in the previous step should 

help guide the sampling technique taken. 

The technique used to generate data from the computer simulation model will 

strongly influence the direction of the analysis toward evaluating uncertainty 

either due to input parameters or to structural uncertainty. Some techniques will 

allow more options than others, however. These and others will be discussed in 

Chapter Four. Note that these techniques would usually not apply to calibration 

data uncertainty since the nature of the data will pre-determine the scenario to be 

simulated. An exception is a well-known approach known as Generalised 
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Likelihood Uncertainty Estimation (GLUE) that is discussed in more detail in the 

following chapter. In general, simulated data arising from any of the sampling 

techniques could be used for most analysis techniques described in Chapter Four. 

An exception is the analysis technique for code uncertainty that arises from a 

Gaussian Process (GP) emulator sample, as discussed in the following Chapter. 

 

Figure 5: Classification of commonly used sampling techniques. 

 Step 7: Analyse/Summarise data 

Once the simulation data has been generated, analysis and summary of the 

information can begin. Depending on the objectives defined in step 5 (Section 

3.3.2.5), the data will be analysed either to identify areas in need of further 

research (computer simulation model assessment), or to predict or smooth with 

confidence ranges representing the desired sources of information (computer 

simulation model application). 

Figure 6 shows a possible classification of UE techniques in this phase. Some 

techniques based on real-world observation data (calibration) or not (sensitivity 

analysis) are shown as also described in Section 4.4. 
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Figure 6: Classification of commonly used analysis techniques for calibration 

and sensitivity analysis. 

 Calibration Data Collection 

This dissertation does not explore methods for collecting observational data Dk. If 

this is desired and/or possible, interested readers may find many introductory 

statistical texts for optimal data collection in many fields of research. An 

important feature of such real-world calibration data is that it is often difficult or 

impossible to obtain for many possible computer simulation scenarios. For 

obvious reasons in these situations only simulation data can be obtained, and are 

analysed via Sensitivity Analysis. The elicitation of expert opinion has been 

discussed by authors such as Refsgaard et al. (2007) and O'Hagan (2012) and is 

described in Chapter Two. 

3.4 Summary 

The UE framework proposed is one of the most important contributions of this 

project to the agricultural modelling community. This Chapter built on the state-

space structure provided in Chapter Two to introduce the notion that that a 
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complete specification of each model component with respect to how it may 

introduce uncertainty into model predictions is vital. Here, compartmentalising 

each model component and curating information related to that component 

makes it easier to diagnose how such uncertainty might be introduced. The UE 

framework then naturally moves forward to allow analysis objectives to be 

clearly proposed (or reframed if already stated) based on what information is 

available, what tools and techniques are suitable and which sources of 

uncertainty are likely to be most important. The UE framework adds confidence 

to conclusions by ensuring that available information is not overlooked, but 

rather is utilised as well as possible. By providing concrete tools and guidelines 

for uncertainty management, it places uncertainty assessment on a robust and 

unified footing. This will ensure that time spent back-tracking and re-doing 

simulations is minimised, saving time and resources. In the next Chapter the 

most appropriate technique(s) to resolve the UE objectives identified through the 

framework is (are) reviewed. Approaches to both sample from and analyse data 

thus obtained from a computer simulation model are linked to the UE framework 

via a review of uncertainty assessment methods. 
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Chapter Four: UE Techniques 
4. UE Techniques 

4.1 Executive Summary 

This Chapter is a literature review of techniques for identifying and quantifying 

uncertainty in computer simulation models. Besides the Introduction and a brief 

discussion of some common terminology, it is divided into two main sections 

which describe Sampling and Analysis/Summary techniques. Each Section 

follows the notation introduced in Chapter Three, filling in the details of the UE 

framework proposed. The framework therefore directly links qualitative and 

quantitative analysis through a review of classical and modern techniques for 

generating and analysing data from such simulation models. Insights are 

expected to provide guidelines for the identification of most suitable 

methodological approaches to explore the uncertainty inherent in different 

aspects of crop models. 

4.2 Introduction 

There are many techniques in the literature that provide insight into computer 

simulation model uncertainty. Some may be preferred by certain research 

disciplines, types of models, or intended model usage. For this reason a broad 

overview of classes of exploration for different types and sources of uncertainty 

at each stage of model building and evaluation is helpful. A detailed description 

of a selection of techniques will be provided. Given the topical and wide-ranging 

nature of this subject, this review is not intended to be exhaustive. Rather, it aims 

to provide insight into the classes of technique available, specifically those 

considered to be of particular value to the agricultural modelling community. 
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4.3 Sampling: Design of computer experiments to generate 
output data 

4.3.1 Generation of Data to Represent Input Parameter and Input 

Data uncertainty ( )f  ttr ME, , ,C ,θ E  

 Simple and Monte Carlo Sampling 

Since there are usually many possible values of varying levels of plausibility 

(Helton 1997) for the input parameters θ, uncertainty in θ can be characterised by 

assigning a distribution probability distribution function (pdf) to the parameters, 

thus defining a sampling space that is practically reasonable. These pdfs 

characterise a degree of knowledge with respect to where the appropriate input 

to use in the analysis is located, and this translates confidence about the 

appropriate values of the distribution of outcomes y. Helton and Davis (2000) 

suggest that it is usually most helpful to elicit expert opinion to characterise the 

distributions of θ. The process of expert elicitation is discussed by O'Hagan and 

Oakley (2004) and Strong (2012) amongst others. One straightforward approach 

is then to use simple random sampling from the appropriate range, or Monte 

Carlo sampling to simulate the pdf of the input parameters. The same concepts 

can apply to simulate input data tE  if desired. 

 Factorial Experiments 

The well-known principles of experimental design (Fisher 1926; Cochran and Cox 

1957; Mead 1988)  can be readily extended to computer simulation  experiments 

by selecting the combinations of factor values that will be simulated (Sacks et al. 

1989) based on the pdfs described above. Factorial and fractional factorial 

experiments can be used when there are relatively few factors or variates that can 

be summarised by a manageable number of sensible factor levels. Analysis of the 
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data is straightforward using ANOVA like decompositions, and can help identify 

less important parameters, so that they can be set to their nominal values and 

other terms more fully explored. It can also identify interactions between 

variables (Santner et al. 2003). 

The lack of random error in deterministic computer experiments leads to a 

number of differences from the traditional design of experiments. The absence of 

random error ensures that the complexity of the computer code is not disguised, 

and the adequacy of a response-surface model fitted to the observed computer 

data is determined solely by systematic bias. There is no need for blocking, and 

the concepts of experimental units, replication and randomisation are irrelevant 

(Sacks et al. 1989). 

 Gaussian Process Emulators 

The sampling techniques described above usually demand a very large number 

of model runs, and when a single model run takes several minutes or more, these 

methods quickly become impractical. One way to reduce the CPU load in the 

optimisation is to use response surfaces as proxies to the true model response. 

This results in a statistical representation of the computer simulation model, 

often called a Gaussian process emulator. It is analogous to regression modelling 

or multivariate neural networks, but more flexible, accurate, and efficient than 

these methods in challenging problems where there is limited information about 

the computer simulation model. A full mathematical treatment of this technique 

is available (Kennedy and O'Hagan 2001; Oakley and O'Hagan 2002; Oakley and 

O'Hagan 2004). A tutorial is given by  O'Hagan (2006). 

The use of Gaussian process emulators has been a very large area of research 

across many disciplines, both extending the methodologies via research in 
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different areas of mathematical complexity (Oakley and O'Hagan 2004; 

Bhattacharya 2007; Rougier 2008; Conti and O'Hagan 2010; Johnson et al. 2011; 

Wilkinson et al. 2011) and across a wide range of biological, medical, 

oceanographic, climate, economic and engineering applications (O'Hagan et al. 

2001; Stevens et al. 2003; O'Hagan et al. 2005; Kennedy et al. 2006; Rougier et al. 

2009; Becker et al. 2011; Fricker et al. 2011; Hall et al. 2011; O'Hagan 2012; Strong 

et al. 2012; Cripps et al. 2013). 

 Other Input Parameter Sampling Plans 

When there are many input variables that may interact to form complex response 

surfaces, the choice of inputs that will adequately describe the simulation space is 

less straightforward. There had been a large amount of research in this area, and 

texts by Santner et al. (2003) and Saltelli et al. (2000)  provide summaries of these. 

If two or more input variables are correlated then it is necessary that the 

appropriate correlation structure be incorporated into the sample if meaningful 

results are to be obtained in subsequent analyses (Iman and Davenport 1982; 

Jacques et al. 2006; Da Veiga et al. 2009). 

4.3.2 Generation of Data to Represent Structural Uncertainty 

( )f  t tr ,θ,E ,C ,ME  

 Internal Discrepancy Approach 

This technique, put forward by Strong et al. (2012), is based on specifying a 

distribution for the model structural error. There is no attempt to make 

assessments about the adequacy of the model structure in relation to alternative 

structures as in ensemble methods (discussed next); instead what is assessed is 

how large an error might be due to the structure of a single model. The method 

requires the ability to decompose the model into ‘sub-functions’. Where there is 
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thought to be potential structural error, a discrepancy term is introduced. The 

key idea is that in some applications it is easier to make judgements about 

internal discrepancies than about the external discrepancy which results from 

inadequacies throughout the whole model (Strong 2012; Strong et al. 2012; Strong 

and Oakley 2014). Strong et al. (2012) introduced this technique for simple 

discrete sub-functions; however, in a more complex (e.g. dynamic) case, we may 

want to introduce discrepancies at each time step, most likely leading to a 

correlated structure. This idea was explored in a state-space context by Strong 

and Oakley (2014). A similar idea has been explored in the context of multiple 

models by Goldstein and Rougier (2009). 

 Ensemble Methods 

Also known as model averaging, a multi-model ensemble (MME) is usually 

defined as a technique that incorporates outputs across more than one model. In 

this technique the predictions or probability statements of a number of plausible 

models are averaged, with weights based either on some measure of model 

adequacy or some measure of the probability that the model is true (Draper 1995; 

Kadane and Lazar 2004; Strong et al. 2012; Strong and Oakley 2014). By 

incorporating the views of many research groups/scientists and experts, the 

structural effects are said to be better described than if only one model is used 

(Gal et al. 2014). Model averaging is a well-documented  technique  (Rougier 

1996; Kalnay 2003; Raftery et al. 2005) and has been adopted in much agricultural 

simulation work (Van Ittersum et al. 2008; Ewert et al. 2009; Asseng et al. 2013; 

Bassu et al. 2014; Martre et al. 2015). Both frequentist and Bayesian approaches to 

model averaging can be used to allocate weights to the outputs from different 

models based on data (Bernardo and Smith 1994; Claeskens and Hjort 2008; 

Montgomery et al. 2012). 
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This technique has also been applied in the hydrological modelling area (Hsu et 

al. 2009; Rings et al. 2012). Here Clark et al. (2008) attempted to quantify the 

uncertainty in model structure by using a method, ‘Framework for 

Understanding Structural Errors’ (FUSE). This technique constructs many unique 

model structures by combining components from a smaller number of parent 

models. 

 Transition Matrix Probabilities 

A very common implementation is to incorporate stochasticity within the 

transition matrices  of a state space model, e.g. as described by Spiegelhalter and 

Best (2002) for a discrete state-space medical cost-effectiveness model. 

4.4 Analysis/Summary of Simulated Data 

The techniques discussed in Section 4.3 can often be applied at any of the phases 

of model development (Figure 2). However, some are more commonly used 

earlier or later in the process, for example, calibration techniques are often related 

to the model building phase, whereas sensitivity analyses are more often related 

to the model assessment phase. Both techniques may be helpful in the model 

application phase, depending upon the objective of the application. As with any 

statistical analysis, exploratory data analysis (EDA) is an important step to help 

understand patterns in the data. Problems with linearity and monotonicity can be 

identified and help guide selection of appropriate analysis techniques. The 

generation of scatterplots is the simplest sensitivity analysis technique (Helton 

and Davis 2000). A scatterplot matrix helps to identify correlations between 

multiple input parameters. The parallel coordinates plot is a way of visualising 

multivariate data (Wegman 1990; Cressie and Wikle 2011) that is very popular for 

sensitivity analysis (Saltelli et al. 2000; Kurowicka and Cooke 2006). In these 

references it is referred to as a cobweb plot. Visually, the vertical axes are placed in 
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parallel in some predetermined order. Each component of a given multivariate 

observation is plotted on its respective axis. Then a piecewise straight line is 

drawn between corresponding values on each axis. The use of colour can very 

much enhance the interpretability of the plot. 

4.4.1 Calibration – Techniques to Assess How Well the Computer 

Simulation Model Behaves in Relation to Observed Data 

( )f  t tr ME,θ, CE , , . 

 Formal Statistical Methods for Normal Data 

Tools commonly used to explore the goodness of fit of the simulated data to 

observed data (Smith et al. 1997; Kobayashi and Salam 2000; Gauch et al. 2003) 

are described next. These methods are usually an important part of the model 

building phase (Figure 2). 

The total difference between the simulated and measured values can be assessed 

by the root mean square error: RMSE: 
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Where i = 1,2…,n. Pi represents a simulated value, Oi an observed value  and O̅  

the mean of the observed values. This value is often used to compare competing 

models. 

The mean bias in the total difference between simulations and measurements is 

determined by: 
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The modelling efficiency, EF, provides a comparison of the efficiency of the 

chosen model to the efficiency of describing the data as the mean of the 

observations, i.e.:  
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Values for EF can be positive or negative with a maximum value of 1. A positive 

value indicates that the simulated values describe the trend in the measured data 

better than the mean of the observations. A negative value indicates that the 

simulated values describe the data less well than the mean of the observations. 

Pearson’s correlation coefficient, denoted r, is useful to assess how well the shape 

of the simulation data matches the shape of the measured data (e.g. is the 

relationship approximately linear). This value will be between 0 and 1, with one 

indicating perfect correlation. 
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The square of the correlation coefficient, often known as the coefficient of 

determination, or R2, is defined as the proportion of the total variation in the 

observed data that is explained by the data fitted by the model, and gives a 
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measure of how well the regression line approximates the real data points. It is a 

statistic that gives some information about the goodness of fit of the model. 

Finally, simple least squares regression modelling testing the following 

hypotheses will help describe straight-line departures from the 1:1 line using F-

statistics to test the following four hypotheses: 

1. P = O : The relationship between the predicted and observed values 

and the 1:1 line, 

2. P =  + O : The relationship between the predicted and observed 

values and the 1:1 line with a constant adjustment α upward or 

downward, 

3. P = O : The relationship between the predicted and observed values 

converge to the origin, but depart from the 1:1 line, 

4.  P = + O : The relationship between the predicted and observed 

values diverge from the origin and the 1:1 line. 

Taken together, RMSE, Bias, EF, r, R2, and linear regression can help explore the 

model more thoroughly than one measure alone. 

 Calibration for Output Data Not Assumed to be Normally Distributed 

There are situations in which the data are correlated, non-stationary or non-

Gaussian.  Researchers publishing in the area of hydrological models in 

particular have explored formal (Kavetski et al. 2002; Kavetski et al. 2006; 

Kuczera et al. 2006; Montanari and Grossi 2008; Thyer et al. 2009; Renard et al. 

2010; Schoups and Vrugt 2010) and informal statistical techniques when 

normality assumptions about residuals may be inappropriate. One well-known 

informal method was put forward by Beven and Binley (1992), with further work 

done by Beven and Freer (2001) and Beven (2006). The methodology, called 
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Generalised Likelihood Uncertainty Estimation (GLUE) has been extremely 

popular [the 1992 paper has received greater than 1,000 citations e.g. (Blazkova 

and Beven 2009; Juston et al. 2010)]. The methodology works as follows: 

1. Sample from the space of each input parameter to generate a model 

scenario, 

2. Fit the model using the scenario, 

3. Use the resulting simulated data to assess how well the model fits against 

some observed data using a pre-selected rule, 

4. Accept or reject that scenario, 

5. Uncertainty bounds are set at the desired percentage of the accepted 

models. 

Authors including Pappenberger (2006) and Stedinger et al. (2008)   appraised the 

method, discovering that the prediction limits derived from GLUE can be 

significantly different from prediction limits derived from correct classical and 

widely accepted statistical methods. It has been suggested that this approach 

needs to be used with great care; and further that there is a need for a 

standardised set of terms as to what is actually meant by ‘uncertainty’ in cases 

such as these (Montanari 2007). Some (Vrugt et al. 2003; Blasone et al. 2008; Vrugt 

et al. 2008) have put forward algorithms that place the sampling methodology on 

a more statistically grounded framework using adaptive MCMC sampling. 

Formal and informal likelihood techniques have been compared by Vrugt et al. 

(2009b), who found that the formal and informal approaches have more common 

ground than would perhaps be expected that the on-going debate between the 

two would suggest.  

I have seen this approach used to help identify suitable parameter combinations 

when observations were not available, and I do believe that this method has a 
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place when the elicitation of prior distributions is truly not possible; however, in 

general a more statistically robust approach such as the method used in Chapter 

Nine of this thesis is preferable. 

 Data Assimilation 

Data assimilation is the process by which observations are incorporated into the 

estimates from a computer simulation model, using all available information for 

optimal prediction. It is distinct from calibration techniques discussed so far in 

that it makes use of observed data as it becomes available through time. Data 

assimilation is based on a two-step process and depends on a state-space model 

formulation, the forecast step, and the update (filtering) step. Figure 7 provides a 

view of data assimilation (Lewis et al. 2006) that shows how the state evolution 

model, observations, and input parameters are unified to provide filtered 

estimates that can be used to explore model sensitivity, uncertainty, and 

predictability. Some well-known examples of data assimilation techniques are 

described next. 

 

Broad view of data assimilation

State Evolution 

Model
Observations Input Parameters

Data Assimilation 

methods

Filtered model

Prediction/

Uncertainty
Sensitivity
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Figure 7: A view of data assimilation (adjusted from Lewis et al. (2006))1 

Bayesian Data Assimilation 

The Bayesian  data assimilation approach takes the conditional probabilities 

inherent in Bayesian hierarchical models (Carlin and Louis 2000; Gelman et al. 

2006) and incorporates the ability to update (filter) state predictions using 

recursive Bayesian model properties. It is the best paradigm to date in which to 

partition variability and quantify input parameter, data and structural 

uncertainty (Cressie and Wikle 2011). The joint pdf of all the quantities in the 

model (e.g. the state model, and expert prior knowledge of input parameters) 

results from multiplying together the conditional pdfs to provide an estimate of 

the process under study at time t based on all of the data available at that time 

(Gordon et al. 1993; Higdon 2007; Candy 2009; Vrugt et al. 2009a; Vrugt et al. 

2009b; Cressie and Wikle 2011; Murray 2013). This technique allows an enhanced, 

dynamic signal with associated performance statistics to be estimated. Such an 

approach is implemented in Chapter Nine of this dissertation. 

Kalman Filter 

The Kalman Filter is the most well-known of all the Bayesian data assimilation 

techniques. It is optimal in the very specific case that assumes normality in the 

noise component of the model outputs and the observation data. There are many 

books and tutorials describing the Kalman Filter (Thacker and Lacey 1996; Lewis 

et al. 2006). 

                                                 

1 reproduced by permission of Cambridge University Press 
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The Kalman filter uses a series of (noisy) measurements observed over time to 

produce updated estimates of state variables. Use of the Kalman filter requires 

the same matrices need to be specified as discussed in Section II with regards to 

the state-space model framework: tZ , the state-transition model; 
tH , the 

observation model. CovPt, is defined as the covariance of the process noise and 

CovObst, the covariance of the observation noise. Sometimes  

tB , the control-input model for each time-step, t, may also included, but has not 

been here. Therefore, the linear form of the Kalman filter model assumes the true 

state t at time t evolves from the state at (t−1) according to the state equation: 

 t t t -1 tr = Z r + w  

Where tZ  is the state transition model which is applied to the previous state rk−1 

with wt being the additive, linear process noise which is assumed to be drawn 

from a zero mean multivariate normal distribution with covariance CovPt. 

 t tw ~ N(0,CovP )   

It is not possible to directly observe the true state vector rt. At time t an 

observation (or measurement) Ct of the true state rt is made according to the 

observation equation: 

 t t t tC = H r + ν   

Where Ht is the observation model which maps the true state space into the 

observed space and vt is the additive, linear observation noise which is assumed 

to be zero mean Gaussian noise with covariance CovObst. 

 t tν ~ N(0,CovObs )   
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Extended and Ensemble Kalman Filter 

These techniques are extensions to when the linearity requirement of the Kalman 

Filter cannot be met (Evensen 2007; Fowler 2012). 

Particle Filter 

Non-Bayesian Particle filters (also known as Sequential Monte Carlo (SMC)) can 

help with problems that do not fit into the framework required for a Kalman 

Filter. Particle filters use a grid-based approach, and work by propagating and 

updating a set of random samples (particles) to approximate the required 

continuous probabilistic distribution. The state-space model can be non-linear 

and the initial state and noise distributions can take any form required 

(Arulampalam et al. 2002; Künsch 2013). 

Bayesian Model with Particle Filter 

Bulygina and Gupta (2009) used a Bayesian data assimilation approach  to 

directly construct the form of the input parameters, outputs, and state variables 

such that they are statistically consistent with data measurements of the system, 

and then incorporated the method of particle filtering to construct efficient 

estimates of the pdfs of the internal model structure. 

4.4.2 Sensitivity Analysis - Techniques to Explore the Impact of 

Changes to Structure, Input Parameters, or Environmental Input 

Variables ( )f  t tr , ,E ,Cθ ,ME  

Sensitivity Analysis (SA) assumes the form of the model as defined by the state 

equations is adequate (Saltelli et al. 2000). SA, like calibration techniques, is 

dependent on the generation of a reliable simulated data set. It relies on tools 

such design and analysis of computer experiments, multivariate analysis 
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techniques, partitioning of variance, and other useful tools (Chatfield and Collins 

1980; Sacks et al. 1989; Koehler and Owen 1996; Krzanowski 2000; Saltelli et al. 

2000; Santner et al. 2003; Cacuci et al. 2005; Kurowicka and Cooke 2006; Saltelli et 

al. 2006). Although usually considered to be related to input parameters θ, or 

data tE , the process variables tZ  may themselves exhibit random variability, so 

model structure can itself be considered as an unknown state of the world and be 

a subject of probabilistic sensitivity analysis (Spiegelhalter and Best 2002; Strong 

et al. 2012; Strong and Oakley 2014). 

 Variance Decomposition 

Variance based methods are a particularly useful class of sensitivity analysis 

techniques. Sensitivity indices (for input parameters for example) are based on an 

ANOVA type decomposition (Welch et al. 1992) of the function ( )f θ  and 

sensitivity and total sensitivity indices of each term can be studied to assess the 

sensitivity of the output to individual variables or combinations of variables, 

even when the effects are not linear (Santner et al. 2003; Wallach et al. 2014). This 

is a large area of research that is still very active e.g. (Prieur 2014), so a very brief 

overview follows (Saltelli et al. 2000). The variance decomposition is the same as 

that for standard Design of Experiments if orthogonal (e.g. statistically 

independent) inputs (Archer et al. 1997), and has many of the same strengths. 

The use of variance as an indicator of importance for input factors also underlies 

regression based methods, and these techniques are useful for situations with 

non-linearity and or non-monotonicity in ( )f θ . In contrast, the correlation ratio 

(McKay 1995) and importance measures (Hora and Iman 1986), are simple tools 

based on conditional variance of model outputs that describe uncertainty using 

probability distributions. None of these analyses are appropriate when inputs are 

not independent and orthogonal. 
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 Correlation Based Methods 

Linear and nonlinear least-squares regression are other common tools to analyse 

simulated data in practice. However, there are some fairly stringent assumptions 

(Trucano et al. 2006) usual to analyses assuming the normal distribution. There 

are many standard statistical texts that provide detailed descriptions of these 

methods (Draper and Smith 1981). Saltelli et al. (2000) is an excellent resource. 

 Multivariate Statistics 

Multivariate approaches can be helpful to summarise, reduce dimensions, and 

describe complex interactions between many inputs. There are many resources 

available on multivariate data analysis approaches, (Chatfield and Collins 1980; 

Krzanowski 2000; Harding and Payne 2011). 

 Analysis Allowing for Code Uncertainty 

The techniques outlined above are used in calibrating parameters of models, 

taking into account uncertainty in the observation data but assuming no 

uncertainty in the model itself (structural uncertainty). Formal Bayesian 

statistical methods that address code uncertainty, rather, describe the 

relationship between the observations iz , the true process ( )  ,  and the 

computer model output ( )  : ( ) ( , ) ( )i i i i i iz e e       x x x  (Kennedy and 

O'Hagan 2001). Here, ie  is the observation error for the ith observation,   is an 

unknown regression parameter and ( )i x  is a model inadequacy function (as 

discussed in Section 2) that is independent of the code output.   represents input 

parameters and ix  input data. Here, the error term 𝑒𝑖 is assumed to be normally 

distributed without systematic error, and the constant regression parameter 
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implies that the underlying observation process ( )i ie x  is stationary, which 

may be unrealistic in some applications (Trucano et al. 2006; McFarland 2008).  

4.5 Summary 

Managing uncertainty in computer models is very topical. This is evidenced by 

the very wide range of techniques that have been proposed in the literature 

(particularly in the past 15 years) to describe and quantify uncertainty. In fact, 

there are methods by which each type of uncertainty discussed in Chapter Three 

can be quantified. As such, the UE framework developed in this Section is 

conceptually aligned with existing model assessment technology. 

There are many excellent resources that discuss and describe the different types 

of uncertainty, and others describe the conceptualisation of time-step models in a 

state-space structure. Others again put forward plans and frameworks for UE. 

However, as far as I could ascertain, none explicitly combined all three aspects of 

model UE. In the three chapters that make up Section I, an existing framework 

has been built upon existing work to propose a framework that explicitly 

describes and allocates each type of uncertainty within a state-space structure. 

The structure is used to curate available information prior to diagnosing principal 

sources of uncertainty and setting or adjusting analysis objectives. That’s why the 

framework proposed in this section, particularly the compartmentalisation of 

types and sources of uncertainty, is one of the most exciting outcomes of this 

project. 

The next Section focuses on introducing and describing the developmental sub-

model of the wheat model SIRIUS. SIRIUS is the basis for the applied, practical 

components of this dissertation. 
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Section II – SIRIUS: A Model for Wheat 

Development 
Section II - SIRIUS: A Model for Wheat Development 

In the previous section, A UE framework was proposed for computer simulation 

models. The detailed information required to properly implement the framework 

requires knowledge not only of how a model is constructed, but also of the 

scientific understanding upon which it is based. In order to illustrate the 

framework for a case-study model therefore, it is useful to provide a detailed 

description of a particular model. The model selected as the case study for this 

dissertation is a sub-model of the wheat development model SIRIUS. This model 

was selected as it is of direct relevance to on-going work within PFR, and is still a 

globally influential research tool. SIRIUS was based upon pre-existing models 

that were built on historical, scientific understanding about growth and 

development processes that control wheat response to temperature and 

photoperiod. SIRIUS built upon and fine-tuned these characterisations to create a 

new paradigm of model that is based on physiological mechanisms that well 

describe observed experimental data. In Chapter Five the phenological and 

physiological scientific background to the wheat development model SIRIUS is 

introduced. In Chapter Six, data used to characterise several of the key 

mechanisms incorporated into SIRIUS is re-analysed to describe possible sources 

of uncertainty. Finally, crop models often act as constructs upon which 

researchers may continue to develop mechanistic understanding of real world 

systems. They can help identify biological processes that are not accurately 

understood. In Chapter Seven a potential source of structural uncertainty is 

identified and experimental work carried out to assess its impact. 
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Chapter Five: Scientific Modelling of Wheat 

Flowering Time Physiology 
5. Scientific modelling of wheat flowering time physiology 

5.1 Executive Summary 

The objective of this Chapter is to provide a description of the deterministic leaf 

development sub-model implemented within the SIRIUS wheat model (Jamieson 

et al. 1998a). It includes a biological motivation for the model, an overview of the 

scientific principles of the crop physiology, and brief journey through the 

research and development of wheat development models in the past five 

decades. Key concepts and terminology and defined, and finally, the case study 

model SIRIUS is defined and described. 

5.2 Introduction 

Building mechanistic and developmental models is an important technique in 

agricultural research. They provide a framework for the integration of current 

physiological understanding; and tools for identification of gaps in 

understanding. They are also valuable tools for estimating real world outcomes 

from hypothetical scenarios and provide the basis of practical decision support 

systems in horticulture and agriculture (Holzworth et al. 2014). The science of 

crop modelling is to understand and quantify the responses of different 

physiological processes in arable crops to the environment (e.g. climate, soil) and 

management (e.g. irrigation, fertiliser) and the interaction of different processes 

within the system. Crop physiologists study the behaviour of system components 

separately, and then integrate these mechanisms into a crop model. These models 

can then be used to predict crop behaviour by inputting any required scenario 

(environmental and management conditions). The need to develop models that 

accurately simulate crop development has spurred much of our current 
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understanding of physiological mechanisms. The case study model for this 

dissertation simulates the leaf development of wheat. Section 5.3 provides a 

biological motivation for the case-study model selected. Section 5.4 describes the 

current scientific understanding that underpins this phase of wheat 

development. Section 5.5 provides a history of model construction over the past 

five decades ending in a detailed description of SIRIUS. 

5.3 Biological Motivation: Estimate Flowering Time in 
Wheat 

Wheat (Triticum aestivum L.) is the second most important crop in the world; after 

maize, but before rice and potatoes. Wheat development can be divided into five 

phases as follows: 

1. Sowing – emergence, 

2. Leaf Development from emergence to flag leaf (vegetative phase), 

3. Flag leaf – anthesis, 

4. Anthesis – start grain fill, 

5. Start grain fill to end grain fill (Grain filling). 

Studies have shown that wheat phenology and physiology, in particular anthesis 

(flowering) date, is the main determinant of genetic adaptation to the 

environment (Law and Worland 1997; Iwaki et al. 2001; Snape et al. 2001; 

Goldringer et al. 2006). This is because the timing of anthesis in wheat strongly 

influences its yield, as it determines the environmental conditions experienced by 

the plant during grain-filling (Jamieson et al. 1998b). In wheat, as in most plants, 

progress toward flowering is chronologically accelerated by increased 

temperature (Porter and Gawith 1999). That is, physical development of each 
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plant organ (e.g. tillers, leaves, or spikelets), or progress to consecutive 

development stages can be related to accumulated thermal-time1 (Miglietta 1989; 

Jamieson et al. 1995a; Robertson et al. 1996). During the vegetative phase (leaf 

development), wheat can also have facultative (optional) responses to 

photoperiod and cool weather conditions with longer photoperiod and/or 

exposure to cool temperatures inducing an advance in flowering (Hay and Kirby 

1991).  The cool temperature response is known as vernalisation and is described 

in greater detail in Section 5.4.12. Genetics influence these responses with varietal 

variation in the sensitivity to photoperiod and the extent of vernalisation 

responses (Syme 1973; Halloran 1975; van Beem et al. 2005; Trevaskis et al. 2007a; 

Distelfeld et al. 2009a; Eagles et al. 2010; Yang et al. 2011). As anthesis occurs a 

fixed (for each cultivar) thermal time interval after the emergence of the flag leaf 

ligule, understanding the developmental processes that control the rate of leaf 

development and the final number of leaves is vital to predicting the timing of 

anthesis (Jamieson et al. 1995b; Hay and Porter 2006). For this reason the focus 

throughout most of this dissertation is the leaf development phase. The exception 

is Chapter Seven, which focusses on the phase from sowing to emergence. 

Section 5.4 next describes the current understanding of the biology of leaf 

development in wheat from emergence until flag leaf. 

                                                 

1 As defined in the glossary, daily thermal time is defined as the integral of time of environmental 

temperature above a base temperature. In practice a daily mean of maximum and minimum 

temperatures is normally used. Accumulated thermal time is the sum of daily thermal times from 

the day of sowing. Thermal time is discussed in more detail in Section 5.4.6 
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5.4 The Physiology of Leaf Development in Wheat  

5.4.1 Physiology 

All physiological science (Crop, Plant, Cell, and Molecular) aims to understand 

the effects of both environment and genetics on plant form and function. The 

distinction between these disciplines is the scale at which the study focuses. Crop 

physiology integrates ideas from plant, cell, and molecular physiology to explain 

crop scale responses in the field. 

5.4.2 Phenology 

Phenology relates to plant development, describing the occurrence of sequential 

events (vegetative and reproductive) that can be observed in the plant’s life cycle. 

The primary requirement for the adaptation of a crop in a particular area is that 

its phenology fits the environment. Therefore the phenology of a crop must allow 

it to flower and complete the formation of viable autonomous reproductive 

organs when environmental conditions are suitable. 

5.4.3 Development 

It is important to note that development and growth are two separate processes. 

Development is the sequential production, differentiation, expansion and loss of 

the structural units of the plant. Temperature is the primary controller of the rate 

of development (Chujo 1966a), but photoperiod2 has a modulating influence in 

many cases. 

                                                 

2 Described in Section 5.4.11 
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5.4.4 Growth 

Growth refers to increase in crop dry weight, the net result of acquisition and loss 

of resources. Photosynthetic assimilation is the primary element of growth and is 

primarily driven by the total amount of intercepted radiation. Growing a crop is 

an exercise in energy transformation, in which intercepted solar radiation is 

converted to more useful forms of chemical potential energy (crop dry matter) 

and partitioned into harvested crop organs. This transformation involves three 

processes in sequence beginning with the interception of incident solar radiation 

by the crop’s canopy (leaves), followed by conversion of the intercepted radiant 

energy to chemical potential energy (photosynthesis producing dry matter) 

which is then partitioned between leaves, stems, roots, and reproductive organs. 

5.4.5 Adaptive Fitness 

The success of a wheat crop depends on the fit of its genetic characteristics to the 

environment in which it is grown. There is a remarkable degree of adaptation of 

modern wheat varieties to climate and management, with the result that crops 

sown several months apart can converge to give anthesis dates spanning a few 

days.  This results in different varieties having effectively the same grain-filling 

period and harvest date (Hay and Porter 2006). This fine tuning of the crop to its 

environment is a consequence of interactions among plant mechanisms in 

response to different environmental signals (Hay and Kirby 1991; Hay 1999). 

These behaviours are controlled within each genotype by a unique combination 

of photoperiod, vernalisation, and other temperature dependent responses. A 

crop with appropriate vernalisation and photoperiod responsiveness will flower 

at a time that is appropriate for the environment in which it is grown. This is 

referred to as adaptive fitness. A variety that flowers too early or too late may 

experience environmental conditions which cause it to perform poorly. For 
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example, it may flower in a period of cold weather increasing the chance of frost 

damage. This plant would then be considered to be poorly adapted to the specific 

environment. 

5.4.6 Thermal Time 

Temperature determines the rates of most developmental processes. The use of 

thermal time is central to the study of crop development (Hay and Porter 2006). 

Each developmental process in each cultivar3 has an individual relationship with 

temperature (Porter and Gawith 1999). Thermal time is a commonly used term 

that is defined as the integral over time of environmental temperature above a 

base temperature. This base temperature represents that at which the rate of the 

process falls to zero. In practice a daily mean of maximum and minimum 

temperatures is normally used, although hourly data enables more accurate 

calculations of thermal time if available (Sharma and D'Antuono 2011). The 

practice of using a daily mean of maximum and minimum temperatures has been 

shown by these authors to result in an important source of scaling/aggregation 

uncertainty. 

5.4.7 Minimum and Maximum Leaf Number 

Each wheat cultivar has an inherent minimum and maximum number of leaves 

that it may produce. Once the maximum leaf number is reached, flowering will 

almost always occur. Similarly, a plant will never flower before its minimum leaf 

number is reached, even in the most favourable of conditions. Any vernalisation 

                                                 

3 A plant variety that has been produced in cultivation by selective breeding. 
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and photoperiod responses will act to decrease the final leaf number within these 

boundaries. 

5.4.8 Phyllochron 

The phyllochron is the thermal time accumulation required for a full leaf to 

develop. Each leaf developed may also be called a Haun stage (Haun 1973); e.g. a 

wheat plant with 6 and one half fully emerged leaves is at Haun stage 6.5. 

Phyllochron usually increases with Haun stage, depending only on the 

temperature of the apical meristem and the current number of leaves. It is 

independent of photoperiod (Jamieson et al. 1995a). In contrast to Sharma and 

D’Antuono (2011), evidence was also given that only mean daily temperatures 

are required to calculate leaf appearance rates. 

5.4.9 Primordia 

Primordia are undifferentiated organs on the apex of the mainstem which may 

develop to become leaves or spikelets. The embryo of a wheat grain has usually 

produced 2-3 primordia (see Figure 17 in Chapter Seven) when the mother plant 

is ready for harvest. 

5.4.10 Plastochron 

The plastochron is the thermal time taken for individual primordia to develop. 

Within the range of conditions experienced in temperate areas, primordia 

initiation is assumed to be dependent solely upon temperature (Brooking et al. 

1995). Accurate simulation requires correct measurement of the temperature 

experienced by the apical meristem. It is common to use air temperature as a 

temperature input even when the apical meristem (the temperature sensitive 

growing tip) is underground. However, the difference between air and soil 
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temperature is often too large for accurate simulation, particularly in the warmer 

months (Jamieson et al. 1995b; Jamieson et al. 2008).  

5.4.11 Photoperiod Sensitivity 

 Definition and Effect of Photoperiod Independent of Vernalisation 

Photoperiod, the number of hours of daylight in a day, can influence the final leaf 

number in wheat. A plant can only respond to photoperiod once its vernalisation 

requirement is met, and different cultivars vary in the extent of their response to 

photoperiod. The adaptive response delays flowering in short photoperiods, 

ensuring that flowering will occur when environmental conditions are more 

favourable for crop development.  The first step in understanding the 

mechanisms driving final leaf number is to describe and parameterise the 

photoperiod response independent of any vernalisation response, e.g. for 

vernalisation insensitive (spring) varieties. This was done by Brooking et al. 

(1995), who described the nature and timing of the day length response to final 

leaf number for several different spring wheat cultivars and sow dates. They 

included information about when the plant is sensitive to photoperiod, 

differences in responses between genotypes, and how photoperiod affects 

development progress. 

 Inductive Conditions 

Essentially, inductive conditions are a set of conditions that will guarantee 

triggering the switch from vegetative to floral development. The term inductive 

refers to whether or not the wheat plant is able to respond to photoperiod, i.e. is 

exposed to appropriately warm temperatures, is emerged, and is fully vernalised. 

It is suggested that, unlike rice and maize,  exposure of the first green leaf to light 

sets in train the photoperiodic reactions leading to floral initiation without a 
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juvenile phase (Gott et al. 1955; Cooper 1956; Kiniry et al. 1983; Collinson et al. 

1992; Ellis et al. 1992). This progresses as shown in Figure 17 and described in 

Section 7.2.1 in Chapter Seven. 

 Wave of Commitment 

An early hypothesis by Miglietta (1991b) assumed that crops responded to day 

length immediately after emergence; determining which primordium would be 

the first spikelet and thus fixing the final leaf number. Brooking et al. (1995) 

pointed out that this would lead to the same response if the crop emerged to 

decreasing day length, which does not occur. Rather, in spring wheat, the first 

spikelet primordium is not committed to its ultimate fate until sometime after it 

has formed. This work is explored in detail in Chapter Six, Section 6.2. If the plant 

emerges at a time when photoperiod is not inductive, the plant must commit to a 

final leaf number at some point during its development, switching from a 

vegetative to a reproductive state. Slafer and Rawson (1994b) showed that the 

rate of change of day length had no influence on final leaf number independent 

of the effects of day length. Hence, commitment to final leaf number must occur 

at some fixed thermal time during spikelet development. In fact, depending on 

the cultivar, the plant can display photoperiod sensitivity until terminal spikelet 

formation. For four cultivars, Brooking et al. (1995) showed that the final 

commitment to final leaf number occurred at different developmental stages in 

different genotypes. In two of the four cultivars analysed, final leaf number was 

controlled by the day length midway through spikelet initiation. In the third and 

fourth cultivars, the day lengths at the beginning and end respectively of spikelet 

initiation were the controlling factors. Thus the final leave primordia may not 

commit until many plastochrons after it is formed, depending on cultivar. This is 

shown in greater detail in Chapter Six, Section 6.2. 
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There is assumed to be a fixed relationship between the rate of appearance of 

leaves and leaf primordia (Kirby 1990; Brooking et al. 1995) (Figure 17). This is 

not true between leaf and spikelet primordia appearance. When apical meristem 

development is plotted against the appearance of leaves in inductive conditions, 

then leaf primordia appear at a slower rate than spikelet primordia. In non-

inductive conditions, the first few spikelet primordia may be produced at the 

same rate as leaf primordia (Delecolle et al. 1989; Brooking et al. 1995). It seems 

likely, then, that the rate at which primordia are initiated changes at around the 

time the first primordium commits to becoming a spikelet in inductive 

conditions. At this stage, however, older (uncommitted) primordia can still 

become either spikelets or leaves, so that a ‘wave of commitment’ of primordia 

that occurs after the initiation of the terminal spikelet is still somewhat sensitive 

to photoperiod (Brooking et al. 1995). This enables the plant to reflect abrupt 

changes in day length  (Brooking et al. 1995). 

In summary, primordia will continue to develop and commit to becoming leaves 

until the (genotype specific) photoperiod signals are received to commit to a final 

leaf number. During this time, some primordia will have committed to becoming 

spikelets, changing the rate of emergence of primordia. However, this in itself 

will not impact on the final leaf number. Once final leaf number is fixed, all 

primordia between the first committed spikelet and last committed leaf will 

rapidly commit to becoming either leaves or spikelets, generating the ‘wave of 

commitment’. A photoperiod response is not present in all wheat genotypes, and 

it may be influenced by a vernalisation requirement in winter genotypes as 

described in the next section. Interactions between daylength and temperature 

responses must therefore occur because temperature will determine the time at 

which plants set the final leaf number, and hence the daylength to which they 
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will be exposed at the time. Variations between cultivars are caused by variations 

in phyllochron; hence cultivars with shorter phyllochrons will flower earlier. 

5.4.12 Vernalisation 

 Introduction 

Vernalisation is a less well understood process than photoperiod response. The 

consequences and importance of vernalisation, and early approaches to 

understanding its mechanism are described. These, however, failed to 

differentiate between the mechanisms of vernalisation and vegetative 

development. In 1995, a developmental framework was proposed that sets the 

scene for modelling the effect of vernalisation independently of vegetative 

development. (Jamieson et al. 1995b; Robertson et al. 1996; Jamieson et al. 1998a). 

 Brief Outline of Vernalisation in Wheat 

The vernalisation response is an accumulating period of time at appropriately 

low temperatures. Chourd (1960) defined vernalisation as a preparatory process 

to flowering. The major effect of vernalisation is to shorten the duration of the 

phase of leaf primordia production (Griffiths et al. 1985) by a chilling treatment. 

The vernalisation response is important in adapting the plant to the environment 

in which it is grown so it can make the best use of the seasonal opportunities for 

growth and avoid adverse climatic factors (Levitt 1948; Gott et al. 1955; Aitken 

1961; Tottman 1987). 

This requirement for cold temperatures that advance flowering, and 

consequently decrease final leaf number, is what separates spring and winter 

wheat varieties. Only winter genotypes of wheat demonstrate a vernalisation 

response, with spring varieties having a low final leaf number regardless of the 
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temperature. Although winter wheat plants subjected to cold temperatures when 

young will flower sooner than non-vernalised plants, non-vernalised plants will 

eventually flower without exposure to low temperatures (Ahrens and Loomis 

1963; Chujo 1966a) so vernalisation response is said to be facultative. 

The final number of leaves the plant will develop starts at the maximum final leaf 

number and reduces in proportion to the extent of vernalisation saturation. 

Vernalisation continues independent of other developmental events during the 

vegetative phase until the 6th Haun stage (Gott 1957). A consequence of the 

combination of temperature responses of vernalisation and primordium 

production is that plants vernalised at the warm end of the range of vernalising 

temperatures will set more leaves and need more thermal time to reach anthesis 

than those vernalised at the cool end (Jamieson et al. 1998a). This is due to a 

slower progress toward vernalisation at higher temperatures (Reinink et al. 1986; 

Kirby 1992; Brooking 1996). The vernalisation response is said to be ‘saturated’ 

when the lowest possible total leaf number at anthesis (minimum final leaf 

number) is obtained (Brooking 1996). 

 A Mechanism for Vernalisation 

As stated previously, vernalisation and vegetative development occur 

concurrently. Some early approaches to understanding the response of wheat 

were based only on the consequence of vernalisation (Hansel 1953). That is, the 

progress to anthesis rather than the process of vernalisation in itself. This led to 

difficulties in separating the effect of vernalisation and development (Chujo 

1966a; Brooking 1996), since the morphological effect of vernalisation was not 

visible until floral initiation had begun (Chourd 1960). 
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To properly understand the relationship between temperature and vernalisation, 

information is required to monitor vernalisation progress prior to flowering, and 

take account of both the extent and consequences of continued vegetative 

development during vernalisation (Brooking 1996).   

Brooking (1996) suggested a methodology to pinpoint the time of vernalisation 

saturation through differentiating between the vernalisation and vegetative 

development mechanisms. This methodology was based on existing data 

resulting from experimental work that was originally used to relate wheat 

morphology and phenology (Kirby 1974; Hay and Kemp 1990; Hay and Kirby 

1991; Hay and Kemp 1992). In contrast, Brooking (1996) aimed to define 

developmental aspects of the temperature response of the vernalisation process 

in wheat. Since leaf and spikelet initiation are sequential processes, and leaf 

primordia appear at a slower rate than spikelet primordia (Kirby 1990), it is 

possible detect even quite subtle changes in the timing of the transition from 

vegetative to reproductive stages under inductive conditions prior to actual 

flowering (Brooking 1996). Brooking’s mechanism is described next. 

As discussed above, spring genotypes that emerge into fully inductive conditions 

are almost immediately transferred to a reproductive stage. For winter 

genotypes, vernalisation continues until the vernalisation requirement is 

saturated or the current number of primordia equals the maximum final leaf 

number4. When one of these two conditions is met, vernalisation ceases and the 

plant becomes responsive to photoperiod. This pattern of apical development in 

vernalisation sensitive genotypes suggests a juvenile stage which progressively 

                                                 

4 The mechanism for calculating attainable final leaf number is given in 5.6.4. 
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decreases as vernalisation proceeds (Brooking 1996). Brooking  described two 

possible outcomes in terms of behaviour of primordia once the vernalisation 

requirement is saturated. These outcomes are mainly driven by temperature 

during vernalisation. There are two options; either, apical development is 

inhibited either by low temperature of lack of moisture. This means the apical 

meristem only has its original 2-3 primordia when the vernalisation requirement 

is saturated. Thus, once inductive conditions are reached, vegetative 

development needs to continue to reach the minimal leaf number prior to 

emergence. In this case there would be no juvenile stage, and plant behaviour 

after emergence would be identical to that of a spring genotype. Alternatively, 

apical development is not inhibited during vernalisation. Vernalisation is not 

complete on emergence, so leaf primordia continue to be initiated (juvenile 

stage). When inductive conditions are reached all further primordia will be 

spikelets. (i.e. transition immediately to the reproductive state). 

This developmental interpretation maintains the focus clearly on the transition of 

the apical meristem from a vegetative to a reproductive state, based on the 

transition from leaf to spikelet primordia production (indicated by the increased 

rate of primordia initiation). This transition is the first measurable developmental 

event in the ‘acceleration of the ability to flower’, and occurs rapidly after 
perception of the photoperiodic signal in vernalisation-insensitive genotypes. By 

equating the vernalisation response with the progressive reduction of a juvenile 

phase, the time taken to reach the point of saturation at a given treatment 

temperature can then be used as measure of the rate of vernalisation per se at that 

temperature (Brooking 1996). That is, the change in the rate of primordia 

production immediately indicates that vernalisation is saturated in inductive 

conditions, as is also discussed in Section 5.4.11.2. 
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5.4.13 Joint Effect of Photoperiod and Vernalisation on Final Leaf 

Number 

The processes of apical development (in response to photoperiod and thermal 

time), vernalisation and frost tolerance are associated in a complex manner, and 

it is likely that they will not be thoroughly unravelled until the molecular basis of 

each is understood (Brooking 1996; Robertson et al. 1996; Brooking and Jamieson 

2002). Controlled environment experiments have established that there is 

interaction between vernalisation and photoperiod in relation to the number of 

leaves and time to flowering (Krekule 1987). More recent work (Brown et al. 

2012a; Brown et al. 2013) for example, link phenotypic information with genetic 

characteristics of cultivars. These characteristics are discussed in greater detail in 

Chapter Seven. The genes coding for vernalisation and photoperiod response 

indicate a wide variety of responses to temperature and photoperiod 

representing the many phenotypes of wheat that are fit for a variety of 

environmental conditions. 

5.5 Overview of the History of Modelling in Wheat 

Failure to predict anthesis date correctly is a major cause of simulation models 

giving incorrect predictions of yield (Porter et al. 1993), which impacts all areas in 

which such models are being used. Models that realistically represent the 

processes that cause variation in the time to flower are necessary for the accurate 

prediction of crop behaviour in different situations and to serve as a framework 

to integrate and develop understanding of these processes. Although crop 

models cannot be a complete surrogate for reality, they can be of great value 

when used as research tools and aids to reasoning about the functioning and 

response of crop system (Sinclair and Seligman 1996). They are also important as 

crop system management and policy analysis tools (Boote et al. 1996). Three  
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types of models in use today are those based on empirical representations of 

wheat phenological stages; AFRC2 (Porter et al. 1982; Weir et al. 1984; Porter 

1993; Jamieson et al. 1998b; Hay and Porter 2006), physiological mechanisms 

underlying phenological development, e.g. SIRIUS (Jamieson et al. 1998a), and a 

combination of physiological and molecular mechanisms controlling wheat 

phenology (Brown et al. 2013). I briefly describe the shift from phenological to 

mechanistic modelling and recent developments toward an integrated 

physiological/molecular framework next.  

 Empirical Modelling of Wheat Phenology (the AFRC2 model)  

The focus of research for AFRC2 is the empirical quantification of developmental 

phases in wheat. Practical agronomists resolved the problem of describing the 

dynamics of development using a Decimal Code system for ‘development stages’ 

(Table 4). These stages are readily observed in the field without the need to bring 

plants back to the laboratory for dissection. Many investigations and crop 

simulation models are based on this method of phasic development stages. These 

phenological phases, however, are only empirically connected to development 

processes, and as such the models were not necessarily easily generalised to new 

temperature or photoperiod conditions. An alternative, mechanistic modelling 

approach was proposed to address underlying driving processes. This is 

described in the next section. 
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Table 4: Primary and secondary stages used in the Decimal Code for the 

description of the development of wheat (Tottman 1987)5. 

 

 Physiological Modelling of Wheat Phenology (the SIRIUS model) 

Although prediction using the traditional phasic methodology does work for 

carefully calibrated models, it provides little insight to how different responses to 

vernalisation and day length occur in different varieties. According to Jamieson 

et al. (1998b) there are two main principles that a developmental wheat 

modelling approach requires to be successful. First, the timing of the 

                                                 

5 Reproduced in part with permission from the British Crop Production Council 

0 Germination 3 Stem extension

1 water absorption 30 pseudostem extension

. 31 first node detectable 

. .

. .

07-09 coleoptile above ground .

36 sixth node detectable

1 Seedling growth 37-39 flag leaf visible

10 first leaf through coleoptile

11 first leaf emerged (ligule visible) 4 Ear in 'boot'

12 2-3 leaves emerged 49 tip of ear visible

.

. 5 Ear emergence

.

18 8 leaves emerged 6 Anthesis

19 9 or more leaves emerged

7 Milk Development

2 Tillering

20 main shoot only 8 Dough Development

21 main shoot and 1 tiller

. 9 Ripening

.

.

29 main shoot and 9 or more tillers
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intermediate observable phenological events must be associated with true 

changes in development. Second, the duration of the phases between such events 

must be predictable. In fact, the timing of phenological events is not always 

closely linked to developmental change; rather, they are events associated with 

early development of the ear, and not relevant to calculating timing of anthesis. 

Therefore, the traditional model does not adhere to these expectations. The 

alternate mechanistically based framework offered by SIRIUS provides the basis 

for making sense of the diversity of responses in wheat. 

This is achieved by assessing the appearance of primordia on the apical meristem 

and their differentiation into leaves or spikelets (Jamieson et al. 1998b). That is, 
most developmental events until anthesis can be related to the number and rate 

of appearance of main stem leaves (Hay and Kirby 1991; Miglietta 1991a; 

Jamieson et al. 1995a). The rate at which leaves appear in relation to temperature 

is called the phyllochron, and can be determined for each cultivar regardless of 

other environmental conditions. However, the total number of leaf primordia 

developed in the apical meristem is set during the vegetative phase in response 

to vernalisation and photoperiod conditions. Different wheat varieties will 

differentially commit to a final number of leaves depending upon their 

physiological response to environmental conditions. Understanding these 

responses is vital for accurate description of crop environmental responses 

(Robertson et al. 1996). 

This new direction of research and modelling emphasises the importance of final 

leaf number and its dependence on genotype specific photoperiod and 

vernalisation requirements (Hay and Porter 2006). There are a suite of critical 

papers for this shift in emphasis to understanding the mechanisms driving final 

leaf number (Brooking et al. 1995; Jamieson et al. 1995b; Brooking 1996; Jamieson 
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et al. 1996; Brooking and Jamieson 2002; Jamieson et al. 2008). A mechanistic 

model for wheat development based on this research followed soon after in the 

wheat model SIRIUS (Jamieson et al. 1998a). 

 An Integrated Physiological/Molecular Framework 

Recently Brown et al. (2013) integrated the physiological constructs of APSIM 

(Holzworth et al. 2014) with molecular models of wheat development, creating a 

new paradigm for agricultural modelling. Relating the genetic information to 

physiological mechanisms can add insight to wheat development, as described in 

Chapter Seven. This model was fundamental in interpreting experimental results 

from Chapter Seven of this dissertation, demonstrating how model development 

as a research tool represents a living and changing framework to support 

scientific discovery. 

5.6 SIRIUS in the Spotlight 

The information in 5.6 regarding the components in the model is summarised in 

Table 5. This table includes the components type, label, and unit type. It also 

provides default, minimum, and maximum values where applicable. The 

provenance of this information is unpublished PFR wheat cultivar data. This is 

the first location in which the notation is formally defined for model components 

in SIRIUS. Here, observed environmental data used within the model is 

capitalised and italicised, e.g. photoperiod is denoted PPt (Table 5). Although not 

included as a model component, this is the appropriate time to also define to 

notation for observed calibration data. Such observed variables shall be denoted 

as capitalised, but not italicised. That is, observed leaf number on day t will be 

LNt and observed final leaf number will be FLNt (Table 5). 
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5.6.1 Modelling of Apical Meristem Temperature 

Based on the work of Brooking et al. (1995) described in Section 6.3.3, calculations 

to adjust air temperature during the first stages of development were suggested 

for future versions of the model, but are not incorporated in the model under 

study for this dissertation. This is therefore another known source of uncertainty. 

5.6.2 Graphical Conceptualisation of how the Photoperiod Response 

is Modelled in SIRIUS 

Figure 8 shows the final leaf number the plant will achieve with increasing 

photoperiod for three theoretical cultivars as modelled in SIRIUS (Jamieson et al. 

1998a) 

 

Figure 8: Effect of increasing photoperiod on the FLN the plant will target for 

plants with high (black line) medium (green line) and low (red line) 

photoperiod sensitivity. 
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5.6.3 Conceptualisation of how the Vernalisation Response is 

Modelled in SIRIUS via a Vernalisation Index. 

Brooking et al. (1996) showed that vernalisation rate increases between -1 and 8 

°C, and with no reduction in FLN at 16 °C (Figure 9). Robertson et al. (1996) 
implemented this mechanism in SIRIUS (see Section 5.6.4) and tested it 

experimentally. They used this knowledge, and that from research described 

above, to develop a predictive model around the explicit modelling of the effect 

of vernalisation on final leaf number under a range of low temperature and plant 

age treatments. This allowed improved models that incorporate concurrent 

vegetative development and vernalisation responses, leading in turn to better 

predictions of final leaf number. It was also shown that vernalisation 

temperatures (Figure 9) are cultivar-specific (Robertson et al. 1996). Genotypic 

differences are likely to be important particularly when low temperatures are 

intermittent and/or warmer temperatures are prevalent; but minimal when 

vernalisation is saturated before emergence. This model calculates an index from 

0 to 1, where 0 indicates a completely unvernalised plant and 1 a plant where the 

vernalisation requirement is saturated. 
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Figure 9: The calculation of daily vernalisation for a theoretical cultivar as 

modelled in SIRIUS. The x-axis represents daily mean temperature and the y-

axis represents daily vernalisation increment at that temperature for a 

theoretical cultivar. 

Observations of the leaf and primordia number on the apical meristem can be 

used to predict final leaf number for winter wheat varieties regardless of sowing 

date or location (Baker and Gallagher 1983a, b). Explicit modelling of the effect of 

vernalisation on final leaf number provides a more robust and physiologically 

sound prediction of flowering time than the timing of developmental effects as in 

the traditional model (Brooking 1996; Robertson et al. 1996). Jamieson et al. 

(1998b) furthered the work of Robertson et al. (1996) on the developmental model 

by using simulations to understand and explain development through this 

framework. 

5.6.4 State equations and the form of the model ( )f ty ,θ,EME  

SIRIUS simulates the development of a wheat plant as described above. Within 

SIRIUS, the variations associated with vernalisation requirement and daylength 

sensitivity are described mechanistically in terms of primordium initiation, leaf 
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production and final main-stem leaf number as described earlier in this chapter. 

The leaf production phase from emergence to flag leaf integrates the effects of 

thermal time, vernalisation and photoperiod. The equations describing this 

process as implemented in SIRIUS are summarised below following He et al. 

(2012). All model components and parameters are summarised in Table 5. 

The vegetative phase is based on two independently controlled processes, leaf 

development, and process defining the determination of the final number of 

leaves that will be produced on the apical meristem. Accumulated thermal time 

since emergence (TT) is calculated with a base temperature of 0 degrees C (He et 

al. 2012). 

Leaf production follows a segmented linear model in thermal time (Boone et al. 

1990; Jamieson et al. 1995a; Slafer and Rawson 1997): 

 
1 1min t

t t t

t

T
ln fln ln

phyllochron
 

 
  

 
  

Here, t represents a time step. The inverse of the rate of leaf emergence is known 

as the phyllochron, but the first two leaves appear more rapidly than the next six, 

and then leaf appearance slows again for the subsequent leaves independently of 

the total number of leaves produced. A varietal parameter known as base 

phyllochron (bp) is defined. This is the rate of leaf development at leaves 2 - 8. 

phyllochront is then defined (Jamieson et al. 1995a): 

 tphyllochron r bp   

Where 
1

1

1

0.75 if 2

1 if 2 8

1.3 if >8

t

t

t

ln

r ln

ln
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The time-step nature of the model is clear here in that the calculation of 

tphyllochron requires information about yesterday’s leaf number. Differences in 

phyllochron for different sowing dates is likely to be due to difference in air and 

soil temperature experience at the apical meristem (Vincour and Ritchie 2001; 

Jamieson et al. 2008). The phyllochron from Haun stages 2-8, bp, is therefore a 

single varietal parameter as long as the difference in air and soil temperature are 

appropriately accounted for. 

At any time during vegetative development apical meristem primordia number 

(primordia) is calculated through a simple metric relationship with leaf number 

(Kirby 1990) under the assumption that the apical meristem contains four 

primordia at emergence and that they accumulate at twice the rate of leaf 

emergence (Brooking et al. 1995; Jamieson et al. 1998a). 

 *t tprimordia pe pn ln   

Concomitant processes governing apical progress toward a reproductive state 

and defining fln (e.g. vernalisation and photoperiod responses) are modelled 

sequentially. Vernalisation commences once the seed has imbibed water. The 

daily vernalisation increment vinct increases at a constant rate vai with daily 

mean temperature Tt from its value vbee at the minimum vernalising temperature 

tmin to a maximum for an intermediate temperature tint. Above this the 

vernalisation increment reduces to zero at the maximum vernalising temperature 

tmax (He et al. 2012): 
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( * ) if 

(( ) + )* if  

0 if 

t t t t

t
t t t

t t

vai T vbee tmin T tint

tmax - T
vinc vai * tint vbee tint T tmax

tmax tint

tmin T  or T > tmax

  



  




 

Where vai and vbee are varietal vernalisation response parameters. Thus the 

progress toward full vernalisation (vi) is simulated over time: 

 tvi r   

Where 1

1

1 if 1

otherwise

t t

t t

vinc vi
r

vinc vi





 
 


 

Two varietal parameters define the minimum (lmin) and maximum (lmax) 

number of leaves that can emerge on the main-stem. The model assumes that 

plants start their life with a high potential leaf number flnat (set at lmax) which 

decreases with vernalisation progress (He et al. 2012). 

   

Vernalisation is complete when one of three conditions is met. Either vi has 

reached a value of 1, flnat has reached a value that equal lmin, or flnat has reduced 

to primordiat . These primordia are all assumed to produce leaves.  

Based on this information, then the model assumes that the minimum flnt that the 

plant will reach on the current day is given by: 

1 if 1, or , or

if 1, and if  

otherwise

t t t t t

t t t

t

fln vi  flna primordia  flna lmin

fln lmin vi   primordia lmin

primordia

       


    
  

 

This state equation acts within the model to ensure that the FLN will never be 

less than is possible; e.g. the maximum of primordiat or lmin. 

tflna = lmax -(lmax - lmin)* vi)
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For winter wheat, the crop responds to photoperiod (PP) only once vernalisation 

is complete. Spring wheat responds to PP since emergence for a spring cultivar as 

they do not require vernalisation. If PP of the day when vernalisation is 

completed exceeds a given value (ppsat), then the fln target flnt is set to the value 

calculated at the end of the vernalisation routine (Brooking et al. 1995).  

 t tflnt = lmin+(ps*(ppsat - PP )* s)  

Where 
1 if 

0 otherwise

tPP ppsat
s


 


 

Here, ps represents a varietal parameter defining the daylength response as a 

linear function of photoperiod. 

The estimated final leaf number flnt is then given by 

1

if 1

min( , ) if 

otherwise

t t

t t t t t

t

flnv vi

fln flnt primordia primordia flnt pe

fln 




  



 

The default values for the state equation coefficients are shown in Table 5. These 

are values that are not expected to change when simulating new scenarios using 

the model. They are set empirically during model building and are considered to 

be part of the model structure. 

5.6.5 Input Parameters ( )f ty ME, ,Eθ   

Scalar cultivar specific parameters do not update as the model progresses, but are 

rather constants that are estimated through experimentation. They include base 

phyllochron (bp), minimum (lmin) and maximum (lmax) number of leaves, 
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saturation photoperiod (ppsat), response to photoperiod (ps), and vernalisation 

requirements  (Brooking 1996). 

5.6.6 Environmental Data ( )f ty ME, Eθ,   

Environmental input data is dependent on factors external to and driving the 

crop responses. Daily temperature is measured, and as such is subject to 

uncertainty. SIRIUS uses minimum and maximum daily temperature to calculate 

the daily mean (T) and thus the accumulated thermal time (TT) that is used to 

drive both vegetative and reproductive development. These parameters take the 

form of updating vectors. Location information provides photoperiod, which is 

also an updating vector with a starting value on the sowing date. 

5.6.7 State Variables ( )f tME,θ,Ey  

State variables represent a vector of states at each time-step t as calculated by the 

state equations. Each state variable excepting lnt is treated as an unobservable 

latent variable throughout the day-to-day simulation of the wheat plant 

development. At the completion of the vegetative development phase, the state 

variable flnt is observable once the onset of spikelets is seen. 
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Table 5: Model component summary. 

  

Default in SIRIUS Min Max

ln t leaf number on day t - - - leaf

phyllochron t rateof leaf development on day t - - - leaf/day

primordia t number of organs on day t - - - primordia/day

vinc t amount of vernalisation achieved on day t - - - vernalisation/day

vi t accumulated vernalisation achieved on day t - - - total vernalisation

flnv t

the minimum fln possible to be achieved on day t based 

on the vernalisation index
- - - leaf

flna t

the minimum fln possible to be achieved on day t if no 

vernalisation has occurred
- - - leaf

flnt t

adjustment of fln possible to be attained for photoperiod 

on day t
- - - leaf

fln t the fln estimated on day t - - - leaf

pe primordia in grain at imbibition 2 - - primordia

pn primordia per mainstem leaf 2 - - primordia

tmin minimum temperature for vernalisation to occur 0 - - °C

tmax maximum temperature for vernalisation to occur 18 - - °C

tint intermediate temerpature for vernalisation to occur 8 - - °C

ppsat saturation photoperiod 16 - - hour

lmin minimum leaf number 6 1 11 leaf

lmax maximum leaf number 18 11 28 leaf

bp base phyllochron 100 90 110 °C day

vai vernalisation rate in response to temperature 0.001 0 0.01 1/°C day

vbee vernalisation rate at temperature equal to tmin 0.01 0 2 1/day

ps leaf production in repsonse to daylength 0.15 0 3 leaf/hour

T t mean daily temperature - - - °C

TT t accumulated thermal time - - - °C day

PP t photoperiod - - - hour

LNt accumulated number of leaves - - - -

FLN t final number of leaves - - - -

Observed 

Variables

Unit

State equation

State equation 

coefficients

Input 

parameters

Environmental

Variables

ValueComponent 

Type
Parameter Description
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5.7 Conclusion 

Mechanistic and developmental models represent a framework for the 

integration of current understanding; and acting as research tools to help identify 

gaps in scientific knowledge. They also provide the basis of practical decision 

support systems in horticulture and agriculture. This Chapter described a 

particular model that simulates the developmental behaviour of a wheat plant 

during its vegetative stage prior to anthesis. This developmental sub-model of 

SIRIUS is used for illustrating and implementing UE tools in the remainder of 

this dissertation. In Chapter Six next, historical data is used to understand 

mechanisms driving responses to cold temperature and photoperiod is re-

analysed to explore potential sources of structural uncertainty in SIRIUS. 
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Chapter Six: Historical Data Analysis 
6. Historical Data Analysis 

6.1 Executive Summary 

The objective of this Chapter is to carry out an analysis of the methodology used 

to develop the processes which make up the leaf development sub-model of 

SIRIUS. Using historical data the steps taken to conceptualise and build the 

computer simulation model will be replicated. Hypotheses from a selection of 

papers that describe the key processes (e.g. photoperiod response, thermal 

accumulation, and vernalisation response) contained within the model will be 

retested. Some sources of uncertainty that can be investigated with a view to 

quantifying and managing their impact on final predictions in later chapters will 

be identified. 

6.2 Photoperiod Response 

6.2.1  Introduction 

Prior to 1995, it had been established that most developmental events until 

anthesis were related to the appearance of main-stem leaves, and that 

vernalisation and photoperiod influences the time of flowering by their effect on 

the final leaf number (FLN) on the main-stem (Miglietta 1989; Kirby 1990; Hay 

and Kirby 1991; Miglietta 1991a) The objective of Brooking et al. (1995) was to 

define the nature and timing of the daylength response that determines final leaf 

number, and whether there is any variation in the timing of the response. 

6.2.2  Materials and Methods Following Brooking et al. 1995 

All analyses were repeated within GenStat v. 14 (VSN_International 2013). 

GenStat code for photoperiod response analyses is provided in Appendix A1. 

The analysis was carried out on data collected at Palmerston North, New 
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Zealand. Six sowings of wheat were made to cover a range of increasing and 

decreasing daylengths at anthesis: 2 June, 24 July, 18 September and 25 

November 1989, then 21 February and 5 April 1990. Eleven wheat cultivars were 

included in the original trial, with a range of sensitivities to both daylength and 

vernalisation. For the paper, only data for spring wheat varieties was used 

(Otane, Rongotea, Batten and CRSW6). The experiment was a randomised split 

plot design with sowing dates as main plots and cultivars as split plots, with 3 

replicates. At 10 – 15 day intervals throughout the season, five plants per cultivar, 

per replicate were harvested and the number of fully developed leaves (e.g. 

Haun stages) were determined (Haun 1973). The plants were then dissected and 

the number of primordia counted, cumulative from leaf 1. The final number of 

main-stem leaves was determined at flag leaf emergence as the mean number of 

leaves per main-stem (Brooking et al. 1995). 

To determine the time at which plants responded to daylength to fix FLN, the 

latter was plotted against daylength at either emergence, at Haun stage 1.5 

(chosen because at that time there will be seven leaf primordia, the minimum 

number of leaves likely to be set (Figure 17)) at time of initiation of the final leaf 

primordium (FLP), or at Haun leaf intervals from FLP (FLP+n, where n is the 

number of leaves past FLP). The day of occurrence of these events was 

determined by linear interpolation between measurements (Brooking et al. 1995). 

6.2.3  Results Following Brooking et al. 1995 

The assumption upon which this mechanism is based is that when the 

relationship between FLN and daylength is linear and without hysteresis, the 

correct timing of the response to daylength has been established. The form of the 

response is then similar to that observed in controlled environments with 

constant daylengths (Levy and Peterson 1972). This is the simplest hypothesis, 
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and means that the plants are responding to an immediate stimulus (daylength). 

In two of the four cultivars, final commitment of the last leaf primordium was 

controlled by the day-length midway through spikelet initiation (Rongotea, 

Batten; Figure 10 & Figure 11). In the third and fourth cultivars, the daylengths at 

the beginning and end respectively of the spikelet initiation phase were the 

controlling factors (Otane, CRSW6; Figure 12 & Figure 13). Only Otane showed 

evidence of a saturation response to daylength, e.g. a daylength beyond which 

FLN is no longer reduced (Brooking et al. 1995). These visual findings are 

confirmed by fitted models (Table 6) where the higher R2 values are one 

indication of how well the daylength at each stage of development is related to 

FLN. 

The results suggest that cultivars differ in the timing of their response of final leaf 

number to daylength, as well as in the magnitude of their response (Brooking et 

al. 1995). These differences are adaptations of different cultivars that will aid their 

fitness to different environments. My results vary slightly from those in the paper 

as my calculations were all based on the data at the experimental unit level rather 

than treatment averages as in the paper. 

A procedure can be developed that periodically samples the daylength and sign 

of its rate of change, and can be used iteratively to improve on estimate of FLN, 

in concert with calculations of the current Haun stage. Thus the number of leaf 

primordia can be calculated simultaneously and the FLN fixed when the 

appropriate stage has been reached. The procedure used in SIRIUS  is discussed 

and implemented by Brooking et al. (1995). The parameters used in the model are 

found via linear regression of best fit for each cultivar (as shown in red in Table 

6) 



100 

 

 

Figure 10: Relationships between FLN in Rongotea wheat and daylength at a) 

Haun stage 1.5, b) FLP, c) FLP+2, d) FLP+4. Dates imply whether PP is 

increasing or decreasing at the time of sowing. Black filled in circles denote 

average values and red crosses denote replicated data points. 

a) 

d) 

b) 

c) 
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Figure 11: Relationships between FLN in Batten wheat and daylength at a) 

Haun stage 1.5, b) FLP, c) FLP+2, d) FLP+4. Dates imply whether PP is 

increasing or decreasing at the time of sowing. Black filled in circles denote 

average values and red crosses denote replicated data points. 

a) 

d)  

b) 

c) 
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Figure 12: Relationships between FLN in Otane wheat and daylength at a) 

Haun stage 1.5, b) FLP, c) FLP+2, d) FLP+4. Dates imply whether PP is 

increasing or decreasing at the time of sowing. Black filled in circles denote 

average values and red crosses denote replicated data points. 

a) 

d)  

b) 

c) 
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Figure 13: Relationships between FLN in CRSW6 wheat and daylength at a) 

Haun stage 1.5, c) FLP, c) FLP+2, d) FLP+4. Dates imply whether PP is 

increasing or decreasing at the time of sowing. Black filled in circles denote 

average values and red crosses denote replicated data points. 

 

 

 

 

 

a) 

d) 

b) 

c) 
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Table 6: Percentage variance accounted for (R-sq), parameter estimates, and 

s.e.’s for linear regression models of FLN on daylength at four stages of 

development (no data excluded). 

 

6.2.4 Uncertainty Inference 

The method used for obtaining overall averages affects the final relationships. 

The numbers found in my reproduction were a little different, although overall 

trends appear to be similar. One reason for this may be variation in the point at 

which replicate values were averaged. There is a good estimate of the variation 

associated with parameter estimations resulting from this trial as data arises from 

a replicated, designed experimental trial. This is an area that can help guide 

understanding of prior distributions. 

Genotype Developmental stage R-sq Constant s.e. Slope s.e.

Otane Haun 1.5 85.5 11.8 0.39 -0.33 0.033

Otane FLP 86.8 12.2 0.14 -0.36 0.012

Otane FLP + 2 69.2 11.7 0.22 -0.32 0.019

Otane FLP+4 71.7 12.0 0.22 -0.35 0.019

Rongotea Haun 1.5 69.9 15.6 0.97 -0.52 0.082

Rongotea FLP 68.6 15.5 0.33 -0.51 0.029

Rongotea FLP + 2 93.9 17.1 0.16 -0.63 0.013

Rongotea FLP+4 89.3 17.8 0.30 -0.68 0.024

Batten Haun 1.5 66.1 16.8 1.23 -0.60 0.103

Batten FLP 75.1 17.1 0.37 -0.63 0.032

Batten FLP + 2 88.7 18.4 0.27 -0.72 0.023

Batten FLP+4 89.4 18.7 0.38 -0.75 0.029

CRSW6 Haun 1.5 39.0 15.0 1.37 -0.40 0.115

CRSW6 FLP 47.1 15.6 0.48 -0.45 0.042

CRSW6 FLP + 2 82.1 17.2 0.28 -0.58 0.024

CRSW6 FLP+4 92.7 18.8 0.23 -0.69 0.019
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6.3 Prediction of Leaf Appearance in Wheat: A Question of 
Temperature 

6.3.1  Introduction 

As discussed in the previous chapter, most developmental actions depend on 

temperature. This includes the rate of leaf development. However, historically, it 

had been noted that the rate of leaf development in response to air temperature 

was not consistent between autumn and spring sowings. This variation had been 

attributed to a preconditioning response in the plant, possibly dependent on 

whether the daylength was increasing or decreasing  (Cao and Moss 1991). 

However, in the context of the state-space computer model, the plant is only 

aware of daylength today; it does not remember the daylength yesterday as 

would be necessary for this mechanism to be true. Jamieson et al. (1995) 

hypothesised a more simple solution to the observed differential behaviour as 

follows: Experiments characterising the phyllochron were based on recorded air 

temperature, however, early in the plant’s development, when the apical 

meristem is still underneath or close to the surface of the soil, this may not 

realistically represent the temperature that the apical meristem is experiencing. 

These authors believed that the large seasonal variation in the differences 

between soil and air temperature fostered the incorrect belief that the daylength 

had an effect. They suggested that there is a consistent response to thermal time, 

but that the temperature used to characterise the phyllochron must accurately 

represent what the plant is actually experiencing. 

6.3.2 Materials and Methods Following Jamieson, Brooking et al. 

(1995) 

The hypothesis was tested using plant developmental data from Palmerston 

North in the North Island of New Zealand and Lincoln in the South Island of 



106 

 

New Zealand. Soil and Canopy temperatures were simulated by SIRIUS, based 

on its calculation of LAI and the crop and soil surface energy budget. Code is 

shown in Appendix A2. 

 Data 

Data set 1:  The data from Palmerston North was the result of a ‘developmental’ 

trial carried out in 1984 with 4 sowing dates (11 May, 1 June, 21 September, 2 

November). Each sowing date was randomly assigned to a large plot. Three to 

five plants were destructively sampled and mean tips present at each occasion 

were used for analysis. The trial used a single wheat cultivar, Avalon. Air 

temperature was recorded hourly and used to calculate accumulated thermal 

time. Soil temperature was measured by a single thermistor that spent 265 days 

in the Sowing 1 plot, then moved to the newly sown Sowing 3 plot, and finally to 

the bare Sowing 4 plot from a partial canopy in Sowing 3. 

Data set 2:  The data from Lincoln was available only in summary format. The 

experiment was carried out in 1984 with 4 sowing dates (4 May, 13 June, 1 

August, 12 September). Soil and canopy temperature was simulated as described 

next. 

 Models for Simulations 

Four competing hypothetical models to describe the relationship between 

thermal time and development were tested. Agreement between measured and 

simulated values was quantified using root mean square deviations (RMSDs). 

The phyllochron for the first three models was based on later results presented in 

the paper; it is as follows: base 0 °C, 75 °C days from Haun stage 0-2, 100 °C days 

from Haun stages 208, thereafter 130 °C days. The models are: 
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1. Based on air temperature, 

2. Based on soil temperature and then on canopy temperature from a fixed 

Haun stage, 

3. Based on air temperature adjusted by a factor related to rate of change of 

daylength at emergence (Baker et al. 1980; Bindi et al. 1995), 

4. Based on air temperature and a phyllochron which increased by 3% for 

each new leaf (Miglietta 1991a). 

6.3.3 Results Following Jamieson et al (1995) 

 Measurements 

There was evidence of a difference in the nonlinear spline for the rate of leaf 

appearance in response to air temperature for the autumn and spring sown 

wheat crops (p<0.001) (Figure 14a). However, this  dichotomy disappears if soil 

temperature is used to predict Haun Stage until 10 leaves have appeared with 

season either as a main effect (p=0.782) or interacting with the spline term 

(p=0.897) (Jamieson et al. 1995a) (Figure 14b). 
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Figure 14: Relationship between leaf appearance in Avalon wheat and thermal 

time accumulation from seedling emergence, calculated from a) air 

temperature only, and b) near surface soil temperature until leaf 10, then air 

temperature. 

 Simulations 

Based on the Lincoln data set, Model 2 was the most consistent predictor of leaf 

appearance (Table 7, Figure 15). Air temperature (Model 1) provided accurate 

predictions for only the two later sowings, and the general fit was improved only 

slightly by adjusting the temperature for the rate of change of daylength at 

emergence (Model 3). The Miglietta model (4) predicted leaf appearance slightly 

less well than Model 2. 
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Figure 15: Comparison of leaf appearance predictions by the four models with 

observations for 4 sowing dates. Figures recomputed based on un-replicated 

data. 
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Table 7: RMSE deviations of predicted from observed leaf number at each 

observation date for calculations based on the four models. 

Sowdate Model 1 Model 2 Model 3 Model 4 

4-May-84 1.92 0.40 1.53 0.91 
13-Jun-84 1.09 0.52 1.32 0.85 
1-Aug-84 0.59 0.42 0.87 0.73 

12-Sep-84 0.61 0.37 0.82 0.75 

The influence of bias in the overall RMSE, compared to variation around the 

mean of each model (compare Table 7 with Table 8) was not the same. Models 1 

and 3 had particular problems with bias error. This can be seen more clearly in 

Figure 16. 

Table 8: RMSE about the mean bias error for each model  

 

The variation of the difference between observed and predicted leaf appearance 

was different for each model (Figure 16). The general pattern of prediction – early 

prediction of early leaves and late prediction of late leaves – appears to support 

other data in the literature which suggests a change in phyllochron with leaf 

number (Jamieson et al. 1995a) as implemented in SIRIUS. This is addressed in 

other papers. 

Sowdate Model 1 Model 2 Model 3 Model 4

4-May-84 1.12 0.74 0.77 0.87

13-Jun-84 1.10 0.52 1.33 0.86

1-Aug-84 0.88 1.29 0.44 1.06

12-Sep-84 0.60 0.49 0.55 0.74



111 

 

 

Figure 16: Deviations of predicted from observed leaf number for each 

observation of ligule appearance for 4 models at each sowing date. Mean bias 

indicated on each frame. Lines are used to join points for easier viewing. 
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6.3.4 Uncertainty Inference  

The objective of the work of Jamieson, Brooking et al. (1995) was to provide a 

new, improved, and more parsimonious mechanism for phyllochron. However, 

even the seemingly most appropriate mechanism from a set of four (Model 2) 

showed an indication of bias that, whilst possibly corrected post-hoc, could be 

the result of an incorrectly specified mechanism (that phyllochron remains 

constant; in fact SIRIUS no longer assumes this). This possibility of an incorrectly 

specified developmental mechanism is an example of model structural 

uncertainty. 

6.4 Remaining Papers 

“Temperature Response of Vernalization in Wheat: Modelling the Effect on the 

Final Number of Mainstem Leaves” (Robertson et al. 1996). It was not possible to 

work with the historical data from this paper as it was stored on floppy disks and 

have unfortunately become corrupted with age. 

“Making sense of wheat development: A critique of methodology”, (Jamieson et 

al. 1998b). This paper presents the 8 hypotheses of wheat development, focusing 

on the importance of Final Leaf Number, on which the SIRIUS sub-model is 

based. It is thus a description and comparison of this model to the old 

methodologies and models based on other hypotheses or the division of 

development into phenological phases between observable states of the apical 

meristem; it does not suggest new mechanisms which could propagate 

uncertainty through the model. As such re-assessment of historical data or 

simulation results from this paper is not useful. 

“Temperature and photoperiod response of vernalisation in near-isogenic lines of 

wheat” (Brooking and Jamieson 2002). The experimental work was not based on 

replicated data, indicating that re-assessment will not provide additional 
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information in terms of uncertainty estimates associated with the vernalisation 

parameters obtained. 

6.5 Summary 

Re-analysis of historical data enabled a re-enactment of the processes taken to 

build the crop model SIRIUS. This process helps identify and understand sources 

of uncertainty and assumptions made while building the model. The inclusion of 

data driven processes in models indicates that some level of uncertainty is sure to 

be present, whether due to bias, scaling/aggregation, or aleatory uncertainty. 

However, the presence of such data can also help guide prior distributions when 

fitting models to quantify uncertainty. This will be described and discussed in 

more detail in Section III. The next Chapter explores identification of sources of 

structural uncertainty introduced by misspecification of a biological process. 
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Chapter Seven: A Model as a Live Framework 

for Research 
7. A model as a live framework for research 

7.1 Executive Summary 

Besides being tools for research into novel situations, crop models act as 

constructs upon which researchers continue to develop mechanistic 

understanding of real world systems. An important aspect of UE is therefore to 

identify biological processes that are not accurately represented in the model. 

One biological process that was identified as not being experimentally confirmed 

during model building of SIRIUS is the development of the wheat plant prior to 

emergence and exposure to daylight. This Chapter therefore describes 

experimental work exploring the effect of sowing depth on minimum leaf 

number in spring wheat cultivars. It illustrates the effectiveness of a crop model 

as a live framework for research and development. Results indicate that the 

developmental process implemented in SIRIUS prior to emergence is in fact 

erroneous, and suggest a more complex alternate hypothesis based on molecular 

interactions between vernalisation genes Vrn1, 2 and 3 is likely. 

7.2 Introduction 

The final number of leaves (FLN) attained by a wheat plant is an important 

property that determines the timing of anthesis (Hay and Porter 2006). This can 

influence timing of when the plant become reproductive, and hence have a major 

impact on yield. For example, in Australia, delays in sowing (and hence in timing 

of anthesis in inductive photoperiods) can represent substantial yield losses of 

between 7 and 17% per week (Rebetzke et al. 2007) and in Japan around 20% per 

week (Tanio and Kato 2007). 
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Current phenological models describing progress toward anthesis focus on 

mechanisms that occur during the vegetative stage between emergence and flag 

leaf (FL) appearance. Developmental progress in the period between imbibition 

and emergence is modelled as a constant relationship between organ (primordia) 

numbers and accumulated thermal time (TT) (Brooking et al. 1995). This Chapter 

aims to determine the extent of uncertainty that is introduced to the modelling of 

FLN by assuming this constant developmental progress prior to emergence. 

7.2.1 Recap of Key Principles of Wheat Development Between 

Emergence and Anthesis Under Phenological Model SIRIUS 

The process based, phenological development mechanisms incorporated into the 

wheat model SIRIUS (Jamieson et al. 1998b) provide a link between vegetative 

development (leaf appearance) and the switch to reproductive development. Key 

phases of development in a wheat plant include a) imbibition, when the grain 

perceives moisture, begins to develop primordia and the apex extends, b) 

emergence, when the plant first perceives light, c) vernalisation saturation, when 

winter varieties are able to respond to photoperiod, d) floral initiation, or 

reproductive commitment, when the plant switches from vegetative to 

reproductive development, and e) terminal spikelet, the final organ to be initiated 

prior to the biomass sequestration phase. 

The development of primordia in thermal time (TT) as conceptualised in SIRIUS 

for spring wheat varieties is shown in Figure 171. Spring wheat varieties are 

traditionally defined as those that do not require a period of cold temperatures of 

                                                 

1 The scale on the x-axis between -1 and 0 represents the period after imbibition but prior to apex 

emergence when additional primordia have begun to develop but the apex has not yet begun to 

extend the first leaf. 
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around 0-10°C (vernalisation) to flower. After emergence, the plastochron (time 

taken for a primordium to develop) is closely linked to the phyllochron (time 

taken for a leaf to develop) and the general rule of thumb is that there are two 

plastochrons to one phyllochron. Therefore, since the phyllochron up until the 2nd 

Haun stage (Haun 1973) is approximately 120 degree days, the plastochron prior 

to emergence and during the first two Haun stages should be approximately 60 

degree days. At emergence, most spring wheat cultivars require around 1-2 Haun 

Stages (~240 accumulated degree days) before they become able to respond to 

photoperiod (Brooking et al. 1995). If the photoperiod (PP) at this stage is 

saturating (approximately 16 hours), then the conditions are said to be fully 

inductive and the plant sets FLN at the number of primordia developed at that 

time (usually 6-8). At the same time, the plant commits to becoming reproductive 

(Brooking and Jamieson 2002). 

 

Figure 17: Sequence of development of primordia in TT and their relationship 

to Haun stage. 
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7.2.2 Wheat Development Prior to Emergence 

In SIRIUS, developmental progress in the period between imbibition and 

emergence is modelled as a direct, constant relationship between primordia 

numbers and accumulated TT (Brooking et al. 1995). The number of primordia at 

emergence (PAE) is fixed at a constant value of four (Figure 17). It is made up of 

two primordia which are present on the main-stem in the seed, and a further two 

primordia that are initiated between germination and emergence, assuming one 

phyllochron from imbibition to emergence. This is appropriate for a sowing 

depth of approximately 5 cm (Kirby et al. 1987; Kirby 1993; Hay and Porter 2006). 

Since the SIRIUS mechanism requires that primordia number (PN) increase in 

time, it can be hypothesised that deeper sowings will give later emergence, 

implying that more primordia would be accumulated at the time of emergence, 

with an accompanying increase in PAE. PN will then increase at 2*LN from 

emergence until commitment. Assuming long days, the plant will set its FLN 

based on PN at at ~240 degree days after emergence (as seen in Figure 17), and 

this number will be greater if the plant was sown deeper and took longer to 

emerge. Thus deeper sowing would cause a higher FLN. 

In order to determine the extent of uncertainty that is introduced by assuming 

PAE is constant, the effect of sowing depth on a) FLN, b) the number of 

primordia present at emergence, and c) timing of emergence will be explored. 

7.3 Benefits of Deeper Sowing 

The literature in the area of phenological responses to environmental conditions 

and managerial decisions in the phase between imbibition and emergence 

indicates that there is some developmental (including FLN) and yield impact 

with increasing sowing depth, particularly at depths greater than 10 cm 

(Photiades and Hadjichristodoulou 1984; Kirby 1993). However it is not clear 
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how the timing of exposure to environmental drivers, photoperiod (PP) in 

particular, affects FLN in spring wheat varieties. 

The possibility of increasing sowing depth  may be of interest particularly under 

environmental conditions (e.g. especially dry or hot) where a deeper sowing 

depth may increase access to moisture and cooler conditions (Photiades and 

Hadjichristodoulou 1984; Mahdi et al. 1998; Rebetzke et al. 2007). For example, 

Mahdi et al. (1998) found that the establishment of plants sown at 3, 9, and 12 cm 

was poorer than those sown at 6 cm. However, the success rate of implementing 

deep sowing management approaches has had mixed results; whilst there is 

evidence that genotypic increases in coleoptile length improves establishment 

and yield parameters (Liang and Richards 1994; Rebetzke et al. 2007), other 

studies have found with some cultivars that increasing depth leads to less 

successful establishment and viability, leading to reduced yield (Jong and Best 

1979; Photiades and Hadjichristodoulou 1984; Kirby 1993; Cussans et al. 1996; 

Mahdi et al. 1998). These results indicate that if sowing depth is to be explored, 

careful selection for cultivars genetically capable of emerging from greater depths 

is required. 

7.4 Experiments 

The following hypotheses were tested in a set of three glasshouse based trials:  

1. Does sowing depth affect FLN in spring wheat varieties? 

If yes, then it is necessary to confirm development is progressing as expected: 

2. Does later light perception lead to greater numbers of primordia?  

Finally: 
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3. Given expected development in response to TT prior to PP perception 

(emergence) occurs, does extended development time prior to PP 

perception increase or decrease FLN? 

7.5 Materials and Methods 

7.5.1 Pilot: Genetic Ability to Emerge From Deep Sowing in Six Spring 

Wheat Varieties. 

First a selection of suitable cultivars and sowing depth for each trial was 

identified in a pilot study. The pilot trial investigated three depths (5.0, 10.0, 15.0 

cm) with only 1 replicate pot sown with 15 grains for each cultivar. The six 

cultivars were ‘Otane’, ‘Kohika’, ‘Torlesse’, ‘Spring Batten’, ‘Morph’, and 

‘Monad’. Glasshouse lighting was set to a photoperiod of 16 hours, so that all 

seedlings emerged into fully inductive conditions. The mean temperature in this 

glasshouse was 22°C for all trials. The results recorded from this trial were 

simply the number of seedlings that emerged in each pot. 

7.5.2 Trial one: Does sowing Depth Affect FLN in Spring Wheat 

Varieties? 

The fully replicated trial was set up in a 6 x 6 resolvable Latinised block design 

(Harshbarger and Davis 1952), in both directions, with 6 cultivar x 2 sow depth 

factorial treatment structure. The trial was carried out with 16 hour PP with 

lights when necessary to extend the natural daylength. This trial was established 

in January 2011. Each pair of blocks of six units in both directions comprised a 

full set of the 12 treatments. Cultivars were limited to spring wheat varieties. The 

six cultivars were ‘Otane’, ‘Kohika’, ‘Torlesse’, ‘Batten’, ‘Monad’, and ‘Morph’. 

The two sow depths were 5.0 and 0.5 cm since a pilot trial showed most cultivars 
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(excepting Batten Spring) were unable to emerge at 10cm or deeper. Fifteen 

grains were sown in each pot. 

Glasshouse lighting was set to a photoperiod of 16 hours, so that all seedlings 

emerged into fully inductive conditions. Temperature is not reported as it affects 

rate of development (Slafer and Rawson 1995), but not the FLN. For this reason, 

variation in temperature conditions for seedlings emerging later or with higher 

minimum leaf numbers according to cultivar specific characteristics should not 

directly affect the FLN. FLN was counted when fully visible on 22 April for all 

cultivars excepting Morph, which did not complete the vegetative phase until 1.5 

weeks after the other cultivars. This cultivar was excluded from further analysis. 

7.5.3 Trial two: Does Later Light Perception Halt Primordia 

Development? 

Trial two focussed on whether it was possible to differentiate the number of 

primordia present in the apex at the expected time at which it became able to 

perceive light. This aims to confirm the current understanding represented in 

SIRIUS that development in response to TT begins immediately after imbibition 

has occurred, prior to emergence. Two treatments widely separated in expected 

time of light perception were established with seeds from one treatment sown at 

10cm depth and seeds from the other treatment germinated on a Petri dish under 

full light. Each pot was established with 20 grains (to allow for an expected 

emergence rate of 60%), and the Petri dish with 8 grains. The trial was established 

in July 2013 in an incubator under continuous light on constant 22 degree 

temperature. The lights provided both warm and cool lights to ensure all 

wavelengths were available. To confirm that light was not perceived earlier 

through the incomplete blocking effect of soil, a third treatment was established 

at a later date but in the same incubator where the deep sown treatment was 
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germinated in soil at a depth of 10 cm and grown to 1-2 cm emerged coleoptile in 

a light tight box. The time required for this treatment to reach the appropriate 

stage was established prior to establishment of experimental units. Replicate pots 

were established at consecutive time intervals on Mondays and Thursdays to 

ensure sufficient time was available for dissection. A single spring wheat cultivar, 

Spring Batten, was selected for this study as it was shown in the pilot study that 

this cultivar had a consistent rate of 20% successful emergence from a 10cm 

sowing depth. Further, this cultivar is known to have a low amount of Vrn2 

expression (pers. comm. Hamish Brown). As soon as 1 - 2 cm of coleoptile was 

visible, it was dissected and the number of primordia counted following (Kirby 

and Appleyard 1981) using a Leica NZ12 stereo microscope. 

7.5.4 Trial three: Does Number of Primordia Present at the Time of 

First Light Perception Affect FLN? 

Trial three aimed to relate the results from trial two in terms of primordia 

number at emergence to FLN (and hence anthesis). Thus, the same three 

treatments, widely separated in expected time of light perception and allowing 

for fully and partially dark conditions for seeds sown at 10cm depth were 

established with seeds from two treatments sown at 10cm depth either under full 

light or full dark conditions, and seeds from the other treatment germinated on a 

Petri dish under full light. Each pot was established with 20 grains, and the Petri 

dish with 8 grains. The trial was established in September 2013 in the incubator 

under constant 22 degree temperature. The size of the incubator meant that each 

replicate was established one after another, and when germinated/emerged with 

visible coleoptile length of 1-2 cm the pots containing the deep sown seeds were 

moved straight to the glasshouse and the seedlings germinated on the Petri dish 

were carefully planted just below the surface and then moved to the same 

glasshouse conditions as in previous trials. The dark treatment was then 



123 

 

established for rep 1, and transferred at the appropriate time, and so on for each 

replicate. The pots in the glasshouse were laid out in a 2x6 row-column design. 

FLN was counted when fully visible. 

7.5.5 Statistical Analysis 

Average counts from each pot from trial one were analysed by a hierarchical 

generalised linear model (Lee et al. 2006). The fixed effects were modelled as 

having a Poisson distribution with a log link. The Latinised row column structure 

of the resolvable block design was modelled as random effects with a Gamma 

distribution and a log link. Diagnostic tests and predicted values were obtained. 

The hierarchical structure of trial three in terms of glasshouse row and column 

layout was explored and fitted with a Generalised Linear Mixed Model (Schall 

1991). There was no evidence of a significant amount of spatial variability so the 

final model was a simple Generalized Linear Model assuming the Poisson 

distribution and using a log link. The dispersion parameter was 0.017. The 

difference between dark and light deep sown FLNs once the Petri dish was 

accounted for was assessed through partitioning the sums of squares to obtain 

orthogonal contrasts. The data modelled was the average FLN count for each pot. 

7.6 Results 

7.6.1 Pilot Trial 

Most grains germinated, regardless of cultivar or sowing depth. Grains sown at 

5.0 cm successfully reached the surface, however most grains sown at 10.0 and 

15.0 cm failed to reach the surface. Spring Batten was the exception, exhibiting 

60% successful emergence at 10 cm, but only a few plants overall emerged from 
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15cm. The lack of emergence of grains at sowing depths greater than 5.0 cm 

limited the sowing depth treatments in trial one to depths of 5.0 cm or less. 

7.6.2 Trial One 

The emergence time was fairly consistent across cultivars. Grains sown at 0.5 cm 

emerged around 45 °C days earlier than those sown at 5.0 cm. F-statistics were 

calculated by dropping fixed terms. These values indicated that there was strong 

evidence of a difference between cultivars (p<0.001); with Monad having the 

highest and Otane the lowest number of leaves. There was some evidence of a 

difference in minimum leaf number between sowing depths (around 0.25% of the 

FLN) (p=0.063), with four out of five cultivars having lower FLNs from the 

deeper sowing treatment. There was no evidence that this effect, if important, 

was different across the six cultivars (p=0.688). Back-transformed predicted 

values with back-transformed 95% confidence intervals are provided in Figure 

18. Wheat plants past the flag leaf stage immediately prior to count FLN are 

shown in Figure 19. 
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Figure 18:  Effect of Cultivar and Sow depth on back-transformed FLN counts. 

Bars represent back-transformed 95% confidence intervals. 
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Figure 19: Wheat plants in Trial One at the flag leaf stage. 

7.6.3 Trial Two 

For primordia counts of germinated/emerged plants with a coleoptile measuring 

0.7 – 2 cm, there were 4 primordia per plant for Petri dish germinated plants, and 

5 per plant for 10cm deep sown plants, for both light and dark incubated 

treatments. There was no variability in organ counts within treatments at this 

stage of development. Assuming a soil temperature equal to the air temperature 

in the incubator of 22°C then the emergence time of ~3 days for Petri treatments 

would equate to TT of 66°Cd (degree days) and ~8-9 days for deep sown would 

be upto 198°Cd. 
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7.6.4 Trial Three 

There is strong evidence that the mean of the deep sown (both light 8.04  (7.70 -

8.42)2 and dark 8.23 (7.90 - 8.66)) is significantly less (p=0.006) than the Petri   

incubated 9.0 (8.60 - 9.43), and that once this difference is accounted for there is 

no evidence of a difference between dark and light incubated at 10cm sowing 

(p=0.412). There was a difference of up to 132 °Cd in emergence (~2cm coleoptiles 

showing) time between Petri and deep sown treatments. 

7.7 Discussion 

Trial one indicated some evidence that increased sowing depth delayed 

emergence but also indicated that it led to a lower FLN across several spring 

wheat cultivars  However, the difference is slight, possibly due to the scale of the 

depth differential (only 3 days difference in emergence time which (assuming a 

mean temperature of 15 °C) is 45 °Cd later). The results of trial two indicated 

that, as expected, the number of primordia present at emergence was greater for 

the deep sown plants. However, the difference was not as great as was expected. 

However, trial three indicated that early exposure to light can lead to an increase 

in the FLN, and deeper sown plants committed to a lower number of leaves, even 

though the number of primordia at emergence was greater. These findings were 

the reverse to those hypothesised. Two mechanisms that may jointly explain the 

results are proposed. 

                                                 

2Backtransformed mean (95% confidence interval) 
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7.7.1 Differential Plastochron when PP Perception Delayed 

In trial two, the results showed a TT of 66°Cd for the Petri dish treatment, and up 

to 198°Cd for the deep sown treatment. If the number of primordia in the seed at 

planting is 2-3 (shown as 2.0 in Figure 17 for mathematical convenience, but 

assumed to be 3 here), then the plastochron of 66°Cd for the first new primordia 

to develop seems reasonable. However, this then implies for the deep-sown 

treatment that the plastochron for the second new primordia to develop was ca 

132°Cd. It seems likely that the linear development of primordia in response to 

TT prior to emergence as shown in Figure 17 is not accurate. This relationship is 

implicit in SIRIUS but is in fact an assumption based on work done by Brooking 

et al. (1995) (who investigated the relationship between primordia and leaf 

numbers after emergence). An alternative mechanism may be that at some point 

during primordia development, if the coleoptile has not yet emerged, the 

development of primordia slows and energy is focussed on getting the coleoptile 

to the surface. However, whilst this mechanism would explain the differential 

plastochron, it does not provide justification for the lower FLN observed in deep 

sown plants, as these do still have more primordia at emergence (although not as 

many more as might be expected if the plastochron were constant). 

7.7.2 Differential PP Perception Response for Vernalisation Genes 

Vrn1, Vrn2, and Vrn3 

A model recently put forward by Brown et al. (2013) may provide the insight 

required to explain these results. On a phenological basis, these authors predict 

FLN from the Haun stage at the time of terminal spikelet rather than PN at 

terminal spikelet. 
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Further, the results tally with molecular mechanisms as described by authors 

such as Trevaskis et al. (2007a) and Li et al. (2011). Brown et al. (2013) provided a 

molecular basis for phenological behaviours observed in near isogenic lines of 

wheat based on data described by Brooking and Jamieson (2002), and their model 

is also able to explain these results. 

Spring wheat varieties are those that do not require vernalisation to flower. The 

mechanisms discussed and proposed in this Section are photoperiod responses 

for spring wheat varieties that are expected to occur regardless of exposure to 

vernalising temperatures. Our results support this, with trials two and three 

showing wide differentiation in results for plants incubated at 22 °C. 

Vrn1, Vrn2 and Vrn3 are the key genes that control the time to anthesis for spring 

wheat varieties. Genetic variation and environmental signals control the rate at 

which these genes express proteins. The mechanisms describing how these genes 

interact are well described in the literature. Vrn1 is expressed in low 

concentrations in young plants and its transcription increases over time. In spring 

wheat, this occurs at the maximal rate regardless of temperature (Figure 20). The 

main function of the up regulation of Vrn1 in leaves in spring is to down regulate 

Vrn2 (Trevaskis et al. 2007a; Sasani et al. 2009; Diaz et al. 2012). The main role of 

Vrn2 is to repress the induction of Vrn3 in autumn, to prevent the induction of 

flowering before winter. Vrn2 is up regulated by long PP (Karsai et al. 2005; 

Dubcovsky et al. 2006; Trevaskis et al. 2007a; Sasani et al. 2009; Li et al. 2011; 

Kippes et al. 2014). Before vernalisation, Vrn3 transcript levels are maintained at 

low levels by Vrn2. During development, the up regulation of Vrn1 in the leaves 

results in the down regulation of Vrn2 and the release of Vrn3, which can further 

up regulate Vrn1 which ultimately results in the induction of flowering 

(Dubcovsky et al. 2006; Faure et al. 2007; Tanio and Kato 2007; Trevaskis et al. 
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2007b; Distelfeld et al. 2009b; Sasani et al. 2009; Guo et al. 2010; Kitagawa et al. 

2012; Shaw et al. 2012).  

Brown et al. (2013) combined phenological development model principles with 

the molecular responses described in the literature to represent the transferral 

from vegetative to reproductive development. Figure 20 provides a graphical 

representation of how molecular mechanisms relate to phenology in their 

integrated framework. Here, terminal spikelet does not occur until Vrn3 has been 

expressed at sufficiently high levels. Vrn2 is triggered at emergence by exposure 

to light, suppressing Vrn3 until Vrn1 has built up enough to suppress Vrn2, 

allowing Vrn3 to express and ultimately allow the plant to initiate terminal 

spikelet. Note also that as Vrn2 accumulates, the ‘vernalisation target’ also 

increases, increasing the final leaf number the plant achieves (even in spring 

varieties). The figure proposed by the Brown, Jamieson et al. (2013) has been 

modified in that Vrn1 expresses at its maximal rate from the time of imbibition, 

and Vrn4 is excluded as it is not relevant to spring wheat (Figure 20).   

 

 Phenological Development stage

Initiation

Dormancy

Imbibation

Emergence

Haun Stage 1.1

Vernalisation

Floral Initiation

Terminal Spikelet

A
p

p
a

re
n

t 
e

x
p

re
s
s
io

n

0

1

2

3

4

Vrn1

Vrn2 

Vrn target 

Vrn3 



131 

 

Figure 20: Suggested interactions of Vrn1, Vrn2, and Vrn3 at different phases 

of phenological development modified from those proposed by Brown, 

Jamieson et al. (2013) for spring wheat. 

As shown in Figure 20, it is hypothesised that Vrn1 begins to express in low 

concentrations from the time of imbibition. As such, a later emerging crop will 

have already expressed more Vrn1 at the time of emergence, so will not only 

suppress Vrn2 earlier, but will also prevent Vrn2 from increasing the 

vernalisation target. This expected differential relative expression of Vrn1, Vrn2 

and Vrn3 based on the time at which PP is perceived is shown for trial three late 

emergence (deep sown) and early emergence (Petri dish) imbibition treatments 

(Figure 21). 

  

Figure 21: Suggested differential relative expression of Vrn1, Vrn2, and Vrn3, 

including vernalisation target for early (Petri dish) and late (deep sown) PP 

perception after imbibition. 

7.8 Summary 

The original hypothesis for this experimental work suggested constant 
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imbibition and emergence. However, results did not support this hypothesis. 

Rather, results tallied with the molecular-phenological framework proposed by 

Brown, Jamieson et al. (2013). This model allowed differential PP perception 

response for vernalisation genes Vrn1, Vrn2, and Vrn3, explaining how later 

emerging plants with greater primordia numbers at emergence were able set a 

lower final leaf number than the earlier emerging plants. It also allowed for 

differences in plastochron when PP perception was delayed. It is not known 

whether these mechanisms interact. This Chapter highlighted the nature of crop 

models as constructs upon which researchers continue to develop mechanistic 

understanding of real-world systems. Better ability to account for this source of 

uncertainty has both research/development and practical implications. 

Section II has illustrated how the scientific understanding encapsulated in a 

model must be properly described (Chapter Five) before potential sources of 

uncertainty (Chapters Six and Seven) can be identified. The next Section 

continues to work with SIRIUS first to illustrate the UE framework proposed in 

Section I, and then to implement approaches to quantify uncertainty, including 

the Bayesian approach first introduced in Chapter Two. 
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Section III – Performance Statistics 
Section III Performance Statistics 

In this final section, material provided in Sections I and II are combined to 

illustrate the UE framework for the case study model SIRIUS in Chapter Eight. 

Here, a traditional sensitivity analysis for spring and winter varieties of wheat is 

carried out and conclusions are compared and contrasted with those found by a 

recent paper by He et al. (2012). In Chapter Nine, a Bayesian hierarchical model 

fitted in a state-space framework is implemented to take advantage of data that 

updates through time. This approach allows quantification of input parameter, 

expert opinion, and observed data in a unified setting. It provides filtered 

estimates of a Poisson state variable (Leaf Number). These estimates are 

presented with the usual performance statistics that are available when fitting a 

Bayesian hierarchical model. Probabilistic sensitivity analysis of input parameters 

is carried out within this framework. In Chapter Ten, the flexibility of the 

framework is showcased in two ways. First, it is extended to estimate uncertainty 

for a latent dynamic state variable. Second, a probabilistic sensitivity analysis of 

structural uncertainty (state equations) is carried out. This last analysis reflects 

recent uncertainty research directions (Strong et al. 2012). Quantification of 

uncertainty, and how it aids both biological and model understanding is the 

focus of this Section. 
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Chapter Eight: UE Framework and Sensitivity 

Analysis 
8. UE Framework and Sensitivity Analysis 

8.1 Executive Summary 

This Chapter shows the setting of SIRIUS in the UE framework proposed in 

Chapter Three. A sensitivity analysis for the spring wheat model is carried out, 

and results are compared and contrasted with those found by He et al. (2012). 

8.2 Application of the UE Framework 

Refer to Figure 3 in Chapter Three describing the seven steps in an UE, and apply 

them to our case study model SIRIUS. 

8.2.1 Summary: Model Building, Verification and Validation 

Model building, verification, and validation has been described for the published 

model SIRIUS The model is reduced to include the developmental model for 

spring wheat only. 

8.2.2 Identify Model Components 

As described in full in Chapter 5, the model’s state equations ME are used to 

predict the (observable) state variable leaf number (lnt) on day t based on 

calculations that simulate the rate of leaf development (phyllochront), number of 

organs (primordiat), and the possible final number of leaves given daylength and 

developmental  progress (flntt,  flnt). t = 1 is the day the grain is sown and imbibes 

moisture, as this is assumed to be the stage at which its apical meristem 

germinates and becomes sensitive to temperature. SIRIUS simulates the plant’s 

development based on mean daily environmental information. The simulations 

depend on input parameters θ that describe cultivar specific characteristics and 
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responses to environmental signals, and observable environmental information 

Et where TT = mean daily thermal time and PP = daily photoperiod.  Each state 

variable excepting lnt, is treated as an unobservable latent variable throughout 

the day-to-day simulation of the wheat plant development. At the completion of 

the vegetative development phase, the state variable flnt is observable once the 

onset of spikelets is seen. 

The state variables, input parameters with their prior distributions, and observed 

variables provide all the necessary components to begin state-space modelling. 

They are presented in matrix form in Table 9 (first introduced for the UE as Table 

1). Recall the use of italics for all parameters and variables, the use of lower case 

for state variables and input parameters, and the use of upper case for observed 

variables. Calibration variables are upper case, but not italicised.  



137 

 

Table 9: Step Two of Uncertainty Evaluation: Identify model components for the SIRIUS wheat computer simulation model. 

 

  

Calibration Variable Environmental Variable Model Form State Equation

r = f(ME, θ, Et,  Ct, ε) r = f(ME, θ, Et,  Ct, ε) r = f(ME, θ, Et,  Ct, ε) r = f (ME, θ, Et,  Ct, ε) r = f( ME , θ, Et,  Ct, ε) Zt - NA 

ps LNt PP t phyllochron t phyllochron t

ppsat TT t primordia t primordia t

lmin flnt t flnt t

pn fln t fln t

pe ln t ln t

bp

Input Parameter
Observation Variable Structural Uncertainty

State Variable

the way in which 

model components 
interact at each time 
step
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Table 10: Step Three of Uncertainty Evaluation: Curate available information about components of the SIRIUS wheat computer 

simulation model. 

 

Context Notation Data Expert opinion Other 

Structural uncertainy r = f ( ME , θ, Et,  Ct, ε)
The developmental phase between imbibation 

and emergence may not be  correctly specified.

Simulated Data for wheat grown 

in Southland consistently 

underestimates time of anthesis

Data from the literature (Jamieson et al. 2008) 

the rate of wheat development (bp ) is widely 

variable between cultivars.

unknown

Expert opinion on range values for several 

cultivars: bp 90-110; lmin  5-9; ps  0.01-0.7

Measured day of flag in southland crops for 

one cultivar.

unknown unknown

Measured observations of LN at weekly 

intervals for controlled climate conditions.

Measured weather station data in

Lincoln, Canterbury, New Zealand from 1960 - 

present

Scaling, aggregation, 

sampling or aleatory 

sources of uncertainty

r = f(ME, θ, Et, Ct, ε )

r = f(ME, θ , Et, Ct, ε)Model Inputs



139 

 

8.2.3 Curate Available Information 

By filling in Table 3 from Chapter Three, we can summarise whatever data, 

expert knowledge, and other information is available for each of the computer 

simulation model components f, ME, θ, 
tE , and 

tC  (Table 10). 

8.2.4 Identify Principal Sources of Uncertainty 

Sources of uncertainty can be identified given the information summarised in 

Tables 9 and 10. These include model structural error, incorrectly specified input 

parameters, bias in environmental data, and inherent stochasticity. For example, 

input parameters are not known exactly for any wheat cultivars, and they are not 

known at all for many wheat cultivars. Neither environmental nor wheat 

developmental data are observed perfectly. Finally, there is stochastic uncertainty 

in the real world system. This model does not take too long to run, however, so 

code uncertainty need not be of concern. 

8.2.5 State Objectives of the UE 

The objectives of the UE, based upon the structure of the computer simulation 

model and the available information summarised in the previous four sections 

could include one or more of the following: 

 Explore structural uncertainty ( )f  t tr ,θ,E ,C ,ME : Assess the size and 

direction of bias of model simulated values for flnt for a new location, 

potentially to guide new research/calibration efforts. 

 Explore input parameter uncertainty ( )f  t tr ME, ,E ,C ,θ : Carry out a 

sensitivity analysis to assess whether the model is also (as the literature 

suggests the real world is) sensitive to changes in bp, or carry out a 

sensitivity analysis to assess whether the model is not (as personal 
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communications suggests the real world is not affected by) sensitive to 

changes in pe. This is carried out in the remainder of this Chapter. 

 Explore environmental input data uncertainty ( )f  t tr ME,θ, ,C ,E : Carry 

out a sensitivity analysis to assess the impact (in number of days of error 

in day of flag leaf estimation) of spatial bias in thermal time (TT) input 

data. 

 Explore calibration data uncertainty ( )f  t tr ME,θ, CE , , : Fit a data 

assimilation model to explore not only whether the model ends up with 

accurate estimates of Flag leaf day, but also whether it correctly simulates 

the development of each leaf through time. This is done in Chapter Nine. 

8.2.6 Sampling and Analysis of Simulation Data 

The input parameter uncertainty will be explored in this chapter, and calibration 

data, input parameter, and structural uncertainty jointly in Chapters Nine and 

Ten. 

8.3 Sensitivity Analysis of the Input Parameters 

8.3.1 Steps for Analysis 

There are four main steps required in performing a sensitivity analysis (Saltelli et 

al. 2000): 

1. Assign pdf or range of variation for each input factor, 

2. Generate an input vector/matrix through an appropriate design, 

3. Evaluate (run) the model, for the input combinations included in the 

design thus creating an output distribution for the response of interest, 

4. Analyse the influences or relative importance of each input factor on the 

output variables. 
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Step 1 requires expert elicitation as discussed in Chapter Two. Design concepts 

for Step 2 have been described in Chapter Four. Analysis (Step 4) was also 

discussed in Chapter Four. In this study will calculate the sensitivity (Si) and total 

sensitivity (Ti) as follows: The sums of squares for each main factor in relation to 

total sums of squares from the ANOVA decompositions gave the first other 

sensitivity index (Si) for main factor effects; and the total sensitivity index (Ti) 

was calculated by adding the interaction component to each main factor. In this 

analysis the indices are not normalised by the total sums of squares, and 

presented as percentages. The greater the value of Ti, the higher is the sensitivity 

of the output variable to a factor, including main effects and interactions. The 

larger the difference between Ti and Si, the greater is the influence of interactions. 

8.3.2 Case studies: Spring Varieties of Wheat 

This analysis is implemented in GenStat v. 14. The techniques used for this 

sensitivity analysis will include EDA, ANOVA decomposition, tabulation of Si 

and Ti, histograms, and box and whisker plots. Inputs that will be experimented 

on are ‘varietal parameters’. These are cultivar specific responses or 

characteristics. A total of three varietal parameters are explored (Table 11): lmin, 

bp, and ps. 

8.3.3 Experimental Design 

The design will be a complete factorial design over a selected range of years and 

sowing date combinations. The number of levels will vary based on the total 

number of ‘treatments’ for each case. Non-linearity in responses may be explored 

via experimental data and model outputs. Note that this does not allow for 

probabilistic information to be included. The factor levels of the design are 

shown in Table 12. 



142 

 

8.3.4 Expert Elicitation 

Observed range values across several cultivars collected through 

experimentation are given in Table 11. This is a simple version of expert 

elicitation for a generic/default spring wheat variety which is expanded upon 

(including sources of information) in the next Chapter. This information is used 

to develop a plan for the computer simulation experiment. Daily weather 

information is available from 1960 until the present.  This data is collected at 

NIWA’s Broadfields Meteorological station in Canterbury, New Zealand.  

Latitude = -43.626, longitude = 172.47. Day is the date of sowing and is 

represented as Julian Day. 

Table 11: Range of varietal parameters in SIRIUS crop model. 

Varietal Term Min Max  

lmin 5 9 

bp 90 110 
ps 0.01 0.7 

8.3.5 Generate an input vector through an appropriate design 

Table 12: Input vector for theoretical spring varieties. 

 

Experimental Design theoretical spring variety

1 2 3 4

Year 1980 1990 2000

Day 10 69 160 252

lmin 5 9

bp 90 130

ps 0.01 0.07

Factorial

Levels

=3*4*2*2*2 96 observations

Term
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8.3.6 Evaluate Model  

The model outputs for input vectors given above for the spring wheat are given 

in Table 13. 
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Table 13: Simulated fln counts for theoretical spring varieties. 

1980 1980 1980 1980 1990 1990 1990 1990 2000 2000 2000 2000

10 69 160 252 10 69 160 252 10 69 160 252

5 90 0.01 5.00 5.03 5.06 5.03 5.00 5.03 5.06 5.03 5.00 5.03 5.06 5.03

5 90 0.7 5.00 7.28 9.04 7.11 5.00 7.21 9.01 7.03 5.02 7.28 9.13 7.08

5 130 0.01 5.00 5.03 5.06 5.03 5.00 5.03 5.06 5.03 5.00 5.03 5.06 5.03

5 130 0.7 5.12 7.72 8.81 6.97 5.12 7.59 8.81 6.86 5.17 7.72 9.01 6.97

9 90 0.01 9.00 9.04 9.06 9.03 9.00 9.03 9.06 9.02 9.00 9.04 9.06 9.03

9 90 0.7 9.29 11.89 12.45 10.65 9.26 11.72 12.53 10.43 9.38 11.85 12.85 10.61

9 130 0.01 9.01 9.04 9.05 9.02 9.01 9.04 9.05 9.02 9.01 9.04 9.06 9.02

9 130 0.7 9.59 12.55 11.99 10.40 9.53 12.37 12.02 10.15 9.73 12.50 12.42 10.34

lmin base ps
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8.3.7 Analysis 

Model outputs are analysed via variance decomposition as for ANOVA. Here, 

relative importance of each term can be assessed as the percentage of total 

variation explained by each main and interaction effect term. Alternatively (as 

shown in Table 14), the day and year of sowing can be fitted as a random effect in 

ANOVA. The sensitivity and total sensitivity indices Si and Ti are calculated as 

described in Chapter Four and shown in Table 15. Results are described next.  

8.3.8 Results 

For the spring varieties we can draw the following inferences (Table 14, Table 15; 

Figures 22 & 24) (Mean temperatures for the 3 years under study are shown in 

Figure 23): 

 Day provides a large source of variation, 

 lmin is the  most influential at one order of magnitude less, 

 ps is also important. 

 bp is relatively uninfluential. 

 If Day is treated as a fixed effect in the ANOVA decomposition, then we 

can see that the interaction between lmin and ps at different times of the 

year may be of interest: 

 Figure 24 indicates that stronger daylength response (ps = 0.70) has a 

differential effect on fln, and this effect is not exactly consistent with 

different lmin values.  
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Table 14:  ANOVA decomposition for theoretical spring varieties. 

 

Table 15: Variance decomposition for theoretical spring varieties; Si and Ti 

 

 

Figure 22: Si + remainder and Ti for theoretical spring varieties. 

 

Analysis of variance

Source of variation

Day & Year stratum 11 40.2246

bp 1 0.0199 0.852

lmin 1 381.677 <.001

ps 1 104.318 <.001

bp.lmin 1 0 0.998

bp.ps 1 0.0186 0.856

lmin.ps 1 0.0037 0.936

bp.lmin.ps 1 0 0.999

Residual 77 43.4212  

Total 95 561.1378

d.f. s.s. F pr.

Term Si Ti

bp 0.02 1.61

lmin 381.68 383.85

ps 104.32 144.88

Day 40.06 83.43

Year 0.09 0.39
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Figure 23: Mean temperature for the three years under study. 

 

Figure 24: fln (y-axis) for sowing day averaged over year (x-axis). Red lines 

represent lmin = 5, black lines represent lmin = 9. Triangle symbols represent 

ps = 0.70. Circle symbols represent ps = 0.01. 

8.3.9 Conclusion 

The results of implementing the UE framework for SIRIUS allowed a clear 

description and understanding of the model under study. Objectives were set, 
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and inference made from analysis added insight into the behaviour of the model. 

These included the impact of variation in cultivar-specific input parameters such 

as lmin and bp. The next Chapter will continue to work with SIRIUS to provide 

estimates of uncertainty that account for as many sources of variability at the 

same time as possible. 
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Chapter Nine: SIRIUS implemented as a State-

Space model via MCMC 
9. SIRIUS implemented as a State-Space model via MCMC 

9.1 Executive Summary 

Chapter Nine implements a Bayesian hierarchical data assimilation model (BHM) 

for SIRIUS. This model will allow us to provide credible intervals for state-space 

model estimates. Because this approach allows data to be used during the 

estimation process, the credible intervals include an element of aleatory 

uncertainty ε. The effect of variations to the prior distributions placed on input 

parameters are explored, and results indicate that this approach allows real time 

estimation of crop responses to environmental conditions predictions to be 

pulled into line with observations that may not respond exactly as expected. It 

also allows predictions to be accompanied by performance statistics. There is a 

balance between prior belief (partially summarised by the state evolution model), 

and the observed data. As a research guide, it is an information-inclusive 

approach to help identify and quantify model parameter sensitivity. This 

approach also allows both calibration and sensitivity analysis of computer 

simulation model estimates that have been allowed to propagate through time, 

ensuring that the model correctly simulates not only the end result, but also the 

pathway to that result. 

9.2 Introduction 

The objective of this Chapter is to provide an estimate of the leaf number at time t 

based on all of the data available at that time, the state model, and expert prior 

knowledge of input parameters. As mentioned in Chapter Two, there is an 

inherently hierarchical structure to the concept of data assimilation. That Chapter 

shows how the state evolution model, observations, and input parameters are 
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unified to provide filtered estimates that can be used to explore model sensitivity, 

uncertainty, and predictability. Our data assimilation method aims to set the 

state evolution model in a probabilistic setting via Bayes rule. Here, the posterior 

at day t = 1 becomes the prior at day t = 2. To recap the general form described in 

Chapter Two: 

 The data model | ,Q Z   is what is most likely given conditional 

dependency upon the state model in addition to the standard dependency 

upon the parameter model. An important feature of this framework is the 

lack of requirement for either linearity or normality in the data model. 

 The state model |Z   (SIRIUS) is represented by a series of 

unobserved/hidden or latent variables that are inferred through 

mathematical equations that describe the underlying scientific process of 

interest and are conditionally dependent on the parameters. A first order 

Markov model in time is assumed. 

 The parameter model θ contains the parameters which are each described 

by a prior distribution usually represented by expert opinion or by 

independent ‘non-informative’ priors. The sequential estimation 

procedure additionally allows the prior at time t to be represented by the 

posterior pdf at time t-1. 

9.3 Formulation of the Model via Bayes Theorem 

9.3.1 SIRIUS in a State-space Framework 

As summarised via the UE framework in Chapter Eight, the SIRIUS wheat 

development sub-model for spring wheat is a dynamic, deterministic computer 

simulation of the development of a wheat plant through time as realised by the 

number of fully extended leaves. It will henceforth be referred to as the state 

evolution model because of its discrete nature where on each day there are a 
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well-defined set of states by which each state variable may either remain in its 

current state or update according to environmental cues. State equations 
tZ  for 

the spring wheat model are as specified in 8.2.2. 

9.3.2 Components of the State-space Model  

The state variables, input parameters with their prior distributions, and observed 

variables provide all the necessary components to begin state-space modelling. 

They are presented in matrix form as follows.  

 State Variables          

 

t

t

t

t

t

phyllochron

primordia

      flnt

      fln

       ln

 
 
 
 
 
 
 
 

tZ          

 Input Parameters θ with Expert Priors          

  

ps

ppsat

lmin

pn

pe

bp

 
 
 
 

  
 
 
  
 

  

 Observable Variables 

 
 
 
 

t

t

t

C
D = 

E
  

Where  
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 (LN )t tC   

  
t

t

t

TT

PP

 
  
 

E   

9.3.3 Bayesian Filtering Processor for SIRIUS 

The specific solution for the SIRIUS model (where t denotes a single day/time-

step) is: 

 Parameter Model 

 ( )P    

 Environmental Data Model: 

 ( )tP E   

 Data Model: 

  { : =1,…, }|{ : = 0,…, },t tP t t t tC Z θ   

 State Evolution Model: 

 0 1( ) ( | : 1,... )t tP P t t Z Z Z   

 Filtering model 

Forecast:  

 1: 1 1: 1 1 1 1: 1 1: 1 1( | , , ) ( | ) ( | , , )t t t t t t t t tP P P d       Z E C Z Z Z E C Z    

Filter: 



153 

 

 1: 1: 1 1: 1( , | ) ( | , ) ( | ) ( ) ( )t t t t t t t t t tP P P P P Z ,E C C Z ,E Z C E E      

That is, the posterior distribution of the state variables is proportional to the 

likelihood (the data tC  given all the other information on day t), the state 

variables tZ  on day t given all the other information on day t-1, the input 

parameters θ and the environmental data tE . These last two are not dependent 

upon each other, the data 1:tC   or the state variables 1:tZ . 

This filter does not work well on occasions when data is not present. Realistically, 

in the case of the spring model for example, the state evolution model updates on 

a daily basis, but data may enter only weekly. The model is therefore based on 

data interpolated using a simple polynomial regression. 

9.4 Practical Implementation 

9.4.1 Software 

The recursive model was coded in GenStat  v15 (VSN_International 2013) which 

called WinBUGS (Gilks et al. 1996; Spiegelhalter et al. 2004) via the procedure 

BGXGENSTAT on each daily loop, extracting and saving the appropriate 

posterior statistics via the procedure BGIMPORT.  These then enter the model on 

day t+1 with the appropriate observed data. The code for this is shown in 

Appendix A3. 

9.4.2 Nomenclature 

A table of the names of all the variables and parameters used in the model and 

alternatives given software restrictions are given in Table 16. 

Table 16: Model component naming schemes.  
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Type Formal Name 
WinBUGS 

Code Name 

State Variable phyllochront phylln.t 

State Variable primordiat primn.t 

State Variable flntt flnt.t 

State Variable flnt fln.t 

State Variable lnt ln.t 

State Variable flnt-1 fln.ttmin1 

State Variable lnt-1 ln.tmin1 

Input Parameter ps ps 

Input Parameter ppsat ppsat 

Input Parameter lmin lmin 

Input Parameter pn pn 

Input Parameter pe pe 

Input Parameter bp bp 

Likelihood μ.lnt mu.ln.t 

Recursive Hyperparameter μ.lnt-1 fln.tmin1 

Recursive Hyperparameter μ.flnt-1 alpha.ln.tmin1 

Data LNk LN.t 

Data PPk PP.t 

Data TTk TT.t 

9.4.3 Likelihood 

The choice of likelihood can strongly impact behaviour of the model. The Poisson 

likelihood was selected as it is appropriate for count data. 

9.4.4 Recursive Priors 

Similarly posterior estimates for the means of lnt-1 and flnt-1 enter as prior 

distributions in the model.  A Poisson distribution is assumed to appropriate for 

lnt-1  and a range of prior distributions for flnt-1 including Gamma, Poisson, and 

Normal distributions are tested. The method of moments was used to estimate 

appropriate statistics from the posterior distributions, where [ ]E X



  for the 

Gamma distribution and [ ]E X   for the Poisson distribution. 
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9.4.5 Elicitation of Prior Distribution for Input Parameters 

Input parameters θ represent cultivar specific characteristics and responses to 

environmental cues. These parameters do not evolve through time, nor are they 

updated by observation. They are the only terms in the model therefore that are 

constant through time and do not need to be denoted with the subscript t. Prior 

knowledge can be used to inform the form of input parameters into the model.  

Table 17 provides a summary of prior information for three varieties of spring 

wheat. These varieties were selected because observed LN count data through 

time is available for them. Otane is the variety with the most complete 

information, so is the focus of the analysis in this chapter. 

The prior information for photoperiod response input parameters ps and ppsat 

are  derived from Brooking et al. (1995) and are set as Normal (0.51, 0.01) and 

Normal (13.5, 0.01) respectively. The minimum leaf numbers are also derived 

from Brooking et al. (1995) and are set as a Gamma (7, 1). The input parameter for 

bp is not currently available in the literature for Otane, so was set to be Normal 

(110, 1) based on expert opinion (elicited as described in  Chapter Two, H.E. 

Brown, E.D. Meenken, C.M. Triggs Auckland, 2013). The number of organs in the 

grain at germination and as a linear relationship with number of leaves is set at 

Poisson (4) and Poisson (2), respectively. 
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Table 17: Prior information for three spring wheat cultivars1 

                                                 

1 Data sources by number are: 

1. Brooking et al. (1995) 

2. Unpublished experimental work, Catherine Munro, Plant & Food Research 

3. Unpublished experimental work, Sarah Sinton, Plant & Food Research 

4. Experimental work, Chapter 6, Esther Meenken PhD thesis. 

5. Jamieson et al. (1998) 

Cultivar Conditions Source lmin/ FLN bp ps ppsat

Batten Spring Inductive/many temps 1 7 0.78 15.5

Batten Spring Field 1 7.7

Batten Spring Unknown 2 9.3

Batten Spring Inductive/Warm 3 8.8 110

Batten Spring Inductive/Warm 4 8.0

Otane Inductive/many temps 1 6.7 0.51 13.5

Otane Field 1 7.1

Otane Field 2 8 110 0.25

Otane Inductive/Warm 2

Otane Inductive/Warm 3 6-7 120

Otane Inductive/Warm 4 6-7

Rongotea Inductive/many temps 1 7.1 0.68 15.9

Rongotea Field 1 7.7

Rongotea Inductive/Warm 5 100

Rongotea Unknown 2

Rongotea Inductive/Warm 3 8.7 110
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9.4.6 Assimilation Data:  Spring Wheat Leaf Appearance Trial 

This data arises from a historical Plant & Food Research trial planned and carried 

out by Hamish Brown and Sarah Sinton. On 6 March 2012, three replicates of six 

seeds of the wheat cultivar Otane along with several other cultivars were planted 

in 15cm diameter pots containing standard potting medium and placed in a 

sealed growth chamber. Pots were later thinned to four plants. The pots were 

grouped in large trays (about 15 to a tray) and these were arranged on a bench on 

either side of an access way in the growth chamber. Day length was set at 16 

hours and lighting consisted of 400-watt mercury vapour and high pressure 

sodium bulbs. A logging temperature probe was placed at growing point level in 

each of four pots and distributed equally around the growth chamber. 

Temperature was recorded hourly. Mean temperature for the growing period 

was 22.6oC. A dehumidifier was used to reduce foliar disease risk and any insect 

incursion regularly sprayed with insecticide. Pots were manually watered. 

On 17 occasions between 12 March and 14 September tips and ligules were 

counted on the main stem of each plant and as the plants grew and leaves died, a 

wire marker was used to keep track of leaf number. Any plants that did not 

conform to average growth (relative to other plants in the same pot) were 

abandoned; recurrent handling distorted growth in some plants. The date of final 

leaf appearance (flag leaf) booting, ear emergence, and flowering were also 

recorded. The daily number of leaves was interpolated from the observed data 

via a linear fit between observations. The observed response data Ct = LNt 

represents this daily observed leaf number data for up to 8 plants per cultivar. 

9.4.7 Bayesian Network for SIRIUS 

The state-space hierarchical framework can be visualised as in Figure 25. 
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Figure 25: Bayesian graphical model; double edges link to logical nodes, single 

edges link to stochastic nodes, ovals denote variables and boxes denote 

constants. Here blue denotes observed data, green state variables, orange input 

parameters, and black recursive priors. 

 

 

 

 

 

 

ppsat

phyllochront

lnt

primordiat

flnt

flnttps

lmin

pn

pe

bp

lnt-1

flnt-1

PPt

μ.lnt-1

μ.flnt-1

TTt

LNtμ.lnt



159 

 

9.4.8 Bayesian Hierarchical Model for SIRIUS 

The formal specification of the Bayesian model is shown in Figure 26. 

~ ( . )t tLN Poisson ln  

log( . ) log( )t tln ln   

1 1( , , . , , )t t t t tln f E Z ln fln    

1 1~ ( . )t tln Poisson ln   

1 1~ ( . ,1)t tfln Gamma fln   

~ expert opinion  

observed variablestE   

= state equationstZ  

Figure 26: Bayesian model for SIRIUS.  
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9.4.9 WinBUGS details 

 Hierarchical Model Code for day t  

The code for the model in Figure 26 is shown in Figure 27. This sits within the full 

GenState code that allows the recursive model to run automatically. The full code 

is given in Appendix A3. 
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model 

{ 

for (i in 1:8){ 

LN.t[i] ~ dpois (mu.ln.t) 

} 

log (mu.ln.t)  <- log (ln.t) 

 

a[1]  <- step (2 - (ln.ttmin1)) 

a[2]        <- step ( 8 - (ln.ttmin1)) – step (2 - (ln.ttmin1)) 

a[3]       <- min ((1 - ( a[1])), (1 - (a[2]))) 

phylln.t  <-  (a[1] * 0.75 * bp + a[2] * bp + a[3] * 1.3 * bp) 

 

d[1]        <-  step ((( TT.t/phylln.tmin1) + ln.ttmin1) - fln.tmin1) 

d[2]        <- 1 - d[1] 

ln.t         <-  d[1] * fln.ttmin1 + d[2] * ((TT.t/phylln.t) + ln.tmin1) 

 

primn.t  <-  pn * ln.t + pe 

 

b[1]       <-  step ((PP.t - ppsat)) 

b[2]       <-  1 - b[1] 

flnt.t      <-  lmin 

 

c[1]       <-  step ((primn.t - (flnt.t + pe))) 

c[2]       <-  1 - c[1] 

e[1]       <- step((primn.t - flnt.t)) 

e[2]       <- 1- c[1] 

fln.t       <- c[1] * (e[1] * flnt.t + e[2] * primn.t) + c[2] * (fln.ttmin1) 

 

bp         ~ dnorm(110,1) 

pe          ~ dpois (4) 

pn         ~ dpois (2) 

ppsat     ~ dnorm (15.9, 0.01) 

lmin      ~ dgamma (7, 1) 

ps          ~dnorm (0.625, 0.01) 

 

ln.tmin1  ~ dpois (alpha.ln.tmin1) 

ln.ttmin1  <- alpha.ln.tmin1 

fln.ttmin1  ~ dgamma (fln.tmin1, 1) 

} 

Figure 27:  Hierarchical Model Code for day t.  
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 Data File for Day t = 45 

The data used for the model fitting are provided for day 45 in Figure 28. 

list ( 

 

fln.tmin1  = 7.000 

, TT.t   = 22.50 

, PP.t   = 16.00 

, alpha.ln.tmin1 = 6.608 

, LN.t   = c(6, 7, 7, 6, 7, 7, 6, 6) 

 

) 

Figure 28: Data file for day t = 45 

 Model Fitting Details 

WinBUGS was set to initiate 3 chains, allowing for 1000 burn-ins and running 

10,000 simulations on each day. Each model ran for 45 simulated days. 

9.4.10 Bayesian Model Checking 

 Effect of Observed Data 

The impact of increasing the number of observations is explored for 1, 3, and 8 

plants. 

 Input Parameter Priors 

We explored the effect of increasing and decreasing the estimated lmin, its 

precision, and its distribution. We explored the effect of increasing the decreasing 

the estimated bp, its precision, and how introducing it as a scalar input parameter 

rather than with a distribution affected results. The data were collected in 

photoperiod controlled chamber set at inductive conditions. To avoid 

experimenting with changing the priors to values that make little biological sense 
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we did not assess the effect changing photoperiod prior distributions for ps and 

ppsat. The literature and expert knowledge indicate that the uncertainty around 

the number of organs per grain and per leaf is subject to very little biological 

variability, so we did not explore these prior distributions beyond introducing 

them as scalar input parameters rather than with a distribution. 

 flnt-1  Priors 

Three alternative prior models for the flnt-1 variable were tested. These were 

the Poisson, Normal and Gamma as shown in Table 18. 

9.5 Results of UE 

The results of the model fitting procedure carried out to explore the effect of 

changes in the prior on input parameters and the state equation fln are given in 

Table 18. Here the N, P and Gam outside the brackets indicate that the Normal, 

Poisson and Gamma distributions have been used as priors, respectively. Each of 

the other terms have been defined in Table 16. Changes in the number of 

observations used in modelling and results including estimated ln on day 45 and 

its predicted range are summarised in Table 19.  
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Table 18: Prior distribution models for input parameters and state equations. 

Changes from baseline Model (b) are shown in bold in either Table 18 or Table 

19. 

 

 

 

 

 

 

 

 

Likelihood

bp pe pn lmin mu.ln.t-1 fln.t-1 LN.t

a ~N(110,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

b ~N(110,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

c ~N(110,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

d ~N(110,1) ~P(4) ~P(2) ~Gam(6,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

e ~N(110,1) ~P(4) ~P(2) ~Gam(8,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

f ~N(110,1) ~P(4) ~P(2) ~Gam(10,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

g ~N(110,1) ~P(4) ~P(2) ~Gam(7,.01) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

h ~N(110,1) ~P(4) ~P(2) ~Gam(7,100) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

i ~N(110,1) ~P(4) ~P(2) ~Norm(7,0.01) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

j ~N(110,1) 4 2 ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

k ~N(140,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

l ~N(110,100) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

m ~N(110,.1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

n 110 ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

o ~N(90,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

p ~N(90,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

q ~N(110,1) ~P(4) ~P(2) ~Gam(9,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

r ~N(110,1) ~P(4) ~P(2) ~Gam(9,1) ~P(mu.ln.t-1) ~P(fln.t-1) ~P(mu.ln.t)

s ~N(110,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~Norm(fln.t-1,1) ~P(mu.ln.t,1)

t ~N(110,1) ~P(4) ~P(2) ~Gam(7,1) ~P(mu.ln.t-1) ~Gam(fln.t-1,1) ~P(mu.ln.t,1)

Model

θ prior distributions 
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Table 19: Number of observed data and filtered statistics for each model 

shown in Table 18. Changes from baseline Model (b) are shown in bold in 

Table 18 or 19. 

 

  

mean 

observed

variance 

observed

no 

observed 

included

process 

model ln
BHM LN (μ) range BHM 2.5% BHM 97.5%

a 6.00 - 1 7 6.6 7.3 3.4 10.6

b 6.67 0.33 3 7 6.9 5.1 4.5 9.6

c 6.50 0.29 8 7 6.6 3.3 5.1 8.4

d 6.67 0.33 3 6 6.9 5.2 4.5 9.7

e 6.67 0.33 3 8 6.9 5.2 4.5 9.7

f 6.67 0.33 3 10 7.2 5.3 4.7 10.0

g 6.67 0.33 3 8 6.8 5.3 4.5 9.7

h 6.67 0.33 3 8 6.8 5.1 4.5 9.6

i 6.67 0.33 3 8 6.9 5.1 4.5 9.6

j 6.67 0.33 3 7 6.8 5.1 4.5 9.6

k 6.67 0.33 3 7 6.9 5.2 4.5 9.7

l 6.67 0.33 3 7 6.9 5.2 4.5 9.6

m 6.67 0.33 3 7 6.9 5.0 4.5 9.6

n 6.67 0.33 3 7 6.8 5.1 4.5 9.6

o 6.67 0.33 8 7 6.6 3.4 5.0 8.4

p 6.67 0.33 3 7 6.8 5.1 4.5 9.6

q 6.67 0.33 8 9 6.7 3.4 5.1 8.5

r 6.67 0.33 3 9 7.0 5.3 4.6 9.9

s 6.5 0.33 8 9 6.54 3.4 4.98 8.34

t 6.5 0.33 8 9 6.58 3.3 5.03 8.35

Model

Leaf Numbers on Day 45
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9.5.1  Outcomes 1 – 8: Exploring Filtered Model Uncertainty 

The results of the Bayesian Hierarchical Model (BHM) analysis is summarised in 

Table 19 lead to the following 10 conclusions. 

1. Increasing the number of observations decreases the credible interval of 

prediction (Models a, b and c) (Figure 29). 

 

Figure 29:  Effect of number of observations on estimation and range of 

number of leaves through time for Otane. i. Model a, ii. Model b, and iii. 

Model c. Shading represents 95% credible intervals. Dashed line indicates the 

process model, solid line indicates the filtered estimate from the BHM, dotted 

lines indicate observed data. 

2.  As the prior for lmin increases, the filtered estimate for leaf number also 

increases, but not linearly; the further from the data the prior forces the 

model the less weight it receives in the filtered estimate. This is 

accompanied by a slight increase in variation/range (Models d, e, and f) 

(Figure 30). 
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Figure 30:  Effect of adjusting prior for lmin on estimation and range of 

number of leaves through time for Otane. i. Model d, ii. Model e, and iii. 

Model f. Shading represents 95% credible intervals. Dashed line indicates the 

process model, solid line indicates the filtered estimate from the BHM, dotted 

lines indicate observed data. 

3. Decreasing the precision of the prior on the lmin very slightly increases the 

range of the filtered estimate for leaf number (Models e, g, and h) (shown 

only in Table 19). 

4. Using a different but biologically meaningful prior distribution for lmin 

results in very little change to estimate or range (Models e and i) (shown 

only in Table 19). 

5. Removing the prior distribution from the baseline number of grain and 

leaf primordia pn and pe does not affect the filtered leaf number estimate 

but very slightly decreases the range of the posterior (Models b and j) 

(shown only in Table 19). 

6. As the prior value for bp changes, the filtered estimate for leaf number and 

the range around this estimate only varies slightly. However, an incorrect 

bp strongly affects the date at which the plant reaches its final leaf number, 

and whilst this is not the focus of this paper, the rate of development is 

also of biological interest (p, b and k) (Figure 31). Here, Model p (Figure 



168 

 

31i) with a bp of 90 grew slowly whilst Model k (Figure 31iii) with a bp of 

140 grew too rapidly. 

 

Figure 31:  Effect of bp on estimation and range of number of leaves through 

time for Otane. i. Model p, ii. Model b, and iii. Model k. Shading represents 

95% credible intervals. Dashed line indicates the process model, solid line 

indicates the filtered estimate from the BHM, dotted lines indicate observed 

data. 

7. Decreasing the precision of the prior on bp slightly decreases the range of 

the filtered estimate for leaf number through time (Models b and i) (shown 

only in Table 19). 

8. Removing the prior distribution around the bp does not affect the estimate 

but slightly increases the range (Models b, m, and n) (shown only in Table 

19). 

9.5.2 Outcomes 9-10: A Balance Between Expert Opinion, State 

Evolution Model and Data 

Intuitively it may seem that reducing the credible intervals as much as possible is 

desirable, however, if the prior belief happens to be far away from the data, the 

state model predictions may be quite distant from the filtered prediction if the 

data is heavily weighted (e.g. there are many observations). I believe that the 
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credible intervals should ideally find a balance between data and prior belief. As 

such, the aim is to fit the state model with reasonable expert priors on the input 

parameters, but also only include as much data as required to update the 

forecasts without overwhelming them. However finding the correct balance is 

not necessarily straightforward, and will rely on a complete UE of the model. 

9. If the bp is too low, the state model simulation of development is 

extremely close to the upper credible interval when there is a large 

amount of data (Models p and o) (Figure 32). 

 

Figure 32: Effect of low bp and # observations on estimation and range of 

number of leaves through time for Otane. i. Model p, and ii. Model o. Shading 

represents 95% credible intervals. Dashed line indicates the process model, 

solid line indicates the filtered estimate from the BHM, dotted lines indicate 

observed data. 

10. Similarly, if the prior belief for the lmin is far away from the current data 

set, the state model estimate of leaf number is outside the credible 

intervals when there is a large amount of data (Models r and q) (Figure 

33). 
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Figure 33: Effect of high minimum leaf number and number of observations on 

estimation and range of number of leaves through time for Otane. i. Model r, 

and ii. Model q. Shading represents 95% credible intervals. Dashed line 

indicates the process model, solid line indicates the filtered estimate from the 

BHM, dotted lines indicate observed data. 

9.6 Diagnostics 

As discussed in Chapter Five, MCMC sampling can be dangerous, and checking 

convergence of the model requires care. It is difficult to say conclusively that a 

chain (simulation) has converged, only to diagnose when it definitely hasn’t. The 

following outputs can be used to diagnose when the chain definitely hasn’t 

converged  (Burn and Underwood 2007). 

Stationarity is assessed by looking at the trace plots of the parameters. 

Irreducibility is also checked via traceplots. A formal assessment can be made via 

the Gelman and Rubin convergence statistic as modified by Brooks and Gelman 

(1998). Whether the chain converged to a distribution (not a point estimate) can 

be seen from the density. Finally, if values within a chain are very highly 

correlated, then convergence may take a very long time. To ensure the chain has 

converged the autocorrelation should converge to zero. 
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Diagnostics for the nodes lnt, phyllochront, primordiat, flnt can be seen in Figure 42, 

Figure 43, Figure 44, and Figure 45 in Appendix A5. The diagnostics provided 

include trace plots (Column One), posterior densities for each node (Column 

Two), Brooks–Gelman (B-G) plots (Column Three) and autocorrelations plots 

(Column Four). For efficient reporting, diagnostics are provided for 7 selected 

days: t = 1, 2, 5, 10, 20, 30, and 50. These diagnostics are from the fitted Model t. 

9.7 Alternative Formulations 

As described in Chapter Five, there are other options to combine state-space 

model estimates with assimilated data. The Kalman Filter and the Particle Filter 

are two such options that were implemented during the early stages of the 

project. However, these models are not as suitable as the approach described in 

this chapter. The Kalman filter’s requirements of normality and linearity are 

unlikely to be appropriate. The non-Bayesian nature of the particle filter is more 

restrictive than the Bayesian model. The Bayesian approach is preferred because 

of its flexibility. 

9.8 Estimation of Uncertainty in a Latent Variable.  

So far only the uncertainty for variables for which there is signal data has been 

discussed. Estimation uncertainty for an observable, dynamical state variable is a 

very useful tool; however, for SIRIUS and for other state-space agricultural 

models there may be other, latent (unobservable) variables which can also be 

evaluated with respect to uncertainty in their estimation. The approach provides 

a framework to investigate the behaviour of latent variables. Of particular 

biological interest is final leaf number (fln). Some outputs from Model t (Table 19) 

are provided in the next Section to provide a starting point for the next stage of 

investigation: Uncertainty in a latent state variable (The topic of Chapter Ten). 
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The posterior densities for lnt and flnt where t = 1, 5, 10, 45 are displayed row by 

row, from left to right, in Figure 34 and Figure 35. The spikes in the posterior 

densities of flnt   show that the discrete prior distribution has not been completely 

smoothed by the likelihood of the observed data. Whilst the posterior densities 

for ln update and changes through time, those for fln change very little. This is 

expected based upon the proper state equations for these variables. However, the 

credible intervals for the latent variable fln have a range of approximately 9.72, in 

comparison of 3.37 for the observable variable ln. That is, around 2.89 times as 

wide. This can be seen in Figure 36. Since fln and hence the expected data of 

flowering is also valuable information, methods to describe and reduce 

uncertainty around the latent state variable will be explored. 

    

Figure 34: Posterior density for lnt where t =1, 5, 10, and 45 from left to right 

based on model t. 

    

Figure 35: Posterior density for flnt where t =1, 5, 10, and 45 from left to right 

based on model t.  
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Figure 36: a) Estimated values and credible intervals for lnt (black line, dark 

grey range) and flnt (red line, light grey range). b) Densities of ln and fln at t = 

45 based on 10,000 realisations.  

9.9 Summary  

The successful implementation of a probabilistic Bayesian hierarchical model 

fitted with MCMC satisfied the primary objective of this research project. This 

model is the best paradigm to combine data, probability, expert opinion, and a 

state-space model (SIRIUS), seeking a balance between these contributors. Three 

important benefits of this approach are summarised. Firstly, often with dynamic 

agricultural computer simulation models it is not sufficient that a model is able to 

converge to the correct location; its behaviour during state evolution should also 

be a close approximation to reality. By allowing real time estimation of crop 

responses to environmental conditions predictions to be updated with 

observations, this approach can help add confidence that estimates are behaving 

in a close approximation to reality through time. Further, predictions are 

accompanied by performance statistics through time. Finally, whilst this 

approach can be used for prediction in real time, a greater value is probably in 

a)                                                                        b) 
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calibration. As a research guide, it is an information-inclusive approach to help 

identify and quantify model parameter sensitivity. The combination of a state 

evolution model with data can help provide clues to the range in values that 

might be expected in novel climate scenarios using ‘best guess’ prior knowledge. 

This is in contrast to an ensemble approach which may give undesired weight to 

a combination of input parameters that are not biologically likely, a particular 

problem for unique New Zealand conditions. Important characteristics of the 

data assimilation model are detailed in this chapter, but some findings of 

particular interest include the following.  First, incorporating more data rapidly 

reduces the credible bounds, indicating the observed rate of leaf development for 

the Otane wheat cultivar is fairly consistent. Second, the further from the data the 

prior forces the state model, the less weight it receives in the filtered estimate. 

This is accompanied by a slight increase in variation/range. Finally, if the prior 

belief for the lmin is far away from the current data set, the state model estimates 

of leaf number fall outside the credible intervals when there is a large amount of 

data. The implication is that when the deterministic model is far away from the 

observed data, the Bayesian model gives it very little weight in its filtered 

estimates. This is a consequence that must be considered relative to the UE 

objectives. In the next Chapter the strength and flexibility of this approach for 

exploring structural uncertainty is illustrated, and the uncertainty associated 

with estimating latent variables. 
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Chapter Ten: Uncertainty Estimation for 

Latent State Variables 
10. Uncertainty estimation for latent state variables 

10.1 Executive Summary 

Chapter Nine described how data could be used to derive information and 

insight about an observable variable. It focussed on using the Bayesian approach 

to fitting the state-space model. The ability to assess the effect of uncertainty in 

the specification of input parameters θ was illustrated. Chapter Ten will build on 

the model to introduce and implement two other techniques for understanding 

and quantifying uncertainty in different aspects of computer simulation models. 

First is the ability to improve estimation of uncertainty for a latent variable. The 

latent variable under study, flnt, is important biologically both for model UE and 

prediction purposes. Early and accurate estimation of when flag leaf will occur in 

the field, based on real-time environmental and calibration data, will provide 

greater knowledge of when the crop will be ready for harvest. A mixture 

distribution approach is described and illustrated to improve the credible bounds 

of flnt in the first part of this Chapter. 

The second aspect is based on a recent topic in the UE literature that explores the 

uncertainty that enters model outputs due to incorrect specification of the state 

variables tZ (Strong et al. 2012) via probabilistic sensitivity analysis (Oakley and 

O'Hagan 2004). Within the model framework already specified it is simple to 

explore the relative impact of allowing variation in structural equations through 

specification of a vague pdf for one or more of the elements of tZ . Results 

indicate that most state equations are quite sensitive to this ‘jittering’ of other 
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state equations. Unsurprisingly, as the likelihood will alleviate state-equation 

uncertainty, estimation of  ln45 is quite robust. 

10.2 A  Mixture Distribution to Reduce Uncertainty for a 
Latent Variable 

10.2.1 Introduction 

For many state-space agricultural models, including SIRIUS, there may also be 

unobservable (latent) variables which can be evaluated with respect to 

uncertainty in their estimation. The objective of this Chapter is to investigate 

approaches to better understand uncertainty of latent state variables. Where 

possible, uncertainty estimates for latent state variables will be improved. In the 

context of the case study model SIRIUS, the day at which we expect the final 

(flag) leaf to occur is of biological importance. An improved estimate of the 

uncertainty associated with flnt then has value both for model UE assessment and 

for real-time model use.  

The model implemented in Chapter Nine provides filtered estimates for lnt by 

combining data and state equations. Since flnt is a theoretical construct, there is no 

way in which flnt can be observed until the final leaf emerges. A moment’s 

thought, however, should suggest that the distributional characteristics of these 

two state variables are not independent at all times t. As such, associating, or 

mixing, the distributions of the state variables lnt and flnt to update the posterior 

distribution of flnt  is an approach that can make use of the observed LN data. 

This is described in detail in Section 10.2.2.1. A summary of indirect sources of 

information about the correlation between the state equations will be useful to 

help characterise the new, mixed pdf for flnt . There are seven pieces of 

information: 
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1. The Bayes posterior estimate for lnt and flnt based on the state space model 

and the likelihood, 

2. At time t =1,2,…,n; lnt is an updating, filtered estimate with moments 

estimated from the posterior distribution at time t – 1, 

3. At time t = 0, flnt ~ UNIFORM (lmin, lmax), 

4. At time t = n, P(flnt) = P(lnt), 

5. The minimum and maximum possible numbers of leaves on a wheat plant 

are known and denoted lmin and lmax, respectively, 

6. At all times t, lmin ≤  flnt  ≤  lmax, 

7. For spring wheat, lmax will be lower than that of a winter wheat 

variety(dependent on sowing date and photoperiod). 

The most obvious solution would be to take the uncertainty estimates directly 

from the model described in the previous Chapter (Figure 36a). Using the 

additional information above, a mixture distribution for flnt will be obtained 

whilst ensuring that this mixture is as close as possible to our prior 

understanding whilst still within the bounds of the state-space model. 

10.2.2 Method 

The approach will consist of four tasks: 

1. Using 1 and 2 above, begin as in the previous Chapter by simulating flnt 

and lnt recursively through time, calculating moments at time = t -1 and 

using these as prior moment estimators at time = t, 

2. Using (3 and 4 above), the densities of fln1 and fln45 are known, an 

algorithm is required to identify the appropriate rate of mixing at t=2…44, 

3. Estimate parameters from the resulting mixture distribution, 
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4. Values for the posterior estimates of flnt are dependent on the prior 

distribution selected for this state variable. Using (5, 6, and 7 above) will 

help ensure an appropriate prior is chosen. 

Additionally, the biological implications of improving uncertainty estimates for 

the state variable flnt have been discussed. As a side-effect of this activity, at 

certain time points in the simulation additional information about the date of flag 

leaf become available. Specifically, a predicted date on which the final leaf is fully 

extended can be calculated early in the simulation process. A 5th task taking 

advantage of this information to predict ‘date of final leaf’ with uncertainty 

estimates is therefore of value: 

5. Predict date of final leaf in real time early in the simulation process and 

compare to simulated date of final leaf late in the simulation process. 

Step one was carried out in Chapter Nine.  The remainder will be implemented 

next. 

 Step 2: Generate the Mixture Distribution 

One way to proceed is to update the covariance between flnt and lnt to reflect 

their convergence as time progresses and use this covariance to allow flnt’s prior 

distribution to become more closely aligned to that of  lnt as the model proceeds 

through time. Throughout it is made up of the product of two distributions, but 

the relative weight, or contribution, of each distribution will change with the 

increasing covariance. That is, the relative contribution of the lnt prior increases 

as t increases because it will be getting closer and closer to the true final leaf 

number. As time progresses it is useful to calculate an updating distribution to 

reflect the increasing unification of the two state variables. A straightforward 

way to achieve this is to utilise an equally-spaced approach to quantify the 
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increasing covariance between flnt and lnt. All that remains, therefore, is to 

specify the times t on which to begin mixing (this shall be specified as day α), and 

when to end mixing (this shall be specified as day α + τ) and set P(flnt) = P(lnt). 

Inspection of Figure 36 in the previous Chapter will help guide this. 

In the model, the starting value for fln at time t = 1 is set at some number, in this 

case lmin. The red line in Figure 36a in Chapter Nine shows that this value 

quickly updates to reach a constant value (in the model this is driven by the flnt 

state equation, calculating the target fln the plant will set), which ln then also 

eventually reaches. It seems unhelpful to begin mixing distributions before flnt 

has been set. Therefore, day α is calculated as shown in algorithm 1, by searching 

for a point where estimated fln on consecutive days remains approximately 

constant. Here this is defined as variation of less than one twentieth of a leaf. 
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 For day α where α = day 3, 4,…,n 

Step 1: Calculate the average value of the first three simulated values for fln i.e. 

1 2 3
1

fln + fln + fln
fln =

3
. 

Step 2: Calculate the average value of the 2nd- 4th simulated values for fln i.e. 

2
2 3 4fln + fln + fln

fln =
3

 

Step 3: Calculate the difference 

 1 2 1 4

1

3
diffln fln fln fln l= f n    

Step 4: If the differences is > 0.05 leaves1, then continue steps 1 – 3 for
3 4, ,...,fln fln fln    

etcetera until the difference is ≤ 0.05 leaves, and the fln is within half a leaf of flntarget. 

Here the t = α denotes the day on which our current simulation is up to. The parameter α 

is then held constant, and denotes the day on which extra information is used to improve 

estimation of the final leaf number state equation: 

Algorithm 1: Algorithm to find day = α. 

Next, to calculate when to stop, e.g. when t = α + τ. Step 1 in Algorithm 2 next 

makes the simplifying assumption that the rate of leaf development remains 

consistent. The estimated value of α + τ is then a predicted estimator of day of flag, 

the day on which the posterior distribution for fln becomes equal to that of ln. 

Using this number, for example if α = 10 and α + τ  = 20, then on day 10 

equilibirium in fln has been reached, and ln will reach this value in 10 days.  

Using an equally spaced approached, then on day 10 100% of the mixture 

                                                 

1 e.g. if the estimated fln is relatively stationary 
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posterior is provided by the fln posterior.  On day 11, 90% of the mixture 

posterior is provided by the fln posterior, and 10% by the ln posterior and so on.  

This is shown in Algorithm 2. Once α and τ have been calculated, the relative 

contribution of each distribution on each day is easily obtained as shown in 

Algorithm 2. 

On day t = α 

Step 1: Calculate the approximate number of days remaining (given a reasonable2 

average thermal time) to reach the leaf number indicated by the value of flnα+3 = flnt: 

   

       

days

2 - - 2number of leaves remaining
Time = τ = = +1

rate of development

 0.75

2 - 0.75 - 2
= + 1

TT

t t

t t

t t

ln fln

TT TT

phyllochron phyllochron

ln phyllochron fln phyllochron

TT

 
 
 
    
    

    


t t

 

Step 2: Calculate ν1 =
1




 , ν2 = 

2




,…, ντ = 

3




. Define �̅� = 1 -  ν 

Step 3: Weight the proportion of value toward the posterior for flnt, flnt+1,…,flnt+Timedays 

and lnt , lnt+1,…,lnt+τ as follows: 

Day α:
1 1( ) ( ) ( )tP revisedfln P fln P ln  

t t
  

Day α + 1: 
1( )t 2 2P revisedfln υ P(fln )+υ P(ln ) 

t+1 t+1
 

Day α + 2: 
2( )t 3 3P revisedfln P(fln )+υ P(ln ) 

t+2 t+2
 

Day α + τ: ( )t 3 3P revisedfln υ P(fln )+υ P(ln ) 
t+τ t+τ

 

                                                 

2 Since the data used here comes from a controlled climate trial this is easy to ascertain in this 

example. 
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At this stage the posterior distribution lnt will be substituted for that of flnt until the 

simulation is complete.  

Step 5: calculate the revised estimate for the variance of flnt using the method of moments 

estimator derived above, based on estimated weights ν and �̅�. 

Algorithm 2: Calculation of α + τ and generation of the mixture distribution. 

Here, α + τ is an estimate of the day of flag leaf; ν and its complement are the 

relative proportions of the distributions of lnt and flnt respectively; and TT and 

phyllochront have been defined in Chapter Five. 

 Step 3: Estimation From the Mixture Distribution 

Analytical derivation of the pdf of the product of two random variables is rarely 

possible. In a few cases can this be done explicitly.  For example, the only product 

of two lognormal variates would also be lognormal. One solution in general is to 

compute an approximation, and one way to achieve this could be the method of 

moments (MoM). Under fairly general conditions the method of moments allows 

one to find estimators that are asymptotically normal, have mathematical 

expectation that differs from the true value of the parameter only by a quantity of 

order 1/n, and standard deviation that deviates by a quantity of order 1/sqrt(n). 

The estimators found by the MoM are not necessarily the best possible from the 

point of view that  their variance is minimal. Using the mixing algorithm above, 

the moments can be estimated for the proposed mixture with the appropriate 

weights ν and �̅�. Assuming the Central Limit Theorem this can be reduced to 

fitting a mixture of two Gaussians. However, one problem with this approach is 

that the mixture distribution is unlikely to be Gaussian, particularly early in the 

simulation process. This is partially because the two distributions are far from 

being homogeneous, and also that the Gaussian assumption is unlikely to be 

appropriate since the densities for lnt and flnt appear to be quite different (Figure 
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36b). For this reason, a simple (although slightly more work is required for 

coding) alternative approach as is discussed next is preferred. 

An alternative approach could be to sort and take the appropriate intervals 

directly from this density function at the desired day t. Note that this approach 

also has weaknesses in the assumptions made in development, i.e., the normal 

distribution N(lnt, flnvart) that is used in the calculation of the mixture 

distribution is still not particularly close to reality. However, it does perform 

better than the MoM approach (results not shown) and is therefore preferred. The 

“approximation distribution” approach as shown next in Algorithm 3 (code 

shown in Appendix A4 will be adopted for this analysis of final leaf number 

simulation. 

On day t < α 

Step 1: Set mixture distribution equal to the posterior distribution of flnt 

 

On day α ≥ t < τ + α 

Step 1: Calculate mixture proportions ν and �̅� as calculated by the mixing algorithm 

above. 

Step 2: Save simulated values i of the node of flnt,, where i = 1,2,…,10000 

Step 3: Calculate mean and variance of the posterior distributions of lnt , flnt 

Step 4: Generate 10000 random samples from a N(flnt , lnvart) distribution 

Step 5: Mix the new distribution with that of flnt at the rates set by ν and �̅� by taking the 

first v and �̅� percent of values of the two distributions. 

Step 6: Sort resultant variable and calculate desired credible intervals 

 

On day t ≥ τ + α 
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Step 1: Set mixture distribution equal to the posterior distribution of lnt 

Algorithm 3: Approximation algorithm. 

 Step 4: Prior Distributions for flnt  

This Section describes some options to update the recursive prior to reflect the 

information available. 

Gamma(flnt-1,1) 

The first piece of information in the list above is the original Bayesian hierarchical 

model. An obvious first step is to assess the density of flnt through the inherent 

mixing of distributions that  results from fitting the model. Since this variable 

starts relatively high and adjusts to no higher than lmax and no lower than lmin, 

the Gamma distribution seems like a natural first option for the prior 

distribution. Here E[ ]X



 , and 2

Var[ ]X



 . The parameters are set as α = flnt- 1 

and β = 1. This prior is implemented (model t) in the previous Chapter. 

Poisson(flnt-1) 

However, flnt is a count variable (even though it is not discrete in the model 

outputs) so a Poisson distribution may be appropriate. Here, of course E[X] = 

Var[X] =  λ  =  flnt- 1. This prior is implemented (models a - r) in the previous 

Chapter. 

Normal (flnt-1, 1) 

Setting the prior to be Normal may be useful. Here 
1E[ ] tX fln   , and Var[X]  =  

σ2 = 1. This prior is implemented (model s) in the previous Chapter. 



185 

 

Vague Normal (flnt-1, 100) 

The previous three distributions are quite informative prior distributions. Setting 

the prior to be Normal with a very wide variance may allow more information 

from the likelihood to impact on the precision estimates of flnt. Here 

1E[ ] tX fln   , and Var[X]  =  σ2 = 100. (In WinBUGS the precision is used for 

the Normal distribution rather than the variance in the code, and is set to 1/ σ2). 

Fully recursive Normal (flnt- 1, flnvart- 1) distribution 

Both of the two previous prior distributions did not include an independent 

variance parameter. Here
1E[ ] tX fln   , and 2

1Var[ ] tX flnvar   . As above, 

the precision is used rather than the variance in the code, and is set to 1/ σ2. 

Uniform (6, 18)   

If there is little prior information concerning variety or sowing date then it may 

be appropriate to set lmax at a conservative and high value. Then, when the 

mixing algorithm is applied to estimate improved credible intervals, there is the 

additional advantage of truncating the posterior for flnt at a value that is 

biologically reasonable. This is in contrast with estimates for the previous 4 prior 

distributions which had credible ranges far below the biologically possible lower 

limit of 6 leaves. It is important to remember that here the posterior for flnt-1 no 

longer enters the model on day t so this aspect of the model is no longer directly 

recursive.  

Uniform (6, 8)   

If prior knowledge concerning sowing date and/or photoperiod genetics and 

vernalisation genetics is available, it may be reasonable to set the uniform prior 

with more narrow limits. 
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 Step 5:  Calculate Day of Final Leaf Early and Late in the Simulation 

If being used in real time, a major biological goal of interest for SIRIUS is to 

estimate the date of final leaf (with uncertainty estimated) as soon as possible. 

Whilst the date of expected final leaf (α+ τ) is not a node that can be taken 

directly from the Bayesian fitting method, it is possible to estimate a density post-

hoc based on the information that is available. There are two dates on which 

these credible intervals may be of particular note. First, the predicted day of flag 

as soon as it has reached equilibrium. And second the simulated day of flag. 

These are calculated as per the following Algorithm 4 (code shown in Appendix 

A4): 

  



187 

 

Predicted density for day of flag leaf at time t = α 

Step 1: Save simulated values for the node flnt 

Step 2: Calculate estimated time τ remaining until flag leaf as in mixing algorithm above, 

however rather than using the mean of node flnt, calculate τ for each simulated value: 

      
  it tt t

i

fln - 2 phyllochron2 - ln 0.75 phyllochron
τ = + 

TT TT


 

Where i = 1,2,…,10000 

Step 3: Sort resultant variable τ and calculate desired credible intervals 

 

Smoothed density for day of flag leaf at time t = α+τ 

Step 1: Save simulated values for the node lnt 

Step 2: Calculate estimated time τ remaining until flag leaf as in mixing algorithm above, 

however rather than using the mean of node flnt, calculate τ for each simulated value: 

      22 0.75
    it tt t

i

ln phyllochronln phyllochron

TT TT


 
    

Where i = 1,2,…,10000 

Step 3: Sort resultant variable τ and calculate desired credible intervals 

Algorithm 4: Algorithm to calculate τ. 

10.2.3 Results and Discussion 

Overall, it appears that the approach described above does work to improve the 

posterior pdf of flnt. For example, Figure 37 displays the evolution of the mixture 

distribution for flnt. It shows how the estimated distribution begins with a rather 

wide range which becomes more peaked and narrow as the distribution becomes 

closer to that of lnt. This mixture distribution example is based on the model 
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fitted with the Gamma (flnt - 1, 1) prior for fln. It seems likely that the spikes in the 

pdf arise due to the discrete nature of the prior distribution. 
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Figure 37: Shape of Mixture density for flnt where t =1,3,…31. Frames ordered 

row 1, 1-4 from left to right, row 2, 5-8 from left to right and so on. Model with 

Gamma (flnt - 1,1) prior for flnt. 

A close look at time t = 18 (the day on which approximately 50% of the density is 

obtained from each of the two contributed densities) highlights the relationship 

between fln18 and ln18. 
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Figure 38 shows 1000 realisations of the Bayesian Hierarchical Model for fln18 and 

ln18 on the x and y axes, respectively. We can see that the distribution for fln18 is 

wider and more diffuse than that of ln18.  
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Final Leaf Number 

Figure 38: Contour density plot of the model realisations for fln and ln on day 

18. x-axis = fln18 and y-axis = ln18. 

All results in Tables 20 - 24 in Section 10.2.2.3 are given for each of the 7 

distributions proposed above.  
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Figure 39: Estimated credible intervals for flnt and lnt based on several different 

prior distribution for flnt for models i. without and ii. with incorporation of the 

mixing algorithm. Solid black line indicates the posterior estimate for flnt-1, 

with light grey polygon indicating its credible intervals after mixture. In iii. 

the solid black line indicates posterior estimate for lnt - 1, with light grey 

polygon indicating its credible intervals. 
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Table 20 shows the estimates of α (day of equilibrium) and τ (days remaining 

from equilibrium until Flag Leaf as calculated via Algorithm 1). This table shows 

that the values of  α and τ are quite varied for the different distributions. This is 

because the rate at which different distributions approach equilibrium is not 

consistent (Figure 40i for each distribution). The posterior estimate for α, the day 

on which flnt-1 reaches an equilibrium, is around day t  = 11 - 15 for each 

distribution excepting the winter uniform prior(6, 18). 

Table 20: alpha and tau estimates (calculated via Algorithms 1 and 2). 

 

Tables 21 and 22 show the credible intervals for the posterior density of flnt at 

two time points (t = 13 and 35, respectively). The credible intervals are shown for 

each of the prior distributions described using the both original fln posterior and 

the mixture distribution posterior. These are calculated via Algorithm 3. 

Figure 39ii for each distribution indicates an appreciable improvement in 

estimates for fln by the end of the simulation is afforded by inclusion of the 

mixing approach outlined above. Credible bounds for the estimated day of flag 

leaf were reduced by 23% on day 13 and by 68% on day 35 for the Normal (flnt-

1,100) prior distributions on fln at day 35. Credible bounds for fln35 were reduced 

Day of Equilibrium Days remaining to Flag 

α τ

Gamma (fln k-1 ,1) 11.0 13.8

Poisson (fln k-1 ) 14.0 17.8

Normal (fln k-1 ,100) 13.0 18.0

Normal (fln k-1 ,1) 12.0 17.9

Normal (fln k-1 , flnvar k-1 ) 14.0 17.7

Uniform (6,18) 7.0 19.3

Uniform (6,8) 15.0 16.8

Prior
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by 53% and 74% for the Gamma (flnt-1,1) and Poisson (flnt-1) prior distributions 

respectively on flnt at day 35 when using the mixture distribution approach. 

Interestingly the credible bounds for these two distributions were wider for the 

mixture distribution on day 13. The credible intervals for Normal (flnt-1,1), 

Normal (flnt-1, flnvart-1), Uniform (6,18), and Uniform (6,8) prior distributions were 

not strongly affected on day 13, but were reduced on day 35. It is interesting to 

note the inappropriateness of the winter prior Uniform (6,18) for flnt where the 

state model estimate and the data are so divergent that the credible intervals do 

not even overlap the estimate after mixture. 
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Table 21: fln statistics on day 13 of the simulation (calculated via Algorithm 3). 

   

Lower Upper

Gamma (fln k-1 ,1) No mixture 6.3 12.1 5.8

Gamma (fln k-1 ,1) mixture distribution 3.0 10.7 7.7

Poisson (fln k-1 ) No mixture 2.0 6.2 4.2

Poisson (fln k-1 ) mixture distribution 2.8 11.0 8.2

Normal (fln k-1 ,100) No mixture -7.6 21.6 29.2

Normal (fln k-1 ,100) mixture distribution -3.7 8.6 12.3

Normal (fln k-1 ,1) No mixture 2.0 10.8 8.8

Normal (fln k-1 ,1) mixture distribution 3.0 9.7 6.7

Normal (fln k-1 , flnvar k-1 ) No mixture 2.0 11.7 9.7

Normal (fln k-1 , flnvar k-1 ) mixture distribution 2.7 10.8 8.1

Uniform (6,18) No mixture 2.0 17.2 15.2

Uniform (6,18) mixture distribution 3.3 15.7 12.4

Uniform (6,8) No mixture 2.0 10.8 8.8

Uniform (6,8) mixture distribution 3.0 9.9 6.9

Prior Method
Predictive 

Range
Predicted Credible Intervals for 

fln 13
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Table 22: fln statistics on day 35 of the simulation (calculated via Algorithm 3). 

 

Table 23 shows the predicted and smoothed predicted day of flag as calculated 

from the density via Algorithm 4. Figure 40 shows the density for τ based on 

several prior distributions for flnt  for (left) predicted at day = τ + α and (right) 

smoothed at day = 35. The estimated value of τ is an important parameter since 

the value of τ + a is an early estimate of the day of Flag leaf. The estimate of the 

date of final leaf according to the data is 36.13 (34.04, 38.21)3 based on 8 

observations. However, the predicted day of final leaf (on t = 13) is lower than 

this. However, the credible intervals at this time are fairly wide for all prior 

distributions. The smoothed estimate is closer to the data, with credible intervals 

that overlap the data range (if not the data itself). This reflects the findings in the 

previous Chapter which indicates that the filtered estimates are of lnt at the end 

                                                 

3 95% Confidence Interval 

Lower Upper

Gamma (fln k-1 ,1) No mixture 6.7 12.9 6.3

Gamma (fln k-1 ,1) mixture distribution 4.9 7.8 2.9

Poisson (fln k-1 ) No mixture 2.0 12.9 10.9

Poisson (fln k-1 ) mixture distribution 5.1 7.8 2.8

Normal (fln k-1 ,100) No mixture -10.9 24.7 35.6

Normal (fln k-1 ,100) mixture distribution 5.1 7.9 2.8

Normal (fln k-1 ,1) No mixture 2.0 10.4 8.4

Normal (fln k-1 ,1) mixture distribution 5.1 7.9 2.7

Normal (fln k-1 , flnvar k-1 ) No mixture 1.0 12.9 11.9

Normal (fln k-1 , flnvar k-1 ) mixture distribution 5.1 7.9 2.8

Uniform (6,18) No mixture 2.0 17.5 15.5

Uniform (6,18) mixture distribution 5.1 7.9 2.8

Uniform (6,8) No mixture 2.0 10.4 8.4

Uniform (6,8) mixture distribution 5.1 7.9 2.8

Prior Method
Smoothed Credible Intervals for fln 35

Smoothed 

Range
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are slightly lower than the mean of the data for this data set. The densities for τ 

shown in Figure 41i show the higher uncertainty before the seven pieces of extra 

information are included updating, smoothing, and narrowing the density in 

Figure 40ii. 

Table 23: Credible intervals for predicted and smoothed Day of Flag 

(calculated via Algorithm 4).  

 

  

Lower Upper Lower Upper

Gamma (fln t-1 ,1) 26.8 11.8 42.9 28.9 23.9 34.3

Poisson (fln t-1 ) 26.4 10.4 43.6 28.9 23.7 34.2

Normal (fln t-1 ,100) 25.6 -1.3 57.9 29.0 23.9 34.4

Normal (fln t-1 ,1) 24.6 11.9 35.2 29.0 23.8 34.4

Normal (fln t-1 , flnvar t-1 ) 26.3 10.4 42.1 29.0 23.8 34.4

Uniform (6,18) 26.3 12.7 44.6 29.0 23.9 34.3

Uniform (6,8) 24.3 11.6 34.5 29.0 23.7 34.4

Predicted 

Day of Flag

Smoothed 

Day of Flag

Predicted Credible Intervals of 

Day of Flag

(at t = alpha)

Smoothed Credible Intervals 

of Day of Flag

(at t = alpha + tau)
Prior
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Figure 40: Density for τ based on several prior distributions for flnt  for (left) 

predicted at day = alpha and (right) smoothed at day = t = 35. 
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Overall, the Gamma, Poisson, and fully recursive Normal distributions are 

probably more reliable prior choices as they allow both direct inclusion of 

information from flnt-1, in the state model filtered estimation process, and are 

biologically sensible choices Figure 39 (i and ii) (a, b, and e). The issue seen in 

Figure 39 i (f) with the Uniform (6, 18) prior distribution would be unable to 

occur with a recursive prior. Further, the estimates for lnt are not negatively 

impacted by switching between these three prior distributions Figure 39iii (a, b, 

and e). The uninformative Normal and winter uniform distributions are poor 

choices leading to extremely wide credible intervals for flnt Figure 39 i (c and f). 

Similar conclusions apply to the ability of the model to predict date of final leaf, 

Figure 40 and 21. 

10.3 Sensitivity Analysis of Latent State Equations 

10.3.1 Method 

This Section is based on the work of Strong et al. (2012). Here we aim to allow a 

probabilistic sensitivity analysis of the state equations of the model. Structural 

uncertainty is defined as uncertainty in the outputs of the model ( )f   due to 

inaccurate or incomplete specification of the real world process in the state-

equations and their interactions. Within the model framework already specified it 

is possible to explore the relative impact of allowing variation in structural 

equations tZ . This is simply achieved through specification of a vague pdf for 

one or more of tZ . For example, in the model code the highlighted code could be 

replaced by in Figure 41 below: 
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'model',\ 

'{',\ 

'for(i in 1:8){',\ 

'LN.k[i] ~ dpois(mu.ln.k)',\ 

'}',\ 

 '      ',\  

'log(mu.ln.k) <-log(ln.k)',\ 

 '      ',\  

    'a[1]  <- step((2 - (ln.kkmin1)))' ,\                                         

    'a[2]  <- step((8 - (ln.kkmin1))) - step((2 - (ln.kkmin1)))',\            

    'a[3]  <- min((1 - (a[1])),(1 - (a[2])))',\                        

    'phylln.k <- (a[1]*0.75*bp + a[2]*bp + a[3]*1.3*bp)',\ 

    'phylln.kk <- (a[1]*0.75*bp + a[2]*bp + a[3]*1.3*bp)',\ 

    'phylln.k ~ dnorm (phylln.kk,0.001) 

'      ',\ 

    'd[1]  <- step(((TT.k/phylln.kmin1) + ln.kkmin1) - fln.kmin1)',\ 

    'd[2]  <- 1 - d[1]',\ 

    'ln.k  <- d[1] * fln.kkmin1 + d[2] * ((TT.k/phylln.k) + ln.kmin1)',\ 

 '      ',\ 

    'primn.k <- pn *ln.k + pe',\ 

'      ',\ 

    'b[1]  <- step ((PP.k - ppsat))'  

,\             

    'b[2]  <- 1 - b[1]',\                                                                

    'flnt.k <- lmin',\       

'      ',\ 

    'c[1]  <- step ((primn.k - (flnt.k + pe)))',\                             

    'c[2]  <- 1 - c[1]',\                                                                 

    'e[1]  <- step((primn.k - flnt.k))',\ 

    'e[2]  <- 1 - e[1]',\ 

    'fln.k <- c[2] * (e[1] * flnt.k + e[2] * primn.k) + c[1] * (fln.kkmin1)',\ 

 '      ',\ 

'bp  ~dnorm (110,1)',\ 

'pe  ~dpois (4)' ,\ 

'pn  ~dpois (2)' ,\ 

'ppsat  ~dnorm (15.9 ,0.01)',\ 

'lmin  ~dgamma (7,1)',\ 

'ps  ~dnorm (0.625,0.01)',\ 

'      ',\ 

'ln.kmin1 ~ dpois(alpha.ln.kmin1)',\ 

'ln.kkmin1 <- alpha.ln.kmin1',\ 

'fln.kkmin1 ~ dgamma(fln.kmin1,1)',\ 

'}') 

Figure 41: Jittering model code. 
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10.3.2 Results 

The impact of allowing the ‘jittering’ of the ‘sub-functions’ (as they are called by 

Strong et al. (2012)) can then be assessed as shown in Table 24 below. In this table 

there are 4 models: Model 1 is the baseline, model 2 is the baseline with 

additional variation for the primordiat state equation, model 3 is the baseline with 

additional variation for the phyllochront state equation, and model 4 is the baseline 

with additional variation for the flntt state equation. Table 24 provides the 

estimate and 95% credible intervals for each state equation node arising from 

model t as described in Table 18 & Table 19 in Chapter Nine. Five UE outcomes 

are presented next: 

1. For the flnt45 node, the credible intervals for models 2 and 4 are much 

wider than that of the baseline. The mean estimate for model 4 is ~30% 

greater than that of the baseline. It appears that jittering the phyllochron 

base equation does not strongly affect the fln45 node (e.g. fln45 is not 

sensitive to changes in flnt45, but it is sensitive to changes in primordia and 

flnt45, 

2. flnt45 is only sensitive to changes in the state equation flnt45, 

3. ln45 is not sensitive to changes in any of the state equations. This may be 

due to the presence of data to pull predictions into line, 

4. phyllochron45 is only sensitive to changes in the state equation phyllochron, 

5. Primordia45 is only sensitive to changes in the state equation primordia. 
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Table 24: Results of jittering analysis. 

 

10.4 Summary 

The heterogeneity of densities for lnt and flnt for the MoM approach would be 

expected to result in wider credible intervals early in simulation. For this reason, 

this methodology was rejected in favour of the approach that, directly sampled 

from an approximate mixture distribution of ln13 to ln35. This approach depends 

on sampling from the simulated data to follow a prior mixture distribution and 

so depends on the normal distribution N(lnt, flnvart) that is used in the calculation 

of the mixture distribution mixture distribution being appropriate. However, this 

Model Zt jittered Yt   mean 2.50% 97.50%

1 model t fln t 6.83 2.00 12.96

2 primordia t fln t 5.39 -8.58 12.82

3 phyllochron t fln t 6.76 2.00 12.83

4 flnt t fln t 10.14 2.00 20.28

1 model t flnt t 6.99 2.82 13.07

2 primordia t flnt t 6.98 2.80 13.02

3 phyllochron t flnt t 7.03 2.82 13.09

4 flnt t flnt t 7.11 -13.08 27.76

1 model t ln t 6.58 5.02 8.35

2 primordia t ln t 6.58 5.01 8.36

3 phyllochron t ln t 6.58 5.02 8.34

4 flnt t ln t 6.59 4.98 8.36

1 model t phyllochron t 110 108.00 112.00

2 primordia t phyllochron t 110 108.00 112.00

3 phyllochron t phyllochron t 110 103.50 116.80

4 flnt t phyllochron t 110 108.00 111.90

1 lnt+flnt primordia t 17.29 2.00 39.84

2 primordia t primordia t 17.32 -8.58 46.18

3 phyllochron t primordia t 17.22 2.00 39.79

4 flnt t primordia t 17.21 2.00 39.53
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approach allowed greater precision of predicted day of flag at an earlier date for 

some prior distributions, and at the day of flag for most prior distributions for fln. 

These results indicate that selecting the Gamma, Poisson, and fully recursive 

Normal distributions as prior distribution for fln are probably more reliable prior 

choices as they allow direct inclusion moments from flnt-1, in the state model 

filtered estimation process. The credible intervals in the case without mixture do 

fall below the current estimator of lnt which is not biologically sensible, and this 

is a problem with the original model given in the previous Chapter. The Uniform 

distributions are naturally able to avoid this issue with careful selection of 

parameters; however they do not allow the same flexibility in recursively fitting 

todays prior as yesterdays’ posterior. The approximate mixture distribution 

solutions both solve this problem, whilst also providing sensible estimates for τ. 

Finally, probabilistic sensitivity analysis of the state equations indicated that 

although ln45 is not sensitive to jittering in any of the other state equations, fln45 is 

sensitive to changes in primordia45 and flnt45. 

This Chapter has provided predicted and smoothed estimates for day of flag, an 

important biological indicator for wheat development computer simulation 

models. It has also explored the sensitivity of estimates to structural uncertainty. 

Combined with the benefits described in the summary of the previous chapter, 

the solutions put forward in this Chapter provides insight for model UE; whether 

it is calibration, sensitivity analysis or prediction. The illustration of the UE 

framework and UE techniques discussed in Section III highlight the value and 

flexibility of both the framework and the Bayesian data assimilation approach to 

quantifying multiple sources of uncertainty. These outcomes should provide a 

valuable contribution to the crop modelling community, particularly in New 

Zealand. 
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Section IV - Conclusions 
Section IV Conclusion 

Chapter Eleven: Conclusions 
11. Conclusion 

11.1 Introduction 

Deterministic, dynamic farm systems models built in computer code have played 

an important role in agronomic and agricultural research for over four decades. 

They are built via a process of hypothesising mechanisms for observed responses 

in the real world, empirically testing the hypotheses, and combining them to 

construct computer simulation models. This process results in a valuable research 

tool that provides insight into how a system responds and how individual 

mechanisms interact (Jamieson and Ewert 1999). Such models have value in 

many situations, particularly where access to observational data may be difficult 

or impossible to obtain. They can be used to simulate an experiment prior to 

carrying it out, or to make scientific judgements about phenomena that cannot 

currently be studied experimentally (Trucano et al. 2006). Farm management, 

environmental policy, development and research into climate change are three 

domains where such information can save money and other resources, or 

provide insight that would be otherwise impossible to obtain (Rosenzweig et al. 

2013; Teixeira et al. 2015). 

However, the complex combination of multiple mechanisms with simulations 

can make it difficult to evaluate the many potential sources of uncertainty in 

simulated output data (Rotter et al. 2011). The use of complex computer 

simulation models is ubiquitous in almost all domains of scientific discovery, so 

unsurprisingly managing uncertainty in complex models is also very topical. 

However, the large number of methodological options for model uncertainty 
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evaluation (UE) can make it difficult to select the appropriate technique when 

undertaking an analysis. 

The objective of this research project is therefore to explore the definition, sources, 

quantification, and management of uncertainty as it occurs in bio-physical 

agricultural computer simulation models. One important aim is to provide 

recommendations from a formalised statistical viewpoint on management of 

uncertainty for a relatively small pool crop modelling community in New 

Zealand who work with farm systems models that describe temperate, island-

based environmental conditions. An equally important goal is to identify and 

implement ways in which to provide computer simulation predictions complete 

with uncertainty bounds. Whilst sensitivity analysis is usually the most obvious 

pathway to achieve this, I ideally wanted to quantify the aleatory source of 

uncertainty, ε. Further, although multi-model ensemble techniques to assess 

uncertainty (particularly structural uncertainty) have been of particular interest 

to agricultural model researchers in continental regions with a large pool of 

researchers such as Europe, in New Zealand this approach may be less practical.    

My focus therefore was to improve understanding of uncertainty in a single 

model.  This also facilitates learning about the ability of the model to simulate the 

system under study. 

This concluding Chapter will describe what has been done to achieve objectives 

and tie-together results from each aspect of my work. It will address how this 

work has added value, limitations, and future directions in modelling UE.  

11.2 What Was Done 

The first aspect of achieving my objective is to cohesively describe and assess 

information around model uncertainty that is already in the public domain. As 

stated above, this is a very topical research subject in many areas of scientific 



209 

 

discovery, including agriculture (Boote et al. 1996; Sinclair and Seligman 2000; 

Jamieson et al. 2007; Cooper et al. 2009; Hochman et al. 2009; Bezlepkina et al. 

2010; Teixeira et al. 2011; Teixeira et al. 2013; Holzworth et al. 2014). However, 

not all fields of research face the same problems in terms of principal types and 

sources of uncertainty. For this reason, it is unlikely that all techniques will have 

equal value for all applications. The decision as to which techniques are of 

greatest value is therefore dependent on all the other information that is available. 

As such, there is a need for a clear UE framework that formally promotes careful 

and systematic curating of information, diagnosis of important sources of 

uncertainty, and identification of UE objectives. I have built upon similar themes 

in the literature (Refsgaard et al. 2007; Uusitalo et al. 2015) to create such a 

framework, set in a formal state-space structure (Gordon et al. 1993; Cressie and 

Wikle 2011). The state-space structure is of value because it provides a pathway 

for a clear, objective allocation of each source of uncertainty in a time-step model 

early in the analysis process. The UE framework links qualitative and 

quantitative analysis through a review of classical and modern techniques for 

generating and analysing data from computer simulation models, with the 

appropriate techniques identified on the basis of available information, primary 

sources of information, and the objective of the analysis. Examples include 

sensitivity analysis (Saltelli et al. 2000), data assimilation (Kalnay 2003), or multi-

model ensembles (Wallach et al. 2014). It is important to note that this UE 

framework should not be seen as a static construct. Details are likely to require 

refinement as the field moves forward. 

Besides being tools for research into novel situations, crop models act as 

constructs upon which researchers continue to develop mechanistic 

understanding of real world systems. An example of this is a recent paper by 

Brown et al. (2012b), who used the crop model APSIM (Holzworth et al. 2014) to 
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characterise the developmental phenotype of different wheat varieties. An 

important aspect of UE is therefore to identify biological processes that are not 

accurately represented in the model. In this thesis, the wheat development model 

SIRIUS was carefully described following He et al. (2012) and used as a case 

study throughout sections II and III. When the SIRIUS model was built, it was 

based upon historical, phenological characterisations (such as used by the model 

AFRCWHEAT (Porter 1993)) of the joint processes of growth and development of 

wheat in response the presence of temperature and daylight. The SIRIUS model 

built upon and fine-tuned these characterisations to create a new paradigm of 

model that is based on physiological mechanisms that well describe observed 

experimental data. Models are still evolving, with recent work beginning to 

additionally incorporate genetic information to help describe differing 

physiological responses under different conditions and for different cultivars 

(Brown et al. 2013)1. One biological process that was identified as not being 

experimentally confirmed during model building of either SIRIUS or the new 

genetic/physiological model is the development of the wheat plant prior to 

emergence and exposure to daylight. SIRIUS has modelled development of the 

plant between sowing and emergence as a constant relationship between organ 

numbers and accumulated thermal time. Given this, we hypothesised that deeper 

sown seeds will take longer to reach the surface, will have greater numbers of 

organs at primordia, and will therefore develop more leaves before becoming 

reproductive. However, results from our experimental work did not support this 

hypothesis. Rather, later exposure to daylight resulted in fewer leaves in spring 

varieties. These outcomes do however fit well into the new genetic/physiological 

model (Brown et al. 2013). An alternative mechanism based on the vernalisation 

                                                 

1 This model has not been implemented in code at this time. 
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genes Vrn1 – Vrn3 (Trevaskis et al. 2007a) was proposed as follows. Vrn1 begins 

to express in low concentrations from the time of imbibition. As such, a later 

emerging crop will have already expressed more Vrn1 at the time of emergence, 

so will not only suppress Vrn2 earlier, but will also prevent Vrn2 from increasing 

the vernalisation target. This expected differential relative expression of Vrn1, 

Vrn2, and Vrn3 based on the time at which Pp is perceived directly relates to 

final leaf number, and hence the time at which the plant becomes reproductive. 

This provides a mechanism to explain why plants that are down at greater depth 

will have a lower final leaf number even though the number of primordia at the 

time of light perception was higher. This work represents a reduction in structural 

uncertainty that can at a future date be incorporated in a computer simulation 

model. 

The final contribution of this dissertation centres on the final stage in the seven-

step UE framework – analysis of simulated data. Specifically, to provide credible 

intervals that incorporate an indication of aleatory uncertainty (as well as input 

parameter and structural uncertainty). A probabilistic Bayesian hierarchical 

model fitted with MCMC  (Gelman et al. 2006) is the best paradigm to date to 

combine data, probability, expert opinion, and a state-space model to achieve this 

objective (Cressie and Wikle 2011). It is a general form of data assimilation that 

recursively updates state predictions based on whatever data is available to 

provide the best estimate possible. It also incorporates expert opinion on input 

parameters as identified in the UE framework, pooling them with observed data 

to provide credible intervals of wheat development through time. This approach 

maximises available information in a cohesive way to provide a unified estimate 

of model output uncertainty. One important biological finding from the Bayesian 

data assimilation model was the conclusion that collecting cultivar intensive data 

to provide accurate input parameter data for the phyllochron (bp) of different 
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wheat cultivars will have a strong impact on the ability of SIRIUS to make 

accurate predictions. This approach also has several beneficial side effects. One is 

that exploring uncertainty related to the scientific understanding (structural 

uncertainty) of one or more of the processes within the deterministic model can 

be easily achieved by incorporating prior distributions. A second side effect of 

particular relevance for SIRIUS relates to the ability to estimate credible bounds 

of latent variables using available prior information. For SIRIUS, accurately 

predicting the final leaf number is of particular interest, however it is impossible 

to observe prior to the date of flag leaf. I was able to estimate and reduce credible 

bounds for the estimated data of final leaf number both early and late in the 

simulation process using additional information. 

11.3 The Pathway 

The combination of considering previous research, historical and sensitivity 

analysis, and data assimilation modelling has resulted in the focus of the project 

around the UE framework.  Holding all the different details, types/sources of 

uncertainty, information, and model components together was extremely 

challenging without some form over-arching framework in which to curate and 

store information. There are many excellent resources that discuss and describe 

the different types of uncertainty (Sacks et al. 1989; Arulampalam et al. 2002; 

Kurowicka and Cooke 2006; Saltelli et al. 2006; O'Hagan 2008; Oberkampf and 

Roy 2010; Montanari 2011; Wallach et al. 2014). Others describe the 

conceptualisation of time-step models in a state-space structure (Gordon et al. 

1993; Spiegelhalter and Best 2002; Cressie and Wikle 2011). Others again put 

forward plans and frameworks for UE (Refsgaard et al. 2006; Refsgaard et al. 

2007; Uusitalo et al. 2015). However, as far as I could ascertain, none combined 

the three aspects to explicitly describe and allocate each type of uncertainty 

within a state-space structure and then curate available information prior to 
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diagnosing principal sources of uncertainty and setting or adjusting analysis 

objectives in the light of actions. This framework, particularly the 

compartmentalisation of types and sources of uncertainty, is an exciting 

outcomes of this project. 

11.4 Key Outcomes - UE Framework 

Planning and design of experiments to allow inference is one of the major tools of 

empirical science (Hacking 1975), and although the analysis of computer 

simulation models is less familiar, many of the same principles apply. The UE 

framework encapsulates how experimental planning can and should be carried 

out for computer simulation models. Use of the UE framework by crop modellers 

commencing upon an uncertainty evaluation of a model will help save time and 

resources, and add confidence in conclusions by ensuring that available 

information is not overlooked, but rather is utilised as well as possible. This will 

ensure that minimal time will be spent back-tracking and re-doing simulations.  

The value added by a thorough UE of a model can have very real implications. 

First, it ensures that all available information is collected, stored, and considered 

holistically. Second, it forces the analyst to identify and consider all possible 

sources of uncertainty. Third, it allows objectives to be framed after all sources of 

uncertainty have been summarised, ensuring clarity in what will be achieved 

prior to expenditure of time and resources. Fourth, it is based on a Design of 

Experiments foundation by which to conceptualise the response surface of the 

model. This should provide justification to end-users that the simulated data is 

representative to the best of the analyst’s knowledge and the model’s capability. 

Fifth, and finally, it provides a reference source of up-to-date analysis techniques, 

offering assurance that there is not some ‘better’ option out there that would be 

more fit-for-purpose. 
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Exploration of deterministic model uncertainty is a relatively new scientific 

activity and is still evolving rapidly. Formalised guidelines describing what UE 

should encapsulate will provide confidence at each stage of the model’s life, from 

building, to assessment; and through to extension for research, management and 

policy applications. 

11.5 Key Outcomes - Bayesian Data Assimilation 

Unlike sensitivity analysis tools, Bayesian data assimilation techniques are not 

commonly used in the agricultural domain, although there are exceptions to this 

rule. Whilst sensitivity analysis is an excellent tool for understanding a model, and 

usually straightforward to implement, the ability to incorporate and pool most 

types and sources of uncertainty that is offered by the Bayesian data assimilation 

approach provides a far more complete summary of uncertainty. As such, it can 

provide unparalleled insight into and confidence in model predictions. At the 

current stage of technology, whenever this approach is practicable, it should be 

considered to be the ‘gold standard’ approach. 

11.6 Further Work and Limitations of the Research 

Results of the data assimilation modelling of SIRIUS indicated that the impact of 

incorrect specification of bp had a relatively large impact on model predictions. 

Experimental work to characterise this input parameter for more wheat cultivars 

is underway as part of a separate project within PFR. 

Future work may include updating a computer simulation model to incorporate 

the genetic/physiological drivers of wheat development described above. Part of 

this could be to incorporate the new hypothesised mechanism for wheat 

development from the time of imbibition, rather than from emergence as is 

currently implemented in SIRIUS. 
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As the primary outcome of this project is the UE framework, 

exploring/confirming the generalisability of this approach is likely to represent 

an important component of my post-doctoral work. 

None of the work in this thesis addresses the impact of spatial 

scaling/aggregation on model output uncertainty; whether via calibration or 

sensitivity analysis. This is an area at which upcoming research projects are 

aimed. 

Although the value of the recursive Bayesian model is great, a clear limitation 

with this approach is that it does require appropriate, time-step data, and may 

become increasingly difficult to implement with increasing model complexity. 

Further, a certain level of specialised knowledge around the elicitation of expert 

opinion and implementation of Bayesian modelling is required. 

11.7 Conclusion 

This dissertation has built on a diverse body of research concerning uncertainty 

in deterministic models from across a wide range of research domains. In the 

context of a single, bio-physical agricultural model, the complex combination of 

information relating to such models has been given a concrete foundation upon 

which to build a robust analysis. The ability to define, compartmentalise, quantify, 

and manage uncertainty sits naturally within this framework. Given the strong 

foundation, the analysis aspect of the framework is itself flexible enough to take 

advantage of available information to holistically resolve research objectives. This 

should provide modellers and end-users with confidence that the analysis of the 

model is fit-for-purpose. Finally, the ability to incorporate many types of 

uncertainty to provide point estimates with pooled credible bounds started out as 

the highest priority for this research project. The Bayesian hierarchical modelling 

paradigm, whilst not without its limitations, is the best technique to date to 
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achieve this goal, and the successful implementation of this model is the 

highlight of this project. 

 

  



217 

 

Appendices 
   

Appendices 

A1: GenStat Code for Photoperiod response analysis as 
described in Chapter Six 

"Tuesday 6 December 2011 

Historical data analysis 

'The flowering time model; parameterisation and uncertainty'" 

 

"'The influence of daylength on final leaf number in spring wheat' 

I.R. Brooking et al, Field Crops Research, 1995" 

 

"This paper describes a new way of considering the daylength response in 

wheat:  that the plant responds to environmental drivers such as 

photoperiod as its leaf and spikelet primordia develop.  It goes on to 

suggest a daily updating procedure that responds to environemtal 

drivers. This procedure was slightly adjusted in the latest version of 

SIRIUS by Pete Jamieson and Mikhail Semenov." 

 

"Data set: 

+ 6 sowdates (2.6; 24.7; 18.9; 25.11; 21.2; 5.5) 

 

+ 11 wheat cultivars with range of vern and pp responses  

  - only 4 were used in paper, Otane, Rongotea, Batten, CRSW6, because  

    they are spring wheat varieties. 

  - this was tested by recording LNfinal for plants grown in the dark  

    for 0,2,4,6 weeks at 6 degrees then transferred to inductive  

    conditions. There was no evidence of a difference in LNfinal;  

    confirming correct specification of vernalisation requirement. 

 

+ randomised split plot design, with SD as main and cult as split 

 

+ at 10-15 day intervals, 5 plants were sampled/pot and Haun stage and # 

prim were counted 

 

+ at final sampling event LNfinal was counted. 

 

+++ hence, two data sets to investigate; developmental data and final 

leaf number data +++ 

 

all data stored in Phen89Ians.xls 

some developmental data information in IRBRONG.xls by Pete. 

 

unfortunately block and plot information is missing for developmental 

data. 

 

need to use field layout data if Ian can find it. would need this to 

properly merge developmental data with FLN data,  

but it is only present for FLN data set, which means that we can only 

get the mean haun stages, prim #'s, etc.  

this is a concern because it defeats the purpose of this historical 

analysis; which is to better understand these uncertainties. 

there are 6 obs for each treat, which would indicate 2 values/plot, but 

this is odd because the paper says they sampled 5 plants 
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per plot, so would expect either 3 or 15 obs/treat....talked to ian, he 

says its a mistake in the paper; there were only 2 sampled during  

course of the trial; and 5 at the FLN count. 

 

To deal with the above problem; and based on the assumption that data is 

recorded in replicate order, main plots and split plots are randomly 

allocated within these.  

This assumes uniformity within reps and main plots - i.e. the fact that 

they are not in the right place witin a rep/main plot  

(but are in the reps and main plots with the right individuals/other 

plots) is ok. 

 

1a and 2a deleted from FLN set; they are subsets for some reason Ian 

doesn't remember. 

" 

 

" 

Analyses/Objectives: 

plot (LNfinal) against (daylength at haun stage 1.5) determines when 

plants responded to daylength to fix  

LNfinal 

 

plot (LNfinal) against (daylength at initiation of final leaf primordium 

(FLP))  

 

plot (LNfinal) against (daylength at 2 haun stages after initiation of 

FLP) 

 

plot (LNfinal) against (daylength at mean daylength between FLP and 

terminal spikelet) 

 

Linear regression of LN final against each of 4 above daylength 

measures. 

" 

 

 

 spload 'Final Leaf Number.gsh' 

\restrict data set to include only relevant cultivars; 1,3,5,11 

 spload 'Final Leaf Number rest.gsh' 

 

 spload 'Developmental.gsh' 

\restrict data set to include only relevant cultivars; 1,3,5,11 

 spload 'Developmental rest.gsh' 

 

\merge the two data sets together 

 spload 'mergedMeanrestDevelopmentandFLN.gsh' 

 

\begin analysis 

\first need to calculate relevant daylength data.  

\remember the 4 required daylengths defined above. 

 

\the next step after dl data is calculated is to graph the hysteresis 

graphs 

\ and then run regresssions to reproduice R2. 

 

"*****************************************calculations to find daylength 

for hysteris graphs*****************************************" 
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"***********************************************calculate inflexion leaf 

# and date - this is when FLP occurs******************************" 

"to calculate daylength at inflexion leaf (this is the leaf where FLP is 

initiated). " 

 

"first need to calculate haun stage information at sowdate, rather than 

starting at the first sampling 

 tabu[class=SplitE]DAS;min=tdaslow "restrict the data to the first 

sampling occasion" 

 calc tdaslow=mvre(tdatelow;0) "not sure what else" 

 fact Days_after_sowing;newl(SplitE;0) "is going on here" 

"  

 

"convert SD into a julian number" 

   calc DoY=ndayinyear(sowdate_var)"converts the date of inflexion to a 

julian number of the year" 

 

 

"calculate inflexion leaf for each SplitE. Inflexion leaf is calculated 

at LN-4(#grain prim)/2(Plastochron/Phyllochron)" 

 tabu[class=SplitE](((Final_Leaf_Number)-4)/2);mean=MFLN 

 vari infl_leaf;newl(SplitE;!(#MFLN)) 

 prin infl_leaf 

 

 

"now need to calculate a date variable which adds DAS to sowdate" 

 

 vari []date;drepresentation='dd/mm/yy' 

    calc date=sowdate_var+DAS 

 

"find largest Haun_stage in list that is smaller than infl_leaf; find 

smallest Haun_stage in list that is larger than infl_leaf. 

also need to find the date at these Haun stages" 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.ge.infl_leaf);max=tlow 

"mvin inserts missing values greater than infl. then table cals max of 

remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.infl_leaf);min=tup 

"same as above, but calcs min of those greater than infl." 

        calc tlow=mvre(tlow;0)"if infl_leaf occurs prior to first 

sampling, then vlow is forced to zero" 

 vari leaflow,leafup;newl(SplitE;!(#tlow),!(#tup)) 

 

"find the date of leaflow and leafup" 

 tabl []dlow;drepresentation='dd/mm/yy' 

 tabl []dup;drepresentation='dd/mm/yy' 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.leaflow);max=dlow "mvin 

inserts missing values gt than leaf low. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.infl_leaf);min=dup 

   vari 

datelow,dateup;newl(SplitE;!(#dlow),!(#dup));drepresentation='dd/mm/yy' 

 calc datelow=mvre(datelow;sowdate_var)"if leaflow was forced to zero, 

the dlow should equal sowdate." 

 

 

"now calculate date of inflexion(date of initiation of final leaf 

primordium (FLP), this is done by using the two sampling dates BEFORE 

and AFTER the estimated date of inflexion as above, 
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and finding the ratio of the difference between Inflexion Leaf and 

leaflow, and leafup and leaflow,this value is multiplied by the # of 

days 

between sampling dates associated between leafup and leaflow. continue 

to calculate julian day in year, and the daylength on the date of 

inflexion" 

 

       vari date_infl;(((infl_leaf-leaflow)/(leafup-leaflow))*(dateup-

datelow))+datelow;drep='dd/mm/yy' 

        calc DAY=ndayinyear(date_infl)"converts the date of inflexion to 

a julian number of the year" 

        daylength [lat=-43]dayn=DAY;daylength=dayl_infl "calculates 

daylength on the day of inflexion" 

 

"now calculate the dates and daylengths for the other haun stages used 

in the paper" 

 

 

\(LNfinal) against (daylength at 1 haun stage after initiation of FLP) 

 

"find largest Haun_stage in list that is smaller than infl_leaf+ 1; find 

smallest Haun_stage in list that is larger than infl_leaf + 1. 

also need to find the date at these Haun stages then find the date of 

leaflow and leafup and then  calculate date of inflexion(date of 

initiation of final leaf primordium (FLP), this is done by using the two 

sampling dates BEFORE and AFTER the estimated date of inflexion as 

above, 

and finding the ratio of the difference between Inflexion Leaf and 

leaflow, and leafup and leaflow,this value is multiplied by the # of 

days 

between sampling dates associated between leafup and leaflow. continue 

to calculate julian day in year, and the daylength on the date of 

inflexion" 

 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.gt.((infl_leaf)+1));max=

tlow "mvin inserts missing values greater than infl. then table cals max 

of remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.((infl_leaf)+1));min=

tup "same as above, but calcs min of those greater than infl." 

        calc tlow=mvre(tlow;0)"if infl_leaf occurs prior to first 

sampling, then vlow is forced to zero" 

 vari leaflow,leafup;newl(SplitE;!(#tlow),!(#tup)) 

 tabl []dlow;drepresentation='dd/mm/yy' 

 tabl []dup;drepresentation='dd/mm/yy' 

 

prin tlow 

 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.leaflow);max=dlow "mvin 

inserts missing values gt than leaf low. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.infl_leaf);min=dup 

   vari 

datelow,dateup;newl(SplitE;!(#dlow),!(#dup));drepresentation='dd/mm/yy' 

 calc datelow=mvre(datelow;sowdate_var)"if leaflow was forced to zero, 

the dlow should equal sowdate." 

 

  vari date_infl_1;((((infl_leaf+1)-leaflow)/(leafup-leaflow))*(dateup-

datelow))+datelow;drep='dd/mm/yy' 
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   calc DAY_1=ndayinyear(date_infl_1)"converts the date of inflexion to 

a julian number of the year" 

   daylength [lat=-43]dayn=DAY_1;daylength=dayl_infl_1 "calculates 

daylength on the day of inflexion" 

 

"(LNfinal) against (daylength at 2 haun stages after initiation of FLP) 

find largest Haun_stage in list that is smaller than infl_leaf+ 2; find 

smallest Haun_stage in list that is larger than infl_leaf + 2. 

also need to find the date at these Haun stages then find the date of 

leaflow and leafup and then  calculate date of inflexion(date of 

initiation of final leaf primordium (FLP), this is done by using the two 

sampling dates BEFORE and AFTER the estimated date of inflexion as 

above, 

and finding the ratio of the difference between Inflexion Leaf and 

leaflow, and leafup and leaflow,this value is multiplied by the # of 

days 

between sampling dates associated between leafup and leaflow. continue 

to calculate julian day in year, and the daylength on the date of 

inflexion" 

 

 

 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.ge.((infl_leaf)+2));max=

tlow "mvin inserts missing values greater than infl. then table cals max 

of remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.((infl_leaf)+2));min=

tup "same as above, but calcs min of those greater than infl." 

   calc tlow=mvre(tlow;0)"if infl_leaf occurs prior to first sampling, 

then vlow is forced to zero" 

 vari leaflow,leafup;newl(SplitE;!(#tlow),!(#tup)) 

 

 

   tabl []dlow;drepresentation='dd/mm/yy' 

 tabl []dup;drepresentation='dd/mm/yy' 

 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.leaflow);max=dlow "mvin 

inserts missing values gt than leaf low. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.((infl_leaf)+2));min=dup 

   vari 

datelow,dateup;newl(SplitE;!(#dlow),!(#dup));drepresentation='dd/mm/yy' 

 calc datelow=mvre(datelow;sowdate_var)"if leaflow was forced to zero, 

the dlow should equal sowdate." 

 

  vari date_infl_2;((((infl_leaf+2)-leaflow)/(leafup-leaflow))*(dateup-

datelow))+datelow;drep='dd/mm/yy' 

   calc DAY_2=ndayinyear(date_infl_2)"converts the date of inflexion to 

a julian number of the year" 

   daylength [lat=-43]dayn=DAY_2;daylength=dayl_infl_2 "calculates 

daylength on the day of inflexion" 

fspr dayl_infl_2 

 

"(LNfinal) against (daylength at 3 haun stages after initiation of FLP) 

find largest Haun_stage in list that is smaller than infl_leaf+ 3; find 

smallest Haun_stage in list that is larger than infl_leaf + 3. 

also need to find the date at these Haun stages then find the date of 

leaflow and leafup and then  calculate date of inflexion(date of 

initiation of final leaf primordium (FLP), this is done by using the two 
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sampling dates BEFORE and AFTER the estimated date of inflexion as 

above, 

and finding the ratio of the difference between Inflexion Leaf and 

leaflow, and leafup and leaflow,this value is multiplied by the # of 

days 

between sampling dates associated between leafup and leaflow. continue 

to calculate julian day in year, and the daylength on the date of 

inflexion" 

 

 

 

 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.ge.((infl_leaf)+3));max=

tlow "mvin inserts missing values greater than infl. then table cals max 

of remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.((infl_leaf)+3));min=

tup "same as above, but calcs min of those greater than infl." 

   calc tlow=mvre(tlow;0)"if infl_leaf occurs prior to first sampling, 

then vlow is forced to zero" 

 vari leaflow,leafup;newl(SplitE;!(#tlow),!(#tup)) 

 tabl []dlow;drepresentation='dd/mm/yy' 

 tabl []dup;drepresentation='dd/mm/yy' 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.leaflow);max=dlow "mvin 

inserts missing values gt than leaf low. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.((infl_leaf)+3));min=dup 

   vari 

datelow,dateup;newl(SplitE;!(#dlow),!(#dup));drepresentation='dd/mm/yy' 

 calc datelow=mvre(datelow;sowdate_var)"if leaflow was forced to zero, 

the dlow should equal sowdate." 

 

  vari date_infl_3;((((infl_leaf+3)-leaflow)/(leafup-leaflow))*(dateup-

datelow))+datelow;drep='dd/mm/yy' 

   calc DAY_3=ndayinyear(date_infl_3)"converts the date of inflexion toa 

julian number of the year" 

   daylength [lat=-403]dayn=DAY_3;daylength=dayl_infl_3 "calculates 

daylength on the day of inflexion" 

 

 

"(LNfinal) against (daylength at 4 haun stages after initiation of FLP) 

find largest Haun_stage in list that is smaller than infl_leaf+ 4; find 

smallest Haun_stage in list that is larger than infl_leaf + 4. 

also need to find the date at these Haun stages then find the date of 

leaflow and leafup and then  calculate date of inflexion(date of 

initiation of final leaf primordium (FLP), this is done by using the two 

sampling dates BEFORE and AFTER the estimated date of inflexion as 

above, 

and finding the ratio of the difference between Inflexion Leaf and 

leaflow, and leafup and leaflow,this value is multiplied by the # of 

days 

between sampling dates associated between leafup and leaflow. continue 

to calculate julian day in year, and the daylength on the date of 

inflexion" 

 

\Figure 1: Relationships between FLN in Otane wheat and daylength at a) 

emergence, b) haun stage 1.5, c) final leaf primordium (FLP), d) FLP+2, 

c) FLP + 3, e) FLP + 
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 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.ge.((infl_leaf)+4));max=

tlow "mvin inserts missing values greater than infl. then table cals max 

of remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.((infl_leaf)+4));min=

tup "mvin inserts mising values less than infl, then calcs min of those 

remaining i.e. those greater than infl." 

   calc tlow=mvre(tlow;0)"if infl_leaf occurs prior to first sampling, 

then vlow is forced to zero" 

 \calc tup=mvre(tup;Final_Leaf_Number)"if infl_leaf + 4 occurs at a 

number that is greater than FLN, then that Haun stage does not occur, 

and hence this calculation is not possible" 

                                       "so where did the value at the 

first sd for crsw6 come from for the graph???" 

   vari leaflow,leafup;newl(SplitE;!(#tlow),!(#tup)) 

 tabl []dlow;drepresentation='dd/mm/yy' 

 tabl []dup;drepresentation='dd/mm/yy' 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.leaflow);max=dlow "mvin 

inserts missing values gt than leaf low. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.(infl_leaf)+4));min=dup 

   vari 

datelow,dateup;newl(SplitE;!(#dlow),!(#dup));drepresentation='dd/mm/yy' 

 calc datelow=mvre(datelow;sowdate_var)"if leaflow was forced to zero, 

the dlow should equal sowdate." 

 

  vari date_infl_4;((((infl_leaf+4)-leaflow)/(leafup-leaflow))*(dateup-

datelow))+datelow;drep='dd/mm/yy' 

   calc DAY_4=ndayinyear(date_infl_4)"converts the date of inflexion to 

a julian number of the year" 

   daylength [lat=-43]dayn=DAY_4;daylength=dayl_infl_4 "calculates 

daylength on the day of inflexion" 

fspre dayl_infl_4 

prin Days_after_sowing,infl_leaf,Haun_stage 

 

"****************************************Haun stage 

1.5*********************************************************************

*********" 

\to calculate Haun 1.5 - this is “visible tips” = (Haun + 1) 

"to do this need to find the two dates surrounding that where haun stage 

was < 1.5 (unless we have the exact dat it was measured) 

and then find the ratio of the difference between 1.5-low/high-low 

multiplied by high date - low date and all added to low date. 

much of this is very similar to the inflexion leaf calculations" 

 

 

"find largest Haun_stage in list that is smaller than Haun 1.5; find 

smallest Haun_stage in list that is larger than Haun 1.5. 

also need to find the date at these Haun stages" 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.ge.(1.5));max=hlow "mvin 

inserts missing values greater than haun 1.5. then table cals max of 

remainding " 

 tabu[class=SplitE]mvin(Haun_stage;Haun_stage.lt.(1.5));min=hup "same 

as above, but calcs min of those greater than haun 1.5." 

   calc hlow=mvre(hlow;0)"if haun 1.5 occurs prior to first sampling, 

then vlow is forced to zero" 

 vari haunlow,haunup;newl(SplitE;!(#hlow),!(#hup)) 
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 tabl []dhlow;drepresentation='dd/mm/yy' 

 tabl []dhup;drepresentation='dd/mm/yy' 

 

 tabu[class=SplitE]mvin(date;Haun_stage.ge.haunlow);max=dhlow "mvin 

inserts missing values gt than leafhaunlow. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;Haun_stage.lt.haunup);min=dhup 

   vari 

datehaunlow,datehaunup;newl(SplitE;!(#dhlow),!(#dhup));drepresentation='

dd/mm/yy' 

 calc datehaunlow=mvre(datehaunlow;sowdate_var)"if leafhaunlow was 

forced to zero, the dlow should equal sowdate." 

 

  vari datehaun1_5;(((1.5-haunlow)/(haunup-haunlow))*(datehaunup-

datehaunlow))+datehaunlow;drep='dd/mm/yy' 

   calc DAY=ndayinyear(datehaun1_5)"converts the date of inflexion to a 

julian number of the year" 

   daylength [lat=-43]dayn=DAY;daylength=dayhaun1_5 "calculates 

daylength on the day of haun 1.5" 

 

 

 

 

'***********************************************************************

**********************************' 

\plot (LNfinal) against (daylength at mean daylength between FLP and 

terminal spikelet) "15.1.2013 this appears to have been redone below the 

graphs!!" 

 

"Pete said that ts is set on the day that the FL primordia is initiated. 

so just need to use the 

same approach as before to find daylength on that day. - no messing 

about with acc tt!" 

spload 'mergedMEANrestDevelopmentalandFLN.gsh' 

 

 

"find largest primordia number in list that is smaller than FLN ; find 

smallest primordia number in list that is larger than FLN. 

also need to find the date at these primordia numbers. no longer need to 

worry about finding the mean between ts and fln, since in 

petes 2007 paper he showed that the fln and ts actually do occur and the 

same time; which means i can just use the daylength when fln 

was initiated; ie when prmorida number = FLN" 

 tabu[class=SplitE]mvin(primordia_number;primordia_number.ge.(Final_Le

af_Number));max=primlow "mvin inserts missing values greater than FLN. 

then table cals max of remainding " 

 tabu[class=SplitE]mvin(primordia_number;primordia_number.lt.(Final_Le

af_Number));min=primup "same as above, but calcs min of those greater 

than FLN." 

   vari primorlow,primorup;newl(SplitE;!(#primlow),!(#primup)) 

 

 tabl []dplow;drepresentation='dd/mm/yy' 

 tabl []dpup;drepresentation='dd/mm/yy' 

 

 tabu[class=SplitE]mvin(date;primordia_number.ge.primorlow);max=dplow 

"mvin inserts missing values gt than leafhaunlow. then table cals max of 

remaining " 

 tabu[class=SplitE]mvin(date;primordia_number.lt.primorup);min=dpup 
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   vari 

dateprimlow,dateprimup;newl(SplitE;!(#dplow),!(#dpup));drepresentation='

dd/mm/yy' 

 

  vari dateprimFLN;(((Final_Leaf_Number-primorlow)/(primorup-

primorlow))*(dateprimup-dateprimlow))+dateprimlow;drep='dd/mm/yy' 

   calc DAY=ndayinyear(dateprimFLN)"converts the date of inflexion to a 

julian number of the year" 

   daylength [lat=-43]dayn=DAY;daylength=dayprimFLN "calculates 

daylength on the day of ts/FLP; which are the same thing" 

 

prin primlow,primup,Genotype 

prin dayprimFLN,Genotype 

 

"output all vars in the section into the original spreadsheet; use this 

from now on. will need to calculate some summarys for some things of 

course." 

 fspre  dayl_infl,dayl_infl_1,dayl_infl_2,dayhaun1_5,dayprimFLN, 

dayl_infl_3,dayl_infl_4 

 

 

 

"Section Two graphing" 

 

'****************************************************************now to 

graph the hysteresis graphs*****************************************' 

\things to graph \not sure these are all right unfortunatley; better do 

sum checkin 

 

\dayl_infl 

\dayl_infl_1 

\dayl_infl_2 

\dayl_infl_3 

\dayl_infl_4 

\dayhaun1_5 

\dayl_emerge 

\dayprimFLN 

 

spload 'mean for hysteresis grpahs summary daylengh vs FLN data.gsh' 

 

poin data; 

!p(dayl_emerge,dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4,dayprimFLN) 

"all" 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2) "Rongotea, Batten and 

Otane" 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4)"CRSW6" 

 

text t; !t('Photoperiod (PP) at Haun stage 1.5', 'PP at Final Leaf 

Primordium (FLP)','PP at FLP + 2','PP at FLP + 4' ) 

prin t 

calc ns=nval(data) 

\getat [id]data[];id[1...ns] 

poin id; !p(#t) 

prin id[] 

getat [att=lab]Genotype;gen 

poin gtitle;!p(#gen[]) 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

pen[Reset=y]1;meth=p 
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for [index=j;ntimes=3] 

 ffram [row=2;col=2;clearwindow=0;xmlower=.1;ymlower=0.08] 

 text scr; 'clear' 

   

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.j 

   prin v,Final_Leaf_Number 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i] 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf Number' 

   if i.eq.1 

    DGRAPH [WINDOW=i;title=gtitle[j];keyw=0;screen=#scr] 

X=v;Y=Final_Leaf_Number 

   else 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   endif 

   text scr; 'keep' 

  endf  

 

 

endf 

 

"do variable at a time so that can add both mean and scatter data, for 

final figures in thesis 30 June 2015" 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

  

 "Otane" 

\code for both sets 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

text t; !t('Photoperiod (PP) at Haun stage 1.5', 'PP at Final Leaf 

Primordium (FLP)','PP at FLP + 2','PP at FLP + 4' ) 

prin t 

calc ns=nval(data) 

\getat [id]data[];id[1...ns] 

poin id; !p(#t) 

prin id[] 

ffram [row=2;col=2;clearwindow=0;xmlower=.1;ymlower=0.08] 

 

\do data first 

spload 'mergedMEANrestDevelopmentalFLN.gsh.gsh'text scr; 'clear' 

 text scr; 'clear' 

pen[Reset=y]1;meth=p;csym='red' 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.1 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i] 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf Number' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

"then means" 

spload 'mean for hysteresis grpahs summary daylengh vs FLN data.gsh' 

text scr; 'keep' 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.1 
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   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i];action='hide' 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf 

Number';action='hide' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

 

 

 "Rongotea" 

\code for both sets 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

text t; !t('Photoperiod (PP) at Haun stage 1.5', 'PP at Final Leaf 

Primordium (FLP)','PP at FLP + 2','PP at FLP + 4' ) 

prin t 

calc ns=nval(data) 

\getat [id]data[];id[1...ns] 

poin id; !p(#t) 

prin id[] 

ffram [row=2;col=2;clearwindow=0;xmlower=.1;ymlower=0.08] 

 

\do data first 

spload 'mergedMEANrestDevelopmentalFLN.gsh.gsh'text scr; 'clear' 

text scr; 'clear' 

pen[Reset=y]1;meth=p;csym='red' 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.2 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i] 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf Number' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

"then means" 

spload 'mean for hysteresis grpahs summary daylengh vs FLN data.gsh' 

text scr; 'keep' 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.2 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i];action='hide' 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf 

Number';action='hide' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

 "Batten" 

\code for both sets 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

text t; !t('Photoperiod (PP) at Haun stage 1.5', 'PP at Final Leaf 

Primordium (FLP)','PP at FLP + 2','PP at FLP + 4' ) 

prin t 

calc ns=nval(data) 
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\getat [id]data[];id[1...ns] 

poin id; !p(#t) 

prin id[] 

ffram [row=2;col=2;clearwindow=0;xmlower=.1;ymlower=0.08] 

 

\do data first 

spload 'mergedMEANrestDevelopmentalFLN.gsh.gsh'text scr; 'clear' 

text scr; 'clear' 

pen[Reset=y]1;meth=p;csym='red' 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.3 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i] 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf Number' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

"then means" 

spload 'mean for hysteresis grpahs summary daylengh vs FLN data.gsh' 

text scr; 'keep' 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.3 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i];action='hide' 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf 

Number';action='hide' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

 

 "CRSW6" 

\code for both sets 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

text t; !t('Photoperiod (PP) at Haun stage 1.5', 'PP at Final Leaf 

Primordium (FLP)','PP at FLP + 2','PP at FLP + 4' ) 

prin t 

calc ns=nval(data) 

\getat [id]data[];id[1...ns] 

poin id; !p(#t) 

prin id[] 

ffram [row=2;col=2;clearwindow=0;xmlower=.1;ymlower=0.08] 

 

\do data first 

spload 'mergedMEANrestDevelopmentalFLN.gsh.gsh'text scr; 'clear' 

text scr; 'clear' 

pen[Reset=y]1;meth=p;csym='red' 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.4 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i] 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf Number' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 
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   text scr; 'keep' 

  endf  

 

"then means" 

spload 'mean for hysteresis grpahs summary daylengh vs FLN data.gsh' 

text scr; 'keep' 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

 

 

  for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.4 

   prin v,Final_Leaf_Number,Genotype 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i];action='hide' 

   YAXIS [RESET=yes]"low=7;up=13; "WINDOW=i; TITLE='Final Leaf 

Number';action='hide' 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   text scr; 'keep' 

  endf  

 

 

'******************************************regressions******************

*****************************************' 

"this is where the statistical thing should come in more; is regression 

the best thing, are the r2 values 

really what they appeared to be, is there another way to compare 

competing models?  " 

 

spload 'summary daylength vs FLN data.gsh' 

 

 

poin data; !p(dayhaun1_5,dayl_infl,dayl_infl_2,dayl_infl_4) 

calc ns=nval(data) 

getat [id]data[];id[1...ns] 

getat [att=lab]Genotype;gen 

poin gtitle;!p(#gen[]) 

 

for [index=j;ntimes=4] 

 ffram [row=3;col=2;clearwindow=0] 

 text scr; 'clear' 

 for [index=i; ntimes=ns]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.j 

   corr [prin=*]series=v,Final_Leaf_Number 

   MODEL Final_Leaf_Number 

   FIT [PRINT=model,summary,est; CONSTANT=estimate; FPROB=yes; 

TPROB=yes]v 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i][1]  

   yAXIS [RESET=yes] WINDOW=3; TITLE='Fitted Model'  

   \RCHECK [RMETHOD=deviance] residual; composite 

   if i.eq.1 

    RGRAPH [window=i;CIPLOT=yes;title=gtitle[j];screen=#scr] 

   else 

    RGRAPH [window=i;CIPLOT=yes;title='';screen=#scr] 

   endif 

  text scr; 'keep' 

 endf  

endf 
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"mean ts prim and fl prim daylength " 

 

'***********************************************************************

**********************************' 

\plot (LNfinal) against (daylength at mean daylength between FLP and 

terminal spikelet) 

 

"*********************************************daylength at emergence 

************************************************************" 

\find daylength at emergence. this is 150 degree days after sowing. use 

palmy temperature data set(namely soil temp not air temp) 

 

spload 'palmy daily temp data.gsh' 

 

\code to calculate cumulative soil temperature from each sowing 

date...we have daily tempertures. 

 calc n=nval(SD) 

 vari [nval=n]st 

 vari [nval=n]cumSTemp 

 for [ntimes=6;index=i] 

  restr st,cumSTemp,Soiltemp;SD.ge.i 

  calc st=cumulate(Soiltemp) 

  calc cumSTemp=(mvin(st;SD.gt.i)) 

  restr cumSTemp 

 endf 

 prin cumSTemp 

  

"since we have every day covered, we know that the plant should have 

emerged dyrubg the smallest day that is larger that 150 on a cumulative  

scale since sowing. . 

find largest tt in list that is smaller than 150; find smallest tt  in 

list that is larger than 150, then calculate Day at 150 dd" 

 tabu[class=SD]mvin(Day;cumSTemp.lt.150);min=demhigh "find min value 

gt 150 dd" 

 

spload 'mergedMEANrestDevelopmentalandFLN.gsh'   

 

           vari DAY_emerge;newl(SD;!(#demhigh))  

           daylength [lat=-43]dayn=DAY_emerge;daylength=day_emerge 

"calculates daylength on the day of haun 1.5" 

           prin day_emerge 

           fact [lev=6;val=day_emerge]d_em 

\this matches the palmy daily temp data set; now need to merge it into 

the larger data set - did this by hand rather than coding 

 

"********************************************work out ts and hence mean 

ts/infl dl*******************************************" 

 

spload 'mergedMEANrestDevelopmentalandFLN.gsh'   

 

getat [att=lab]Genotype;gen 

poin gtitle;!p(#gen[]) 

 

calc prim=primordia_number-Final_Leaf_Number 

for [index=j;ntimes=4] 

  restr 

sowdate_f,Spikelet_Number,primordia_number,RepE,prim,spikelet_primordia;

Genotype.eq.j 
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  TRELLIS [GROUPS=sowdate_f; PENGROUP=RepE; 

FIRSTPICTURE=top;title=gtitle[j];xtitle='Days after 

sowing';ytitle='Spikelet_Number'] \ 

  Y=Spikelet_Number,prim,spikelet_primordia; X=DAS;\ 

  METHOD=Point 

endf 

 

"restrict primordia number to only those that become leaves; this is 

around when the rate of prim developmentincreases.  

this rate can be used to calculate when the terminal spikelet prmordia 

was initiated. the final values used are those starting 

at the first spikelet primordia and finishing at one primordia before 

terminal primordia. this can be used to find plastochron and 

hence find when final primordia was initiated." 

calc prim=primordia_number-Final_Leaf_Number "makes leaf primordia 

negative" 

calc spikelet_prim=mvin(primordia_number;prim.lt.0) "gets rid or 

primordia that became leaves" 

tabu 

[class=SplitE]mvin(spikelet_prim;primordia_number.eq.0);max=max_prim 

"calculates the max prim number  should be equal to Spikelet Number" 

Vari max_PRIM;newl(SplitE;!(#max_prim)) "turns above values into variate 

to match rest of data" 

tabu 

[class=SplitE]mvin(DAS;primordia_number.ne.max_PRIM);min=max_prim_DAS 

"calculates the first day on which the final primordia was seen" 

Vari max_prim_das;newl(SplitE;!(#max_prim_DAS))"turns above into variate 

to match rest of data" 

calc primforgraphs=mvin(spikelet_prim;spikelet_prim.eq.max_PRIM) "makes 

a new primordia variate only containing spikelet primordia" 

calc primforgraph=mvin(primforgraphs;DAS.gt.max_prim_das) "and stoppping 

on the second to last primordia observed" 

 

fspre primforgraph \primforgraph added to big data sheet. bad data 

(primordia at subsequent data less than previously) deleted by hand at 

units 157,245,319,416 and 514.  

 

"calculate accumulated tt for the DAS we are observing data." 

spload 'palmy daily temp data.gsh' 

 

 

\code to calculate cumulative soil temperature from each sowing 

date...we have daily tempertures. 

 calc n=nval(SD) 

 vari [nval=n]at 

 vari [nval=n]cumATemp 

 for [ntimes=6;index=i] 

  restr at,cumATemp,Airtemp;SD.ge.i 

  calc at=cumulate(Airtemp) 

  calc cumATemp=(mvin(at;SD.gt.i)) 

  restr cumATemp 

 endf 

 fspre cumATemp \ add this to palmy daily temp data.gsh 

 

"merge this with big data set. to do this, will just need to match SD 

with sowdate_f, and Day with a Julian day variable in the  

big data set (mergedMEANrestDevelopmentalandFLN.gsh). calculate this 

first." 
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 calc DoY=ndayinyear(sowdate_var)"converts the date of inflexion to a 

julian number of the year" 

  calc DoYSDplusDAS=DoY+DAS "calculates sampling days for each sd and 

sampling observation" 

        calc DoYdasminus=DoYdas-365  "Julian day if observation rolls 

over into next year; 1990"  

        calc DoYSDplusDAS=mvin(DoYSDplusDAS;DoYSDplusDAS.gt.365)"puts 

missing values where > 365; ie has rolled over " 

 calc DoYSDplusDAS=mvre (DoYSDplusDAS;DoYdasminus) "puts the julian 

day of the observation in to the variate" 

         

        fspre DoY,DAS,DoYSDplusDAS \add DoYplusDAS to big spreadsheet by 

hand 

 

\now merge, by hand. 

 

 

spload 'mergedMEANrestDevelopmentalandFLN.gsh'  

 

"graph new value to see rate of plastochron development" 

getat [att=lab]Genotype;gen 

poin gtitle;!p(#gen[]) 

 

\against day 

for [index=j;ntimes=4] 

  restr primforgraph,cumATemp;Genotype.eq.j 

  TRELLIS [GROUPS=sowdate_f; PENGROUP=RepE; 

FIRSTPICTURE=top;title=gtitle[j];xtitle='Days after 

sowing';ytitle='Primordia Number'] \ 

  Y=primforgraph; X=cumATemp;\ 

  METHOD=point 

endf 

 

\against accumulated tt 

for [index=j;ntimes=4] 

  restr primforgraph,cumATemp;Genotype.eq.j 

  TRELLIS [GROUPS=sowdate_f; PENGROUP=RepE; 

FIRSTPICTURE=top;title=gtitle[j];xtitle='Days after 

sowing';ytitle='Primordia Number'] \ 

  Y=primforgraph; X=cumATemp;\ 

  METHOD=point 

endf 

 

 

"run regresssions to get slope parameter separately " 

for [index=j;ntimes=4] 

 ffram [row=3;col=2;clearwindow=0] 

 text scr; 'clear' 

 for [index=i; ntimes=6] 

 restr primforgraph,cumATemp,Genotype,sowdate_f;   

 restr 

primforgraph,cumATemp,Genotype,sowdate_f;(Genotype.eq.j).AND.(sowdate_f.

eq.i) 

   MODEL primforgraph 

   FIT [PRINT=model,summary,estimates; CONSTANT=estimate; FPROB=yes; 

TPROB=yes]cumATemp 

   rkeep []est=est[j][i] 

   if i.eq.5 

    XAXIS [RESET=yes] WINDOW=i; low=200;up=800;title='acc thermal time' 
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   else 

    XAXIS [RESET=yes] WINDOW=i; low=200;up=800 

   endif 

   if i.eq.3 

    yAXIS [RESET=yes] WINDOW=i ;low=0;up=50;TITLE='Primordia Number - 

only spikelet primordia shown' 

   else 

    yAXIS [RESET=yes] WINDOW=i ;low=0;up=50 

   endif 

   \RCHECK [RMETHOD=deviance] residual; composite 

    if i.eq.1 

     RGRAPH [window=i;CIPLOT=yes;title=gtitle[j];screen=#scr] 

    else 

     RGRAPH [window=i;CIPLOT=yes;title='';screen=#scr] 

   endif 

 text scr; 'keep' 

 endf  

endf 

 

"is there evdience that these slopes are singificantly different for 

each sd and geno combination - yes strong evdience for all 

interactioons. 

r2 for this model is 94.2%" 

   MODEL primforgraph 

   FIT [PRINT=model,summary,estimates,acc; CONSTANT=estimate; FPROB=yes; 

TPROB=yes]cumATemp*sowdate_f*Genotype 

   rgra 

   rcheck    

 

prin est[][] "take these put them into excel; match them with 

appropriate genotype+sd. return and merge with big data sheet." 
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A2: Genstat code for Leaf Appearance in response to 
temperature as described in Chapter Six 

"8.2.2012 'Prediction of leaf appearance in wheat: a question of 

temperature'. two data sets were used in this paper.  

 

the first was from palmy, done in 1984, on avalon wheat 

 

the second was from Lincoln, I think done in the same year, on rongotea 

wheat 

 

" 

 

'Figure 1.'   

"the only thing using the avalon data set which is nicely replicated. 

no stats don in the paper though; just the figure." 

 

 

spload 'avaolon tips and air tt.gsh' 

 

poin data; !p(dacc_air_temp,acc_soil_temp) 

calc ns=nval(data) 

getat [id]data[];id[1...ns] 

getat [att=lab]Genotype;gen 

poin gtitle;!p(#gen[]) 

pen [RESET=yes] 1; SYM=1; METH=line; JOIN=given; LINESTYLE=1; THICK=1 

 

 

for [index=j;ntimes=ns] 

 ffram [row=3;col=1;clearwindow=0] 

 text scr; 'clear' 

  for [index=i; ntimes=2]v=data[] 

   restr v,Final_Leaf_Number;Genotype.eq.j 

   prin v,Final_Leaf_Number 

   XAXIS [RESET=yes] WINDOW=i; TITLE=id[i][1] 

   YAXIS [RESET=yes] WINDOW=i; TITLE='Final Leaf Number' 

   if i.eq.1 

    DGRAPH [WINDOW=i;title=gtitle[j];keyw=0;screen=#scr] 

X=v;Y=Final_Leaf_Number 

   else 

    DGRAPH [WINDOW=i;title=*;keyw=0;screen=#scr] X=v;Y=Final_Leaf_Number 

   endif 

   text scr; 'keep' 

  endf  

endf 

 

'Figure 2'  

"used the spreadsheet 'COMPAR.GSH' for the data; the TDATE.wq1 files 

didn't appear to hold replicated data either  

unfortunately,  
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"note that the length of data is only measured for 8 times in the COMPAR 

data set, but 10 times in the TDATE data sets. 

I just inserted relevant sampling numbers in sheet below, but these may 

not be correctly associated... seems odd 

that observed leav numbers go from 1,2,3,...12 so evenly... but figures 

seem to match the paper graphs" 

 

spload 'data for fig 2.gsh' 

 

   calc DoY=ndayinyear(Date)"converts the date of inflexion to a julian 

number of the year" 

   calc SowDoY=ndayinyear(Sowdatev) 

   calc daysfromsowing=DoY-SowDoY \this is fine since no sampling 

occured in 85. 

 

prin DoY,SowDoY,daysfromsowing,Sowdate 

 

 

   getat [att=lab]Sowdate;sd 

   poin stitle;!p(#sd[]) 

   pen [RESET=yes] number=1,2,3,4,5; SYM=2,0,0,0,0; 

METH=point,line,line,line,line; JOIN=ascending; LINESTYLE=0,2,1,3,4; 

THICK=1 

 

 

ffram [row=3;col=2;clearwindow=0] 

text scr; 'clear' 

for [index=i; ntimes=4] 

   restr 

measured,Air,Soil_air,dphidt,Miglietta,daysfromsowing;Sowdate.eq.i 

   XAXIS [RESET=yes] WINDOW=i; TITLE='Days from sowing';lo=0;up=180 

   YAXIS [RESET=yes] WINDOW=i; TITLE='Leaf Number' ;lo=0;up=12 

   DGRAPH [WINDOW=i;title=stitle[i];keyw=6;screen=#scr] \ 

      X=daysfromsowing;Y=measured,Air,Soil_air,dphidt,Miglietta 

   text scr; 'keep' 

   restr measured,Air,Soil_air,dphidt,Miglietta,daysfromsowing 

endf  

 

 

'Table one.'   

"now need to remember how they calculate their rmsds and maybe do 

another type of statistical comparison  

(eg like regression with groups)" 

 

"modellers calculation of rmsd is (ob-pre)*squared" 

spload 'data for fig 2.gsh' 

 

 

poin data; !p(Air,Soil_air,dphidt,Miglietta) 

calc ns=nval(data) 

getat [id]data[];id[1...ns] 

text vars;!t(Air,Soil_air,dphidt,Miglietta) 

fact [lab=vars]Vars 

getat [att=lab]Sowdate;sd 

poin stitle;!p(#sd[]) 

 

 

for [index=j;ntimes=4] 

 restr v,measured;Sowdate.eq.j 
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 for [index=i;ntimes=ns]v=data[] 

  calc rmsd[i][j]=sqrt(mean((measured-v)*(measured-v))) 

 endf 

 restr v,measured; 

endf 

 

table [class=Vars,Sowdate]RMSD;!(#rmsd[][]) 

fspre RMSD 

 

'better thing to doo....??? look at again when finished doing other 

tables and figures' 

 

"regression to test whether model one is singificantly better than the 

others? aic? r2?" 

 

for [index=j;ntimes=4] 

  for [index=i;ntimes=ns]v=data[] 

   restr v,measured;Sowdate.eq.j  

   model measured 

   fit [prin=summary]v 

 endf 

 restr v,measured; 

endf 

 

 

'Table 2' 

"this looks at comparing when to switch from soil to canopy temperature, 

and chooses the haun stage  

of switch which has the best rmsd value. so is there another way to 

assess this?" 

 

'Figure 3' 

"distance of obseved-predicted against observed" 

spload 'data for fig 2.gsh' 

 

 

poin data; !p(Air,Soil_air,dphidt,Miglietta) 

for  [index=i;ntimes=4]v=data[] 

  calc md[i]=mean(measured-v) 

endf  

vari mean_bias;newl(Sowdate;!(#md)) 

 

 

poin data; !p(Air,Soil_air,dphidt,Miglietta) 

calc ns=nval(data) 

getat [id]data[];id[1...ns] 

ffram [row=3;col=2;clearwindow=0] 

pen [RESET=yes] number=1,2,3,4,5; SYM=2,5,6,7,10; 

smsym=1,1,1,1,3;METH=line,line,line,line,point; JOIN=ascending; 

LINESTYLE=1,2,3,4,0; THICK=3,3,3,3,5 

 

text scr; 'clear' 

for [index=i;ntimes=ns]v=data[] 

 calc dif=measured-v 

 XAXIS [RESET=yes] WINDOW=i; TITLE='Observed'; 

 YAXIS [RESET=yes] WINDOW=i; TITLE='Observed - Predicted' ;lo=-3;up=1.5 

 DGRAPH [WINDOW=i;title=id[i][1];keyw=6;screen=#scr] pen=i;\ 

      X=measured;y=dif;pen=Sowdate 

 text scr; 'keep' 
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 restr mdif,measured;Sowdate.eq.i "restricting by sowdate, even though 

its a model thing; weird but should work." 

 dgra [window=i;title=*;keyw=*;scr=#scr]pen=5;x=measured;y=mdif 

 restr mean_bias,measured 

endf 

 

 

'Table 3' "rmsds of mean bias errors for each model and month. have to 

ADD the mean bias to the predicted to calculate,  

because they are inherently negative. i.e. we subtract the absolute 

value of the mean bias error." 

poin data; !p(Air,Soil_air,dphidt,Miglietta) 

for  [index=i;ntimes=4]v=data[] 

  calc md[i]=mean(measured-v) 

endf  

vari (v-mean_bias);newl(Sowdate;!(#md)) 

 

 

poin data; !p(Air,Soil_air,dphidt,Miglietta) 

text vars;!t(Air,Soil_air,dphidt,Miglietta) 

fact [lab=vars]Vars 

 

for  [index=i;ntimes=4]v=data[] 

 for [index=j;ntimes=4]  

  restr v,measured,mean_bias 

  restr v, measured,mean_bias;Sowdate.eq.j 

  calc rmsdunbias[i][j]=sqrt(mean((measured-(v+mean_bias))*(measured-

(v+mean_bias)))) 

  calc rmsd[i][j]=sqrt(mean((measured-v)*(measured-v))) 

 endf 

endf 

 

table [class=Vars,Sowdate]RMSD;!(#rmsdunbias[][]) 

fspre RMSD 
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A3: Genstat wrap-around code for Bayesian Data 
Assimilation model described in Chapter Nine. 

"Including winbugs data and model code June 2014" 

 

"Load dynamic data for assimilation" 

 

SPLOAD 'Otane plants.gsh' 

 

"Set sowing date. Since assimilating controlled climate chamber data 

this does not need to reference any weather files and so can begin as 1" 

Scalar DAY; 1 

 

"Starting values for data, TT and PP constant since  we are simulating 

controlled climate chamber data" 

scalar  TT;22.5 

scalar PP;16 

scalar  alphalnkmin1;0 "model calls yesterdays’ value for ln; so need to 

set and save this as a constant for the first day " 

scalar  flnkmin1; 9  "model calls yesterdays’ value for fln; so need to 

set and save this as a constant for the first day" 

scalar phyllnkmin1; 97.5 

 

"load leaf count data and set up text file for WinBugs" 

subset [DayNo.eq.DAY] tips;LN 

calc nv=nval(LN)-1 

text tcomma; !t(#nv(',')) 

open 'simpledata3.txt';ch=2; f=o; wid=200 

print [ch=2;sq=y;ip=*; miss='NA'] 'list(' 

 

& 'phylln.kmin1=',phyllnkmin1; fie=1,*; j=l;  "scalars" 

& 'fln.kmin1=',flnkmin1; fie=1,*; j=l; "scalars" 

& 'TT.k=',TT; fie=1,*; j=l; "scalars" 

& ',PP.k=',PP; fie=1,*; j=l; "scalars" 

& ',alpha.ln.kmin1=',alphalnkmin1; fie=1,*; j=l; "scalars" 

& ',LN.k=c('; fie=1; j=l     

& LN,tcomma;fie=*,1; j=l;dec=0  

& ')' 

& ')' 

close 2; file=o 

 

 

"Data names (data for WinBUGS to use)" 

TEXT    dnames; 

VALUES=!t('LN.k','TT.k','PP.k','alpha.ln.kmin1','beta.ln.kmin1','ln.kmin

1') 

 

 

" Specify WinBUGS model." 

TEXT    tmodel; VALUES=!t(\ 

'model',\ 

'{',\ 

'for(i in 1:8){',\ 

'LN.k[i]~dpois(mu.ln.k)',\ 

'}',\ 

 '      ',\  

'log(mu.ln.k)<-log(ln.k) 

 '      ',\  
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    'a[1]<-step((2-(ln.kkmin1)))' ,\                                         

    'a[2]<-step((8-(ln.kkmin1)))-step((2-(ln.kkmin1)))',\            

    'a[3]<-min((1-(a[1])),(1-(a[2])))',\                        

    'phylln.k<-(a[1]*0.75*bp+a[2]*bp+a[3]*1.3*bp)',\ 

'      ',\ 

    'd[1]<-step(((TT.k/phylln.kmin1)+ln.kkmin1)-fln.kmin1)',\ 

    'd[2]<-1-d[1]',\ 

    'ln.k<- d[1]*fln.kkmin1+d[2]*((TT.k/phylln.k)+ln.kmin1)',\ 

 '      ',\ 

    'primn.k<-pn*ln.k+pe',\ 

'      ',\ 

    'b[1]<-step((PP.k-ppsat))' ,\             

    'b[2]<-1-b[1]',\                                                                

    'flnt.k<-lmin',\       

'      ',\ 

    'c[1]<-step((primn.k-(flnt.k+pe)))',\                             

    'c[2]<-1-c[1]',\                                                                 

    'e[1]<-step((primn.k-flnt.k))',\ 

    'e[2]<-1-c[1]',\ 

    'fln.k<-c[1]*(e[1]*flnt.k+e[2]*primn.k)+c[2]*(fln.kkmin1)',\ 

 '      ',\ 

'bp~dnorm(110,1)',\ 

'pe~dpois(4)' ,\ 

'pn~dpois(2)' ,\ 

'ppsat~dnorm(15.9 ,0.01)',\ 

'lmin~dgamma(7,1)',\ 

'ps~dnorm(0.625,0.01)',\ 

'      ',\ 

'ln.kmin1~dpois(alpha.ln.kmin1)',\ 

'ln.kkmin1<-alpha.ln.kmin1',\ "for some state equations require 

posterior point estimate rather than distribution, i.e. to use the 

‘step’ function in WinBUGS" 

'fln.kkmin1~dgamma(fln.kmin1,1)',\ 

'}') 

 

"Write the WinBUGS model to a file" 

OPEN    'simplemodel2.txt'; CHAN=2; FILE=output 

PRINT   [CHANNEL=2; IPRINT=*; SQUASH=yes] tmodel; JUST=left 

CLOSE   2; FILETYPE=output  

 

"automatic monitoring of nodes" 

text monnames; 

!t('fln.k','lambda.ln.k','mu.ln.k','phylln.k','flnt.k','primn.k','ln.k',

'tau.ln.k')  

 

"set up for loop to run recursive model over k = 45 days. " 

for [index=k;ntimes=60] 

 prin flnkmin1  

 prin DAY 

 prin LN 

 "call WinBUGS" 

 BGxGenstat [prin=node;modelfile='simplemodel2.txt';\ 

   data='simpledata3.txt';idatanames=dnames; "wpath= 'C:/Program Files    

(x86)/winbugs14/WinBUGS14';"viewbugs=y;"mon=monnames;nsamples=10000;ncha

ins   

 =3;coda=y]"init=*;"simulations=sim[1] 

 

  "retrieve posterior values" 

  BGIMPORT [INDEXFILE='WBGCODAIndex.txt';\ 
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          OUTPREFIX='WBGCODA'; PNAMES=tnames; NOUT=1] sim[] 

           

 "plot diagnostics" 

 BGPLOT  [PRINT=summary; PLOT=trace,density,auto,gelm;  

ARRANGEMENT=multiple] sim[] 

   

 "calculate and save posterior predictions for fln and ln. we are using 

the method of moments to estimates the parameters from the  posterior 

distribution of ln from the previous run of the model 

  hence using the gamma distribution as the prior for fln mu = 

alpha/beta; sigma2=alpha/beta2, and poisson for ln so just mu=mean." 

 

 calc alphalnkmin1=mean(sim[1][5]) 

 calc lambdalnk=mean(sim[1][3])  

 calc flnkmin1=mean(sim[1][1]) 

 calc phyllnkmin1=mean(sim[1][6]) 

 PRIN alphalnkmin1,lambdalnk,flnkmin1 

 vari [nval=2;val=7,flnkmin1]sc  

 calc flnkmin1=max(sc) 

 prin flnkmin1 

 

 "update day" 

  CALCULATE DAY=DAY+1 

 

 

  "update Data file, i.e. load updated assimilation data and todays 

posterior will enter the next loop of the model as tomorrows prior" 

 subset [DayNo.eq.DAY] tips;LN 

 calc nv=nval(LN)-1 

 text tcomma; !t(#nv(',')) 

 open 'simpledata3.txt';ch=2; f=o; wid=200 

 print [ch=2;sq=y;ip=*; miss='NA'] 'list(' 

 

 & 'phylln.kmin1=',phyllnkmin1; fie=1,*; j=l;  "scalars" 

 & 'fln.kmin1=',flnkmin1; fie=1,*; j=l;  "scalars" 

 & 'TT.k=',TT; fie=1,*; j=l; "scalars" 

 & ',PP.k=',PP; fie=1,*; j=l; "scalars" 

 & ',alpha.ln.kmin1=',alphalnkmin1; fie=1,*; j=l; "scalars" 

 & ',LN.k=c('; fie=1; j=l    "not sure if initial comma is needed" 

 & LN,tcomma;fie=*,1; j=l;dec=0  

 & ')' 

 & ')' 

 close 2; file=o 

ENDFOR 
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A4: GenStat Code for mixing algorithms described in 
Chapter Ten                                               

\ code uses k to denote time rather than t as in the text. 

A4.1: Mixing algorithm plus MoM estimation 

\December 2014 

\results not shown in text 

\this codes sits within the dynamic for loop and will run every day of 

the simulation. 

\calculations for revised, pooled fln certainty estimation. MoM approach 

assumes two Gaussian Distributions which is probably inappropriate 

   \obtain dynamic estimates 

    calc flnmean[k]=mean(sim[1][1])"calculates the first moment of the 

fln posterior" 

    calc flnvar[k]=variance(sim[1][1])"calculate the second moment of 

the fln" 

    calc lnmean[k]=mean(sim[1][5])"calculates the first moment of the 

mu.ln posterior" 

    calc lnvar[k]=variance(sim[1][5])"calculate the second moment of the 

mu.ln" 

    calc flntmean[k]=mean(sim[1][2]) 

    calc kmin1 = k-1 

    calc kmin2 = k-2 

  

   \calculate test value for alpha (equilibrium)  

    if k.ge.3 

     calc flnk[k]=(flnmean[k]+flnmean[kmin1]+flnmean[kmin2])/3 

    else 

     calc flnk[k]=1 

    endif 

 

   \Calculate alpha, day of equilibrium (correct working for tau now) 

   if k.gt.3 

    calc flndif[k] = flnk[kmin1]-flnk[k] 

    prin flndif[k] 

    if a.ne.1000 

     calc a=a 

    elsif flndif[k].le.0.05.AND.flnmean[k].lt.(flntmean[k]+.5) "i.e. fln 

is within half a leaf of flntarget" 

     calc a = k 

    endif 

    prin a 

   endif 

 

 

   \now do the calcuations for the revised fln variance estimator 

   if t.ne.1000 

    calc t=t 

   elsif a.ne.1000 

    calc t = ((2-lnmean[k])*(phyllnkmin1)/TT)+((flnmean[k]-

lnmean[k])*(phyllnkmin1/.75))/TT 

   endif 

   print t 
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    \create an indicator variable for working with simulated chains of 

data   

    vari [nval=10000;val=1...10000]indicator 

 

 

   \calculate how far through the process we are in terms of mixture up 

until day of flag (a + tau) 

   \and thence calculate the relative proportions for mixing 

    calc count = k-a 

    prin count 

    calc v = (t-count)/t 

    calc vcomp = 1-(t-count)/t 

    prin v, vcomp 

  

    \calculate revised flnvar based on progress through simulations 

 

    if a.eq.1000 

     calc revisedflnvar[k]=flnvar[k] 

    elsif k.gt.(a+t)  

     calc revisedflnvar[k]=lnvar[k] 

    else 

     calc 

revisedflnvar[k]=v*((flnmean[k])**2+flnvar[k])+vcomp*((lnmean[k])**2+lnv

ar[k])-(v*flnmean[k]+vcomp*lnmean[k])**2 

    endif 

A4.2: Sampling from approximate mixture distribution 

\this codes sits within the dynamic for loop and will run every day of 

the simulation. 

\generate a random distribution to mimic variance of ln, but with mean 

for fln 

\has to be normal otherwise cant do it. 

\this will enable us to graph what the mixture distriubtion might look 

like through the simulation process 

 

   GRANDOM [DISTRIBUTION=Normal; NVALUES=10000; SEED=0; MEAN=flnmean[k]; 

VARIANCE=lnvar[k]] lnisfln 

 

   \estimate mixture distribution for algorithm 1 

   if a.eq.1000 

     calc mixtureflndensity[k]=sim[1][1] 

   elsif k.gt.(a+t)  

     calc mixtureflndensity[k]=sim[1][5] 

   else 

    calc ffln = sim[1][1] 

    calc lln=lnisfln 

    if v.eq.1 

     calc vv=v*10000-1 

     calc vvcomp=vcomp*10000+1 

    else 

     calc vv=v*10000 

     calc vvcomp=vcomp*10000+1 

    endif 

    dele [redef=y]indicator 

    vari [nval=10000;val=1...10000]indicator 

    subset [condition=indicator.le.vv]ffln;fffln 

    subset [condition=indicator.le.vvcomp]lln;llln 
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    dele [redef=y]mixtureflndensity[] 

    stack []mixtureflndensity[k];fffln;llln   

   endif 

A4.3: Calculations for tau 

\this codes sits within the dynamic for loop and will run every day of 

the simulation. 

  

\ approach to calculate predicted intervals for tau based on 

distribution of fln 

   if k.eq.a 

    calc fln[k]=sim[1][1] 

    for [index=i;ntimes=10000] 

     subset [condition=indicator.eq.i]fln[k];flni 

     calc tt[i]=((((2-lnmean[k])*phyllnkmin1)/TT)+((flni-

lnmean[k])*(phyllnkmin1/.75))/TT)+a 

    endf 

     vari [nval=10000;val=tt[]]tpred 

     ffram [row=2;col=2;xmlower=.085;ymlower=0.085] 

     pen 1; colour='White'  

     yaxis [reset='y']window=3;title='Frequency';low=0;up=1000 

     xaxis[]window=3; low=0;up=80;mark=*; title='Predicted Day of Flag' 

     DHISTOGRAM 

[window=3;k=*;scr='clear';binwidth=1;outline=perimeter]tpred;pen=1  

     \calculate credible intervals  

     sort tpred 

     subset [condition=indicator.eq.1000]tpred;tpredlow 

     subset [condition=indicator.eq.9000]tpred;tpredup 

     dele [redef=y]tt[] 

   endif 

 

\calculate the smoothed credible intervals once it has reached flag; 

i.e. at day 35. 

   if k.eq.35 

     calc lnn=sim[1][5] 

     for [index=i;ntimes=10000] 

      subset [condition=indicator.eq.i]lnn;lni 

      calc tt[i]=((((2)*(.75*phyllnkmin1))/TT)+((lni-2)*phyllnkmin1)/TT) 

     endf 

      vari [nval=10000;val=tt[]]tsmooth 

      ffram [row=2;col=2;xmlower=.085;ymlower=0.085] 

      pen 1; colour='White'  

      yaxis [reset='y']window=3;title='Frequency';low=0;up=1000 

      xaxis[]window=3; low=0;up=80;mark=*; title='Smoothed Day of Flag' 

      DHISTOGRAM 

[window=3;k=*;scr='clear';binwidth=1;outline=perimeter]tsmooth;pen=1  

      \calculate credible intervals  

      sort tsmooth 

      subset [condition=indicator.eq.1000]tsmooth;tsmoothlow 

      subset [condition=indicator.eq.9000]tsmooth;tsmoothup 

      dele [redef=y]tt[] 

    endif 
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A5: Diagnostics for Model c described in Chapter Nine 

A5.1: mu.lnt 

As for LN, in the first few simulations (i.e days 1 and 2) the trace plots appear to 

be a little inconsistent between chains, however the G-B plots do not indicate a 

problem. From day 5 onwards the trace plots for each chain looks consistent. 
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Figure 42: Diagnostics for mu.flnt where t = 1, 2, 5, 10, 30 and 50 

A5.2: phyllochront 

The trace plots looks unusual, however the density, G-B and autocorrelation 

plots all seem acceptable. 
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Figure 43: Diagnostics for  phyllochront where t = 1, 2, 5, 10, 30 and 50 

A5.3: primordiat 

The primordiat parameter appears to be well behaved. 
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Figure 44: Diagnostics for  primordiat where t = 1, 2, 5, 10, 30 and 50 

A5.4: flnt 

The flnt parameter appears to be well behaved. 
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Figure 45: Diagnostics for  flnt where t = 1, 2, 5,10,30 and 50 
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A6: Conference Posters 

A6.1: Australasian Applied Statistics Conference, Queenstown, New 

Zealand, 2012 
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A6.2 International Biometrics Conference, Florence, Italy, 2014 and 

Uncertainty in Complex Models Conference, Sheffield, UK, 2014 
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