

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognize the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material
from their thesis.

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital
copy of their work to be used subject to the conditions specified on the Library
Thesis Consent Form and Deposit Licence.

http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/licence-summary

Department of Computer Science
The University of Auckland

New Zealand

Characterizing Drifts for
Proactive Drift Detection

in Data Streams
Kylie Chen

May 2016

Supervisors:

Dr. Yun Sing Koh

Dr. Patricia Riddle

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

2

Abstract

The evolution of data such as changes in the underlying model known as concept drift

present many challenges for data stream research. Currently most drift detection methods

are able to locate the point of change, but are unable to provide meaningful information

on the characteristics of change or utilize historical trends. In this thesis, we investigate

two streams of research: (1) the magnitude of change which we refer to as drift severity,

and (2) the rate of change which we refer to as the stream volatility [7].

In the first part, we propose a drift detector, MAGSEED, for tracking the drift severity

of a stream. Monitoring drift severity provides crucial information to users allowing them

to formulate a more adaptive response. We show that our technique is capable of tracking

drift severity with a high rate of true positives and a low rate of false positives and compare

it to state-of-the art drift detectors ADWIN2 and DDM.

In the second part, we explore ways to learn historical drift rate trends, and develop

a proactive drift detection system. The main motivation for our work comes from the

observation of volatility trends resulting from the application of current drift detection

methods to real data streams. We observe that these patterns of change vary across

different data streams. We use the term “volatility pattern” to describe change rates with

a distinct distribution. We propose a novel drift prediction method, DPM, to predict

the location of future drift points based on historical drift trends which we model as

transitions between stream volatility patterns. Our method uses a probabilistic network

to learn drift trends and is independent of the drift detection technique. We demonstrate

that our method is able to learn and predict drift trends in streams with reoccurring

volatility patterns. This allows the anticipation of future changes which enables users and

detection methods to be more proactive. We then apply our drift prediction algorithm

by incorporating the drift estimates into a drift detector, PROSEED, to improve its

performance by decreasing the false positive rate.

i

ii

Acknowledgements

I would like to thank my supervisors Dr. Yun Sing Koh and Dr. Patricia Riddle for their

immense support, guidance and endless patience throughout my Masters degree. They

have given me an appreciation for the scientific method and are my role models.

In addition, I would like to thank the reviewers that greatly improved the quality of

our paper, and the participants of the 2015 Australasian Joint Conference on Artificial

Intelligence for sharing their knowledge with me.

I would also like to thank my family for allowing me to pursue my research interests

and my friends for their words of encouragement.

iii

iv

List of Publications

Parts of Chapter 3 have been published in:

• Kylie Chen, Yun Sing Koh, and Patricia Riddle. Tracking Drift Severity in Data

Streams. In AI 2015: Advances in Artificial Intelligence, pages 96-108, 2015.

Parts of Chapter 4 have been accepted for publication in:

• Kylie Chen, Yun Sing Koh, and Patricia Riddle. Proactive Drift Detection: Predict-

ing Concept Drifts in Data Streams using Probabilistic Networks. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), 2016.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Objectives . 3

1.4 Contributions . 4

1.5 Overview of Research . 5

1.6 Structure of Thesis . 5

2 Background and Related Work 7

2.1 Concept Drift . 7

2.2 Drift Detectors . 11

2.3 Reoccurring Concepts . 24

2.4 Characterization of Concept Drift . 25

2.5 Datasets . 27

3 Tracking Drift Severity 31

3.1 Introduction . 31

3.2 Preliminaries . 32

3.3 Overview . 36

3.4 Drift Magnitude Detection . 37

3.5 Alternative approaches . 40

3.6 Experiments . 40

3.7 Conclusions . 48

4 Proactive Drift Detection 49

4.1 Introduction . 49

4.2 Modelling Stream Volatility . 52

4.3 Overview . 54

4.4 Drift Prediction Method . 57

4.5 Proactive Drift Detection . 60

vii

viii Contents

4.6 Experiments . 62

4.7 Conclusions . 72

5 Conclusions 73

5.1 Achievements . 73

5.2 Limitations . 74

5.3 Future Work . 74

List of Figures

1.1 An overview of the topics covered in this thesis 5

2.1 Patterns of change in streaming data showing four types of concept drift. . 10

3.1 Example of a concept function . 33

3.2 Example of a different concept . 33

3.3 Example of warning detection and drift detection 34

4.1 Work flow of traditional drift detection systems 50

4.2 Work flow of our proactive drift detection system 51

4.3 Example of rapid volatility change . 54

4.4 Example of progressive volatility change 54

4.5 Error rate of the stream . 55

4.6 Drift intervals of the stream . 55

4.7 Network of pattern transitions . 56

4.8 Example of a cyclic network with three patterns 63

4.9 Example of a cyclic network with five patterns 63

4.10 Accuracy of volatility detector under various parameter settings 64

4.11 Delay of volatility detector under various parameter settings 65

4.12 Pattern probability density functions without noise 67

4.13 Pattern probability density functions with Gaussian noise (σ′ = 25) 67

4.14 Sequence of patterns . 68

4.15 Network constructed by sequences . 68

ix

x LIST OF FIGURES

List of Tables

3.1 Example of patient data . 33

3.2 Theta values for SEA Concepts streams . 41

3.3 Parameter range for evaluation on synthetic data 42

3.4 Drift detection: Rate of true and false positives (Best case) 43

3.5 Drift detection: Rate of true and false positives (Worst case) 44

3.6 Warning detection: Bernoulli streams . 45

3.7 Warning detection: CIRCLES streams . 46

3.8 Warning detection: SEA Concepts streams 47

3.9 Performance on real data streams . 48

4.1 Network comparison: Bernoulli streams with different network sizes 66

4.2 Network comparison: Bernoulli streams with different volatility levels . . . 66

4.3 Network comparison: Bernoulli streams with Gaussian pattern noise 67

4.4 Pattern comparison: Bernoulli streams with Gaussian pattern noise 68

4.5 Network comparison: Bernoulli streams with network noise 68

4.6 Drift detection: Bernoulli streams with rapid volatility change 69

4.7 Drift detection: Bernoulli streams with progressive volatility change 69

4.8 Drift detection: SEA Concepts streams with rapid volatility change 70

4.9 Drift detection: SEA Concepts streams with progressive volatility change . 70

4.10 Drift detection: CIRCLES streams with rapid volatility change 70

4.11 Drift detection: CIRCLES streams with progressive volatility change . . . 70

4.12 Drift detection: PROSEED on synthetic data streams 71

4.13 Drift detection: Forest Covertype . 71

4.14 Drift detection: Pokerhand . 71

xi

xii LIST OF TABLES

1
Introduction

Data stream mining has been an increasingly popular area of research in recent years.

Mining refers to the act of finding useful information such as relationships or trends from

data. For example, identifying the types of patient symptoms linked to various cancer

treatments over time. Data streams consists of unbounded data that typically arrive at

a fast rate. We believe the main driver of this is the rapid generation and availability

of large amounts of data. For example video feeds, GPS sensors, social networks, and

biological sequencing techniques all produce vast amounts of data. However the nature of

big data also poses many challenges to the acquisition of knowledge from these sources.

There are five key components to big data [20] [26].

• Volume: The volume describes the size of the data. In this era, we are producing

more data than ever before. IBM estimates that 90% of the world’s data was

produced in the last two years [18]. The high volume of data creates a need for

processing techniques that are memory efficient.

• Velocity: This aspect refers to the high speed at which data arrives, which creates

a need for memory and time efficient techniques that can cope with high speeds of

data arrival.

• Variety: The variety describes the different types of the data available. For example

structured data such as profiles in databases, or unstructured data like free form

text, images and video recordings. The richness of data types available allow us

1

2 Introduction

to integrate data from a variety of sources. The advantage of this is that different

types of data can provide different views of the situation.

• Veracity: Veracity refers to data quality, and the belief we have in our data. The

quality of data is an important issue that needs to be addressed in order to attain

trustworthy insights from data.

• Variability: Variability refers to the change in meaning or context over time. For

example, a word can have different meanings depending on its context.

Streaming data is characterized by large volumes of data arriving at high velocities,

and the possibility of concept drift. Concept drift is a term used to describe changes in the

underlying processes governing the generation of data such as a change in the behaviour

of a system or population. Behavioural changes are very interesting as they can exhibit

certain trends or patterns that reoccur over time.

Examples of this can be found in customer purchasing habits. The benefits of mining

customer behaviour include increased revenue by targeting the appropriate set of cus-

tomers at the optimal time. Another example is the tracking of the movement of rodents

when exploring a new area. The potential benefits of modelling the exploratory behaviour

could be used for predicting predator movement for conservation purposes. There is a

great need for the development of techniques to efficiently process big data to allow the

identification of interesting and useful patterns for knowledge discovery. This can be

likened to finding a needle in a haystack.

1.1 Motivation

Much of scientific research involves the generation and testing of hypotheses that can

facilitate the development of accurate models for a system. In machine learning the

automated building of accurate models is desired. However traditional machine learning

often assumes that the underlying models are static and unchanging over time. In reality

there are many applications where the underlying model or system changes over time.

This may be caused by changes in the conditions of the system, or a fundamental change

in how the system behaves such as the development of antibiotic resistance in pathogens.

This creates a need for systems that are able to detect and adapt to changes in the

underlying model.

One limitation of current research is that few studies explore ways to characterize

properties of changes in data streams. Most systems are only able to locate the point

of change and are reactive in nature. This allows systems to respond to change, but are

unable to anticipate changes. Methods for capturing the magnitude or size of changes have

1.2 Problem Statement 3

been previously proposed by Kosina et al. [24] but their approach is mainly applicable

to streams with abrupt changes in concepts. These are changes that occur suddenly such

as the reversal of the magnetic poles. In contrast gradual changes occur over a period of

time, for example, the spread of an innovation or a virus through a community. Being

able to the monitor the magnitude of change can give us an early indication of how severe

we expect a change to be. For example, suppose we monitor a population for the outbreak

of flu. The magnitude could give us an indication of how many people are infected. Thus,

we believe detecting the magnitudes of gradual changes is an important area to explore.

Recently the work of Huang et al. [17] introduced a characteristic called stream

volatility that describes the drift rate of a stream. They develop a proactive method that

is able to reduce the rate of false alarms based on predicting the next change location using

the average drift rate of the stream. This shows promise in the use of the characteristics

of changes for the development of an accurate proactive system, but the authors do not

utilize information from the drift rate trends [16]. This does not account for the variability

in drift rates over time. Consider the analogy where the drift rate is analogous to the rate

of electricity consumption of a customer. The rate of electricity usage varies depending

on the season and the time of day. In this case the average usage rate may not be an

accurate estimate of future electricity usage. Therefore we are motivated to work towards

a proactive system that can fully utilize the meta-knowledge from the drift rate trends

over time.

1.2 Problem Statement

We are interested in the characterization of changes in streaming data and ways to utilize

these features for change detection systems. The main research questions we explore are:

1. How can we accurately capture the magnitude of changes in a stream?

2. How can we characterize changes in data streams to provide interesting and valuable

information?

3. How can we use the characteristics and trends in historical changes to enhance

current change detection systems?

1.3 Objectives

Our research targets two facets of change in streaming data: drift magnitude, and drift

rate. The first characteristic describes the size of changes, whereas the second describes

the rate at which changes occur. We are interested in developing techniques to monitor

4 Introduction

and utilize these characteristics for accurate detection and prediction of future changes.

The aims of our research are:

1. To develop an algorithm that is capable of accurately tracking the magnitude of

changes in streaming data

2. To develop an algorithm for making inferences on the characteristics of future

changes based on historical drift rate trends

3. To develop an algorithm for the proactive detection of changes that is accurate for

streams with reoccurring drift rate trends

1.4 Contributions

The main contributions of our work are:

• A drift detection algorithm, MAGSEED (MAGnitude SEED), that accurately tracks

the magnitude of gradual changes in streaming data. To the best of our knowledge

this is the first algorithm that focuses on monitoring magnitudes of gradual changes.

Previous work in this area such as the DDM approach [24] work well for streams

with abrupt changes but perform poorly on streams with gradual changes. We

believe this is important as it allows the magnitude of changes in a larger variety of

streams to be explored.

• A forecasting algorithm, DPM (Drift Prediction Method), that monitors the rate

of changes and accurately predicts the location of future change points for streams

with reoccurring drift rate trends. By drift rate trend, we are referring to the general

movement of the drift rate over time. Previous work has focused on the identification

of changes in the drift rate [17] but has not explored the use or detection of drift

rate trends.

• A drift detection algorithm, PROSEED (PROactive SEED), that uses drift rate

information and our forecasting algorithm to decrease the likelihood of triggering

false alarms. Many drift detectors can be highly accurate at detecting the location

of true changes achieving up to 100% true detection rate, but leave much to be

desired in terms of the rate of false alarms. Detectors such as ADWIN2 [4] allow

the rate of false alarms to be controlled by a confidence parameter that affects the

sensitivity of the detector. However, due to the volume and velocity of streaming

data even low false alarm rates such as 1% can be problematic. For example, lets

assume we receive 1000 data instances per day, a 1% false alarm rate would trigger

about 10 false alarms every day.

1.5 Overview of Research 5

1.5 Overview of Research

Input
Data

Classification
Model

Change Detection,
Characteristics

of Change
Chapter 2

Magnitude of
Change
(Severity)
Chapter 2, 3

Rate of
Change

(Volatility)
Chapter 2, 4

Trends in
Rate of Change
(Volatility Trends)

Chapter 4

Output
Knowledge

Proactive
Change

Detection
Chapter 4

Figure 1.1: An overview of the topics covered in this thesis

Figure 1.1 shows the topics covered in this thesis, and the relationships between each

topic. Our research is focused on characterizing and utilizing the nature of changes in

data streams. This is a layer on top of current change detection systems that are used to

detect changes in models such as classification models. We note that the application of

change detection methods are not limited to classification models and can be applied to

regression models or numeric data. Change detectors monitor characteristics of a model

to identify when the underlying model which generates the data is likely to have changed.

We look at the nature of these changes such as the magnitude and rate of change. Based

on this, we can identify trends in the behaviour of changes which enable us to gain valuable

insights into future change events and develop methods that are more proactive.

1.6 Structure of Thesis

This thesis is structured into the following chapters.

• Chapter 2: Background and Related Work

We introduce the concept drift problem and review key concepts relevant to our

research area. We discuss different drift detection methods that have been proposed

and work related to the characterization of drifts such as the magnitude of change

6 Introduction

(severity) and rate of change (volatility). In this chapter we also describe some

datasets that are commonly used as benchmarks in the literature.

• Chapter 3: Tracking Drift Severity

We highlight the challenges in detecting drift severity which was introduced in Chap-

ter 2, and propose a novel drift detector, MAGSEED, for detecting the severity of

concept change. We compare our detector to state-of-the-art drift detection meth-

ods and show that our detector outperforms current approaches for detecting the

severity of streams with gradual change.

• Chapter 4: Proactive Drift Detection

In Chapter 2 we described the concept of stream volatility which is the drift rate

of a stream. In this chapter we explore ways to characterize and use volatility

trends. We propose a forecasting algorithm, DPM, for predicting the location of

future changes based on observed volatility trends. We show that our algorithm is

able to accurately learn these trends for streams with reoccurring volatility trends.

We then propose a proactive drift detector, PROSEED, that utilizes this additional

information to accurately locate future changes.

• Chapter 5: Conclusions

We conclude this thesis by discussing the limitations of our work and possible future

directions.

2
Background and Related Work

In this chapter we review the background and current work in the area of drift detection

in data streams. In Section 2.1 we introduce the area and formally define the concept

drift problem. In Section 2.2 we present an overview of current drift detection techniques

for addressing this. Section 2.3 outlines drift detectors aimed at detecting reoccurring

models. Section 2.4 discusses work related to the characterization of drifts in streaming

data and Section 2.5 describes some datasets that are commonly used in our research

area.

2.1 Concept Drift

Concept drift is a phenomena in data streams where there is a change in the data distri-

bution over time. It is usually studied in the supervised machine learning context, but

there have been some attempts to branch into semi-supervised learning.

In supervised machine learning the aim is to accurately predict the target variable

y ∈ R1 of unseen instances given its corresponding set of input features X ∈ RP by using

labelled training data. When the target variable y takes the form of discrete class labels

it is known as the classification problem, otherwise in the case where y is continuous it is

referred to as the regression problem. A typical approach for supervised classification is

to train the learner (a classification algorithm) on a batch of labelled instances (training

data) so a mapping from input features to the target variable can be used to model the

7

8 Background and Related Work

target function p(y|X). Each labelled instance is a pair (X, y) of input feature values

X ∈ RP and its class label y ∈ R1. The training data is used to build a model to predict

new unlabelled instances where the true class label y is unknown at the time of prediction.

In traditional machine learning and data mining it is assumed that the process generating

the data is stationary. That is the data comes from a single source. This differs from the

streaming environment which is dynamic and poses many challenges to the memory, time

and flexibility requirements of the algorithms. We will focus on the classification problem

applied to streaming data.

Streaming data is defined as an unbounded ordered sequence of instances that arrive

at a fast rate. The arrival rate may vary throughout the stream, but most studies assume

instances arrive at a constant rate. There are a number of characteristics that make data

streams different from non streaming data. Firstly the unbounded nature of the stream

and fast arrival rate make it impossible to store all of the data into memory and imposes

a memory constraint. The high speed of the data also restricts algorithms to requiring

a single pass through the data. Instances need to be processed in real time, so that a

prediction can be made at any point in time. The data may evolve over time - that is the

distribution generating the data may change. This is referred to as concept drift. It is

important to note that not all streams exhibit concept drift as the nature of the stream

depends on the application domain and the underlying hidden processes that generate

the data.

Typically the labels of the data are assumed to be correct and available shortly after

prediction, though some work has been done on mining unlabelled or noisy streaming

data. A formal definition of the classification problem and concept drift follows below.

The classification problem can be described using Bayes rule as

p(y|X) =
p(y)p(X|y)

p(X)
, (2.1)

where there are c classes, and p(X) =
∑c

y=1 p(y)p(X|y) [12]. Here p(y) represents the

prior probabilities of the classes. p(X|y) represents the class conditional probabilities for

all classes y = 1, 2, . . . , c [12]. p(X) is the distribution of the input data, and p(y|X) is the

target function or posterior which represents the relationship between the input features

and target variable we are trying to learn.

For example, suppose we have a stream of emails, and are interested in classifying

emails into two categories: spam, and non spam. The input distribution p(X) could

represent the distribution of features like email size, keywords, or the domain of the

sender’s address. p(y) represents the proportion of emails in each category - spam, and

non spam. p(X|y) would represent the distribution of input features conditioned on the

class label y spam or non spam. p(y|X) is the probability of an email being spam (or non

2.1 Concept Drift 9

spam) given its input features.

We refer to a concept as the target function of interest generated by a source S with

distribution DS. Two concepts are identical if the sources are the same. Formally concept

drift refers to a change in the target function p(y|X) between some time points t0 and

t1 such that the joint distribution pt0(X|y) between X and Y at time t0 is different to

the joint distribution at t1. That is pt0(X|y) 6= pt1(X|y) for some time points t0 and t1

[12]. Changes may occur in the class priors p(y), class conditional probabilities p(X|y) or

the input distribution p(X) which may or may not affect the classification p(y|X). There

may also be an arrival of new information such as new classes or concepts.

Gama et al. distinguish between two different types of concept drifts: real concept

drift, and virtual drift [12]. Real concept drift refers to changes in the target function

p(y|X) and a change in the decision boundary between classes. Whereas virtual drift

(also known as feature drift) refers to changes in the input data distribution p(X) that

do not affect the target function p(y|X) [12].

Using the same spam detection example above, there may be a feature drift if a larger

proportion of emails become longer. This does not necessarily affect the decision rules

that decide if an email is spam because although there is a change in the distribution

of email lengths the behaviour of spammers may be unchanged. If this is the case, the

learned model should remain valid and the learner’s accuracy should not be affected. A

real concept drift occurs if there is a change in what is considered spam and non spam.

For example spammers may actively change their behaviour to bypass filters so there is

a change in the relationship between features and the class label associated with spam

mail.

As virtual concept drifts do not alter the decision boundary, this review will focus

on work related to real concept drifts. In addition to this, there are four main types of

drifts identified in the current literature: abrupt, gradual, incremental, and reoccurring

concepts [12].

• Abrupt drift: A concept drift is said to be abrupt if there is an instantaneous change

in the data generation process from one concept to a different concept at time point

t. The new concept should persist for a period of time.

• Gradual drift: A gradual drift describes a slower speed of change where the replace-

ment of a concept occurs over a period of time. There is a period of fluctuation

between concepts from different sources where the proportion of examples from one

concept is slowly overtaken by another.

• Incremental drift: This form of drift is where there are many intermediate concepts

that change in a step-wise manner. The change between two neighbouring concepts

may be small, but the difference between two concepts with time stamps that are

10 Background and Related Work

Time

D
at

a
m

ea
n

(a) Abrupt drift

Time

(b) Gradual drift

Time

(c) Incremental drift

Time

D
at

a
m

ea
n

(d) Reoccurring drift

Time

(e) Outlier (not a drift)

Figure 2.1: Patterns of change in streaming data showing four types of concept drift.

further apart may be more significant. This is also referred to as gradual drift by

some researchers.

• Reoccurring concepts: Drifts with reoccurring concepts refer to changes where a

previously seen concept reappears at some later point in time.

Figure 2.1 shows a visual depiction of four drift types and an outlier on one dimensional

data assuming the source can be characterised by the mean of the data.

Most studies categorize concept drifts based on the speed of change, or the occurrence

of novel or previously seen concepts and focus on the efficient detection of drifts. However

little work has been done on identifying other characteristics of drifts such as the mag-

nitude [17] and the shape of drifts. Work in this direction may benefit data exploration

scenarios and provide insight into the underlying data generation process.

Here we will also make a distinction between reoccurring patterns which have been well

studied in the community, and reoccurring drifts in the streaming context. Reoccurring

patterns research in data streams is focused on identifying patterns or concepts that

have previously occurred. This is often used to learn reoccurring concepts more quickly

to improve the learning process. For reoccurring drifts we are interested in how the

concepts change, which is different to reoccurring patterns that use the concept model as

a pattern. This shares some similarities with motif matching in time series where patterns

of change in the variable of interest are mapped to other similar change patterns. Some

key differences between time series work and reoccurring patterns is that the former

is a regression task whilst the latter is a classification task which has a more complex

2.2 Drift Detectors 11

hypothesis space, and may be characterised in more ways. For example in addition to

magnitude, speed and rate of change, there may be ways to describe how the source

distribution has changed.

Other different but related areas of research include time series prediction, pattern

recognition in time series, and sequence classification. The main difference between work

in time series and classification in data streams is that the variable of interest in time

series is continuous (i.e. the regression problem) rather than discrete as in classification

[42]. In sequence classification the examples are sequences rather than instances, and

require all the training data to be available during the learning process [42].

Many types of approaches have been proposed to address concept drift, the main types

include (1) blind adaptation such as gradual or abrupt forgetting mechanisms, (2) change

detection, (3) adapting the learner [8], and (4) ensemble methods [38] [5].

2.2 Drift Detectors

Drift detection is an informed adaptive approach to the concept drift problem as they rely

on the explicit detection of changes. Drift detection algorithms are often coupled with

learners such as neural networks, naive Bayes, decision trees and K-nearest neighbours

(KNN) as a method of dealing with concept drift. The detectors work by detecting the

location of drifts which allows the learner to be readjusted. Drift detectors can be reac-

tive - able to alert when a drift occurs, and predictive - able to predict the time of future

drift occurrences. In contrast to methods that continuously adapt the learner and blind

adaptation methods such as fixed window abrupt or gradual forgetting mechanisms, drift

detectors can more accurately pinpoint the time of change and provide valuable informa-

tion on the underlying process that generates the data [12]. For example in credit card

fraud and intrusion detection it would be useful to be able to identify when and how the

malicious behaviour has changed [31]. However drift detection methods are often prone

to false positives, and do not cope well with noisy data.

Some desirable properties of a good drift detector are

1. Robustness to noise but with sensitivity to real changes

2. Fast detection of drifts

3. Be able to identify and respond to reoccurring concepts

4. Use limited memory and processing time

5. Require few user specified parameters

12 Background and Related Work

6. Provide statistical guarantees on performance

Parameters give us finer control on the drift detection process and often can not be

avoided during the abstraction process. Thus it is important to provide guidelines on how

to set parameters for different types of streams. Gama’s survey [12] groups drift detection

algorithms into four categories: sequential analysis [30], statistical process control [10] [2]

[31], monitoring of two distributions [4] [34] [1] [29] [32] [36] [22], and contextual meta

learning approaches. In our comparison of different drift detectors, the memory used

by the base classifier is ignored and only the additional memory used by the detector is

considered. The runtime of algorithms are given in terms of processing time per instance.

We will highlight the main contributions of previous work in drift detection below.

2.2.1 CUSUM

The CUMulative SUM (CUSUM) method is a sequential analysis technique that detects

changes by using the residue of the learner as input, and testing if there is a significant

departure from zero in the mean of the input data [30]. It uses the variable gt to store the

mean of the input at time t. When the mean is greater than a user defined threshold h

it raises an alarm indicating that a drift has occurred. It uses the following update rules

and condition for drift detection

g0 = 0, gt = max(0, gt−1 + xt − v) (2.2)

if gt > h then raise alarm, and set gt = 0, (2.3)

where xt represents the current observed value at time t, v is a parameter that determines

how much change is allowed, and h is the alarm threshold parameter.

The CUSUM approach is memoryless, but it uses an asymmetric test and assumes

changes occur only in one direction. As noted by Bifet et al. [6] this means it is only

able to detect increases in the monitored statistic (e.g. positive deviations from zero).

The accuracy of this method depends on the choice of parameters h and v. Increasing

the h parameter decreases the sensitivity of the detector requiring greater deviations for

a change to be detected but may be less susceptible to false alarms (smaller deviations

may be from noise). Lowering the v parameter allows faster detection of possible drifts,

but increases the false alarm rate. There is a trade-off between faster detection of changes

and allowing more false alarms.

2.2 Drift Detectors 13

2.2.2 PHT

The Page-Hinkley Test (PHT) is a variation on the CUSUM method that is used to

detect sudden shifts in Gaussian signals [30]. An important application of this method

is in signal processing. It records a minimum cumulative value (Gt) in addition to the

current cumulative value (gt). For an increasing signal, the conditions for flagging an

alarm and updating are

g0 = 0, gt = gt−1 + (xt − v), Gt = min(gt, Gt−1) (2.4)

if gt −Gt > h then raise alarm, and set gt = 0 (2.5)

For a decreasing signal, the equations become

g0 = 0, gt = gt−1 + (xt − v), Gt = max(gt, Gt−1) (2.6)

if Gt − gt > h then raise alarm, and set gt = 0 (2.7)

The accuracy of this method also depends on the parameters v and h [6]. An advantage

of using the Page-Hinkley method is that it is memoryless and has low computational

overhead with O(1) time complexity at time point t. In a comparative study by [33]

using synthetic data streams generated from Bernoulli distributions with a single drift

point, PHT has been shown to have low delay times which are comparable to ADWIN

and DDM, but has a high rate of false alarms.

2.2.3 GMA

The Geometric Moving Average (GMA) method is a sequential analysis method based on

the CUSUM test. It provides a way to weight the importance of previous data using a

forgetting factor (λ).

g0 = 0, gt = λgt−1 + (1− λ)xt (2.8)

if gt > h then raise alarm, and set gt = 0 (2.9)

Setting a higher λ value will give more importance to old data, whilst a lower value

will give more importance to the current observation xt. The threshold parameter h

is important for controlling the trade-off between faster drift detection and the number

of false positives. Similar to other sequential analysis methods (CUSUM, PHT), it is a

14 Background and Related Work

memoryless approach and only needs O(1) processing time and memory at time point t.

An advantage of this approach is that it allows the contribution of previous observations

to be controlled so more relevance is given to recent data. This is in agreement with the

common assumption in data stream mining that recent data has more relevance to future

data.

2.2.4 FLORA

The FLORA family of algorithms [39] uses the overall accuracy and coverage of the learner

as a measure of change, where a large decrease in accuracy suggests the occurrence of a

concept drift. It monitors the accuracy and coverage of the model to allow the window

size to be adjusted. A simple representation language of attribute-value logic without

negation is used to represent the data [39]. They use three sets to describe a concept:

accepted descriptors (ADES) containing positive examples, negative descriptors (NDES)

with negative examples, and potential descriptors (PDES) containing examples that are

too general (these may be positive or negative examples) [39].

Later implementations such as FLORA3 include capabilities for dealing with reoccur-

ring concepts, and FLORA4 improves on its ability to handle noise [39]. The algorithms

presented showed robust behaviour for synthetic datasets with abrupt drift, but the sim-

ple representation language restricts the types of data that it is applicable to, and is only

appropriate for data of small size [40].

2.2.5 DDM

The Drift Detection Method (DDM) proposed by Gama et al. [10] uses the error rate

of the classifier for drift detection. They assume that when a concept change occurs

there would be an increase in the classification error as newer instances generated from a

different distribution may be misclassified by the current model [10]. It records the current

mean error rate pi, and error standard deviation si as well as the minimum values pmin,

smin as each new instance is seen [10]. A normal distribution is used to set the thresholds

as the number of errors approximates a Bernoulli distribution for samples sizes greater

than 30. This means that there is at least a delay of 30 errors until a drift is detected [21].

This method uses two thresholds: a warning threshold, and an alarm threshold (which

indicates there is a drift). The conditions for the raising the warning, and alarm signals

are defined as

pi + si ≥ pmin + α . smin (warning) (2.10)

pi + si ≥ pmin + β . smin (alarm) (2.11)

2.2 Drift Detectors 15

The authors suggest setting α to 2 for a 95% confidence of warning, and β to 3 for 99%

confidence of drift. Using the proposed modifications, the warning threshold becomes

pmin + 2 . smin and is updated with the arrival of new instances. A warning is raised when

the current value of pi + si is greater or equal to the warning threshold and subsequent

instances are stored in a warning window. If the error rate surpasses the drift threshold

of pmin + 3 . smin, an alarm is raised and the learner is retrained on instances stored in the

warning window and the minimum values pmin and smin are reset.

DDM has been shown to work well for detecting abrupt drifts, but may have trou-

ble identifying gradual drifts as gradual changes may be undetected if the error does

not surpass the threshold. An analysis done by Gonçalves et al. [21] on real and syn-

thetic datasets shows that DDM performed favourably on datasets affected by gradual

drifts based on accuracies and the average ranking. However in a study by Sebastiao et

al. [33], DDM has been shown to perform poorly in comparison to ADWIN, PHT and

FCWM detectors. In [33], DDM showed a high missed detection rate for data generated

from Bernoulli distributions, and high detection delays for abrupt drifts using the SEA

Concepts benchmark. This highlights the main limitations of the drift detection method.

2.2.6 EDDM

The Early Drift Detection Method (EDDM) is a variation on the drift detection method

proposed by Gama et al. [10] and was designed to handle gradual concept drifts [2]. It

differs in that it uses the distance of the errors rather than the error rate as a measure of

change. Let p′i denote the mean distance between two consecutive errors, and s′i represent

its standard deviation. The conditions for triggering a warning or alarm are

p′i + 2 . s′i
p′max + 2 . s′max

< α (warning) (2.12)

p′i + 3 . s′i
p′max + 3 . s′max

< β (alarm) (2.13)

The main strength of this algorithm is the ability to detect slow gradual changes [21].

On the other hand it may be less resistant to noise, and is less effective for detecting

sudden changes. Hence it may have a high false alarm and miss detection rate for these

datasets as shown in the experiments of Gonçalves et al. [21] on datasets with abrupt

drifts. Similar to DDM, this method may have a delay of 30 instances in the best case

until a drift is detected due to the assumptions of the normal distribution approximation.

16 Background and Related Work

2.2.7 ADWIN

The ADaptive WINdowing approach (ADWIN) is a popular change detection method

based on comparing data distributions from two different windows via the use of an

adaptive sliding window [4]. The algorithm relies on the intuition that when two “large

enough” windows of data have “distinct enough” averages then the expected values and

hence source distributions will also be different [4]. They make three key assumptions

about the data: (1) each data point xi is a real value and can be scaled to [0,1] (the range is

known), (2) each xt is independent (does not depend on xt−1), and (3) each xt is generated

according to some distribution Dt. The input for the algorithm is a sequence of real

numbers x1, x2, x3, . . . and a user defined confidence bound δ ∈ (0, 1) which indicates our

confidence in the output. The authors use a binary sequence representing the classification

error of the learner as the input data to their algorithm [4].

The detection method works by finding two sub-windows of the window W that have

significantly different means. When two significantly different sub-windows are found the

algorithm indicates a concept drift has occurred, and the window size is decreased by

dropping the older sub-window. Otherwise the window size is enlarged when no drift is

detected. As the window grows when no change is detected, there is no upper limit to

the window size during long periods of stability - this leads to an unbounded memory

requirement (this problem is remedied in a later version of the algorithm ADWIN2 by

incorporating an upper bound on the window size). To test for distinct averages between

two sub-windows W0 and W1 with observed means µ̂W0 and µ̂W1 they use

|µ̂W0 − µ̂W1| ≥ εcut (2.14)

The value of εcut for partitioning window W is based on the Hoeffding bound, although

the authors note that other statistic measures could be used [4]. In their implementation

the εcut for partitioning the window W into two sub-windows W0 and W1 of lengths n0

and n1 respectively is defined as

εcut =

√
1

2m
. ln

4

δ′
(2.15)

δ′ =
δ

n
, where δ ∈ (0, 1), and n = n0 + n1 (2.16)

m =
1

1/n0 + 1/n1

(2.17)

However, the authors observed that the definition of εcut in Equation 2.15 is too conser-

vative and overestimates the probability of large deviations in distributions with small

2.2 Drift Detectors 17

variance. They suggest using a less rigorous bound with Bonferroni correction in practice

(given below).

εcut =

√
2

m
.σ2

W . ln
2

δ′
+

2

3m
ln

2

δ′
, where σ2

W is the observed variance in W (2.18)

The checking of sub-window cut points is the most computationally expensive part of

the algorithm. In ADWIN all large enough sub-windows are exhaustively checked. An

improved version ADWIN2 uses a more efficient way to find the cut point by using a

variation of exponential histograms as a data structure to provide exact counts of 1 bits

for O(logW) sub-windows [4]. The amount of memory required for sub-window counts is

comparable to the memory needed to keep counts for a single window W .

One limitation of the ADWIN2 approach is that it may require more memory than

sequential or statistical approaches as it has a time and memory complexity of O(logW)

compared to O(1) for the other approaches [12]. In comparison to statistical process con-

trol methods, it may give more precise information about the location of the concept drift

[12], but requires multiple passes due to the generation of potential cut points with the

arrival of new instances. An advantage of this approach is that it requires no parameters

in addition to the confidence bound δ so does not require extensive parameter tuning.

It has strict guarantees on the false positive and negative rates, and has been shown to

outperform statistical process control methods and PHT in terms of detection delay and

false positive rates [33]. The average delay time when handling data with gradual drifts is

higher than that of abrupt drifts but is comparable to the delay times achieved by DDM

and PHT [33]. Let µt represent the true mean at time step t, given that µt is constant

in window W , the probability that a change is detected is at most δ [4]. Therefore the

false positive rate is bounded by δ. A similar argument follows for the false negative

rate: suppose some partition W0W1 has true means that are significantly distinct, the

probability of change detection (shrinking the window to W1 or shorter) is 1 − δ [4]. So

the probability of a false negative (missed detection) is bounded by δ.

Whilst this approach has many strengths, in the best case it has a delay of W in-

stances before a drift is detected, as well as a higher time complexity and memory cost

than statistical process control and sequential analysis methods. However experiments by

Gonçalves et al. [21], Bifet and Gavaldà [4] show that the runtime is lower than all other

algorithms included in the studies.

2.2.8 Re-Pro

In [40] and [41] the authors develop an algorithm (Re-Pro) that is both proactive and

reactive. For drift detection they adopt a sliding window strategy with two parameters -

18 Background and Related Work

a window size, and an error threshold for drift detection, where the first instance in the

window is always a misclassified instance. If the window is full and the error rate exceeds

the error threshold, then the detector suggests a concept drift has occurred and the first

instance is flagged as the trigger. Otherwise the window slides to the next misclassified

instance. The main contribution of their paper is the use of a proactive mode that is

used to predict the new concept when a change occurs. In proactive mode, the concept

history is stored as a Markov Chain and a transition matrix is built by updating the

probability of an alternate concept following a candidate concept [40]. This can be used

to find the most probable future state given the previous stable concept. The agreement

of class labels between two concepts on current data D is used as a measure of conceptual

equivalence to prevent redundant concepts from being stored. The reactive mode works

by retrieving the historical concept with the highest accuracy on instances in the trigger

window. After a drift is detected, if both the proactive and reactive modes give models

with low accuracy the system concludes the new concept is very different to the historical

concepts and can train a new classifier using the data in the trigger window.

Experiments from [40] showed that the Re-Pro system has low error rates and is able

to adapt quickly to concept change for gradual and abrupt drifts. For synthetic datasets,

the Re-Pro approach outperforms ensemble methods (WCE and DWCE) and the concept

adapting very fast decision tree (CVFDT) [40]. It has also been shown to adapt well to

one real world dataset (the Network Intrusion dataset) and is comparable to CVFDT in

terms of the error rate [40].

2.2.9 STEPD

Nishida et al. propose a drift detection method (Statistical Test of Equal Proportions)

based on comparing the accuracy of the most recent W examples with the overall accuracy

of the classifier from the beginning of the learning process [29]. They assume a concept

is stable if the accuracy of the most recent W examples is equal to the overall accuracy,

and a significant decrease in the accuracy of the recent examples indicates a concept drift

[29]. To test if there is a significant decrease between the two accuracies a Chi-square test

with Yates’s continuity correction is performed by computing

T (ro, rr, no, nr) =
|ro/no − rr/nr| − 0.5(1/no + 1/nr)√

p̂(1− p̂)(1/no + 1/nr)
(2.19)

where ro is the number of correct classifications in the overall no examples excluding the

recent W examples. nr is the number of recent examples (nr = W), rr is the number of

correct classifications in the recent W examples, and p̂ = (ro + rr)/(no + nr). The value

of T is then compared to the percentile of the normal distribution to obtain a P-value P

which represents the observed significance level [29]. The null hypothesis is that there is

2.2 Drift Detectors 19

no difference between the overall and most recent accuracy (H0 : ro/no = rr/nr). The

alternate hypothesis is that there is a decrease in accuracy when comparing the overall and

most recent examples (H1 : ro/no > rr/nr). The detector is only able to start detecting

drifts after at least 2W examples are seen (when the condition no + nr ≥ 2W is satisfied)

[29]. If the P-value P falls below a significance level then the null hypothesis is rejected

and the alternate hypothesis is accepted suggesting a concept drift. Similar to DDM and

EDDM it uses two thresholds: a warning threshold (αw), and an alarm threshold (αd).

When the warning threshold is reached P < αw, examples are stored in a short term

memory in anticipation of a drift. If P < αd the detector indicates a drift has occurred,

the classifier is retrained on the stored examples and all variables are reset. Otherwise if

P ≥ αw the stored examples are cleared from memory.

Results from their experiments [29] suggest that the STEPD drift detection method

works best on abrupt drifts in terms of number of true positives (correct identification

of the change point), false negatives (miss detections), and error rate. For gradual drifts

they showed that the performance of STEPD is comparable to EDDM in terms of true

positives but with less sensitivity to noise as STEPD has much fewer false negatives than

EDDM in all synthetic streams except the hyperplane stream with very gradual drift

using Naive Bayes as the classifier [29]. In [21] this method was shown to have low miss

detection rates, and low false alarm rates which is consistent with the original paper [29].

They also showed it is very effective at locating abrupt drifts, and almost always detects

drift within the same time step [21].

2.2.10 PL

The Paired Learners (PL) [1] method uses two learners - a stable and a reactive learner

and uses the approach of monitoring distributions from different time windows. The

stable learner S is a classifier that makes predictions based on all of its experience, and

the reactive learner RW makes predictions using the most recent window of W examples

[1]. It uses training data as the input to the algorithm and has two parameters: W - the

window size of the reactive learner, and θ - the threshold for creating a new stable learner.

The idea behind the algorithm is that when the reactive learner is able to make better

predictions than the stable learner, the model learned by the stable learner is outdated

and should be replaced. To achieve this they use a circular list C of size W , and process

each instance in the following way:

Suppose an instance arrives at time point t. Let ŷS be the prediction from the stable

classifier S, let ŷR be the prediction result from the reactive learner RW , and yt be the

correct label available at a later time. If the stable learner incorrectly classifies the instance

that the reactive learner correctly classifies ŷR = yt AND ŷS 6= yt, then the tth bit in the

list C is set to one. Otherwise the tth bit is reset to zero. The condition for detecting

20 Background and Related Work

drift is

Set(C) > θ, (2.20)

where Set(C) is the proportion of 1 bits in list C. When the proportion of bits exceeds

the threshold θ a drift is detected. Following the detection of a drift, S is replaced with a

new learner, all bits in C are reset, and the concept description is set to RW ’s description.

For the stable learner an online implementation of Naive Bayes was used. However as

the reactive classifier learns from the most recent examples it needs to be continuously

updated, the authors propose two ways to achieve this: (1) by rebuilding the learner’s

model with the most recent W examples, and (2) using a retractable learner to unlearn

the oldest instance in the window and incorporate the newest instance into the model [1].

The first method is more general, but requires more time which increases with W [1]. The

latter method can be easily implemented using the Naive Bayes classifier, but does not

work for all learners. Smaller window sizes allow more rapid detection of abrupt drifts at

the expense of an increased false positive rate.

The processing time required at time t is O(W) if the reactive learner is completely

retrained at every time step, otherwise the processing time is O(1) if the reactive learner

is retractable. The memory required is O(W). The detection delay in the best case is

θ ·W instances and depends on both W and θ. In the original paper [1] this method

was compared to a range of ensemble approaches (DWM, SEA, AWE), and was shown to

achieve comparable performance using less memory. In [21], the paired learners method

was shown to have the lowest accuracy for most synthetic streams with gradual drifts

compared to seven other detectors (DDM, EDDM, PHT, STEPD, DOF, ADWIN, and

ECDD). However, this method shows promise in the detection of abrupt drifts as it is able

to identify drift points close to the location of the real concept change for datasets with

abrupt drift [21]. Although parameter tuning was performed in an attempt to find the

best settings [21], it is difficult to control the false alarm rate and achieve fast detection

at the same time. Further work could be done to improve the false alarm rate of this

detector.

2.2.11 FCWM

The Fixed Cumulative Windows Model (FCWM) algorithm [34] monitors distributions

from two different windows: a reference window representing the distribution from past

observations, and a current window which represents the most recent data. To detect drift

the distributions in the two windows are compared using the Kullback-Leibler divergence

(KLD) to evaluate the distance between the two distributions. They use histograms as

an estimator of the current most relevant distribution through the use of the Partition

2.2 Drift Detectors 21

Incremental Discretization algorithm [11] designed for high speed data streams.

First the data from the two windows are summarized using the Partition Incremental

Discretization algorithm. Let p represent the probability distribution of the reference win-

dow, and q represent the distribution of the current window. The condition for detecting

drift is

|KLD(p||q)−KLD(q||p)| > λ, where λ is the drift threshold (2.21)

The Kullback-Leibler divergence is computed by

KLD(p||q) =
∑
i

p(i)log2p(i)/q(i), (2.22)

where p(i) and q(i) are the empirical probabilities. The Kullback-Leibler divergence is

asymmetric (KLD(p||q) 6= KLD(q||p)), and is equal to zero when p(i) = q(i). A small

difference between KLD(p||q) and KLD(q||p) indicates that the distributions p and q are

similar. The authors suggest using a drift threshold λ of 1% for the 99th percentile, or 5%

for the 95th percentile [34]. When no change occurs the reference distribution is updated

using the new data points, otherwise when a change is detected an alarm is raised and

the reference data is cleared.

This method has been shown to have high detection delays compared to DDM, AD-

WIN, and PHT when tested on synthetic datasets with abrupt drift as well as gradual

drift [33]. Compared to sequential analysis, and statistical process control techniques it

requires more memory and time for processing data, but it offers more detail about the

distribution of the concept which may be better for visualization. Furthermore the gran-

ularity of the histogram summaries can also be controlled by a parameter that acts as a

constraint on the relative error (ε - the upper bound for the relative error) [34].

2.2.12 EWMA

The Exponentially Weighted Moving Average algorithm by [31] is a statistical process

control method that uses an exponentially weighted moving average chart to monitor the

classification error rate. An exponentially moving average chart is a control chart for

determining when a process is in control. It is more suitable for detecting small changes

in the process [23] and the authors aim to use this for detecting abrupt drifts. Suppose

the mean is µ0 before the change point and µ1 afterwards. Let µt be the mean at time t.

This is estimated by down-weighting older data

Z0 = µ0, Zt = (1− λ)Zt−1 + λet, t > 0, (2.23)

22 Background and Related Work

where et is the error at the current example. The mean of Zt is µzt and the standard

deviation is σzt. The trigger condition is

Zt > µ0 + Lσzt, (2.24)

where L is the control limit. This advantages of this approach are that it only requires

a single pass through the data, has low computational overhead O(1) per instance, and

allows the rate of false positives to be controlled [31]. Experiments on synthetic data in the

original paper [31] show its performance is comparable to the Paired Learners approach

for streams with abrupt drifts in terms of accuracy, but is outperformed by the Paired

Learners algorithm for streams with gradual drifts.

2.2.13 OnePassSampler

In [32], Sakthithasan et al. develop an efficient one pass algorithm for change detection.

They use the Bernstein inequality as the bound for their test statistic. The main ad-

vantages of their algorithm is that it is single pass, has low false positive rates that are

comparable to ADWIN2, and has lower computational overhead compared to other algo-

rithms that use windowing approaches [32]. However it was shown to have much higher

detection delay times than ADWIN2 [32]. This difference in delay times appears to be

more prominent for data with more gradual changes.

2.2.14 SEED

In [17] Huang et al. propose a drift detection algorithm, SEED, which builds on the ideas

used by ADWIN2 [4], but uses blocking and data compression techniques to improve the

runtime and memory usage. Compared to ADWIN2, this detector is comparable in true

positive rates but has lower computational overhead and false positive rates.

SEED reads data in as blocks of size b, and uses the block boundaries as potential drift

points. It keeps a sliding window of t blocks W = (B1, B2, . . . , Bt), where Bi represents

a block. Like ADWIN2, it attempts to find two sub-windows WLWR of W that have

distinct averages. They assume this corresponds to the two sub-windows having different

expected values suggesting a concept drift. When a drift is detected, the left sub-window

is dropped from the sliding window. Let µ1 be the population mean of the left sub-window

WL, and µ2 be the population mean of the right sub-window WR. The test statistic εcut

used for hypothesis testing (H1 : µ1 6= µ2) is computed using the Hoeffding inequality

with Bonferroni correction 2.18 from [4].

A block compression scheme is used to compress homogeneous blocks to reduce the

number of potential drift points and the amount of memory used [17]. This test is per-

2.2 Drift Detectors 23

formed by analysing the difference in means between the two boundary blocks µBt and

µBt+1. If |µBt − µBt+1| < ε′ the two blocks are said to have the same underlying distri-

bution and can be merged into a single block. The value of ε′ is computed using a linear

function ε′t = ε̂ . α . t, where t is the relative arrival time, ε̂ is the base value (typically a

small number) and α ∈ (0, 1) is a growth parameter controlling the magnitude of linear

increments.

Results from experiments using synthetic data generated from Bernoulli distributions

with varying levels of gradual drift and no drift showed that the SEED detector achieves

comparable performance to ADWIN2 in terms of false positives and detection delay. The

algorithm always has faster execution times than ADWIN2, and requires less memory

than ADWIN2 in most cases [17].

Detectors based on monitoring two distributions may be more precise at locating the

point of change, but have an increased memory and processing time cost compared to

statistical process control or sequential analysis methods. In addition to this they are

often not single pass algorithms or suffer from an increase in detection delay. Methods

based on control charts are memoryless and efficiently process instances with O(1) over-

head but either have trouble dealing with gradual drifts or controlling the false positive

rate. Sequential analysis approaches are also memoryless and fast with low O(1) process-

ing overhead but the main limitation is the difficulty in controlling the false positive rate

whilst achieving low detection delay. Most detectors are able to identify abrupt drifts,

but few detectors cope well with gradual concept drifts. Thus slow changing concepts

present a challenging problem for change detectors.

Many drift detectors [10] [4] rely on changes in the classification error rate as an

indication of concept drift and can not directly handle multidimensional data. Though

Kuncheva points out that these univariate change detection methods are often statistically

sound [25]. A large proportion of current detectors are purely reactive in nature, and do

not have inbuilt capabilities for future drift prediction. The work of Yang et al. [40]

was the first to introduce the idea of predicting future concepts. This is an important

direction for future studies as it may facilitate better decision making and prevention

strategies in some applications. The performance of detection techniques depends on a

number of factors: (1) the choice of parameters, (2) the structure of the algorithm, (3) the

characteristics of the data, and (4) the assumptions about the future including expected

patterns of change. A comparative study by Gonçalves et al. showed that different

detectors work well in different situations [21].

Gao et al. [13] criticise current work for having assumptions that are often too strong.

They challenge the shared distribution assumption which states that the testing and

training data comes from the same distribution. Although detectors have been developed

24 Background and Related Work

to react to change, the core assumption that the most recent data is closest to future data

still holds so the delay is inevitable. Many techniques assume that there is no temporal

dependence in the data. While this may be true in some situations, it is likely that there

are some dependencies on previous examples or events in streaming data [42]. There are

few studies that take temporal dependence into account. Current drift detection methods

are focused on the two class classification problem, and it is unclear how they would

perform under the multi-class setting.

2.3 Reoccurring Concepts

Reoccurring concepts relate to models that reoccur over time. For example, suppose we

are interested in modelling seasons. The models would represent the different seasons,

such as spring, summer, autumn and winter which reoccur annually. Research on reoc-

curring concepts aims to build a history of previously seen concept models, and reuse

these historical models when similar concepts reoccur in the future. This is different to

the characteristic of changes which we will discuss in the next section.

Many proposed algorithms such as [39] and [40] have capabilities for handling reoc-

curring concepts. Usually ensembles or meta-learning strategies are applied. FLORA3

[39] is the first adaptive learner to address this. In [15] Gonçalves and Barros present a

framework (RCD) for detecting reoccurring concepts by creating a collection of classifiers.

Each classifier has an associated buffer with examples that were used during training. The

current concept is monitored using a classifier and drift detector with a warning and alarm

state. When the detector enters the warning state a new classifier with a buffer is created

and updated. If the error rate of the new classifier surpasses the warning threshold a

statistical test (e.g. KNN in [15]) is performed to compare data in the new buffer and all

stored buffers to determine whether the concept is an old or new concept. This approach

can deal with both categorical and numerical data and showed improvements in accuracy

compared to single classifier approaches [15]. In [14] the Cramer test is proposed as the

test statistic for the RCD framework and showed it is comparable to using the KNN test.

Gama and Kosina [9] propose a two layer meta-learning approach that uses a base classi-

fier and referee classifier. The base learner makes predictions as soon as examples arrive,

and the referee learns the feature space that the base learner accurately predicts once

class labels are available [9]. It chooses the model from a pool of models with referees by

using the referee’s prediction about the base learner expressed as a confidence score, given

the score is above a user defined threshold. Otherwise the current model is updated until

drift is detected [9]. The main advantage of [9] is that it is able to select similar concepts

from its history regardless if true class labels are available in the examples. Work by

[37] uses the Discrete Fourier Transform to compress and capture decision tree classifiers

2.4 Characterization of Concept Drift 25

for identifying reoccurring concepts. It has been shown to be more robust to noise and

outperforms [9]’s approach in terms of accuracy [37].

2.4 Characterization of Concept Drift

In contrast to reoccurring concepts research which relates to models that reoccur, research

on the characterization of concept drift aims to study the nature of the changes. There

are currently two streams of research on the characteristics of concept change. The first

relates to the magnitude of change which is referred to as the drift severity. The second

relates to the rate of concept change which is referred to as drift volatility. In this section

we will review the formal definitions of these characteristics and discuss how these have

been applied to drift detection methods.

2.4.1 Drift Severity

Kosina et al. [24] define two measures which they call drift rate, and drift severity that

can be used to describe how much change a concept undergoes after a drift. The main

contributions of their work are that they provided a simple metric capable of describing

the amount of change between two consecutive concepts during concept drift that is

compatible with any detector that uses two thresholds for control (e.g. warning and

alarm levels). They use the definitions of drift rate from [3] and drift severity from [27].

Drift Rate: The drift rate is the probability that two consecutive concepts give

different labels to a random example. Let ft be the target function of the concept at time

t, and assigns a label to the example xt ∈ X : ft = X → {0, 1}. In this notation, the drift

rate can be written as Prob(ft 6= ft+1).

Drift Severity: The severity of drift is the proportion of examples in the input space

that have their labels changed after a concept drift occurs. Suppose Ci and Ci+1 are two

consecutive concepts, and are from the same input space S. The severity of drift is the

percentage of S that has its class label changed after concept drift.

They designed their metric to make use of detectors with a warning and alarm state. A

detector enters a warning state when the warning threshold is surpassed which suggests

there may be a drift in the future. Once the alarm threshold is reached, the detector

enters the alarm state signalling that a drift has occurred. As the warning state suggests

that a change is occurring they keep counters of the number of examples processed and

the number of misclassified examples during the warning period. When the alarm state

is reached the severity metric is computed as

Mw

Tw
, (2.25)

26 Background and Related Work

where Mw is the number of misclassified examples during the warning period, and Tw is

the total number of examples observed in the warning period. If the detector does not

reach the alarm state after being in the warning state, then the metric is not computed

and it is treated as a false alarm [24].

Application of Drift Severity: The drift severity metric was applied to two different

detectors DDM [10] which has two thresholds, and a modified version of PHT. To compute

the drift severity metric the PHT detector [30] was modified to include two thresholds

λw for warning, and λd for alarm. PHT was coupled with a Naive Bayes learner, and

DDM was combined with two different learners Naive Bayes, and Hoeffding Tree. Nine

synthetic datasets (including SEA, LED, STAGGER) from related literature were used.

Both gradual and abrupt drifts were examined, and the synthetic data was constructed

such that the true drift points were known. To show the validity of their severity metric

it was compared with a different metric that measures the difference between concepts.

We will refer to the severity metric as SM the alternate metric as SM ′. Their results

showed a high correlation between the alternate metric SM ′ and their proposed metric

SM [24]. This is in agreement with their expectations as both metrics measure difference

between concepts. However this has not been evaluated on real datasets so it would be

useful to include this in future studies to show the relevance to real world data.

Monitoring drift severity could reveal important information about the size of changes

in streaming data [24], but has received relatively little attention in concept drift research.

The authors also suggest that their proposed metric could also be used for comparing the

behaviour of algorithms on different datasets [24].

2.4.2 Drift Volatility

Huang et al. [17] propose a metric called drift volatility which describes the rate of concept

change. They develop a volatility detector for detecting changes in drift rate that is fast

and accurate [17]. The volatility detector is an extra layer on top of drift detection that

uses the drift detector’s output for finding changes in volatility. Definitions for the drift

volatility metric, and volatility shift from [17] follow below.

Drift Volatility: The volatility of a stream describes the rate of concept change.

This is defined as the length between consecutive change points which are identified by a

drift detector [17].

Volatility Shift: A volatility shift is where there is a change in the volatility of

the stream. Let C1 = (c1, . . . , ck) and C2 = (ck+1, . . . , ct) be a sample of drift points

from the stream. Let pi represent the interval between consecutive drift points ci and

ci+1. Suppose two volatility windows P1 = (p1, . . . , pk) and Pk+1 = (pk+1, . . . , pt−1) have

sample variances of σ1 and σ2 respectively. We say there is a shift in volatility when
σ2
σ1

≶ 1.0± β, where β is a user defined threshold [17].

2.5 Datasets 27

The volatility detector takes a sequence of real numbers p1, p2, . . . , pt representing the

interval lengths between drift points found by the drift detector as input. It uses a buffer

and a reservoir. The buffer is a sliding window that keeps the most recent intervals,

and the reservoir stores samples that represent the overall stream. As the window slides

along the oldest interval is removed from the buffer and replaces a random sample in the

reservoir. To detect for shifts in volatility they compare the variance in the buffer and

reservoir using the relative variance measure σB
σR

, where σB is the variance of the buffer

and σR is the variance in the reservoir. Let β ∈ [0, 1] be a user defined tolerance threshold.

If σB
σR

≶ 1.0±β, then the volatility detector concludes there is a shift in volatility. Setting

a low β value will allow small changes in volatility to be detected, whereas a high β value

will be less sensitive and more suitable for detecting large changes in volatility [17].

Analysis of true and false positives were performed using synthetic Bernoulli streams

where the volatility levels and shifts were controlled. They demonstrated that combining

the volatility detector with SEED has low false positive rates and gives lower delays in

volatility detection than in the case where it is combined with ADWIN2 [17]. Applying

their technique to real datasets (Sensor Stream, Forest Covertype, and Poker Hand) they

were able to show that volatility shifts are present in real world data streams [17]. From

the plots in [17] it can be observed that the drift volatility and its patterns of change

differs from stream to stream. They propose that information about the volatility of

the stream can be useful in predicting future change points and may enable users to be

proactive rather than reactive [17]. Furthermore this may also facilitate the development

of a faster reacting drift detector [17].

Application of Drift Volatility: To show the significance of drift volatility, the

authors apply their idea of drift volatility to improve the performance of drift detectors. In

[16], Huang et al. apply this to ADWIN2 by adaptively adjust the drift bound according to

the probability of drift. They compute the probability of drift using the average volatility

of the stream. The novelty of their approach is the use of the historical drift rate to

adaptively adjust the drift bound.

2.5 Datasets

In this section we describe some synthetic and real datasets that are commonly used as

benchmarks for drift detection and adaptive learning algorithms.

2.5.1 Synthetic Datasets

Synthetic datasets allow the characteristics of change such as the speed of drift and

severity of drift to be controlled. This enables researchers to analyze the performance of

28 Background and Related Work

their algorithms on different types of concept change. We describe three types of synthetic

datasets: Bernoulli [33], SEA Concepts [24], and CIRCLES [10].

Bernoulli

A Bernoulli generator [33] generates binary streams that are used to simulate the error rate

of a classifier. Each instance represents the classification outcome where a 1 represents a

classification error, and a 0 represents a correct classification. It assumes that a classifier

generates errors with a mean probability of P , and correct classifications with a probability

Q = 1 − P . This is modelled as a Bernoulli trial with mean P , where the probability of

success corresponds to the classification error rate. The probability mass function for a

Bernoulli distribution is

P (X = x) =

Q if x = 0

P if x = 1
(2.26)

Abrupt drifts can be simulated by changing the mean, P , of the Bernoulli generator.

Gradual drifts can be simulated by gradually increasing the mean P by a slope of s ∈ (0, 1)

in the last T time steps. Usually T is set to 1000 time steps and the slope value is chosen

between 0.0001− 0.0004 [33].

SEA Concepts

SEA Concepts [24] are data streams with instances that have attribute and value pairs,

and are often used to represent a binary classification problem. Each instance has three

numeric attributes f1, f2, and f3 with values between 0 and 10, and a class label y ∈ {0, 1}.
Only the last two attributes are relevant to the class of the instance. An instance has label

class 1 if f2 + f3 ≤ θ, and class 0 if f2 + f3 > θ, where θ is a threshold parameter. This

divides the class of the instances linearly into two sections. Concept drifts are simulated

by changing the threshold parameter θ.

CIRCLES

CIRCLES streams [10] have concepts that are represented by a circle. Each instance

has a class label and two numeric attributes x and y that can take values between 0

and 1 which represents its position on a two dimensional space. The concept is defined

by a circle centered at (cx, cy) with a radius of r. Instances that fall within the area

inside of the circle are labelled as class 0, and instances outside of the circle are labelled

as class 1. This can be used to represent a binary classification problem that is more

difficult to learn than SEA Concept streams. Concept drifts are simulated by changing

the attributes associated with the circle concept such as the center position (cx, cy) or the

radius r.

2.5 Datasets 29

2.5.2 Real Datasets

Real datasets are often more complex than synthetic datasets, and can be used to explore

the applicability of algorithms in real scenarios.

Forest Covertype

The Forest Covertype dataset [6] has 581,012 instances, 54 attributes and a class label

that represents the forest cover type of a 30 x 30m area. The data was obtained from

the US Forest Service (USFS) Region 2 Resource Information System (RIS). Each in-

stance contains information such as the elevation, slope and soil type of the area. The

classification task is to predict the type of forest cover given cartographic information.

Pokerhand

The Pokerhand dataset [6] has 1,000,000 instances, 11 attributes and a class label which

represents the “Poker hand”. Each instance represents a hand containing 5 cards and has

information such as the rank and suit of the cards. The classification task is to predict

the type of hand a player has.

Airlines

The Airlines dataset [19] has 539,383 instances, 7 attributes and a class label that repre-

sents whether a flight is delayed. Each instance represents a single flight with information

such as the day, month and destination. The data was collected from arrival and depar-

ture flights in the US between October 1987 and April 2008. The classification task is to

predict whether a flight will be delayed.

30 Background and Related Work

3
Tracking Drift Severity

In the previous chapter we reviewed the main concepts and discussed related work in

the area. In this chapter we introduce a method for detecting the magnitude of concept

changes. This chapter is organised as follows. Section 3.1 presents the motivation of our

work. Section 3.2 reviews some terminology relevant to this chapter, and highlights the

design objectives. We introduce our algorithm in Section 3.3 and discuss the details of

our technique in Section 3.4. In Section 3.5 we describe possible alternative approaches.

Section 3.6 presents our experimental results, and Section 3.7 concludes this chapter.

3.1 Introduction

Mining unbounded high speed data streams is very challenging for a number of reasons.

Firstly the high speed and volume of data makes it infeasible to store all the data in

memory which poses significant memory and time constraints on the algorithms. The

speed of data arrival limits the number of passes through the input data, and makes

traditional multipass algorithms unsuitable for the streaming environment. Secondly

stream mining algorithms should be anytime algorithms where predictions can be made

at any point in time.

One unique property of data streams is the possibility of changes in the underlying

model over time. This is referred to as concept drift. In particular, we are interested in

characterising how large these changes are which we refer to as drift severity. The main

31

32 Tracking Drift Severity

advantage of detecting drift severity is it gives an indication of the size of concept change

which allows responses to be better adapted to the current situation.

For example, change mining techniques may be applied to data from a range of sources

to identify the onset of viral outbreaks in a population. Such monitoring could be benefi-

cial to public health by providing an indication of when episodes occur and how severe an

outbreak is likely to be. This allows preventative and responsive measures to be taken.

For example, stocking medicine or vaccinating high risk groups. Thus it is important to

be able to detect and react to these changes in a timely manner.

Most existing work in drift detection focuses on accurately and efficiently finding true

drift points whilst minimising the delay time of detection. However they are unable to

detect drift severity. There has been relatively little work that addresses the problem of

drift severity, and how to accurately measure the magnitude of concept drift for streams

with different characteristics. One of the challenges in measuring drift severity is that

it is difficult to define a measure to directly compare classifiers before and after change.

Recently [24] introduced a metric for measuring drift severity and presented a technique for

detectors that use statistical process control. It has been shown to be effective at tracking

changes of large magnitudes, and at high speed but performs poorly for more gradual and

less severe changes [24]. We will attempt to address these issues by developing a drift

detector with the capability for severity detection and a greater sensitivity to smaller

changes. Our main focus will be on streams with gradual change. In this chapter, we

discuss our proposal of a new drift detector, MAGSEED that is able to accurately capture

drift severity.

3.2 Preliminaries

Let us revisit some definitions from Section 2. Recall that concept drift refers to a change

in the concept function that generates the data. Suppose we are interested in classifying

the type of flu a patient has based on their symptoms. For simplicity lets assume that

our data has two attributes that represent symptoms and a class label that represents the

strand of flu. We show an example of this data in Table 3.1, where each row represents the

diagnosis of a patient. The attributes “Fever” and “Headache” can take two values “Yes”

which indicates the presence of the symptom, and “No” which indicates the absence of

the symptom in a patient.

Definition 1 (Concept Drift) A concept drift is a change in the concept function re-

sponsible for the generation of data, where a concept function maps input to class labels.

Let Figure 3.1 represent a concept function that maps patient symptoms to their flu

type. The nodes on the left represent the possible symptoms a patient could have in the

3.2 Preliminaries 33

Table 3.1: Example of patient data

Fever Headache Type of Flu
Patient 1 No Yes Flu B
Patient 2 Yes Yes Flu B
Patient 3 Yes No Flu A
Patient 4 Yes No Flu A
Patient 5 No No Non Flu

Concept 1

(Y, N)

(Y, Y)

Flu A

Flu B
(N, Y)

(N, N) Non Flu

Figure 3.1: Example of a concept function

Concept 2

(Y, N)

(Y, Y)

Flu A

Flu B
(N, Y)

(N, N) Non Flu

Figure 3.2: Example of a different concept

form of a vector. This is the input space. The first element of the vector corresponds

to the “Fever” symptom, and the second corresponds to the “Headache” symptom. For

example the vector (Y, N) indicates the presence of a fever and the absence of a headache.

The nodes on the right are the possible flu class labels, Flu A, Flu B and Non Flu. The

arrows represent a mapping from the attribute values to the class labels. We refer to

Figure 3.1 as a concept. In this concept, a patient with only a fever will be diagnosed

with Flu A.

A concept drift is a change in concepts, for example from Concept 1 in Figure 3.1 to

Concept 2 in Figure 3.2. The difference between the two concepts is illustrated by the

dashed arrows. In Concept 1 a patient with only a fever would be classified as having

Flu A, but in Concept 2 this patient would be classified as having Flu B. The drift severity

or magnitude is the size of the concept change. In this example, the drift severity is the

percentage of the possible symptoms that have a different flu type after the change which

is 2/4 = 50%. We give the formal definition of drift severity in Definition 2.

Definition 2 (Drift Severity) The drift severity or drift magnitude is the size of a

concept change. Given the concept function changes from ft to ft+1, the drift severity is

the percentage of the input space that is mapped to different class labels in ft and ft+1.

Drift detectors use drift bounds for finding out when a concept change has occurred.

These drift bounds are often formalized as statistical tests which test for significant in-

creases in the error rate of a model. This can be illustrated by the dashed line in Figure 3.3.

When this bound is surpassed the detector signals a drift indicating the possibility of a

real change. We refer to the first drift detected after a real change as a true positive. In

34 Tracking Drift Severity

0

0.1

0.2

0.3

0.4

Er
ro

r
ra

te

Time

Error rate Warning bound Drift bound Real change

T2

T3

T
R

T
1

Figure 3.3: Example of warning detection and drift detection

our example, a true positive is detected at time T3. A drift that is detected after T3 or

before the true change at TR is referred to as a false positive because there is no change

occurring at these points. The detection delay is the number of time steps between the

true change and the detection of a true positive drift. In Figure 3.3, the delay is T3− TR,

where TR is the time of the true change.

Definition 3 (True positive) A true positive is the first drift detected by the detector

that occurs after the true drift point.

Definition 4 (False positive) A false positive is the detection of a drift before the true

drift point, or after a true positive when there is no concept change.

Definition 5 (Detection Delay) The detection delay is the number of time steps after

the true drift point that a drift was detected.

Only using a drift bound does not give us enough information to compute the severity

of change because it only tells us that a change is likely to have occurred. We could use

the error rate to estimate the drift severity, but in order to do this we need to define a

time period to compute this over. Using a time period that is too large may include the

non changing period which would have a dampening effect, whereas using a period that

is too small could decrease the accuracy of our metric because of the small sample size.

For example, suppose we observe the error rate of our model to be

0001 1010 0011 0100 1110,

3.2 Preliminaries 35

where a 1 represents a classification error, and 0 represents no error. We have grouped the

error rate values for readability. Suppose we know the true change occurs after making ten

observations and the real drift severity is 60%. If we use all the observations to compute

the drift severity, we get a computed severity of 9/20 = 45%. If we use a smaller period,

such as the last six observations the computed severity becomes 3/6 = 50%.

If we are able to identify a time period where the concept is changing, we can use the

percentage of mistakes made by our current model in this period to estimate the drift

severity [24]. This can be achieved by introducing a warning bound that aims to identify

the start of a change period. A warning bound should be more generous than a drift

bound. In Figure 3.3 we show an example of a drift bound and a warning bound. The

first warning detected at time T1 occurred too early, before the true change so we refer to

this as a false warning. The second warning at time T2 is detected after the real change

so we refer to this as a true warning. If we did not detect a warning prior to a drift, this

means we have missed a warning.

Definition 6 (True warning) A true warning is a warning that was triggered between

the true drift point and true detection by the detector.

Definition 7 (False warning) A false warning is a warning that was triggered when

there is no concept change.

Definition 8 (Missed warning) A missed warning is the scenario where no warning

was triggered prior to the detection of a drift.

Design Objectives

A crucial aspect of our algorithm design is the choice of the warning and drift bounds.

This affects the algorithm’s ability to detect real changes as well as its robustness to noise.

Our aim is to develop a detector with the following properties:

• A high true positive drift detection rate

• A low false positive drift detection rate

• A high true warning detection rate

• A low false warning rate

• A low missed warning rate

36 Tracking Drift Severity

3.3 Overview

In this section we present an overview of our proposed drift detector, MAGSEED. Our

detector extends the SEED algorithm [17] which uses classification error as input data.

The novelty of our approach is that it allows the detection of drift severity. Our algorithm

has two parts: drift detection, and magnitude tracking. It has three possible states: (1)

no change - indicating there is no concept drift, (2) warning - in anticipation of a drift,

and (3) drift - signalling a concept drift has occurred.

Example: Suppose we observe a binary stream of classification errors, where 0 represents

correct prediction, and 1 represents error:

01101010011101110101001001111111

Our detector groups data into blocks of size b. Using a block size of 4, the data would be

grouped into blocks of size 4. Let the block boundaries be represented as spaces, and ti

represent time step i, the stream becomes:

0110 1010 0111 0111 0101 0010 0111 1111

t1 t2 t3 t4 t5 t6 t7 t8

Initially the detector is in the “No change” state, and arriving homogeneous blocks

are compressed. At time t2 the first two observed blocks are compressed, and the stream

becomes: 01101010. As a new instance arrives it is grouped into a new block. Suppose

at time t3, the small increase in the error rate causes a warning to be triggered but does

not trigger a drift. At this point, the detector would enter the “Warning” state. While

the detector is in the “Warning” state, homogeneous data blocks are not compressed. At

time t4 the stream becomes:

01101010 0111 0111

Suppose after t5, the error rate decreases significantly, the detector would flag the previous

warning as a false warning, and enter the “No change” state. Homogeneous blocks are

then merged to reduce the number of block boundaries. At time t5, the stream becomes:

01101010 01110111 0101,

and after time step t6 this becomes:

01101010 01110111 0101 0010

Suppose the detector enters the “Warning” state after t6, and the “Drift” state after t8.

The severity can be computed as the percentage of errors between the warning and the

3.4 Drift Magnitude Detection 37

drift, this is 7/8 = 87.5%. The significant increase in error at t8 causes our detector to

signal a drift due to a significant difference in the means between the block boundary

indicated by a vertical bar. The detector would remove all blocks to the left of the

boundary, and enter the “Drift” state.

01101010 01110111 0101 0010 | 0111 1111

3.4 Drift Magnitude Detection

In this Section we discuss the details of our algorithm. Our method uses binary classi-

fication error data as input, and has two thresholds for detecting change: (1) a warning

threshold which is signalled in anticipation of concept drift, and (2) a drift threshold which

indicates the occurrence of a concept drift. We will describe these components separately.

3.4.1 Drift Detection

First we describe the drift detection part of our algorithm. As input data arrives, it is

partitioned into blocks of size b where the block boundaries represent potential drift points.

Drift detection is performed by testing for a significant difference in means between data

on the left WL and right WR sides of the block boundaries based on the Hoeffding bound

with Bonferroni correction. The condition for triggering a drift is

|µ̂WL
− µ̂WR

| > εd, (3.1)

εd =

√
2

m
.σ2
W .ln

2

δ′
+

2

3m
ln

2

δ′
, δ′ =

δd
n

(3.2)

where µ̂WL
represents the mean error rate of data WL to the left of the block boundary, and

ˆµWR
represents the mean error rate of the data WR to the right of the block boundary. εd is

the Hoeffding bound with Bonferroni correction using a confidence parameter δd ∈ (0, 1),

m is the harmonic mean of the lengths of WL and WR, and n is the length of W where

W = WL +WR. When the drift threshold is surpassed, the detector enters a drift state.

When the detector is not in a warning or drift state, block compression is enabled to

improve efficiency by removing potential drift points that have low probability of becoming

actual drift points. We use the block compression algorithm detailed in [17] which uses

the bound ε′ = ε̂ · α · t, where the parameters ε̂ is a base value, α is the linear growth

term, and t is the relative arrival position.

38 Tracking Drift Severity

3.4.2 Warning Detection

To allow the quantification of the magnitude of change, as well as the anticipation of

concept drift we introduced a more relaxed threshold for detecting warnings. Our first

warning threshold is similar to the drift detection trigger but uses the bound εw, where

εw < εd. We use the condition below for warning detection

|µ̂WL
− µ̂WR

| > εw, (3.3)

where εw is the Hoeffding bound with Bonferroni correction using a confidence param-

eter δw ∈ (0, 1), where δw > δd. By using only the first warning condition, it may cause

warnings to be triggered too early. For example if the error rate increases and passes the

εw threshold, followed by a decrease that falls below the εw threshold. This introduces a

false warning. To address this, we included a second warning threshold. We monitor the

current mean p and standard deviation s of the classification error over a sliding window

of 100 instances, as well as the minimum p and s values denoted by pmin and smin. Our

second warning threshold is defined as

p+ s > pmin + cw ∗ smin, (3.4)

Rate =
number of misclassifications in warning

total instances seen in warning
(3.5)

In Equation 3.4 above, cw ∈ (1, 3) is a user defined parameter which defines the confi-

dence level for warning detection. When either Equation 3.3 or Equation 3.4 is satisfied

the detector enters a warning state. We also use them to control the rate of false warnings.

When either Equation 3.4 or Equation 3.3 is not satisfied for all block boundaries then

the warning is flagged as a false warning, and the detector enters the no change state. For

computing drift severity we use the metric defined by [24] which we denote as Rate, that

computes the error rate in the warning window.

Magnitude Detection Algorithm: Algorithm 1 shows the pseudocode for the

MAGSEED algorithm. Lines 1-3 initializes the change detector. The algorithm (lines

4-7) processes the input as each instance arrives by passing the classification output

xt ∈ {1, 0} at time t to the SetInput function, and returns the state of the detector indi-

cating whether a drift or warning has occurred at each time step t (line 6). The SetInput

function (lines 8-32) contains the main algorithm used for change detection. Line 9 adds

the classification output k to the window W of data blocks by the AddElement func-

tion. Line 10 updates the current p and s values by computing a rolling average of the

classification error, and standard deviation of the error respectively, and the minimums

3.4 Drift Magnitude Detection 39

Algorithm 1 MAGSEED Algorithm

1: Initialize window W as blocks {B0, ..., Bt} each of size n
2: Initialize state← no change
3: Initialize pmin←∞, smin←∞

4: for t > 0 do where t is time
5: SetInput(xt, W) where xt is classification error at t
6: return state
7: end for

8: function SetInput(item k, List W)
9: AddElement(k, W) adds element into tail block

10: update p, s, pmin, smin
11: warningFound← false
12: if p+ s > pmin + cw ∗ smin then
13: state← warning
14: else state← no change
15: end if
16: for every split of W into W = WL,WR do
17: if |µWL

− µWR
| > εd then

18: state← drift
19: pmin←∞
20: smin←∞
21: remove all blocks in WL

22: else if |µWL
− µWR

| > εw then
23: state← warning
24: warningFound← true
25: end if
26: end for
27: if warningFound = false then state← no change
28: end if
29: if state = no change then
30: CompressionCheck(W) compresses blocks in W
31: end if
32: end function

33: function AddElement(item k, List W)
34: if Tail Block of W is full then create Block B with k
35: W ←W ∪ {B}
36: else add k to tail block of W
37: end if
38: end function

39: function CompressionCheck(List W)
40: compressCount++
41: if compressCount = compressionInterval then
42: for each two consecutive blocks Bt, Bt+1 do
43: if |µBt − µBt+1| < ε′ then merge Bt, Bt+1

44: end if
45: end for
46: end if
47: end function

40 Tracking Drift Severity

pmin, smin are updated when p+ s < pmin + smin. If the warning threshold (Equation 3.4)

is surpassed (line 12), the detector enters the warning state (line 13). Line 16 checks ev-

ery block boundary in W against the drift threshold (line 17), and the warning threshold

(Equation 3.3) in line 22 which also acts as a false warning threshold. Lastly, if the detec-

tor is in the no change state after the data is processed, the blocks may be compressed by

the CompressionCheck function (line 30). The AddElement function (lines 33-38) adds

an element k that represents the classification error to the window W by appending k to

the last block in W if the last block is not full (line 36), or by adding a new block with

element k to the end of the window W (line 35). The CompressionCheck function (lines

39-47) merges consecutive homogeneous blocks in the window at set intervals using the ε′

bound which is detailed above (line 43).

3.5 Alternative approaches

Although we only present one approach for computing drift magnitude in this chapter

we recognize that there are many possible approaches. For example, we can use different

statistical bounds for drift or warning detection such as the Kolmogorov-Smirnov test or

Anderson-Darling test. As these statistical tests have different properties, applying these

tests may cause warnings and drifts to be found at different locations.

Currently we have used the drift severity metric proposed by [24] for magnitude com-

putation. The drift severity metric assumes that all errors that occur in the warning

period contribute to the change in concepts. However this ignores the errors introduced

by noisy data, overfitting and limitations of the model. A more direct approach would

be to compare the errors that are produced by the new model with the old model after

the new model has stabilized by computing the difference in error rates of the two models

over a set of instances.

3.6 Experiments

Our evaluation has three parts. First we evaluate the effectiveness of drift detection.

Second we evaluate the effectiveness of the warning technique, and its capability for

tracking severity. Third we evaluate the prediction accuracy of our algorithm on real data

streams using a Hoeffding tree learner. All experiments were run on machines with an

Intel Core i7-3770S CPU at 3.10 GHz, 16GB RAM running Windows 7 OS.

3.6 Experiments 41

3.6.1 Synthetic Streams

We evaluate the algorithms on synthetic streams with a single concept drift over 100 tri-

als. To test the robustness of the algorithms we use three different noise levels, 0%, 5%

and 10%. We use three different types of synthetic streams: (1) Bernoulli [33], (2) SEA

Concepts [24], and (3) CIRCLES [10] as discussed in Section 2.5.1.

Bernoulli Streams: We follow the approach used by [33] to generate error rate streams

with gradual drift. We generate 1,000,000 instances per stream. During the first 999,000

instances data is generated according to a stationary Bernoulli distribution with a mean

of P = 0.2. In the last 1,000 instances, gradual drift was simulated by increasing the

mean error rate P by a slope value s ∈ (0.0001, 0.0002, 0.0003, 0.0004).

SEA Concepts Streams: We follow the approach used by [24] to generate streams

with abrupt drift. We generate 90,000 instances per stream with two balanced classes.

We introduce a single point of abrupt drift by changing the threshold θ that controls

the concept function at the midpoint of the stream. A larger difference in the thresholds

between the two concepts corresponds to a higher level of drift severity. We present these

threshold values in Table 3.2.

Table 3.2: Theta values for SEA Concepts streams

θ1 6.0 9.0 8.5 8.5 8.0 6.5 7.0 9.5 9.5

θ2 6.5 8.5 9.5 7.0 9.5 8.5 9.0 6.5 6.0

Severity 0.03 0.05 0.09 0.12 0.13 0.15 0.16 0.24 0.27

CIRCLES Streams: Our generator is based on the CIRCLES generator by [28].

We generate 1,000,000 instances per stream with two balanced classes. Our concept is

defined by a circle centered at (0.5, 0.5) with a radius of 0.2. We introduce gradual drift

by gradually increasing the probability of generating instances from the new concept in

the last 1000 time steps. Our new concept is defined by a circle centered at (0.5, 0.5)

with a radius r ∈ (0.3, 0.4, 0.5). A larger difference in the radius of the circle corresponds

to a higher level of drift severity.

3.6.2 Parameter Selection

We evaluate the algorithms over a range of parameters shown in Table 3.3, and present

the best and worst performance for each detector in our results. For synthetic streams

we select the best and worst settings based on the number of true positive drifts and the

ratio of true and false positives. For real data streams we use the best settings obtained

from the synthetic experiments.

42 Tracking Drift Severity

Table 3.3: Parameter range for evaluation on synthetic data

Detector Parameter Values Detector Parameter Values
MAGSEED δd 0.05 0.1 0.3 SEED δd 0.05 0.1 0.3

ε̂ 0.0025 0.00625 0.01 ε̂ 0.0025 0.00625 0.01
α 0.2 0.5 0.8 α 0.2 0.5 0.8
τ 50 75 100 τ 50 75 100
δw 0.1 0.2 0.3
cw 1 2

DDM α 2 1 1.5 ADWIN2 δ 0.05 0.1 0.3
β 3 2 1

3.6.3 Evaluation Metrics

We evaluate the algorithms using the rate of true positive drifts (RD), rate of false pos-

itive drifts (FP), detection delay, memory (in bytes), time (in milliseconds) used by the

detector, computed severity (Rate), rate of true warnings (TW), and correlation between

computed and actual severity. A high correlation would suggest that the computed sever-

ity reflects actual severity. A true warning is a warning that was triggered between the

true point of drift and true detection by the detector as described in Section 3.2.

3.6.4 Drift Detection

In these experiments, we test the drift detection capabilities of our algorithm compared

to current drift detection techniques: ADWIN2 [4], and DDM [10]. We compare our drift

detector to ADWIN2 as it is a state-of-the-art detector that uses the same drift detection

bound (the Hoeffding bound), and has been shown to be effective at detecting gradual

drifts [33], which are the type of streams we will be focusing on. We also compare our

detector with DDM, which is a technique that is effective at detecting abrupt drifts. DDM

also has a warning threshold that would allow us to directly compare its performance in

capturing the warning state against our technique. Thus it makes sense that we chose

these two different detectors as our benchmark comparisons.

Tables 3.4 and 3.5 show the rate of true drift detection for Bernoulli streams with

gradual concept drift. MAGSEED is comparable to ADWIN2 in terms of delay and true

positive drift rate given the same confidence level δ. Both MAGSEED and ADWIN2

outperform DDM on gradual Bernoulli streams in terms of true drift detection rate, but

require more memory as they monitor the error distribution. In all cases, the rate of false

positive drifts in MAGSEED and ADWIN2 are below the theoretical upper bound for

false positives δ. In terms of memory ADWIN2 outperforms MAGSEED as the latter

requires additional memory to monitor drift warnings.

3.6 Experiments 43

Table 3.4: Drift detection: Rate of true and false positives (Best case)

Best
Noise Detector Slope RD FP Delay(SD) Memory(SD) Time(SD)
0% MAGSEED 0.0001 84 0.001 759.00 ±(165.61) 2134.86 ±(388.56) 146.58 ±(5.77)

0.0002 100 0.001 543.32 ±(118.79) 2197.92 ±(316.59) 147.68 ±(5.64)
0.0003 100 0.001 433.24 ±(97.32) 1986.72 ±(328.89) 147.09 ±(5.09)
0.0004 100 0.001 361.56 ±(77.94) 1848.96 ±(282.66) 148.32 ±(5.24)

ADWIN2 0.0001 83 0.001 782.71 ±(162.45) 1770.31 ±(198.92) 353.65 ±(11.60)
0.0002 100 0.001 555.80 ±(113.10) 1565.92 ±(52.42) 353.08 ±(12.51)
0.0003 100 0.001 439.96 ±(94.04) 1520.56 ±(79.39) 352.63 ±(11.78)
0.0004 100 0.001 370.20 ±(74.79) 1478.56 ±(89.92) 352.00 ±(11.41)

DDM 0.0001 1 < 0.001 785.00 ±(0) 248.00 ±(0) 23.22 ±(15.10)
0.0002 1 < 0.001 560.00 ±(0) 248.00 ±(0) 23.77 ±(14.31)
0.0003 1 < 0.001 456.00 ±(0) 248.00 ±(0) 22.53 ±(14.43)
0.0004 1 < 0.001 379.00 ±(0) 248.00 ±(0) 22.24 ±(14.78)

5% MAGSEED 0.0001 71 0.001 796.63 ±(162.79) 2178.93 ±(406.77) 148.92 ±(5.96)
0.0002 100 0.001 590.04 ±(124.94) 2225.76 ±(300.16) 147.21 ±(7.17)
0.0003 100 0.001 465.24 ±(95.72) 2076.00 ±(303.99) 149.18 ±(6.45)
0.0004 100 0.001 391.96 ±(86.35) 1902.24 ±(276.85) 148.74 ±(6.60)

ADWIN2 0.0001 68 0.001 809.35 ±(157.96) 1847.76 ±(249.74) 355.12 ±(10.07)
0.0002 100 0.001 604.12 ±(124.08) 1587.76 ±(72.64) 354.20 ±(10.08)
0.0003 100 0.001 474.52 ±(97.75) 1550.80 ±(60.29) 356.15 ±(10.26)
0.0004 100 0.001 401.56 ±(81.24) 1503.76 ±(86.94) 353.49 ±(11.65)

DDM 0.0001 0 < 0.001 - 248.00 ±(0.00) 19.51 ±(14.23)
0.0002 0 < 0.001 - 248.00 ±(0.00) 22.60 ±(15.70)
0.0003 0 < 0.001 - 248.00 ±(0.00) 21.22 ±(12.53)
0.0004 0 < 0.001 - 248.00 ±(0.00) 21.03 ±(15.71)

10% MAGSEED 0.0001 54 0.001 852.63 ±(148.49) 2218.67 ±(431.11) 149.00 ±(5.78)
0.0002 100 0.001 658.84 ±(133.12) 2237.28 ±(330.23) 150.14 ±(6.29)
0.0003 100 0.001 517.72 ±(107.82) 2160.48 ±(284.63) 148.39 ±(6.15)
0.0004 100 0.001 432.28 ±(87.17) 2044.80 ±(321.96) 150.85 ±(7.12)

ADWIN2 0.0001 49 0.001 859.90 ±(148.31) 1918.86 ±(265.54) 353.80 ±(12.86)
0.0002 100 0.001 669.40 ±(136.56) 1641.52 ±(101.01) 354.37 ±(11.16)
0.0003 100 0.001 527.32 ±(109.60) 1559.20 ±(50.65) 355.76 ±(10.96)
0.0004 100 0.001 437.72 ±(91.47) 1532.32 ±(74.06) 354.11 ±(12.80)

DDM 0.0001 0 < 0.001 - 248.00 ±(0.00) 21.58 ±(15.66)
0.0002 0 < 0.001 - 248.00 ±(0.00) 22.17 ±(16.17)
0.0003 0 < 0.001 - 248.00 ±(0.00) 23.21 ±(15.35)
0.0004 0 < 0.001 - 248.00 ±(0.00) 20.87 ±(15.25)

Best Parameters: MAGSEED δd = 0.05 δw = 0.1, ADWIN2 δ = 0.05, DDM α = 2 β = 3

3.6.5 Warning Detection and Severity Measure

In these experiments, we use drift detectors combined with a Hoeffding tree learner to

test the accuracy of warning detection, and our proposed severity measure. We compare

our method to the DDM method presented by Kosina et al. [24], as their technique has

warning detection and can also capture drift severity. We did not compare our method

with the PHT method [24] as it was shown to perform worse in terms of severity tracking.

We did not include ADWIN2 in our comparison as the nature of the exponential histogram

data structure used in the detector makes it difficult to implement a warning threshold

for computing severity.

Table 3.6 shows the rate of true warning detection on Bernoulli streams with the

44 Tracking Drift Severity

Table 3.5: Drift detection: Rate of true and false positives (Worst case)

Worst
Noise Detector Slope RD FP Delay(SD) Memory(SD) Time(SD)
0% MAGSEED 0.0001 84 0.002 754.43 ±(165.77) 2220.00 ±(654.54) 862.82 ±(52.31)

0.0002 100 0.002 539.48 ±(122.93) 2192.64 ±(315.08) 864.47 ±(50.79)
0.0003 100 0.002 431.96 ±(100.28) 1977.12 ±(318.59) 864.57 ±(52.90)
0.0004 100 0.002 359.96 ±(78.05) 1857.60 ±(285.12) 862.89 ±(52.66)

ADWIN2 0.0001 92 0.011 671.70 ±(196.98) 1627.13 ±(133.52) 302.51 ±(8.58)
0.0002 100 0.011 476.44 ±(140.49) 1512.16 ±(88.64) 303.96 ±(6.96)
0.0003 100 0.011 372.12 ±(104.52) 1461.76 ±(98.11) 303.57 ±(6.16)
0.0004 100 0.011 314.20 ±(82.87) 1414.72 ±(78.91) 301.33 ±(7.66)

DDM 0.0001 1 < 0.001 785.00 ±(0) 248.00 ±(0) 23.41 ±(16.04)
0.0002 1 < 0.001 560.00 ±(0) 248.00 ±(0) 23.79 ±(13.57)
0.0003 1 < 0.001 456.00 ±(0) 248.00 ±(0) 23.70 ±(14.58)
0.0004 1 < 0.001 379.00 ±(0) 248.00 ±(0) 24.37 ±(14.47)

5% MAGSEED 0.0001 71 0.002 797.54 ±(164.19) 2242.48 ±(591.57) 901.61 ±(52.14)
0.0002 100 0.002 586.52 ±(123.97) 2262.24 ±(367.95) 908.45 ±(58.19)
0.0003 100 0.002 464.92 ±(96.13) 2081.28 ±(309.09) 908.51 ±(55.70)
0.0004 100 0.002 391.00 ±(85.45) 1913.76 ±(276.51) 907.25 ±(57.86)

ADWIN2 0.0001 87 0.011 684.89 ±(220.38) 1672.55 ±(141.80) 302.77 ±(7.42)
0.0002 100 0.011 483.16 ±(151.55) 1539.04 ±(81.26) 301.54 ±(8.49)
0.0003 100 0.011 395.48 ±(119.65) 1475.20 ±(92.48) 301.16 ±(7.28)
0.0004 100 0.011 332.76 ±(98.43) 1424.80 ±(77.38) 302.88 ±(7.15)

DDM 0.0001 0 < 0.001 - 248.00 ±(0.00) 23.92 ±(14.63)
0.0002 0 < 0.001 - 248.00 ±(0.00) 22.61 ±(15.20)
0.0003 0 < 0.001 - 248.00 ±(0.00) 22.43 ±(16.90)
0.0004 0 < 0.001 - 248.00 ±(0.00) 19.80 ±(15.51)

10% MAGSEED 0.0001 53 0.002 842.62 ±(158.10) 2311.25 ±(604.04) 949.91 ±(76.14)
0.0002 99 0.002 652.49 ±(138.28) 2266.18 ±(406.15) 944.83 ±(78.22)
0.0003 100 0.002 515.48 ±(113.33) 2162.88 ±(300.25) 945.61 ±(75.83)
0.0004 100 0.002 432.28 ±(92.35) 2021.76 ±(316.66) 940.68 ±(77.88)

ADWIN2 0.0001 74 0.011 714.03 ±(231.13) 1719.03 ±(168.42) 300.72 ±(7.90)
0.0002 100 0.011 559.00 ±(181.27) 1564.24 ±(76.47) 300.85 ±(7.39)
0.0003 100 0.011 425.56 ±(134.13) 1517.20 ±(84.00) 301.11 ±(7.44)
0.0004 100 0.011 363.80 ±(115.99) 1456.72 ±(87.07) 302.68 ±(7.78)

DDM 0.0001 0 < 0.001 - 248.00 ±(0.00) 23.60 ±(16.96)
0.0002 0 < 0.001 - 248.00 ±(0.00) 20.57 ±(15.16)
0.0003 0 < 0.001 - 248.00 ±(0.00) 19.64 ±(13.40)
0.0004 0 < 0.001 - 248.00 ±(0.00) 20.96 ±(16.63)

Worst Parameters: MAGSEED δd = 0.05 δw = 0.2, ADWIN2 δ = 0.3, DDM α = 1 β = 3

correlation between average computed severity and slope of change highlighted in bold.

MAGSEED has a high rate of true warning detection (98-100% given a true drift is

detected) and is able to detect more true drifts than DDM. Both detectors have high

correlations for noise free data which shows that they are capable of capturing the speed

of concept drift. For noisy data with 5% or 10% noise, MAGSEED shows a clear advantage

as it is able to detector more true drifts, true warnings and the measure correlates well

with speed of change. This suggests that our detector is capable of tracking the speed of

concept drift.

Table 3.7 shows results for CIRCLES streams with gradual concept drift that have low

levels of severity. The third column (Actual Severity) is the difference in area between the

new and old circle concepts. The MAGSEED detector shows high correlation between

3.6 Experiments 45

the computed and theoretical severity of the stream, and has higher true drift and true

warning detection rates without compromising the rate of false positive drifts which is

below 0.34%.

Table 3.8 shows results for SEA Concepts streams with abrupt concept drift simulated

with a range of severity levels. The third column in the table (Actual Severity) is the

theoretical severity of the streams computed as the area difference between two concepts.

In these experiments, the severity measure of MAGSEED shows high correlation with

actual severity and consistently performed better than DDM in terms of true warning

rate and true drift rate. For the noise free streams as the severity increases there is

also a decrease in delay which decreases the area for correct warning detection. Most

of these incorrect warnings are detected too early and the increasing error rate prevents

the warning from shifting forward in time. In contrast the noisy streams have greater

fluctuations in the error rate and are more apt to recover from local maxima

Table 3.6: Warning detection: Bernoulli streams

Best Worst
Noise Detector Slope RD TW Rate(SD) RD TW Rate(SD)
0% MAGSEED 0.0001 84 84 0.36 ±(0.06) 84 84 0.34 ±(0.05)

0.0002 100 100 0.37 ±(0.06) 100 99 0.36 ±(0.06)
0.0003 100 100 0.38 ±(0.06) 100 99 0.37 ±(0.06)
0.0004 100 100 0.39 ±(0.06) 100 99 0.38 ±(0.06)

Correlation (actual and computed severity) 0.9973 0.9802
DDM 0.0001 1 1 0.26 ±(0.00) 1 0 0.23 ±(0.00)

0.0002 1 1 0.30 ±(0.00) 1 0 0.24 ±(0.00)
0.0003 1 1 0.34 ±(0.00) 1 0 0.24 ±(0.00)
0.0004 1 1 0.39 ±(0.00) 1 0 0.24 ±(0.00)

Correlation (actual and computed severity) 0.9963 0.9876
5% MAGSEED 0.0001 71 71 0.38 ±(0.06) 71 71 0.37 ±(0.05)

0.0002 100 100 0.41 ±(0.06) 100 99 0.39 ±(0.06)
0.0003 100 100 0.42 ±(0.06) 100 99 0.41 ±(0.06)
0.0004 100 100 0.43 ±(0.07) 100 99 0.42 ±(0.07)

Correlation (actual and computed severity) 0.9465 0.9583
DDM 0.0001 0 0 0 0 0 0

0.0002 0 0 0 0 0 0
0.0003 0 0 0 0 0 0
0.0004 0 0 0 0 0 0

Correlation (actual and computed severity) 0.0000 0.0000
10% MAGSEED 0.0001 54 54 0.41 ±(0.05) 53 52 0.40 ±(0.05)

0.0002 100 100 0.42 ±(0.05) 99 98 0.41 ±(0.06)
0.0003 100 100 0.46 ±(0.06) 100 99 0.44 ±(0.06)
0.0004 100 100 0.46 ±(0.07) 100 99 0.44 ±(0.06)

Correlation (actual and computed severity) 0.9365 0.9844
DDM 0.0001 0 0 0 0 0 0

0.0002 0 0 0 0 0 0
0.0003 0 0 0 0 0 0
0.0004 0 0 0 0 0 0

Correlation (actual and computed severity) 0.0000 0.0000

Best Parameters: MAGSEED δd = 0.05 δw = 0.1, ADWIN2 δ = 0.05, DDM α = 2 β = 3
Worst Parameters: MAGSEED δd = 0.05 δw = 0.2, ADWIN2 δ = 0.3, DDM α = 1 β = 3

46 Tracking Drift Severity

3.6.6 Accuracy on Real Data Streams

We also examine the performance of our algorithm on real world data, and compare it

to ADWIN2 and DDM using a Hoeffding tree learner which is retrained using examples

from the warning period for detectors with warnings.

Table 3.9 shows the performance of MAGSEED, DDM and ADWIN2 on three real

world datasets: Forest Covertype [6], Pokerhand [6], and Airlines [19] as discussed in

Section 2.5.2 . All the detectors are comparable in terms of overall prediction accuracy.

However it is difficult to access the performance of the severity measure as we do not

know the location or magnitude of the true drifts in these real world datasets. For the

MAGSEED detector there is a large number of drifts that did not trigger a warning, this

may be caused by changes of large magnitudes which do not trigger the warning threshold

prior to the drift threshold.

Table 3.7: Warning detection: CIRCLES streams

Actual Best Worst
Noise Detector Severity RD TW Rate(SD) RD TW Rate(SD)
0% MAGSEED 0.07 100 100 0.08 ±(0.03) 100 98 0.07 ±(0.03)

0.16 100 100 0.09 ±(0.03) 100 99 0.07 ±(0.03)
0.26 100 100 0.09 ±(0.03) 100 99 0.08 ±(0.03)
0.38 100 100 0.09 ±(0.03) 100 99 0.08 ±(0.03)

Correlation (actual and computed severity) 0.8482 0.9782
DDM 0.07 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

0.16 8 8 0.25 ±(0.02) 8 8 0.15 ±(0.01)
0.26 97 97 0.26 ±(0.02) 97 62 0.15 ±(0.03)
0.38 100 100 0.28 ±(0.02) 100 65 0.16 ±(0.03)

Correlation (actual and computed severity) 0.7892 0.7514
5% MagSEED 0.07 100 100 0.17 ±(0.04) 100 98 0.15 ±(0.05)

0.16 100 100 0.18 ±(0.04) 100 98 0.17 ±(0.04)
0.26 100 100 0.19 ±(0.05) 100 98 0.17 ±(0.05)
0.38 100 100 0.19 ±(0.04) 100 98 0.18 ±(0.05)

Correlation (actual and computed severity) 0.9522 0.9278
DDM 0.07 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

0.16 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)
0.26 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)
0.38 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

Correlation (actual and computed severity) 0.0000 0.0000
10% MAGSEED 0.07 100 100 0.24 ±(0.05) 100 98 0.23 ±(0.05)

0.16 100 100 0.25 ±(0.05) 100 98 0.24 ±(0.05)
0.26 100 100 0.26 ±(0.06) 100 97 0.25 ±(0.06)
0.38 100 100 0.26 ±(0.06) 100 97 0.25 ±(0.06)

Correlation (actual and computed severity) 0.9654 0.9374
DDM 0.07 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

0.16 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)
0.26 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)
0.38 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

Correlation (actual and computed severity) 0.0000 0.0000

Best Parameters: MAGSEED δd = 0.05 δw = 0.1, DDM α = 2 β = 3
Worst Parameters: MAGSEED δd = 0.05 δw = 0.3, DDM α = 1 β = 3

3.6 Experiments 47

Table 3.8: Warning detection: SEA Concepts streams

Actual Best Worst
Noise Detector Severity RD TW Rate(SD) RD TW Rate(SD)
0% MAGSEED 0.03 100 100 0.08 ±(0.03) 100 99 0.09 ±(0.03)

0.05 100 100 0.09 ±(0.04) 100 98 0.08 ±(0.03)
0.09 100 100 0.13 ±(0.04) 100 100 0.12 ±(0.04)
0.12 100 100 0.12 ±(0.04) 100 99 0.12 ±(0.04)
0.13 100 99 0.16 ±(0.05) 100 98 0.16 ±(0.05)
0.15 100 88 0.20 ±(0.06) 100 76 0.20 ±(0.05)
0.16 100 92 0.21 ±(0.06) 100 85 0.20 ±(0.06)
0.24 100 96 0.19 ±(0.06) 100 90 0.19 ±(0.06)
0.27 100 91 0.21 ±(0.06) 100 84 0.21 ±(0.07)

Correlation (actual and computed severity) 0.8670 0.8760
DDM 0.03 90 90 0.04 ±(0.01) 90 55 0.04 ±(0.01)

0.05 100 100 0.04 ±(0.01) 100 47 0.04 ±(0.00)
0.09 100 100 0.10 ±(0.02) 100 51 0.09 ±(0.01)
0.12 100 100 0.08 ±(0.01) 100 49 0.08 ±(0.01)
0.13 100 100 0.14 ±(0.02) 100 43 0.12 ±(0.02)
0.15 100 100 0.20 ±(0.03) 100 54 0.18 ±(0.03)
0.16 100 100 0.19 ±(0.02) 100 52 0.17 ±(0.03)
0.24 100 100 0.16 ±(0.02) 100 40 0.14 ±(0.03)
0.27 100 100 0.17 ±(0.03) 100 40 0.15 ±(0.03)

Correlation (actual and computed severity) 0.7980 0.7710
5% MagSEED 0.03 39 39 0.15 ±(0.08) 81 80 0.12 ±(0.07)

0.05 80 80 0.15 ±(0.06) 99 98 0.16 ±(0.06)
0.09 100 100 0.19 ±(0.04) 100 100 0.19 ±(0.05)
0.12 100 100 0.19 ±(0.04) 100 100 0.19 ±(0.05)
0.13 100 99 0.22 ±(0.05) 100 96 0.21 ±(0.05)
0.15 100 97 0.25 ±(0.06) 100 94 0.24 ±(0.06)
0.16 100 98 0.25 ±(0.06) 100 93 0.24 ±(0.06)
0.24 100 98 0.24 ±(0.06) 100 94 0.24 ±(0.06)
0.27 100 98 0.25 ±(0.06) 100 97 0.25 ±(0.07)

Correlation (actual and computed severity) 0.8747 0.8853
DDM 0.03 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

0.05 31 31 0.09 ±(0.01) 31 9 0.09 ±(0.01)
0.09 100 100 0.13 ±(0.01) 100 24 0.12 ±(0.01)
0.12 100 100 0.13 ±(0.01) 100 26 0.12 ±(0.01)
0.13 99 99 0.17 ±(0.01) 99 18 0.15 ±(0.02)
0.15 100 100 0.21 ±(0.02) 100 20 0.19 ±(0.03)
0.16 100 100 0.20 ±(0.02) 100 23 0.19 ±(0.03)
0.24 100 100 0.19 ±(0.02) 100 15 0.16 ±(0.03)
0.27 100 100 0.20 ±(0.02) 100 16 0.17 ±(0.04)

Correlation (actual and computed severity) 0.8200 0.7494
10% MAGSEED 0.03 29 28 0.14 ±(0.09) 70 69 0.16 ±(0.13)

0.05 38 36 0.21 ±(0.09) 86 85 0.19 ±(0.08)
0.09 100 100 0.24 ±(0.05) 100 99 0.24 ±(0.05)
0.12 100 100 0.25 ±(0.06) 100 100 0.23 ±(0.05)
0.13 100 99 0.26 ±(0.05) 100 98 0.25 ±(0.05)
0.15 100 100 0.29 ±(0.06) 100 99 0.29 ±(0.06)
0.16 100 100 0.30 ±(0.06) 100 99 0.29 ±(0.06)
0.24 100 100 0.29 ±(0.06) 100 99 0.28 ±(0.06)
0.27 100 100 0.30 ±(0.05) 100 99 0.30 ±(0.06)

Correlation (actual and computed severity) 0.8216 0.8662
DDM 0.03 0 0 0.00 ±(0.00) 0 0 0.00 ±(0.00)

0.05 6 6 0.14 ±(0.01) 6 2 0.14 ±(0.01)
0.09 99 99 0.17 ±(0.01) 99 17 0.16 ±(0.01)
0.12 99 99 0.17 ±(0.01) 99 18 0.16 ±(0.01)
0.13 100 100 0.20 ±(0.01) 100 15 0.19 ±(0.02)
0.15 98 98 0.24 ±(0.02) 98 23 0.23 ±(0.02)
0.16 100 100 0.24 ±(0.02) 100 16 0.23 ±(0.02)
0.24 98 97 0.22 ±(0.02) 98 10 0.19 ±(0.03)
0.27 98 97 0.23 ±(0.02) 98 8 0.20 ±(0.04)

Correlation (actual and computed severity) 0.7608 0.6732

Best Parameters: MAGSEED δd = 0.05 δw = 0.1, DDM α = 2 β = 3
Worst Parameters: MAGSEED δd = 0.05 δw = 0.2, DDM α = 1 β = 3

48 Tracking Drift Severity

Table 3.9: Performance on real data streams

Stream Detector Accuracy Drifts Warnings Rate (SD)
Forest Covertype MAGSEED 0.84 2380 1395 0.49 ±(0.23)

DDM 0.83 1942 1475 0.83 ±(0.27)
ADWIN2 0.85 2492 0 -

Pokerhand MAGSEED 0.75 2032 1248 0.54 ±(0.20)
DDM 0.73 1046 1007 0.63 ±(0.25)
ADWIN2 0.75 2130 0 -

Airlines MAGSEED 0.66 173 131 0.40 ±(0.15)
DDM 0.65 14 14 0.38 ±(0.07)
ADWIN2 0.65 384 0 -

Forest Covertype: On the Forest cover dataset, MAGSEED detected 1395 warnings

out of 2380 drifts detected with an average severity of 0.49. DDM detected 1475 warnings

out of 1942 drifts with an average severity of 0.83.

Pokerhand: On the Pokerhand dataset MAGSEED detected 1248 warnings out of

2032 drifts detected with an average severity of 0.54. DDM detected 1007 warnings out

of 1046 drifts with an average severity of 0.63.

Airlines: On the Airlines dataset MAGSEED detected 131 warnings out of 173 drifts

with an average severity of 0.40. DDM detected 14 warnings out of 14 drifts with an

average severity of 0.38.

3.7 Conclusions

In this chapter, we presented a drift detector that is capable of detecting drift severity. We

experimentally showed that there is a strong correlation between the computed and real

magnitudes in our synthetic datasets which suggests that the computed and real magni-

tudes are similar. One limitation of our detector is that it may be unable to capture the

drift severity for changes of high magnitudes where there are drastic changes in concepts.

This is often due to the small delay time between the true change and detected drift

point which provides less opportunity for correct warning detection. In the future, we

would like to extend MAGSEED to adaptively determine the window size of our second

warning threshold. We would also like to conduct experiments on a wider range of data

streams and use drift severity for analysing characteristics of real data streams. In the

next chapter we explore the use of stream volatility for the proactive detection of drifts.

4
Proactive Drift Detection

In the previous chapter we explored ways to capture the magnitude of concept drift in

streaming data. In this chapter we will focus on characterizing the rate of these changes

and explore how we can use this information to predict the behaviour of the stream for

proactive detection of future drifts. We aim to use meta-knowledge of stream character-

istics to improve the accuracy of current drift detection techniques. We believe this could

facilitate the development of accurate models that can adapt to dynamic systems and non

stationary environments.

This chapter is organized as follows. In Section 4.1 we motivate and highlight the

difference between our work with previous research. In Section 4.2 we highlight the

importance of mapping drift trends and define the key terminology used in this chapter.

Section 4.3 presents an overview of our methods. Sections 4.4 and 4.5 discuss the inner

workings of our technique. Our experiments are presented and discussed in Section 4.6.

Finally we conclude this chapter in Section 4.7.

4.1 Introduction

Many drift detection methods have been developed for the detection of changes in the

streaming environment [30] [10] [4] [16]. Traditional drift detection methods focus on

detecting changes in the underlying model based on the error rate of a classifier. First we

will review the traditional drift detection system. In Figure 4.1 we show a depiction of the

49

50 Proactive Drift Detection

Classifier Drift Detector

Change?

- Yes

- No

- Maybe

error rateData

adaptation

Figure 4.1: Work flow of traditional drift detection systems

work flow of a typical drift detection system. First the data is passed into a classifier which

incrementally builds a model for classification based on the input data. The accuracy of

the classifier is monitored using a binary error rate stream to detect concept changes

signalled by significant increases in the error rate. The error rate stream is then passed

into a drift detector that detects change using statistical tests. The drift detector can

produce three signals. We present an analogy of this in Figure 4.1. The first is the drift

signal which suggests that there is a high probability that a change has occurred. The

second is the no change signal. This suggests the concept is stable and that it is unlikely

a change has occurred. The third signal is the warning signal. It suggests the concept

is likely to be changing and is used to anticipate real changes. Being able to find these

changes allows a classifier to be adapted to changes in the data. However this adaptation

process is not well studied. In this chapter we focus on the change detection phase.

Currently most methods do not consider additional information such as historical drift

trends that could allow the anticipation of future change points. Huang et al. introduced

a measure called stream volatility that represents the rate of change of the stream [17].

In their paper, they propose a volatility detector to detect changes in stream volatility

and show that there are stream volatility trends for real data streams [17]. Unfortunately

they did not use the information beyond finding the volatility trend. By incorporating

volatility into traditional drift detectors we can use the additional information to proac-

tively determine future changes. This is revolutionary as we are no longer monitoring

historical events but anticipating future changes in the data stream. If we are able to

map the frequency or interval of changes that occur to a particular pattern we can use

this information to predict a future time range that has a high probability of change

occurrence.

In a recent paper, Huang et al. extend their work to use historical drift points for

improving drift detection by introducing a predictive approach using the mean stream

volatility to estimate the location of the next drift [16]. However their method assumes

that the overall drift rate of the stream is representative of the current drift rate and

4.1 Introduction 51

Classifier Drift Detector Volatility Detector

Drift PredictorProactive Detector

error rateData ci

vi = ci − ci−1adaptation

drift predictions

Figure 4.2: Work flow of our proactive drift detection system

does not utilize additional information such as trends of temporal changes in drift rate

which may provide more accurate predictions for streams that show reoccurring patterns

of volatility change. We believe there are many real life applications that have inherent

trends in the rate of changes. For example the rate of electricity usage has both seasonal

patterns, and trends that are specific to the personal habits of a customer. Therefore

being able to model these trends may provide us with insights into the behaviour of the

entity or concept of interest.

We propose a drift predictor for learning stream volatility trends and a proactive

drift detector, PROSEED, that uses drift predictions to proactively search for drifts. Our

methodology can be summarized by the diagram in Figure 4.2. We modify the traditional

drift detection system to incorporate three additional layers, a volatility detector, a drift

predictor and a proactive drift detector. The base detector is used to monitor the error

rate of the classifier to find change points ci. Based on this, the volatility detector is used

to find changes in the drift rate vi which represents the time between consecutive drifts.

For example, if a change occurred every 15 days, the drift rate would be 15. We use a

drift predictor to learn these drift rate trends and predict the possible locations of the

next drift. These predictions are then used to modify the behaviour of PROSEED to

reduce search effort during periods where drifts are less likely to occur.

The main contributions of our work are: (1) A drift prediction algorithm that can

accurately learn drift trends of a stream and (2) a drift detector which incorporates

historical drift rate information that is accurate for streams with reoccurring volatility

trends. We analyze our drift prediction technique by comparing it to ground truth in

synthetic data streams and show that it can accurately capture trends for streams with

reoccurring volatility patterns. We evaluated the performance of our drift detector by

comparing it against detectors ADWIN2 [4], SEED [17] and DDM [10] on synthetic and

real data streams. We show that our technique is able to lower the rate of false positives

for synthetic streams with these trends.

Relation to other research: Our research differs from research in drift detection

with recurring patterns [41] as their methods are aimed at detecting models that reoccur

whereas our method aims to learn the characteristics of drift rate trends. For example,

52 Proactive Drift Detection

suppose we are trying to learn the concept of seasons, research in reoccurring patterns

focuses on the order that concepts reoccur such as: spring, summer, autumn, winter,

spring. Our research aims to look at the rate of concept change, that is the time period

between season changes. Unlike research in temporal forecasting for seasonal patterns, we

do not assume there is any seasonal effect to the changes, and the trends do not necessarily

occur periodically.

4.2 Modelling Stream Volatility

The volatility of a stream describes the rate of change. High volatility indicates frequent

changes and low volatility indicates that changes occur less frequently and the stream

is more stable. Monitoring volatility can help us understand the nature of changes in a

stream and give us important information about where changes may occur in the future.

For example, suppose we are interested in modelling traffic flow for GPS systems.

Drifts can be analogous to changes in the speed of traffic such as a change in average car

speeds from 40km per hour to 20km per hour. Drift volatility can be analogous to the

rate of changes in traffic flow. This will tell us how frequent changes in traffic speed are

occurring. A high volatility will indicate that changes in traffic speeds are occurring fre-

quently, whereas low volatility suggests the traffic speeds are relatively consistent. During

peak times such as rush hour, the speed of traffic would be more consistent so changes

may occur less frequently.

For example, we may observe decreases in traffic speed between 7am-8am, reaching a

minimum around 8.30am when the roads are heavily congested. This could be followed by

increases in traffic speed after 10am. As there are more changes before and after 8.30am,

the volatility would be higher before and after this time period. Therefore modelling

these volatility trends may help us estimate when the next change in traffic speed may

occur. For example, if we know that a road is currently congested, being able to estimate

the future changes may help us predict when there is less traffic. This could help us

decide whether we should take an alternate route which could save us time. If we are able

to accurately pinpoint when the next change should occur, it may help us develop GPS

routing methods that are more adaptive.

Definition 9 (Volatility Shift) A volatility shift is a change in the drift rate. A shift

in volatility is said to occur when there is a significant difference in the variance of two

volatility windows. Let V1 = (vj, vj+1..., vk) and V2 = (vk+1, vk+2..., vt−1) represent two

volatility windows with sample variances σ1, σ2 respectively. A volatility shift is detected

when σ1
σ2

≶ 1.0 + β where β is a user defined threshold.

We follow the volatility shift definition proposed by Huang et al. [17] that formalizes

4.2 Modelling Stream Volatility 53

this as a change in the variance between two volatility windows. Recall that a volatility

window consists of intervals between consecutive drifts. We refer to these intervals as drift

intervals, drift rates or volatility. We are interested in modelling the changes in volatility,

so we need to keep a history of the volatility changes that we have previously observed.

To model the volatility of a stream, we introduce a term called volatility pattern that

represents a snapshot of the stream’s volatility at a particular time. We assume that this

has a certain distribution. We give a formal definition of volatility pattern in Definition 10.

Definition 10 (Volatility Pattern) A volatility pattern p = {vm, vm+1, ..., vn} con-

sists of a set of volatility values and a pattern length lp. The set of drift intervals

{vm, vm+1, ..., vn} is a subset of the intervals in the volatility windows V ′1 ∪ V2 where the

window V ′1 = (vi, vi+1, ..., vk) and i ≤ j < k. This represents a snapshot of the stream

volatility at time t that has a distribution D with a mean of µ and variance of σ2. The

pattern length lp is the average number of time steps spent in pattern p prior to a volatility

shift at t .

For example, given we detected a volatility shift at time t and observed two volatility

windows V ′1 = (100, 150, 100) and V2 = (100, 150, 500). The pattern can be estimated to be

p1 = {100, 150, 100, 100, 150} which has a distribution with a mean of µ{100,150,100,100,150} =

120 and a variance of σ2
{100,150,100,100,150} = 750. Pattern p1 represents a snapshot of the

stable portion of the stream volatility. This then allows us to characterize the volatility

changes as transitions between volatility patterns.

Definition 11 (Pattern Transition) A pattern transition p1 → p2 at time t is a volatil-

ity shift at time t, where there is a change in the distribution generating the drift rate from

distribution D1 corresponding to the volatility pattern p1 to a distribution D2 which cor-

responds to the volatility pattern p2.

Following from the previous example. Suppose we first observed pattern p1, then at

a later point in time t we detect a volatility shift and observe the pattern p2. Let p1 =

{100, 150, 100, 100, 150} and p2 = {1000, 1500, 1000, 1000, 1500}. A transition p1 → p2 at

time step t means that there is a change in volatility at t from observing a change every

100 time steps to observing a change every 1000 time steps.

We generalize streams with volatility changes into two categories: (1) streams with

rapid volatility change, and (2) streams with progressive volatility change. Rapid volatility

changes represent periods of stable volatility punctuated by large sudden changes in the

volatility distribution. Progressive volatility changes represent small incremental changes

in the volatility distribution. In Figures 4.3 and 4.4 we show the volatility trends in blue,

where each data point represents a drift interval. We highlight the local maxima and

minima in yellow. Ideally this is where we would like to detect a volatility shift.

54 Proactive Drift Detection

0

100

200

D
ri

ft
 in

te
rv

al

Time

Figure 4.3: Example of rapid
volatility change

0

100

200

D
ri

ft
 in

te
rv

al

Time

Figure 4.4: Example of progressive
volatility change

For example, suppose the volatility of the stream is 100, 100, 100, 200, 200, 200, 100, ...

as shown in Figure 4.3. This represents a stream with rapid volatility change because

there is a sudden change in drift rate from 100 to 300, preceded by periods of stability.

For example, suppose the volatility of the stream is 100, 130, 160, 200, 160, 130, 100, ...

as shown in Figure 4.4. This would be considered a progressive volatility change because

the volatility changes are incremental in nature.

If we are able to capture the volatility shifts at the correct locations, and accurately

estimate the patterns this would allow us to predict the future volatility. This may be

advantageous for streams with reoccurring volatility trends because predicting the next

drift location allows us to anticipate this change and adapt our behaviour based on the

gained information. For example, suppose we are using a GPS for routing and we predict

that there would be heavy traffic on Great South Road during the next two hours, having

this extra information allows us to avoid routes that are potentially congested.

4.3 Overview

In this section we provide a general overview of our drift prediction method, DPM, that

estimates the next drift point based on historical drift trends and our proposed algorithm,

PROSEED, a proactive drift detector that uses the estimates from the drift predictor to

guide the search for changes.

4.3.1 Drift Prediction Method

Our drift prediction method has three layers - a drift detector that provides the drift

points and drift intervals, a volatility detector that is able to locate local volatility change

points using the drift intervals, and a drift prediction algorithm that uses the location of

volatility shifts to estimate the next drift. We use a pattern reservoir and probabilistic

network to learn the volatility trends of a stream.

4.3 Overview 55

A pattern reservoir is a pool of size P that stores volatility patterns from the stream.

Volatility patterns capture a snapshot representing a period of the stream. We use these

patterns to build an overall picture of stream volatility and assume that each pattern has

some underlying distribution. Each pattern has a sample of drift intervals which we use

to approximate the underlying distribution that generates the intervals, and a pattern

length that denotes the number of time steps the pattern persists before transitioning to

another pattern.

We use a probabilistic network in the form of a transition matrix to learn the trends

of these changes. In each row of our transition matrix we store the probability of transi-

tioning to the next pattern given the current pattern.

0

0.2

0.4

0.6

0.8

1

Er
ro

r
R

at
e

Time

Figure 4.5: Error rate of the stream

For example, suppose the error rate of the stream is shown in Figure 4.5. Let the

spikes represent increases in error rate caused by changes in concepts that are identified

as cut points followed by an adaptation period where the classifier relearns. Let the time

steps 100, 200, 300, 600, 900, 1200, 1500, 1900, 2300, 2700 represent the change points

detected by the drift detector. The corresponding drift intervals are 100, 100, 100, 300,

300, 300, 300, 400, 400, 400. The trend of the drift intervals are shown in Figure 4.6.

0

100

200

300

400

D
ri

ft
 in

te
rv

al

Time

Figure 4.6: Drift intervals of the stream

56 Proactive Drift Detection

Suppose we are able to identify the first volatility shift using the volatility detector at

time step 600 after observing the drift interval of 300. When there is a volatility shift, a

pattern will be stored into our pattern reservoir. This pattern stores a sample of recent

data close to the volatility change which represents a snapshot of the stable drift intervals

preceding the volatility change.

Let the volatility windows be V ′1 = (100, 100) and V2 = (100, 300). We construct a

pattern p by removing outliers from V ′1 ∪ V2 to get an approximation of the intervals in

the stable period prior to the change. The first pattern p1 = {100, 100, 100} is added to

the empty pattern reservoir. As this is the first volatility change we observed, the pattern

length of p1 is set to lp1 = 600 which is the number of time steps between the volatility

change point and the start of the stream.

When the next volatility shift is detected at time step 1900 and the volatility windows

are V ′1 = (300, 300) and V2 = (300, 400), removing the outliers the pattern becomes p =

{300, 300, 300}. Since the time between consecutive volatility shifts is 1900− 600 = 1300,

the pattern length for p is 1300. Then we attempt to add a new pattern p = {300, 300, 300}
into the pattern reservoir. First we perform pattern matching between the potential

pattern p and the pattern reservoir by testing for equivalence using the Kolmogorov-

Smirnov test detailed in Section 4.4.2. If an equivalent pattern is found, we update the

data samples in the pattern using the samples in p. Otherwise we add p as a new pattern

p2, and update the network by adding the transition p1 → p2 to the probabilistic transition

matrix. This transition can be illustrated by the network shown in Figure 4.7.

p1 p2
1

Figure 4.7: Network of pattern transitions

Once we have learned a network, we make predictions by doing a linear projection of

the possible pattern means from the mean of the latest pattern that we have detected.

The details of this process is given in Section 4.4 .

To control the size of our probabilistic network, we merge similar transitions based

on the similarity of the slopes between consecutive pattern means. For example, assume

we now have three patterns and our network has the transitions p1 → p2 → p3. Let the

slope of µp1 → µp2 be s1 = 0.4, and the slope of µp2 → µp3 be s2 = 0.45. If the difference

between the slopes are less than a user-defined slope parameter r, then the transition will

be compressed. Suppose we use r = 0.1, since |s1 − s2| = 0.05 < r, we compress the

transition p1 → p2 → p3 into p1 → p3.

4.4 Drift Prediction Method 57

4.3.2 Proactive Drift Detection

Our drift detection method uses a two phase approach. In the first phase we train our

prediction algorithm. In the second phase we use the predictions to adjust the behaviour of

our drift detector, PROSEED. First, we use the drift intervals from the SEED detector [17]

to train our drift prediction algorithm to allow the exploration of the drift trends without

any prior information. Then we use the network generated from our drift predictor to

guide PROSEED by controlling data compression. PROSEED groups the error rate data

into blocks of size b. For example, suppose the error stream is:

00011000100110110111

Using blocks of size four b = 4, the data becomes:

0001 | 1000 | 1001 | 1011 | 0111

c1 c2 c3 c4

Each vertical bar represents a block boundary and is a potential drift point c1, c2, c3, c4.

We use the drift estimates from the drift predictor to find time steps where the next drift

is likely to occur. For example, let t1, t2, ..., t20 represent the time stamps associated with

each classification error. If the drift predictor estimates the next likely drift to be at t6

and t18, the second and fifth blocks will not be compressed as they contain the estimated

time steps. Blocks between the estimates will be compressed as drifts are less likely to

occur during those periods. All blocks following the highest estimated drift time t18 will

not be compressed. This would compress the third and fourth blocks, removing the third

potential drift point from being checked.

0001 | 1000 | 10011011 | 0111

c1 c2 c3

Then the drift detector will search for a drift by testing for a difference in means at the

block boundaries using the Hoeffding bound detailed in Section 3.4.1. The novelty of

our method is that it uses historical drift trends to adjust the compression of blocks in

contrast to SEED which compresses based on a linear block similarity measure. This

could be advantageous for data streams with reoccurring drift trends because it could

allow us to accurately forecast the location of the next drift and adjust our drift detection

method based on our belief of drift.

4.4 Drift Prediction Method

In this section we provide the details of our drift prediction algorithm. We use a drift

detector to find points of change and the volatility detector proposed by Huang et al. [17]

58 Proactive Drift Detection

to locate the local peaks and troughs of volatility change. We will discuss each component

of our technique separately.

4.4.1 Pattern Construction

When we construct a pattern we store a pool of pattern data with mean µp to represent

the distribution of the drift intervals, and the average pattern length lp to represent the

average time spent in the pattern before a volatility change was detected. We use the

mean of the pattern µp to decide what the next drift interval may be, and lp to determine

when the change will occur. The average pattern length lp is updated using the time

between consecutive volatility changes each time we detect the pattern p.

We populate the pool of a pattern by sampling from a recent volatility window after

a volatility change was detected. Given two volatility windows V ′1 = (vi, vi+1, ..., vk) and

V2 = (vk+1, vk+2, ..., vt−1) where i < k < t−1. Here V2 represents the buffer that triggered

the volatility change. First we compute the interquartile ranges of V ′1 ∪ V2 and V2, and

choose the set of intervals that has the smaller interquartile range as the pool to sample

our pattern data from. We assume that there are trends to the location of the true drifts,

and false alarms are deviations from these trends. To filter out the possible false alarms

and account for the period of volatility change we remove the outliers from the set of drift

intervals. We assume the outliers contribute to the volatility change, and follow Tukey’s

definition for outliers

Y < (Q1 − 1.5 · IQR) or Y > (Q3 + 1.5 · IQR), (4.1)

where Y is an outlier, Q1 is the first quartile, Q3 is the third quartile and IQR is the

interquartile range.

4.4.2 Pattern Matching

When we add a potential pattern p′ to the pattern reservoir of size P , we first perform

pattern matching to ensure that the pattern is not already present in the reservoir. This

is done by testing for pattern equality using the two sample Kolmogorov-Smirnov test [35]

Dn,n′ > c(α) · n+ n′

nn′
, (4.2)

where the D Statistic denoted by Dn,n′ is the maximum difference between the cumulative

distributions, c(α) is a function of the confidence parameter α ∈ (0, 1) and n, n′ are the

sample sizes. If Equation 4.2 holds the patterns are deemed to be different. Otherwise we

update the samples stored by the pattern by randomly replacing old data points with the

new data samples from p′. This allows patterns to evolve over time, and can reduce the

4.4 Drift Prediction Method 59

number of redundant patterns in the reservoir. We recommend selecting a small value for

the alpha parameter such as α = 0.05 for 95% confidence.

4.4.3 Transition Compression

We use a transition compression scheme to compress transitions that are similar. An

example of this method is presented in Section 4.3.1. The aim is to achieve a more compact

representation of the network and also to reduce the number of pattern transitions to itself

which has a dampening effect on the true transitions in the network.

4.4.4 Predicting the Next Drift

Given that the latest pattern we have seen is pattern px we can predict the next patterns

that are likely to occur py1, py2, ..., pyk using the network, where k is a parameter for the

number of predictions to use. We recommend setting k as the size of the pattern reservoir,

k = P , when we have no prior knowledge. This will allow all possibilities that have been

previously observed to be mapped and give us information on what the drift interval is

likely to change to. The average length of each predicted pattern ly1, ly2, ..., lyk will allow

us to determine how long we expect the predicted pattern to persist.

For streams with rapid volatility change, that have stable periods punctuated by

sudden changes we use the pattern means µy1, µy2, ..., µyk as the predicted drifts. For

streams with progressive volatility change, that have incremental changes we calculate

the next drift for each predicted pattern py1 , py2 , ..., pyk by

µyi − µx
lyi

· t, (4.3)

where µyi is the mean of pattern pyi, µx is the mean of the latest pattern px, lyi is the

average length of pattern pyi and t is the current time step. Our current algorithm as-

sumes the nature of the volatility changes of the stream are known in advance, however

in reality the nature of the stream is often unknown. We outline a method to address this

in Section 4.4.5.

Drift Prediction Algorithm: The pseudocode for our prediction method is shown

in Algorithm 2. In our pseudocode the buffer B corresponds to V2 and the large buffer L

corresponds to V ′1 ∪V2. Lines 1-5 initializes our algorithm, and lines 8-17 outline the work

flow of our prediction system. We use a drift detector to detect drifts in lines 8-9 and

construct drift intervals in lines 15-16. These intervals are passed into a volatility detector

in line 11. The AddPattern function called in line 13 is used to learn drift interval trends

by updating the pattern network and reservoir. Lines 20-25 perform pattern construction

60 Proactive Drift Detection

detailed in Section 4.4.1. Lines 33-40 performs pattern matching as shown in Section

4.4.2. At line 31 we update the network and perform transition compression from Section

4.4.3. Lines 41-45 outlines the pattern replacement scheme of our pattern reservoir. Lines

46-58 performs drift prediction as described in Section 4.4.4 using linear projections.

4.4.5 Characterizing Volatility Change

In real streams the characteristics of the stream are often unknown. This leads to chal-

lenges in modelling stream behaviour and parameter selection. We present a method to

address the first issue that allows us to determine the nature of volatility changes given

only the output from the drift detector.

Given drifts are detected at time steps c1, c2, ..., ct, and i1, i2, ...it−1 are the corre-

sponding drift intervals between consecutive drifts. The drift intervals can be grouped

into blocks B1, B2, B3... of size b ≥ 32. We can compute the difference in means be-

tween consecutive blocks as |µBi−µBi+1|. The volatility of the stream can be monitored

using a histogram that is updated incrementally. This gives us a view of the overall

volatility of the stream that can allow us to determine the volatility nature by match-

ing the characteristics of the histogram with the characteristics of streams with rapid or

progressive volatility. Streams with rapid volatility changes are defined as having stable

periods with sudden changes in volatility so the distribution of means between consecutive

blocks should be more concentrated at lower values due to the periods of stability, with a

right hand tail that represents the sudden changes. In contrast streams with progressive

volatility changes should have a relatively even distribution. However the shape of this

distribution also depends on the variance of the drift intervals.

4.5 Proactive Drift Detection

In this section we provide the details of our drift detection method. PROSEED extends

the SEED detector [17] to use drift trends to adapt its behaviour through data compression

as shown in Section 4.3.2. This affects where and how often the drift bound is checked.

Drift Bound: Our detector uses the Hoeffding bound with Bonferroni correction

from Section 3.4.1 to determine whether a drift has occurred. This bound is used to test

for significant differences in the means of two sub-windows. We use this bound as it has

been shown to be more sensitive to small changes and gives theoretical guarantees on the

false positive rate.

Block Compression: Here we will formally define our block compression scheme.

Given k predictions represented by the vector Y = (y1, y2, ..., yk), where Ymax is the

maximum predicted value from Y . Let the time interval (tstart, tend) be the relative time

4.5 Proactive Drift Detection 61

Algorithm 2 Drift Prediction Algorithm

Input: Xt ∈ {0, 1} classification result at time t
Output: estimated location of the next concept drift

1: Initialize driftDetector D
2: Initialize volatilityDetector V , with buffer B of size b
3: Initialize driftInterval← 0
4: Initialize a pattern reservoir P , and network N of size n
5: Initialize a large buffer L of size ≥ 2b

6: for t > 0 do
7: estimatedInterval← PredictNextDrift()
8: pass Xt to D
9: if D detects a drift then

10: update L with driftInterval
11: pass driftInterval to V
12: if V detects a volatility shift then
13: AddPattern(L,B from V)
14: end if
15: driftInterval← 0
16: else driftInterval← driftInterval + 1
17: end if
18: end for

19: function AddPattern(Large Buffer L, Buffer B)
20: data← B
21: lr ← interquartile range of L
22: br ← interquartile range of B
23: if lr ≤ br then data← L
24: end if
25: remove outliers in data by Tukey’s method
26: if PatternFound(data) then
27: update pattern in P
28: else
29: AddToReservoir(data)
30: end if
31: update network N
32: end function

33: function PatternFound(data d)
34: found← false
35: for each element e in P do
36: if d equals e by the Kolmogorov-Smirnov test then found← true
37: end if
38: end for
39: return found
40: end function

41: function AddToReservoir(data d)
42: if P is not full then add d to P
43: else replace rarest element in P with d
44: end if
45: end function

62 Proactive Drift Detection

46: function PredictNextDrift
47: E ← list of estimates
48: F ← list of top k transitions from current pattern px
49: for pattern f in F do
50: if nature of stream is progressive then
51: estimate← µf−µpx

lf
· t

52: else if nature of stream is rapid then
53: estimate← µf
54: end if
55: E ← E ∪ estimate
56: end for
57: return E
58: end function

period associated with block B, where tstart is the time stamp from the first instance in

block B, and tend is the time stamp from the last instance in block B.

t ∈ (tstart, tend), and t ∈ (y1, y2, ..., yk) (4.4)

tstart > Ymax (4.5)

Blocks with time steps that satisfy either Equations 4.4 or 4.5 will not be compressed.

The former equation prevents likely drift locations from being overlooked whereas the

latter allows the anticipation of future drifts when we are less certain of where the next

drift will occur. Through compression we are able to remove block boundaries that are

less likely to be drift points.

Learning Period: The accuracy of our future predictions relies on the accuracy of

our network and the predictability of the drifts in the stream. In our system we learn the

network incrementally as new drift rate trends are discovered. Similar to other learning

techniques, our network model may take some time to stabilize so we introduce the notion

of a learning period where we construct the network using volatility changes in the drifts

found by a base drift detected. We define the length of our learning period using the

number of detected volatility changes which we refer to as X.

For example, suppose we set X to be 20. This means that we will not make any

predictions for the first 20 volatility changes, and the compression of the drift detector

will not be adapted until we have observed at least 20 volatility changes.

4.6 Experiments

We divide our experiments into two phases. In the first phase we evaluate the accuracy

of our drift prediction algorithm. In the second phase we evaluate our drift detector by

comparing it with SEED [17], ADWIN2 [4] and DDM [10]. We will briefly discuss our

4.6 Experiments 63

synthetic data generation process below.

4.6.1 Synthetic Data Streams

We evaluate our technique on streams with rapid and progressive volatility changes as

described in Section 4.2. We use these terms to describe how the rate of drifts change.

This is a different dimensionality to the speed of concept drift which is often described

as abrupt or gradual in previous work. We generate data with these trends by first

defining patterns and a transition network. We define patterns with distinct means µH =

{100, 200, 300, ...} each with variance σ2
H = 100 representing streams with high volatility,

and µL = {1000, 2000, 3000, ...}, σ2
L = 1000 for streams with low volatility. Based on these

patterns we define cyclic networks which we use to generate cyclic drift rates. Consider

a

b c

q
p

q

p

p

q

Figure 4.8: Example of a cyclic network
with three patterns

d

ea

b

c

p

q

p

qp

q

p

q

p

q

Figure 4.9: Example of a cyclic network
with five patterns

the simple example with three patterns a, b, c, and the cyclic network a → b → c → a.

This network is illustrated in Figure 4.8. The transition probabilities are labelled as p

and q = 1 − p. We present the results for p = 0.75 in Sections 4.6.3 and 4.6.4. First we

generate drift intervals using a cyclic network to determine the location of change points,

then we simulate drifts after each drift interval by changing the error rate or concept

function for the stream.

We use three types of noise free streams: (1) Bernoulli streams [4] which simulates the

error rate of a learner, (2) SEA Concepts streams [24] with abrupt concept change, and

(3) CIRCLES streams [10] with gradual concept change. As the data from the Bernoulli

streams represent the error rate of a learner this can be used directly by the drift detectors.

SEA and CIRCLES generate instances with feature and value pairs that need to be passed

through a classifier to produce the error rate stream used by the drift detectors. We use a

Hoeffding Tree as our classifier because it learns incrementally which makes it suitable for

data streams. For Bernoulli streams we alternate the mean error rate P between 0.2 and

0.8 after each change point to simulate abrupt changes. For SEA streams we change the

64 Proactive Drift Detection

concept function threshold. We select thresholds of 7 and 9.5 to simulate abrupt changes

of low magnitudes. For CIRCLES streams we alternate the radius of the circle concept

between 0.2 and 0.3, and simulate gradual changes by gradually increasing the probability

of generating instances from the new concept using a slope of 0.002 in the last 500 time

steps of each drift interval. We present the average and standard deviation values over

100 runs.

4.6.2 Parameter Selection

To ensure the input to our algorithms are sufficiently accurate we tune the volatility

detector to capture local changes in the drift rate. For synthetic streams, we use a buffer

size of 32 with confidence β = {0.2, 0.5}. For detectors we use recommended settings of

δ = 0.05 for ADWIN2, SEED, PROSEED and α = 2, β = 3 for DDM.

Accuracy of Input: As our drift prediction method uses a volatility detector and

a drift detector, we need to ensure these inputs are relatively accurate. The accuracy of

these input algorithms form an upper limit on the true positive rate of our technique. We

assess the accuracies of the input algorithms and show that we are able to obtain a high

true positive rate on synthetic Bernoulli streams with cyclic trends.

Drift Detection: We demonstrate that the SEED detector used to train our network

is accurate in terms of the number of true positive and false positive drifts detected in

Section 4.6.4. This allows our method to learn an accurate network in Section 4.6.3.

0

10

20

30

40

50

60

70

80

90

100

0 0.001 0.002 0.003 0.004 0.005

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rate

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.000 0.001 0.002 0.003 0.004 0.005

D
el

ay

False Positive Rate

Figure 4.10: Accuracy of volatility detector under various parameter settings

Volatility Detection: We present the accuracy of the volatility detector under a

range of parameter settings, buffer size ∈ {32, 50, 75, 100}, and β ∈ {0.2, 0.5, 0.75, 0.9}.
We compare the location of the detected volatility shifts with the location of the true

4.6 Experiments 65

0

10

20

30

40

50

60

70

80

90

100

0 0.001 0.002 0.003 0.004 0.005

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rate

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.000 0.001 0.002 0.003 0.004 0.005

D
el

ay

False Positive Rate

Figure 4.11: Delay of volatility detector under various parameter settings

volatility shifts where pattern transitions occur. We assume the first change detected

following a true change is a true positive, and all other detections between pattern transi-

tions are false positives. We monitor the delay in terms of the number of instances since

the true volatility change. In Figures 4.10 and 4.11 each data point corresponds to a

volatility detector with a particular parameter setting.

4.6.3 Drift Prediction

First we evaluate our drift prediction algorithm on Bernoulli streams and compare the

patterns and network produced by our predictor to the ground truth. For this part we

only present the comparison results for streams with rapid volatility changes. We do not

present the results for progressive streams as the existence of many equivalent networks

makes comparisons difficult.

Evaluation metrics: We use two metrics for measuring network similarity: The

number of true transitions out of 500 (TT) which shows how many transitions from

the stream is captured by the drift predictor’s network, and the number of additional

transitions (AT) which measures how many additional transitions are present in the drift

predictor’s network that are not in the stream’s network. For comparing different sized

networks, we compress the larger network from the drift predictor so that it is the same size

as the network from the stream. Network compression is performed by merging the most

similar patterns according to the lowest D statistic value from the Kolmogorov-Smirnov

test until both networks have the same size.

In these experiments we present the results on streams with rapid volatility change.

For the experiments presented in Tables 4.1, 4.3, 4.4 we generate synthetic streams with

66 Proactive Drift Detection

Table 4.1: Network comparison: Bernoulli streams with different network sizes

Metric N / P 10 30 100
3 497.99 ± (0.90) 498.26 ± (0.66) 498.26 ± (0.66)

TT (SD) 5 496.94 ± (2.33) 498.29 ± (0.68) 498.29 ± (0.68)
10 267.04 ± (61.59) 481.88 ± (20.83) 481.88 ± (20.83)
3 603.59 ± (9.92) 603.89 ± (9.92) 603.89 ± (9.92)

AT (SD) 5 601.06 ± (10.37) 601.99 ± (10.32) 601.99 ± (10.32)
10 482.50 ± (36.38) 624.43 ± (20.50) 624.43 ± (20.50)
3 10498.80 ± (950.36) 17610.24 ± (1262.56) 92090.24 ± (1262.56)

Memory (SD) 5 10832.88 ± (630.05) 18493.68 ± (1420.28) 92973.68 ± (1420.28)
10 11016.40 ± (78.48) 29319.20 ± (1777.46) 103799.20 ± (1777.46)

Table 4.2: Network comparison: Bernoulli streams with different volatility levels

V TT (SD) AT (SD) Time (SD)
100 498.26 ± (0.66) 603.89 ± (9.92) 991.54 ± (50.64)
200 498.63 ± (0.49) 899.34 ± (20.13) 1345.64 ± (87.02)
500 498.91 ± (0.29) 1747.37 ± (44.31) 2368.44 ± (150.66)

500 transitions between patterns with high volatility µH . We use a volatility interval of

100 which is the number of drift points between volatility changes.

In Table 4.1 we show the effect of the drift predictor’s pattern reservoir size on networks

of various sizes. Here P is the pattern reservoir size, and N is the size of the synthetic

network. An example of a three pattern network is presented in Figure 4.8, and a five

pattern network is presented in Figure 4.9. The number of true transitions is close to

optimal (500) for networks of size 3 and 5, this indicates that the predictor has a high

rate of true positives. For networks of size 10, this is near optimal for P ≥ 30, as the

number of patterns detected centers around 30. In this case setting P < 30 restricts the

number of transitions that can be captured. A larger network can give a finer granularity

of the trends whereas a smaller network may be better at capturing frequent patterns of

the stream. We note that the additional transitions are equivalent to self transitions (e.g.

pattern a → a) and are caused by false positive input from the volatility detector. This

has a dampening effect on the transition probabilities. We reduce the effect of this on our

drift prediction accuracy by selecting the top P transitions in the network which maps

all probable volatility changes.

For the later experiments in Tables 4.2, 4.3, 4.4 we keep the stream’s network size

fixed at N = 3, and vary other parameters of the stream. In Table 4.2 we examine the

effect of the stability of the drift rate on the accuracy of our computed network. Here V

denotes the volatility interval which is the number of cut points between changes in the

drift rate, a higher value represents a more stable stream. The number of true transitions

captured is relatively robust to the stability of the trends, but the number of additional

transitions detected increases with respect to the size of the volatility interval.

Table 4.3 shows the effect of adding Gaussian noise with a standard deviation of σ′

4.6 Experiments 67

Table 4.3: Network comparison: Bernoulli streams with Gaussian pattern noise

Pattern Noise (σ′) TT (SD) AT (SD)
0 498.26 ± (0.66) 603.89 ± (9.92)
25 457.89 ± (51.06) 507.32 ± (52.77)
50 230.70 ± (57.88) 210.88 ± (58.71)

µa µb

P
(x

)

Figure 4.12: Pattern probability
density functions without noise

µa µb

P
(x

)

Figure 4.13: Pattern probability density
functions with Gaussian noise (σ′ = 25)

to the patterns. This increases the spread and amount of overlap between between tails

of the pattern distributions. For example, suppose we have two noise free patterns that

are normally distributed a = (µa = 100, σa = 10) and b = (µb = 200, σb = 10). Adding

Gaussian noise of σ′ = 25 changes the distributions to a = (µa = 100, σa = 35), b = (µb =

200, σb = 35). The effect of this is illustrated in Figures 4.12 and 4.13. We observe that

the accuracy of the network degrades as the percentage of overlap between the patterns

increases.

Table 4.4 compares the accuracy of the patterns detected. µp and σ2
p are the mean

and variance of the true pattern prior to the addition of noise. E(µ) = µp is the expected

mean of the pattern, and E(σ2) is the expected variance which is calculated as E(σ2) =

(σ′+σp)
2, where σp =

√
σ2
p. We present the best, worst and median observations compared

to the expected means and variances. Our estimates of the distribution means are very

close to the expected values in the best and average cases. The estimation of variance

is also accurate in the best case, but is less reliable in the worst case. We observe that

in the best case the computed standard deviation is 0.98 − 1.04 times the value of the

expected standard deviation. As this value is close to 1, it indicates that the spread of our

estimated distribution is close to the expected distribution of the pattern. On average, the

standard deviation of the patterns is 0.75− 2.71 times the value of the expected standard

deviation. In the worst case this is 1.54 − 7.37 times the expected value. This occurs

when the drift prediction algorithm is unable to eliminate all the false positive drifts in

a window or incorrectly separates two patterns following a volatility shift. We show that

our estimates of the distribution means are relatively accurate. In the future we would

like to work towards improving the accuracy of our variance estimates.

In Table 4.5 we examine the effect of adding noise to the network by corrupting the

68 Proactive Drift Detection

Table 4.4: Pattern comparison: Bernoulli streams with Gaussian pattern noise

Pattern
Noise (σ′) µp σ2

p E(µ) E(σ2) µBest σ2
Best µWorst σ2

Worst µMedian σ2
Median

0 100 100 100 100 99.84 105.40 120.96 3383.96 99.84 438.30
0 200 100 200 100 200.00 99.71 219.84 2448.81 195.52 300.74
0 300 100 300 100 299.20 108.71 263.36 5437.65 289.76 733.76
25 100 100 100 1225 99.84 1199.84 145.60 6699.54 108.64 1828.25
25 200 100 200 1225 200.00 1230.87 254.72 5239.05 194.08 1709.72
25 300 100 300 1225 299.20 1275.97 250.88 6915.21 282.88 2444.31
50 100 100 100 3600 100.16 3454.29 176.64 8532.92 117.60 2033.26
50 200 100 200 3600 200.32 3599.52 128.00 10382.64 197.92 4127.65
50 300 100 300 3600 299.84 3625.48 217.60 8578.74 288.96 4114.36

Table 4.5: Network comparison: Bernoulli streams with network noise

Metric T / N 3 5 10
0 498.26 ± (0.66) 498.29 ± (0.68) 481.88 ± (20.83)

TT (SD) 0.01 495.08 ± (1.66) 493.55 ± (2.02) 468.63 ± (38.19)
0.05 486.67 ± (3.73) 476.03 ± (24.49) 455.75 ± (29.75)
0.1 473.57 ± (6.35) 459.55 ± (5.71) 434.35 ± (30.74)
0 603.89 ± (9.92) 601.99 ± (10.32) 624.43 ± (20.50)

AT (SD) 0.01 608.29 ± (9.60) 612.8 ± (13.40) 642.74 ± (42.64)
0.05 616.76 ± (10.53) 646.35 ± (27.44) 668.88 ± (32.50)
0.1 630.50 ± (11.92) 670.30 ± (14.81) 707.89 ± (36.30)

S1 : a, b, c, a, c

S2 : a, c, c, a, b

Figure 4.14: Sequence of patterns

ab c
1

1 1

Figure 4.15: Network constructed by sequences

transitions. For example, let a, b represent patterns, a transition a → b is corrupted to

become a→ x such that x 6= b with probability T ∈ [0, 1]. We refer to T as the network

noise. In our experiments we tested on networks of size N ∈ {3, 5, 10} with various levels

of noise T ∈ {0.01, 0.05, 0.1}. Our aim is to investigate the effect of corruption on our

ability to recover the underlying noise free network. We compare our detected network

to the underlying network prior to corruption. For small networks N ≤ 5 we achieve true

transition rates that are close to the expected value of 1− T .

Introducing noise to small networks may result in some of the noise being hidden due

to the occurrence of transitions that compensate each other. For example suppose the

sequence of patterns from our underlying network is represented by S1, and the corrupted

network is S2. In Figure 4.14 each letter in the sequence corresponds to a pattern, letter

a represents pattern a, letter b represents pattern b and letter c represents pattern c.

The order of the sequence represents the order of pattern transitions over time. Here the

sequence S1 : a, b, c, a, c indicates there are four transitions, (1) a → b, (2) b → c, (3)

c→ a and (4) a→ c.

4.6 Experiments 69

The first transition a→ b in S1 is corrupted to become a→ c in S2 and the last tran-

sition a → c in S1is corrupted to become a → b in S2. The effect of this on the pattern

sequence is highlighted in bold. In this example, the two corruption events compensate

each other so the network produced by S1 and S2 shown in Figure 4.15 are indistinguish-

able. In larger networks, this is less likely to occur as there are more patterns to select

from when corrupting a transition. For large networks of size N = 10, we are able to

obtain a true transition rate of ≥ 86% with up to 10% noise.

4.6.4 Drift Detection

Next, we evaluate the accuracy of drift detection. We present results on streams with

rapid volatility changes in Tables 4.6, 4.8 and 4.10 and progressive volatility changes in

Tables 4.7, 4.9 and 4.11. In the following experiments we use patterns of low volatility µL,

with 10000 drift points in each stream. We use patterns with low volatility so that each

concept persists long enough for the accuracy of the classifier to stabilize. For the following

experiments we keep the volatility interval fixed at 100, but would like to examine the

effect of varying this such that changes in the drift rate do not occur after exactly 100 cut

points in the future. For the experiments presented in Tables 4.6 - 4.11 and 4.13 - 4.14

we do not use a learning period for PROSEED.

Evaluation metrics: We use standard evaluation metrics - the number of true pos-

itives out of 10,000 (TP), number of false positives (FP), detection delay, memory (in

bytes) and time (in milliseconds) for each detector. We present the memory and time

used by PROSEED excluding the drift prediction phase as the results have been shown

previously in [17] and Section 4.6.3.

In terms of time, PROSEED is faster than both ADWIN2 and SEED as we are able

to reduce the number of potential cut points that are checked. However the overall time

required for our method including the prediction phase exceeds the time used by a single

Table 4.6: Drift detection: Bernoulli streams with rapid volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9998.89 ± 0.31 33.10 ± 5.93 34.64 ± 10.09 683.84 ± 157.90 598.78 ± 14.57

SEED 9999.00 ± 0.00 213.34 ± 16.90 34.51 ± 10.15 2207.04 ± 974.11 1539.03 ± 41.15
ADWIN2 9999.00 ± 0.00 12689.68 ± 78.04 34.01 ± 10.14 1747.36 ± 137.13 5262.68 ± 108.51

DDM 5000.01 ± 0.22 97.41 ± 10.25 201.51 ± 52.57 128.00 ± 0.00 322.62 ± 15.52

Table 4.7: Drift detection: Bernoulli streams with progressive volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9998.92 ± 0.27 44.32 ± 6.43 34.53 ± 10.10 852.56 ± 349.62 558.01 ± 20.51

SEED 9998.99 ± 0.10 210.50 ± 15.21 34.46 ± 10.14 1968.48 ± 871.98 1479.92 ± 45.38
ADWIN2 9999.00 ± 0.00 12698.08 ± 68.53 33.98 ± 10.13 1740.64 ± 132.91 5254.83 ± 116.28

DDM 5000.04 ± 0.20 100.98 ± 10.03 203.29 ± 38.28 128.00 ± 0.00 299.54 ± 15.22

70 Proactive Drift Detection

detector. In Tables 4.6 - 4.11 we observe that SEED and ADWIN2 are comparable in

terms of the number of true drifts found. However ADWIN2 is more sensitive to false

positives. This may be due to the way the data is stored which facilitates the detection

of small changes. We show that PROSEED is able to accurately detect many true drifts,

and is comparable to SEED and ADWIN2 in terms of true positives for Bernoulli streams.

Although PROSEED finds fewer true positives than SEED, it is able to effectively lower

the number of false positives by 78 − 93%. There is a natural trade off between true

positives and false positives, so it is inevitable that decreases in false positives may also

coincide with decreases in true positive rates. However, as we are able to effectively reduce

the false positive rate whist attaining a high true positive rate > 90% in our synthetic

datasets, this gives promise to the use of drift trends for achieving a more accurate drift

detector.

We investigate the effects of using a learning period where we initially learn the network

of the drift predictor without making any predictions as described in Section 4.5. We

divide our data stream into a learning set with 1000 drift points, and a test set with 10,000

drift points. We select a learning set of size 1000 with 10 transitions because it would

provide sufficient information to map 1-3 cycles from the network. For this experiment

Table 4.8: Drift detection: SEA Concepts streams with rapid volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9895.42 ± 47.34 37.02 ± 11.47 135.59 ± 92.23 641.60 ± 138.40 624.50 ± 16.47

SEED 9997.14 ± 1.83 165.69 ± 11.45 117.15 ± 65.97 1845.12 ± 818.37 1578.80 ± 38.42
ADWIN2 9997.00 ± 1.98 24920.11 ± 173.14 127.01 ± 74.95 1750.72 ± 139.07 8576.84 ± 171.26

DDM 2453.68 ± 2507.21 945.90 ± 966.72 436.25 ± 231.54 128.00 ± 0.00 357.25 ± 47.99

Table 4.9: Drift detection: SEA Concepts streams with progressive volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9820.32 ± 22.33 12.70 ± 3.63 217.24 ± 246.87 874.16 ± 315.96 599.08 ± 19.62

SEED 9997.18 ± 1.94 169.41 ± 12.37 116.85 ± 65.93 1876.32 ± 946.58 1536.42 ± 46.24
ADWIN2 9996.92 ± 2.04 25391.84 ± 183.48 126.12 ± 76.20 1740.64 ± 132.91 8547.74 ± 192.83

DDM 2301.24 ± 2501.38 906.03 ± 985.18 440.90 ± 221.87 128.00 ± 0.00 342.29 ± 42.40

Table 4.10: Drift detection: CIRCLES streams with rapid volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9714.49 ± 63.38 271.44 ± 56.95 547.69 ± 170.19 585.20 ± 91.94 798.29 ± 33.08

SEED 9993.52 ± 2.79 481.77 ± 24.96 482.33 ± 130.12 733.44 ± 333.92 1645.84 ± 40.85
ADWIN2 9984.44 ± 6.42 21956.39 ± 347.80 490.25 ± 179.02 1567.60 ± 107.78 5393.76 ± 100.39

DDM 522.84 ± 1252.72 306.94 ± 741.54 588.25 ± 227.85 128.00 ± 0.00 315.53 ± 18.52

Table 4.11: Drift detection: CIRCLES streams with progressive volatility change

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
PROSEED 9273.94 ± 45.11 10.05 ± 4.68 594.95 ± 292.69 744.80 ± 290.12 710.96 ± 23.27

SEED 9997.93 ± 2.08 531.62 ± 25.30 474.28 ± 128.28 812.16 ± 458.08 1630.73 ± 48.39
ADWIN2 9995.55 ± 2.84 23943.53 ± 299.48 487.95 ± 159.98 1582.72 ± 98.22 5370.69 ± 123.56

DDM 608.69 ± 1643.70 380.32 ± 1030.09 456.82 ± 152.19 128.00 ± 0.00 308.80 ± 21.80

4.6 Experiments 71

Table 4.12: Drift detection: PROSEED on synthetic data streams

Metric Stream Learning Period No Learning Period
Bernoulli R. 9998.92 ± 0.27 9998.89 ± 0.31
Bernoulli P. 9998.89 ± 0.35 9998.92 ± 0.27

TP (SD) SEA R. 9931.68 ± 40.33 9895.42 ± 47.34
SEA P. 9833.04 ± 20.59 9820.32 ± 22.33

CIRCLES R. 9740.63 ± 62.32 9714.49 ± 63.38
CIRCLES P. 9271.09 ± 46.39 9273.94 ± 45.11
Bernoulli R. 28.93 ± 5.98 33.10 ± 5.93
Bernoulli P. 40.17 ± 6.84 44.32 ± 6.43

FP (SD) SEA R. 25.25 ± 12.02 37.02 ± 11.47
SEA P. 4.39 ± 2.20 12.70 ± 3.63

CIRCLES R. 259.77 ± 66.68 271.44 ± 56.95
CIRCLES P. 7.10 ± 3.51 10.05 ± 4.68
Bernoulli R. 34.63 ± 10.09 34.64 ± 10.09
Bernoulli P. 34.54 ± 10.10 34.53 ± 10.10

Delay (SD) SEA R. 128.73 ± 73.13 135.59 ± 92.23
SEA P. 214.47 ± 245.59 217.24 ± 246.8

CIRCLES R. 543.36 ± 365.23 547.69 ± 170.19
CIRCLES P. 591.32 ± 292.37 594.95 ± 292.69

Table 4.13: Drift detection: Forest Covertype

Detector Drifts Detected Memory Time
PROSEED 2033.00 1064.00 177.78

SEED 2376.00 1080.00 47.98
ADWIN2 2492.00 1576.00 194.20

DDM 3953.00 128.00 22.81

Table 4.14: Drift detection: Pokerhand

Detector Drifts Detected Memory Time
PROSEED 1651.00 464.00 66.53

SEED 1940.00 984.00 58.95
ADWIN2 2130.00 1408.00 241.81

DDM 857.00 128.00 28.73

we present the number of true positives, false positives and delay for instances in the

test set. In Table 4.12 we present the results for six synthetic streams with rapid (R.) or

progressive (P.) volatility change. We show that we are able to further reduce the number

of false positives PROSEED detected by 4.30− 65.43%. The number of true positives is

comparable regardless of whether a learning period is used. In practice we can emulate a

learning period by setting the use of predictions adaptively based on how many times we

have seen the current pattern (e.g. use predictions only when we have observed a pattern

X times), or based on the stability of the drift rate. When the drift rate of a stream

has stable periods we can be more confident of our predictions, but when the drift rate

has many fluctuations we are less confident of our predictions. In these cases we could

adjust our compression method to search for drifts at regular intervals or use a stochastic

compression method.

72 Proactive Drift Detection

In the final experiment, we analyze the effect of our proactive drift detector on a

complete drift detection system by using our detector for the adaptation of Hoeffding

Trees. We adopt a simple adaptation approach where we reset the learner after a drift is

detected. We evaluate our drift detector on two real datasets Forest Covertype [17] and

Pokerhand [6] as discussed in Section 2.5.2. For these streams we do not know the location

of true drifts so we can not assess the true positive and false positive rates. We show the

number of drifts detected by PROSEED is lower than the number of drifts detected by

SEED and ADWIN2 in Tables 4.13 and 4.14.

4.7 Conclusions

In this chapter we proposed a drift prediction algorithm that can accurately learn drift

trends of a stream using a probabilistic network. We then proposed a new drift detector

which incorporates historical drift rate information that is accurate for streams with

reoccurring volatility trends. The highlight of our new technique is that it allows us

to proactively determine when we would see future drift points. This in itself changes

the landscape of how drift detectors are currently developed and used. To show the

accuracy and feasibility of our technique, we analyze our drift prediction technique by

comparing it to ground truth in synthetic data streams and show that it can accurately

capture trends for streams with reoccurring volatility patterns. In our experiments we

compared the performance of our drift detector against other benchmark detectors such

as ADWIN2 [4], SEED [17] and DDM [10]. We show that we are able to lower the rate of

false positives on synthetic streams with cyclic drift rate trends. We also evaluated the

use of drift detectors for the adaptation of Hoeffding Trees on real data streams and show

that our proactive approach detects fewer drifts than ADWIN2 and SEED.

One current limitation of our technique is that it only uses drift interval information

for predicting future drift locations by matching the drift rate patterns to the pattern

network. In the future we would like to explore the use of additional information such

as concept models to enhance the drift detection capability of current drift detection

methods. This would provide us with more knowledge about future predictions and

enhance the drift detection capability by further reducing the false positives and hence

increase the accuracy of our system.

5
Conclusions

In the final chapter we highlight the major achievements of our work, identify the current

limitations and possible future directions.

5.1 Achievements

The following list highlights the major achievements of our research:

Chapter 3

• We proposed a novel drift detector (MAGSEED) to track the magnitude of changes

in data streams with gradual changes.

Chapter 4

• We proposed a drift prediction method (DPM) for predicting the location of future

drift points based on historical drift rate trends. We showed that our technique can

accurately track reoccurring drift rate trends.

• We proposed a proactive drift detector (PROSEED) that incorporates historical

drift rate trends in the form of predicted locations of future drift. We showed that

by using a proactive approach we are able to effectively lower the rate of false positive

drifts detected in streams with reoccurring cyclic drift rate trends.

73

74 Conclusions

5.2 Limitations

The first limitation relates to parameter selection for our magnitude detector in Chapter 3.

Our detector uses a fixed size window for monitoring the error rate that contributes to

the second warning threshold. We selected a size of 100 instances because it can be seen

as a statistically significant sample size and confirmed that this setting works well on

synthetic streams. We note that it may be more intuitive to set this according to the

stability of the stream such that a larger size is selected for stable streams and a smaller

size is selected for streams that are less stable.

The second limitation also relates to Chapter 3. The detector we presented is aimed

at computing the magnitudes of change for gradual streams. We showed that our detector

is able to estimate the magnitude for low to medium levels of magnitude change, but is

unable to do so for abrupt changes with high magnitudes. High magnitudes of change

are where we have large changes in concepts such as a complete reversal of the concept

function.

The third limitation relates to the accuracy of the input to the proactive system

presented in Chapter 4. There are two input components to our system. A drift detector

for detecting changes which we refer to as a base drift detector, and a volatility detector

for locating changes in the drift rate of the base drift detector. The output of our system

is a proactive drift detector that is different to the base drift detector. The quality of

our proactive system is limited by the accuracy of the input components. If the input

is sufficiently accurate we may be able to utilize the drift rate trends to gain meaningful

insights and produce an accurate proactive detector. However if the input is very noisy the

new knowledge gained would also contain noise and may not improve the drift detection

accuracy.

The fourth limitation is the assumption of a stable period in Chapter 4. We were

interested in the overall volatility trends of a stream, and how the drift rate distributions

changed over time so it seemed sensible to characterize the stream volatility as having

periods of stability. However in the scenario that the stream is very volatility and does not

exhibit these characteristics our modelling technique would not be sufficient to accurately

capture the characteristics of the stream’s volatility.

5.3 Future Work

We present four main directions for future work below.

5.3 Future Work 75

Drift Magnitude

In Chapter 3 we introduced a method for detecting the drift magnitude based on the drift

severity metric. This metric can only be applied to detectors with a warning phase, but

as most detectors do not have a warning phase this limits its applicability. In addition to

this, the drift severity metric assumes all errors in the warning window contribute to the

change, but does not account for other factors that affect the error rate such as noise and

limitations of the model. We would like to look at other ways to formalize metrics for the

computation of drift magnitude and apply this to a range of drift detectors.

The method we presented relies on the correct setting of many parameters. One of

which is the window size used to compute the moving average of the error rate. We

have chosen to use a fixed size window of 100 instances which is statistically significant.

However it would be more ideal to set this parameter adaptively based on the stability of

the stream to solve the first limitation.

Another future research direction is to use the magnitudes of drifts for forecasting

future changes. In our work, we only attempted to monitor the magnitude of drifts, but

did not utilize these values. This could be applied to streams that have trends in the

magnitude of changes to provide more information for users beyond the location of drifts.

Stream Volatility

In Chapter 4 we introduced a proactive drift detection method that uses historical trends

in stream volatility modelled as volatility patterns and pattern transitions. Our framework

assumes there are periods where the drift rate is stable, so it may not work well for volatile

streams that have frequent fluctuations in the drift rate. We would like to look at ways

to characterize streams with more frequent changes in the drift rate to address limitation

four. In addition to this we would like to develop methods that are more flexible in

terms of the way the drift predictions are used, and ways to monitor the confidence of our

predictions. We believe this could allow us to decrease false positives for streams with

less predictable trends.

We would also like to look at ways to provide better abstractions of volatility patterns

so the projection of volatility trends can be scaled depending on the current drift rate of

the stream.

Model Changes and Adaptation

One interesting area for future work is the study of changes in the model and change

adaptation strategies. Currently most change detection systems employ a simple adap-

tation approach by completely relearning the model after a change. It would be useful

to be able to determine which part of the model is changing, and adapt the model to

76 Conclusions

changes accordingly. This could be beneficial in scenarios where we have changes of lower

magnitudes, or gradual changes because adopting a different adaptation strategy could

allow models to be updated more quickly by decreasing the loss of relevant information.

Evaluation Benchmarks

The current datasets commonly used for algorithm evaluation only represent a small

portion of the input space. Only using these datasets could cause the performance of

algorithms to be misrepresented. Therefore we believe there is a need for more variety

and standardization of benchmark datasets for the testing of machine learning algorithms.

This requires the identification of key aspects of the input data that may be relevant to

our research problem and from this generate test sets from different regions of the input

space. The purpose of this is to increase the variety of datasets available.

Another area to explore is the generation of pseudo-synthetic datasets that have prop-

erties that are similar to real datasets. We believe this could increase the reliability of

our evaluation methods.

Bibliography

[1] Stephen H Bach and M Maloof. Paired learners for concept drift. In Eighth IEEE In-

ternational Conference on Data Mining, 2008. ICDM’08., pages 23–32. IEEE, 2008.

[2] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavalda,

and R Morales-Bueno. Early drift detection method. In Fourth International Work-

shop on Knowledge Discovery from Data Streams, volume 6, pages 77–86, 2006.

[3] Peter L Bartlett, Shai Ben-David, and Sanjeev R Kulkarni. Learning changing con-

cepts by exploiting the structure of change. Machine Learning, 41(2):153–174, 2000.

[4] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive

windowing. In Proceedings of the Seventh SIAM International Conference on Data

Mining, April 26-28, 2007, Minneapolis, Minnesota, USA, pages 443–448, 2007.

[5] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard

Gavaldà. New ensemble methods for evolving data streams. In Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 139–148. ACM, 2009.

[6] Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Indrė Žliobaitė.

CD-MOA: Change detection framework for massive online analysis. In Advances in

Intelligent Data Analysis XII, volume 8207 of Lecture Notes in Computer Science,

pages 92–103. Springer Berlin Heidelberg, 2013.

[7] Kylie Chen, Yun Sing Koh, and Patricia Riddle. Tracking drift severity in data

streams. In AI 2015: Advances in Artificial Intelligence - 28th Australasian Joint

Conference, Canberra, ACT, Australia, November 30 - December 4, 2015, Proceed-

ings, pages 96–108, 2015.

[8] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’00, pages 71–80, New York, NY, USA, 2000. ACM.

77

78 BIBLIOGRAPHY

[9] João Gama and Petr Kosina. Tracking recurring concepts with meta-learners. In

Progress in Artificial Intelligence, pages 423–434. Springer, 2009.

[10] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift

detection. In Advances in Artificial Intelligence - SBIA 2004, volume 3171 of Lecture

Notes in Computer Science, pages 286–295. Springer Berlin Heidelberg, 2004.

[11] João Gama and Carlos Pinto. Discretization from data streams: applications to

histograms and data mining. In Proceedings of the 2006 ACM symposium on Applied

computing, pages 662–667. ACM, 2006.

[12] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys

(CSUR), 46(4):44, 2014.

[13] Jing Gao, Wei Fan, and Jiawei Han. On appropriate assumptions to mine data

streams: Analysis and practice. In Seventh IEEE International Conference on Data

Mining, 2007. ICDM 2007., pages 143–152. IEEE, 2007.

[14] Paulo M Gonçalves Jr and Roberto SM Barros. A comparison on how statistical

tests deal with concept drifts. In Proceedings on the International Conference on

Artificial Intelligence (ICAI), page 1. The Steering Committee of The World Congress

in Computer Science, Computer Engineering and Applied Computing (WorldComp),

2012.

[15] Paulo M Gonçalves Jr and Roberto SM Barros. RCD: A recurring concept drift

framework. Pattern Recognition Letters, 34(9):1018 – 1025, 2013.

[16] David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Albert Bifet. Drift

detection using stream volatility. In Machine Learning and Knowledge Discovery in

Databases, pages 417–432. Springer, 2015.

[17] David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Russel Pears. Detecting

volatility shift in data streams. In 2014 IEEE International Conference on Data

Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014, pages 863–868, 2014.

[18] IBM. Big data. http://www-01.ibm.com/software/data/bigdata/

what-is-big-data.html.

[19] Dino Ienco, Albert Bifet, Bernhard Pfahringer, and Pascal Poncelet. Change detec-

tion in categorical evolving data streams. In Proceedings of the 29th Annual ACM

Symposium on Applied Computing, pages 792–797, 2014.

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

BIBLIOGRAPHY 79

[20] Yichao Jin and Barbara Hammer. Computational intelligence in big data. Compu-

tational Intelligence Magazine, IEEE, 9(3):12–13, 2014.

[21] Paulo M. Gonçalves Jr., Silas G.T. de Carvalho Santos, Roberto S.M. Barros, and

Davi C.L. Vieira. A comparative study on concept drift detectors. Expert Systems

with Applications, 41(18):8144 – 8156, 2014.

[22] Imen Khamassi and Moamar Sayed-Mouchaweh. Drift detection and monitoring in

non-stationary environments. In 2014 IEEE Conference on Evolving and Adaptive

Intelligent Systems (EAIS), pages 1–6. IEEE, 2014.

[23] X Z Kong, Y X Bi, and D H Glass. A geometric moving average martingale method

for detecting changes in data streams. In Research and Development in Intelligent

Systems, pages 79–92, 2012.

[24] Petr Kosina, João Gama, and Raquel Sebastião. Drift severity metric. In Proceedings

of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial In-

telligence, pages 1119–1120, Amsterdam, The Netherlands, The Netherlands, 2010.

IOS Press.

[25] Ludmila I Kuncheva. Change detection in streaming multivariate data using likeli-

hood detectors. IEEE Transactions on Knowledge and Data Engineering, 25(5):1175–

1180, 2013.

[26] Doug Laney. 3D Data Management: Controlling Data Volume, Velocity

and Variety, 2001. http://blogs.gartner.com/doug-laney/files/2012/01/

ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.

pdf.

[27] Fernanda L. Minku and Xin Yao. Using diversity to handle concept drift in on-

line learning. In Proceedings of the 2009 International Joint Conference on Neural

Networks, IJCNN’09, pages 2968–2975. IEEE Press, 2009.

[28] Leandro L Minku, Allan P White, and Xin Yao. The impact of diversity on online

ensemble learning in the presence of concept drift. IEEE Transactions on Knowledge

and Data Engineering, 22(5):730–742, 2010.

[29] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical

testing. In Discovery Science, pages 264–269. Springer, 2007.

[30] ES Page. Continuous inspection schemes. Biometrika, pages 100–115, 1954.

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

80 BIBLIOGRAPHY

[31] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J. Hand. Exponen-

tially weighted moving average charts for detecting concept drift. Pattern Recognition

Letters, 33(2):191 – 198, 2012.

[32] Sripirakas Sakthithasan, Russel Pears, and Yun Sing Koh. One pass concept change

detection for data streams. In Advances in Knowledge Discovery and Data Mining,

volume 7819 of Lecture Notes in Computer Science, pages 461–472. Springer Berlin

Heidelberg, 2013.

[33] Raquel Sebastião and João Gama. A study on change detection methods. In 4th

Portuguese Conference on Artificial Intelligence, Lisbon, 2009.

[34] Raquel Sebastião, João Gama, Pedro Pereira Rodrigues, and João Bernardes. Mon-

itoring incremental histogram distribution for change detection in data streams. In

Knowledge Discovery from Sensor Data, pages 25–42. Springer, 2010.

[35] Nikolai V Smirnov. Estimate of deviation between empirical distribution functions

in two independent samples. Bulletin Moscow University, 2(2):3–16, 1939.

[36] Parinaz Sobhani and Hamid Beigy. New drift detection method for data streams.

Springer, 2011.

[37] Sakthithasan Sripirakas and Russel Pears. Mining recurrent concepts in data streams

using the discrete fourier transform. In Data Warehousing and Knowledge Discovery,

pages 439–451. Springer, 2014.

[38] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (SEA) for

large-scale classification. In Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’01, pages 377–382, New

York, NY, USA, 2001. ACM.

[39] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and

hidden contexts. Machine learning, 23(1):69–101, 1996.

[40] Ying Yang, Xindong Wu, and Xingquan Zhu. Combining proactive and reactive

predictions for data streams. In Proceedings of the Eleventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery in Data Mining, pages 710–715. ACM,

2005.

[41] Ying Yang, Xindong Wu, and Xingquan Zhu. Mining in anticipation for concept

change: Proactive-reactive prediction in data streams. Data Mining and Knowledge

Discovery, 13(3):261–289, 2006.

BIBLIOGRAPHY 81

[42] Indrė Žliobaitė, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff Holmes.

Evaluation methods and decision theory for classification of streaming data with

temporal dependence. Machine Learning, 98(3):455–482, 2015.

	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions
	Overview of Research
	Structure of Thesis

	Background and Related Work
	Concept Drift
	Drift Detectors
	Reoccurring Concepts
	Characterization of Concept Drift
	Datasets

	Tracking Drift Severity
	Introduction
	Preliminaries
	Overview
	Drift Magnitude Detection
	Alternative approaches
	Experiments
	Conclusions

	Proactive Drift Detection
	Introduction
	Modelling Stream Volatility
	Overview
	Drift Prediction Method
	Proactive Drift Detection
	Experiments
	Conclusions

	Conclusions
	Achievements
	Limitations
	Future Work

	coversheet.pdf
	General copyright and disclaimer

	coversheet.pdf
	General copyright and disclaimer

