Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form

Ascidians and Sea Hares: Rich Sources of Bioactive Natural Products

by

David Ross Appleton

A thesis submitted

in fulfilment of the requirements for the degree of

Doctor of Philosophy

in Chemistry

November 2002

Department of Chemistry

The University of Auckland

Abstract

A survey of the metabolite content of fifty-two ascidians collected from New Zealand and Antarctica is presented. Using biological assays and reversed phase analytical C₁₈ HPLC techniques, twenty-three specimens were selected for further work. Work on ten of the selected ascidians is presented in this study. Using standard chromatographic techniques combined with analytical C₁₈ HPLC, eighteen metabolites were isolated of which sixteen exhibited biological activity. Ten of the eighteen metabolites were novel, with nine exhibiting biological activity. The New Zealand endemic ascidian Pycnoclavella kottae, collected from the Three Kings Islands yielded the novel 2,2,5-trisubstituted imidazol-4-ones, kottamides A D (3.1 - 3.4). Three new pyridoacridines (4.80, 4.82, 4.84), along with two known pyridoacridines and the known benzopentathiepin, varacin were isolated from the New Zealand endemic ascidian Lissoclinum notti. Varacin was investigated for its use in ADEPT and a possible prodrug derivative was prepared. In addition, a novel biologically inactive purine, 8-oxo-1,3-dimethylisoguanine (6.29) was isolated from the New Zealand endemic ascidian Pseudodistoma cereum. The study of an ascidian of the genus Aplidium, collected from the Ross Sea, Antarctica resulted in the isolation of two novel quinone derivatives, rossinones A (5.71) and B (5.72), which exhibited potent cytotoxicity and antiviral activity. Rossinones A (5.71) and B (5.72) provide insights into the biosyntheses of several terrestrial plant natural products.

In addition, six sea hares of three species collected from the Auckland, New Zealand region were surveyed using the same methodology, with three novel and seven known compounds being isolated. The study of the sea hare *Aplysia dactylomela* resulted in the isolation of two inactive novel tryptophan dipeptides, dactylamides A (7.9) and B (7.10), the known ink pigment aplysioviolin and four known sesquiterpenes. A new malyngamide, S (8.8) along with an algal toxin, lyngbyatoxin A and its acetate were isolated from the sea hare *Bursatella leachii*. A survey of nine algae collected from the same locations as the sea hares resulted in the identification of several of the dietary sources of these sea hares.

Standard spectroscopic techniques were used for structural elucidation, including the use of natural abundance ¹H-¹⁵N 2-D NMR where required. All compounds were assayed for a range of biological activities.

Acknowledgements

To my supervisor Dr Brent Copp: Your constant enthusiasm, interest and dedication amaze me. You have made this experience more than I could have ever hoped for. I have learnt so much from you. Thank you so much for everything - may all of your dreams and goals succeed in the future.

Well, what a surprise... I came back to university to further my education - who would have known that I would meet the girl of my dreams and be happily married by now? To the bestest wife Yu Huay (Michelle), you swept me off my feet. Thanks for making allowances for my idiosyncrasies during this work and then for reading and checking it through so well for me. I will always love you my SP. More proof that Chemistry CAN be fun.

I owe everything to my wonderful family. My endless thanks and love to Dad and Mum for all you have done for me and taught me over the years. You have always encouraged me to do whatever makes me happy, and to do it to the best of my ability, and then you've been there for me the whole way. Thank you so much! Thanks to my most excellent sister Debs, who has got closer to me as the years pass. I really appreciate your love for me, and for always being there.

To Dr Norrie Pearce, thank you so much for all the helpful advice and training, never complaining and being ever so patient with my many questions. Thanks also for your friendship, which I hope continues through the years to come, and for your significant contribution to making my last three years the best I have had so far. Thanks also to the others who have had the joy (???) of sharing a laboratory with me; Pierre Tulasne, Heather Wansborough, Katherine Shirley, Jamie Yim, Ming-Chun Wu and Tanya Grkovic.

My sincere thanks and gratitude go to Associate Professor Paul Woodgate, who is a truly gifted and inspiring teacher, for his useful advice along the way, and to Michael Walker for the many, many hours he has spent running mass spectra and NMR spectra for me and all the advice - it really is appreciated. Thanks also to the many other staff and students of the Department of Chemistry who have made this experience so enjoyable.

I would like to thank the Royal Society of New Zealand and especially The University of Auckland for the much appreciated funding during the last three years to make this financially possible.

Many thanks to Dr Michael Page of the National Institute of Water and Atmospheric research (NIWA), Associate Professor Russell Babcock, Dr Mary Sewell, David Todd and Nick Shears (UofA), and Dr Peter Northcote (Victoria University, Wellington) for assistance with specimen collections. Thanks also to Dr Gretchen Lambert (State University of Fullerton, USA), Dr Pat Kott (Queensland Museum, Australia) in addition to some of those above, for specimen identifications.

I would also like to thank Ms Gill Ellis (University of Canterbury) for the P388, cytotoxicity and antimicrobial assays, Dr V. Narayanan (NCI, Bethesda) for in vitro human antitumour assays, Tuberculosis Antimicrobial Acquisition and Co-ordinating Facility (TAACF) in contract to National Institute of Allergy and Infectious Diseases (USA) for antimycobacterial assays and Dr Michael Berridge and Mr An S. Tan (Malaghan Institute of Medical Research, Wellington) for anti-inflammatory and anti-metabolic assays. I am also extremely grateful to Professor Roberto Berlinck of the Universidade de Sao Paulo for obtaining circular dichroism spectra.

Thanks to God, for being so trustworthy, always putting me in the right place at the right time and for his limitless blessings that are too many to list.

Table of Contents

Abstract		ii
Acknowled	gements	iv
Table of Co	ontents	vi
List of Figu	ires	X
List of Sche	emes	xv
List of Tab	les	xvii
Abbreviatio	ons	XX
Chapter O	ne – Introduction	1
1.1.	Marine Natural Products	1
1.2.	Secondary Metabolites in New Zealand Ascidians	5
1.3.	Secondary Metabolites in New Zealand Sea Hares and Algae	9
1.4.	Overview	16
Chapter Tv	vo – General Methods and Surveys	17
2.1.	Collection and Extraction Methods	17
2.2.	HPLC Screening Methods and Development	19
2.3.	Ascidian Survey	22
2.4.	Sea Hare and Algae Survey	31
2.5.	Isolation Methodology	36
2.6.	Summary	41
Chapter Th	nree – Isolation of Kottamides A - D from the	
	Ascidian Pycnoclavella kottae	42
3.1.	Introduction	42
3.2.	Isolation of Major Compounds	43
3.3.	Proposed Biogenesis of the Kottamides	61

3.4.	Biological Activity of the Kottamides	63
3.5.	Conclusions and Future Work	64
Chapter Fo	our – Isolation of Bioactive Compounds from the	
	Ascidian Lissoclinum notti	66
4.1.	Introduction	66
4.2.	Isolation of Bioactive Compounds	77
4.3.	Proposed Biogenesis of Lissoclinidine (4.82) and Isodiplamine (4.84)	95
4.4.	Biological Activity of Metabolites	97
4.5.	Conclusions and Future Work	102
Chapter Fi	ve – Isolation of Rossinones A and B from an	
	Antarctic Ascidian of the Genus Aplidium	104
5.1.	Introduction	104
5.2.	Isolation of Major Compounds	115
5.3.	Proposed Biogenesis of the Rossinones	128
5.4.	Biological Activity of the Rossinones	129
5.5.	Conclusions and Future Work	133
Chapter Si	x – Isolation of Compounds from Two Species of	
	Pseudodistoma and Other Selected Ascidians	134
6.1.	A New Purine from Pseudodistoma cereum	134
6.2.	Attempted Isolation of Aminols from Pseudodistoma aureum	144
6.3.	Attempted Isolation of Bioactive Compounds from an	
	Unidentified Orange Thin-Encrusting Ascidian	148
6.4.	Attempted Isolation of Bioactive Compounds from	
	Two Ascidians of the Genus Leptoclinides	151
6.5.	Attempted Isolation of Bioactive Compounds from a	
	New Zealand Ascidian of the genus Aplidium	153

6.6.	Attempted Isolation of Compounds from a New Zealand	
	Didemnum candidum Ascidian	154
Chapter Se	even – Dactylamides A and B, and Bioactive Compounds from the	
	Sea Hare Aplysia dactylomela	156
7.1.	Introduction	156
7.2.	Isolation of Compounds	160
7.3.	Ecological Considerations and Proposed Biogenesis	191
7.4.	Biological Activity of Isolated Compounds and Analogues	196
7.5.	Conclusions and Future Work	198
Chapter E	ight – Isolation of Bioactive Compounds from the	
	Sea Hare Bursatella leachii	200
8.1.	Introduction	200
8.2.	Isolation of Compounds	203
8.3.	Ecological Considerations and Proposed Biogenesis	219
8.4.	Biological Activity of Compounds	223
8.5.	Conclusions and Future Work	224
Chapter N	ine – Summary and Conclusions	226
Chapter T	en – Experimental	232
10.1	. General Methods	232
10.2	. Work from Chapter Two	234
10.3	. Work from Chapter Three	236
10.4	. Work from Chapter Four	240
10.5	. Work from Chapter Five	247
10.6	6. Work from Chapter Six	251
10.7	. Work from Chapter Seven	257
10.9	Work from Chanter Fight	280

Appendix A – Crude Extract HPLC Traces	286
Appendix B – Natural Product NMR Spectra	359
Appendix C – Biological Activities Table	427
Appendix D – Publications	432
Compound Index	452
References	454

List of Figures

Figure 1.1.	The phylogenetic tree showing the positions of ascidians and sea hares	3
Figure 1.2.	Phlorotannin classes isolated from New Zealand brown algae	11
Figure 1.3.	Halogenated indoles from Rhodophyllis membranacea	14
Figure 2.1.	Map of New Zealand and Antarctica showing the collection sites	18
Figure 2.2.	Analytical C ₁₈ HPLC gradient profile developed by Copp and Lindsay	19
Figure 2.3.	Analytical C_{18} HPLC gradient profile developed for the Rocket TM	
	column (3 μ 33 x 7 mm) compared to the profile used for the	
	5μ 150 x 4.6 mm column	21
Figure 2.4.	Comparison of crude extract analytical C ₁₈ HPLC traces using the	
	5μ 150 x 4.6 mm column and the Rocket TM column (3μ 33 x 7 mm)	22
Figure 2.5.	Iterative algorithm developed for the separation of metabolites from	
	crude extracts	37
Figure 2.6.	Percentage methanol in water semi-preparative C_{18} HPLC solvent system	
	versus analytical C ₁₈ HPLC retention	40
Figure 3.1.	Photograph of <i>Pycnoclavella kottae</i>	42
Figure 3.2.	Crude extract HPLC trace of Pycnoclavella kottae	44
Figure 3.3.	COSY cross-peaks of the enamine, 2-propyl and 2-butyl fragments of	
	kottamide A (3.1)	45
Figure 3.4.	¹ H- ¹³ C HMBC correlations to establish fragment A of kottamide A (3.1)	47
Figure 3.5.	¹ H- ¹³ C HMBC correlations to establish fragment B of kottamide A (3.1)	47
Figure 3.6.	¹ H- ¹⁵ N 2-D NMR spectra of kottamide A (3.1) and correlations	48
Figure 3.7.	C-4 and C-5 chemical shifts of related synthetic	
	2,2,5-trisubstituted imidazol-4-ones	50
Figure 3.8.	Fragment A COSY correlations of kottamides B (3.2) and C (3.3)	52

Figure 3.9.	Crucial ¹ H- ¹³ C HMBC correlations of kottamide B (3.2)	53
Figure 3.10	Crucial ¹ H- ¹³ C HMBC correlations of kottamide C (3.3)	53
Figure 3.11	COSY correlations of kottamide D (3.4)	55
Figure 3.12	, ¹ H- ¹³ C HMBC correlations of kottamide D (3.4)	56
Figure 3.13	COSY and ¹ H- ¹³ C HMBC correlations for fragment A of compound 3.5	58
Figure 3.14	¹ H- ¹³ C and ¹ H- ¹⁵ N HMBC correlations between the remaining	
	fragments of 3.5	60
Figure 4.1.	Photograph of Lissoclinum notti	76
Figure 4.2.	Crude extract HPLC trace of Lissoclinum notti	79
Figure 4.3.	¹ H- ¹³ C HMBC correlations and MS data for varacin (4.57)	
	and varacin A (4.81)	82
Figure 4.4.	¹ H spin systems with COSY correlations of 4.83	83
Figure 4.5.	¹ H- ¹³ C and ¹ H- ¹⁵ N HMBC correlations of isodiplamine (4.84)	85
Figure 4.6.	¹ H- ¹³ C HMBC correlations of cystodytin K (4.80)	89
Figure 4.7.	¹ H- ¹³ C and ¹ H- ¹⁵ N HMBC correlations of lissoclinidine (4.82)	94
Figure 4.8.	Isodiplamine (4.84) biosynthesis	97
Figure 5.1.	Map of Antarctica and surrounding sea	114
Figure 5.2.	Crude extract HPLC trace of Aplidium sp.	116
Figure 5.3.	COSY and ¹ H- ¹³ C HMBC correlations of fragment A	
	of rossinone A (5.71)	118
Figure 5.4.	COSY and ¹ H- ¹³ C HMBC correlations of fragment B	
	of rossinone A (5.71)	119
Figure 5.5.	COSY and ¹ H- ¹³ C HMBC correlations of fragment C	
	of rossinone A (5.71)	119
Figure 5.6.	¹ H- ¹³ C HMBC correlations of fragment A of rossinone B (5.72)	122
Figure 5.7.	COSY and ¹ H- ¹³ C HMBC correlations of fragment B	
	of rossinone B (5.72)	123

Figure 5.8.	COSY and ¹ H- ¹³ C HMBC correlations of fragment B	
	of rossinone B (5.72)	123
Figure 5.9.	COSY and ¹ H- ¹³ C HMBC correlations of fragment C	
	of rossinone B (5.72)	124
Figure 5.10	Rossinone B (5.72) minimised structure and ROESY/NOESY cross-peaks	124
Figure 5.11	Fragments of compound 5.73	127
Figure 6.1.	Crude extract HPLC trace of <i>Pseudodistoma cereum</i>	140
Figure 6.2.	¹ H- ¹³ C and ¹ H- ¹⁵ N HMBC correlations of	
	8-oxo-1,3-dimethylisoguanine (6.29)	141
Figure 6.3.	¹ H- ¹³ C HMBC correlations for 6-bromotryptophan (6.30)	143
Figure 6.4.	Crude extract HPLC trace of Pseudodistoma aureum	146
Figure 6.5.	The possible structure of <i>N</i> -BOC aminol 6.37	148
Figure 6.6.	Analytical C ₁₈ HPLC trace of the active aminopropyl-derivatised silica	
	fraction of 99LH3-5 showing the region where the active compounds are	150
Figure 7.1.	Photograph of Aplysia dactylomela	156
Figure 7.2.	Crude extract HPLC trace of Aplysia dactylomela	163
Figure 7.3.	COSY cross-peaks for the two indole and two alkyl portions of	
	dactylamide A (7.9)	164
Figure 7.4.	¹ H- ¹³ C HMBC correlations to establish fragment A of	
	dactylamide A (7.9)	166
Figure 7.5.	¹ H- ¹³ C HMBC correlations to establish fragment B of	
	dactylamide A (7.9)	167
Figure 7.6.	¹ H- ¹³ C HMBC correlations to complete the structure of	
	dactylamide A (7.9)	167
Figure 7.7.	¹ H- ¹³ C HMBC correlations of 7.15 to confirm placement of the hydroxyl	
	and carboxylate groups of dactylamide A (7.9)	170

Figure 7.8.	Overlaid CD spectra of dactylamide A (7.9), (9S, 12S)-analogue 7.22	
	and (9S, 12R)-analogue 7.26	. 178
Figure 7.9.	COSY cross-peaks for the two indole and the alkyl and $\alpha,\beta\text{-unsaturated}$	
	enamide portions of dactylamide B (7.10)	.179
Figure 7.10.	¹ H- ¹³ C HMBC correlations to establish fragment A of	
	dactylamide B (7.10)	. 180
Figure 7.11.	¹ H- ¹³ C HMBC correlations to establish fragment B of	
	dactylamide B (7.10)	. 180
Figure 7.12.	¹ H- ¹³ C HMBC correlations to complete the structure of	
	dactylamide B (7.10)	. 181
Figure 7.13.	Crucial ¹ H- ¹³ C HMBC correlations for isolaurenisol (1.49),	
	allolaurinterol (7.11) and their acetates 7.12 and 7.13 respectively	. 188
Figure 7.14.	Minimised structures and crucial ROESY correlations for	
	isolaurenisol (1.49) and isolaurenisol acetate (7.12)	. 189
Figure 8.1.	Photograph of Bursatella leachii	. 200
Figure 8.2.	Map of Eastern Beach and Motukaraka Island with surrounding areas	. 203
Figure 8.3.	Crude extract HPLC trace of Bursatella leachii (collection number	
	2002MTK1-1)	. 205
Figure 8.4.	¹ H- ¹³ C HMBC correlations to establish fragment A of	
	malyngamide S (8.8)	. 207
Figure 8.5.	¹ H- ¹³ C HMBC correlations to establish fragment B of	
	malyngamide S (8.8)	. 207
Figure 8.6.	¹ H- ¹³ C HMBC correlations to establish fragment C of	
	malyngamide S (8.8)	. 208
Figure 8.7.	Malyngamide S (8.8) minimised structure and ROESY correlations to	
	establish fragment A configuration and $\Delta^{2,3}$ double bond geometry	.211
Figure 8.8.	The two ring-conformers of lyngbyatoxin A (8.5)	. 216

Figure 8.9.	¹ H- ¹³ C HMBC correlations of lyngbyatoxin A (8.5)	216
Figure 8.10	• ¹ H- ¹³ C HMBC correlations of the major and minor conformers of	
	lyngbyatoxin A acetate (8.9)	218
Figure 8.11	• Photomicrograph of <i>Lyngbya majuscula</i> (40x magnification)	219
Figure 8.12	Crude extract HPLC trace of Lyngbya majuscula	220
Figure 8.13	3. COSY and ¹ H- ¹³ C HMBC correlations of linolenic acid (8.36)	221
Figure 8.14	. Crude extract HPLC trace of eggs of Bursatella leachii showing the	
	common compound	222

List of Schemes

Scheme 3.1. Isolation scheme for metabolites of <i>Pycnoclavella kottae</i>	44
Scheme 3.2. Putative biosynthetic pathway to the kottamides	62
Scheme 4.1. Isolation scheme for metabolites of <i>Lissoclinum notti</i>	78
Scheme 4.2. Separation of varacin (4.57) and varacin A (4.81)	81
Scheme 4.3. Photoreduction of lissoclin A (4.52)	92
Scheme 4.4. The biosynthesis of shermilamine B (4.103)	95
Scheme 4.5. Proposed biosynthesis of lissoclinidine (4.82)	96
Scheme 4.6. ADEPT using varacin (4.57)	100
Scheme 4.7. Preparation of <i>N</i> -(4'-nitrobenzyloxycarbonyl) varacin (4.107)	100
Scheme 5.1. Isolation scheme for metabolites of <i>Aplidium</i> sp	116
Scheme 5.2. Putative biosynthesis of rossinone B (5.72) and pycnanthuquinone	
analogue (5.81)	128
Scheme 5.3. Isolation scheme for geranylhydroquinone (1.1) and	
prenylhydroquinone (1.30)	130
Scheme 5.4. Proposed mechanism of action of rossinone B (5.72)	132
Scheme 6.1. Isolation scheme for metabolites of <i>Pseudodistoma cereum</i>	139
Scheme 7.1. Isolation scheme for metabolites of <i>Aplysia dactylomela</i>	162
Scheme 7.2. The preparation of diastereomeric analogues (7.22 and 7.26)	
of dactylamide A (7.9)	172
Scheme 7.3. Preparation of the saturated deoxy-analogue (7.27) of	
dactylamide B (7.10)	183
Scheme 7.4. Cleavage of phycoerythrobilin (7.2) from <i>B</i> -phycoerythrin and	
enimerisation at C-2	186

Scheme 7.5.	The plant metabolic pathway of 3-indoleacrylic acid (7.38) from	
	tryptophan via hypaphorine (7.14)	. 191
Scheme 7.6.	Proposed biosynthesis of chondriamide B (7.34) via	
	dactylamides A (7.9) and B (7.10)	. 192
Scheme 7.7.	Formation of 7.50 during acetonide reaction of dictyotriol A (7.47)	. 195
Scheme 8.1.	Isolation scheme for metabolites of Bursatella leachii from the	
	second collection (2002MTK1-1)	. 205
Scheme 8.2.	Base hydrolysis of malyngamide S (8.8)	.211

List of Tables

Table 2.1.	Analytical C ₁₈ HPLC and biological assay analysis of ascidian	
	crude extracts.	24
Table 2.2.	Analytical C ₁₈ HPLC and biological assay analysis of sea hare	
	crude extracts.	32
Table 2.3.	Analytical C ₁₈ HPLC and biological assay analysis of algae	
	crude extracts.	33
Table 2.4.	Compound analytical C ₁₈ HPLC retention times and successful	
	semi-preparative C ₁₈ HPLC conditions.	38
Table 3.1.	¹ H, COSY and HSQC NMR data for kottamide A (3.1)	46
Table 3.2.	¹ H, ¹³ C, ¹⁵ N and HMBC NMR data for kottamide A (3.1)	49
Table 3.3.	¹ H, COSY and HSQC NMR data for kottamides B (3.2) and C (3.3)	51
Table 3.4.	¹ H, ¹³ C and HMBC NMR data for kottamides B (3.2) and C (3.3)	54
Table 3.5.	¹ H, ¹³ C, COSY and HMBC NMR data for kottamide D (3.4)	57
Table 3.6.	High resolution mass spectral data for compound 3.5.	58
Table 3.7.	¹ H, ¹³ C, ¹⁵ N, COSY and HMBC NMR data for compound 3.5	59
Table 3.8.	P388 murine leukaemic activity of kottamides A - D (3.1 - 3.4)	63
Table 4.1.	¹ H and ¹³ C NMR data for varacin (4.57) and varacin A (4.81)	82
Table 4.2.	¹ H, ¹³ C, ¹⁵ N and HMBC NMR data for diplamine (4.83)	84
Table 4.3.	¹ H, ¹³ C, ¹⁵ N, HMBC and ROESY NMR data for isodiplamine (4.84)	86
Table 4.4.	¹ H, ¹³ C and HMBC NMR data for cystodytin K (4.80) and J (4.85)	90
Table 4.5.	¹ H, ¹³ C, ¹⁵ N, HMBC and ROESY NMR data for lissoclinidine (4.82)	93
Table 4.6.	Biological activity data for varacin (4.57) and analogues.	98
Table 4.7.	Biological activity data for pyridoacridine alkaloids.	101
Table 5.1.	¹ H, COSY and HSQC NMR data for rossinone A (5.71)	118

Table 5.2.	¹ H, ¹³ C, HMBC and ROESY NMR data for rossinone A (5.71)	. 120
Table 5.3.	¹ H, COSY and HSQC NMR data for rossinone B (5.72)	. 122
Table 5.4.	¹ H, ¹³ C, HMBC, ROESY and NOESY NMR data for rossinone B (5.72)	. 125
Table 5.5.	¹ H NMR data for compound 5.73 .	. 127
Table 5.6.	Biological activity data for hydroquinone derivatives.	. 131
Table 6.1.	¹ H, ¹³ C, ¹⁵ N and HMBC NMR data for	
	8-oxo-1,3-dimethylisoguanine (6.29).	. 142
Table 7.1.	Mean percentage of different algae consumed by A. dactylomela	
	in a three day trial.	. 159
Table 7.2.	¹ H, COSY and HSQC NMR data for dactylamide A (7.9)	. 165
Table 7.3.	¹ H, ¹³ C, HMBC and ROESY NMR data for dactylamide A (7.9)	. 167
Table 7.4.	¹ H, ¹³ C, COSY and HMBC NMR data for dactylamide A-methyl ether	
	-methyl ester (7.15).	. 169
Table 7.5.	¹ H, ¹³ C and HMBC NMR data for (9 <i>S</i> , 12 <i>S</i>)-deoxy analogue (7.22)	. 173
Table 7.6.	¹ H, ¹³ C and HMBC NMR data for (9 <i>S</i> , 12 <i>R</i>)-deoxy analogue (7.26)	. 175
Table 7.7.	Comparison of ¹ H NMR data for dactylamide A (7.9) and the	
	diastereomeric deoxy-analogues 7.22 and 7.26 .	.177
Table 7.8.	¹ H, ¹³ C, COSY and HMBC NMR data for dactylamide B (7.10)	. 181
Table 7.9.	¹ H, ¹³ C and HMBC NMR data for (2S, 16R)- and (2R, 16R)-	
	aplysioviolin (7.1).	. 184
Table 7.10.	¹ H, ¹³ C and HMBC NMR data for isolaurenisol methyl ether (7.32)	
	and allolaurinterol methyl ether (7.33).	. 190
Table 7.11.	Biological activity data for compounds isolated from	
	Aplysia dactylomela and analogues	. 197
Table 8.1.	¹ H, ¹³ C, COSY and HMBC NMR data for malyngamide S (8.8)	. 208
Table 8.2.	¹ H and ROESY NMR data for malyngamide S (8.8)	. 210
Table 8.3.	The malyngamide series of compounds and their sources and bioactivity.	. 213

Table 8.4.	Biological activity data for compounds isolated from Bursatella leachii	
	and fatty acids from malyngamide S (8.8) hydrolysis and	
	Lyngbya majuscula22	4

Abbreviations

Ac Acetyl

ADEPT Antibody-directed enzyme prodrug therapy

aq Aqueousatm Atmospheres

b Broad

BOC t-Butyloxycarbonyl

BOP Benzotriazol-1-yloxy tri(dimethylamine)phosphonium hexafluorophosphate

B.s. Bacillus subtilis

C₁₈ Octadecyl-derivatised silica

C.a. Candida albicans

Calculated Calculated

CD Circular dichroism
CI Chemical ionisation

COSY Gradient correlation spectroscopy (¹H-¹H)

d Doublet

DBU 1,8-Diaza-bicyclo[5.4.0]undec-7-ene

dec Decomposed

DEPT Distortionless enhancement by polarisation transfer

DHA Docosahexaenoic acid
 DMG Dimethylguanine
 DMiG Dimethylisoguanine
 DNA Deoxyribonucleic acid
 DPPA Diphenylphosphorylazide

E.c. Escherichia coli

ED₅₀ Median effective dose

EI Electron impact

EPA Eicosapentaenoic acid
ETA Eicosatetraenoic acid

Et Ethyl et al. et alii

FAB Fast atom bombardment

fMLPN-Formyl-methionyl-leucyl-phenylalanine **GC-MS**Gas chromatography-mass spectrometry

 GI_{50} 50% Growth inhibition

HMBC Gradient heteronuclear multiple-bond correlation

HPLC High performance liquid chromatography

HR High resolution

HSQC Gradient heteronuclear single-quantum correlation

HSV Herpes simplex virus

IC₅₀ 50% Inhibitory concentration

IR Infrared

LC₅₀ 50% Lethal dose concentration

m Multiplet
M mol/L
Me Methyl

MIC Minimum inhibitory concentration

mp Melting pointMS Mass spectrometry

M.t. Mycobacterium tuberculosis H₃₇Rv

mult Multiplicity

m/z Mass to charge ratio

N Normal

NCI National Cancer Institute of America

NMR Nuclear magnetic resonance

No. Number

NOE Nuclear Overhauser effect

NOESY Nuclear Overhauser enhancement spectroscopy

Obsc Obscurred p Pentet

PMA Phorbol myristate acetate

PMS 1-Methoxy phenazinemethosulfate
PNBnzOC para-Nitrobenzyloxycarbonyl

ppm Parts per millionPV1 Polio virus, Type 1

q Quartet

Rel int% Relative intensity (%)

resp Respectively
RNA Ribonucleic acid

ROESY Rotating frame Overhauser enhancement spectroscopy

s Singlet sat Saturated

SCUBA Self contained underwater breathing apparatus

sep Septetsp. Species

spp. Species (plural)

t Triplet

TFA Trifluoroacetic Acid
TGI Total growth inhibition

TLC Thin layer chromatography
T.m. Trichophyton mentagrophytes

TMG Trimethylguanine
TMiG Trimethylisoguanine

TOCSY Gradient total correlation spectroscopy

UV Ultraviolet
Vis Visible

v/v Volume/volume

WST-1 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium,

monosodium salt

¹H NMR Proton nuclear magnetic resonance
 ¹³C NMR Carbon-13 nuclear magnetic resonance
 ¹⁵N NMR Nitrogen-15 nuclear magnetic resonance

2-D Two-dimensional

 δ_{A} Chemical shift (ppm) for nucleus A

 $[\alpha]_{x}^{20}$ Optical rotation at 20 °C at 'x' nm; D = sodium D-line (489 nm)

 $^{\mathrm{n}}J_{\mathrm{AB}}$ Coupling constant between atoms A and B, 'n' bonds apart