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Abstract

This thesis addresses two topics related to the mathematical modelling of biophysical

systems.

The first part of the thesis investigates quasi-steady-state reduction (QSSR), which is a

technique commonly used for dimension reduction for systems with multiple timescales.

Many biophysical models have the property that some variables in the model evolve much

faster than others. A common first step in the analysis of such systems is to simplify the

model by assuming that some of the fastest variables equilibrate instantaneously; this ap-

proach is known as QSSR. QSSR is intuitively satisfying but is not always mathematically

justified, with problems known to arise, for instance, in examples in which the full model

has oscillatory solutions. In models with oscillations, a simplification by QSSR may lead

to a model with significantly different dynamics compared to the original model.

In the first part, we focus on the effect of QSSR on models in which oscillatory solutions

arise via one or more Hopf bifurcations. We first illustrate the problems that can arise by

applying QSSR to a selection of well-known models. We then prove that Hopf bifurca-

tions that involve fast and slow variables (i.e., singular Hopf bifurcations) are generically

preserved under QSSR so long as a fast variable is kept in the simplified system. Further-

more, we argue that Hopf bifurcations that involve only slow variables are not affected by

QSSR, and Hopf bifurcations that primarily involve fast variables may be eliminated by

QSSR.

The persistence of a Hopf bifurcation does not guarantee that the resulting periodic

orbits are unchanged by QSSR. We show that the criticality of a Hopf bifurcation may be

changed by QSSR, with a resultant change in the stability of periodic orbits near the Hopf

bifurcation. Furthermore, we show that QSSR can affect the amplitude and frequency of

periodic orbits and introduce or remove homoclinic bifurcations. Finally, we present some

guidelines for the application of QSSR if one wishes to use the method while minimising
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vi Abstract

the risk of inadvertently destroying essential features of the original model.

In the second part of this thesis we study the feedback between changes in voltage across

the plasma membrane and the intracellular Ca2+ handling in airway smooth muscle cells

(ASMC). ASMC are able to contract, and the contraction can result in pathological airway

obstruction in asthma or airway hyperresponsiveness. Contraction of ASMC is induced by

an increased cytosolic Ca2+ concentration ([Ca2+]i). Typically, [Ca2+]i oscillates during

prolonged smooth muscle contraction and the oscillation frequency affects the strength of

contraction. Oscillations of [Ca2+]i result from either depolarization followed by increased

[Ca2+]i and calcium-induced Ca2+ release from internal stores, or the binding of an agonist

which produces inositol (1,4,5)-trisphosphate and leads to Ca2+ release from internal

stores.

Previous models of [Ca2+]i oscillations in ASMC have included the voltage across the

plasma membrane as a parameter which modifies the Ca2+ influx [19, 23, 94]. However,

evidence suggests that the voltage changes dynamically during [Ca2+]i oscillations [98].

We combine mathematical models of intracellular Ca2+ receptors and plasma membrane

channels and use experimental data from mouse lung slices to assess the effect of voltage

dynamics on the [Ca2+]i oscillations. Furthermore, we look at the contribution of different

Ca2+ channels in the plasma membrane, in particular the voltage-gated and the store-

operated Ca2+ channels.

The main results of this part of the thesis are:

• Agonist-induced [Ca2+]i oscillations are not significantly affected by changes in volt-

age. Variations in voltage, due to the intrinsic voltage dynamics, only lead to small

modulations of the Ca2+ influxes.

• During depolarization-induced [Ca2+]i oscillations the voltage-gated Ca2+ channel

contributes most to the Ca2+ influx; during agonist-induced [Ca2+]i oscillations the

store-operated Ca2+ channel contributes most to the Ca2+ influx.

• During agonist-induced [Ca2+]i oscillations the internal stores do not fully deplete.

The Ca2+ concentration in internal stores plateaus near 80% of the resting concen-

tration during agonist-induced oscillations.
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1
Introduction

In this thesis we investigate two topics, related to mathematical modelling of biophysical

systems.

The first part of this thesis, chapters 2 to 4, investigates the effect of a common dimension

reduction technique, which is called quasi-steady-state reduction (QSSR). The focus is on

establishing conditions for which certain dynamical properties persist after simplifying a

given model by QSSR. In the second part of this thesis, chapters 5 to 7, we study the

interaction between Ca2+ handling and changes in membrane voltage of airway smooth

muscle cells (ASMC). The focus of the second part is on predicting physiological behaviour

of ASMC based on a whole-cell, ordinary differential equation model.

Many mathematical models of biological processes are high dimensional and possess multi-

ple timescales. As a consequence, modellers often face stiff systems of differential equations

with many variables and parameters. This presents challenges for efficient computation

and may obscure the understanding of mathematical mechanisms underlying the observed

behaviour. A common approach is to try to exploit the presence of multiple timescales

in an attempt to obtain a simplified model (e.g., by assuming that variables equilibrate

instantaneously) or to simplify the analysis of a given model by analysing submodels that

1



2 Introduction

evolve on different timescales separately.

A rigorous technique, applicable to systems with two or more distinct timescales, is geo-

metric singular perturbation theory (GSPT). GSPT was pioneered by Fenichel with his

seminal work in 1979 [36]. He showed that, under certain conditions, a given system can

be divided into slow and fast subsystems, which can be analysed separately and appro-

priately combined to explain the behaviour of the full system. We discuss some concepts

of GSPT in sections 3.3 and 3.6.

The application of GSPT is relatively straightforward if the timescale separation appears

explicitly as a parameter in the system. Generally, models are not formulated with explicit

timescale separation and various steps may be necessary before GSPT can be applied. If

one wishes to use GSPT, one may have to rescale variables and aggregate parameters to

identify different timescales. This procedure can become infeasible for large systems with

many parameters. Consequently, modellers often revert to techniques that are simpler to

use, but are not always mathematically justifiable.

One such technique is quasi-steady-state reduction (QSSR), which was pioneered by [65]

and [18], in the analysis of a model of enzyme kinetics. The intuitive idea of QSSR

is to identify fast variables based on biophysical intuition and assume they equilibrate

instantaneously, thereby effectively removing them from the model. This ad hoc removal

of fast variables may alter qualitative features of the dynamical behaviour of a model. In

particular, it has been demonstrated that oscillations can be removed from a model by

QSSR [32, 37]. One aim of this thesis is to study in detail the conditions under which

oscillations arising via Hopf bifurcations are robust under QSSR.

In chapters 2 to 4 we study the effect of QSSR in the context of models that show

oscillatory solutions. We demonstrate some of the problems that can arise when using

QSSR on specific examples in chapter 2. This chapter serves as a motivation for further

studies. Chapter 3 explains QSSR in more mathematical detail. We discuss the effect

of QSSR on equilibria. While equilibria are preserved, their stability is not necessarily

the same in a model simplified by QSSR, compared to the original model. The result is

that oscillations arising through Hopf bifurcations can be destroyed. We categorize Hopf

bifurcations, depending on whether they involve slow, fast or slow and fast variables, and

prove that singular Hopf bifurcations, involving slow and fast variables, persist generically

under QSSR. To do this, we use GSPT. Furthermore, we investigate some effects of QSSR

on global dynamical structures (e.g., homoclinic bifurcations and saddle-node bifurcations

of periodic orbits) in specific examples. In chapter 4 we demonstrate how QSSR can be

used while minimizing the risk of inadvertently changing the qualitative behaviour of a
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given model and give concluding remarks.

The first part of the thesis is co-authored work with Vivien Kirk, James Sneyd and Martin

Wechselberger and has been accepted for publication, in modified form, in the Journal

of Theoretical Biology [13]. However, the material in subsection 3.6.2 is confined to a

comment in that article; the detail appears only in this thesis.

The topic of the second part of this thesis, chapters 5 to 7, is on modelling oscillations of

intracellular calcium ions (Ca2+) in airway smooth muscle cells. The focus is on combining

a model for voltage dynamics [82] with submodels for intracellular Ca2+ channels and

pumps [19, 23, 94].

Calcium is a ubiquitous messenger important in many cellular processes such as prolifer-

ation, fertility, muscle contraction, synaptic transmission and apoptosis [8, 9, 34, 51, 59].

In particular, the cytosolic Ca2+ concentration, [Ca2+]i, is often the key messenger for di-

verse cellular processes. Complex spatio-temporal patterns of [Ca2+]i can arise in response

to external stimuli or downstream of intracellular processes [9, 29, 34]. For example, in

airway smooth muscle cells whole-cell Ca2+ waves lead to oscillations of [Ca2+]i with pe-

riods of 1-60 seconds [74], while in Xenopus oocytes changes in the Ca2+ concentration

can take the form of spiral waves and target patterns [2].

The [Ca2+]i is, under normal physiological conditions, significantly lower than the Ca2+

concentration in the extracellular space and the Ca2+ concentration in the intracellular

stores, such as the endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) [8, 51, 84].

The [Ca2+]i can be rapidly increased by opening of Ca2+ selective ion channels in the

plasma membrane (influx from extracellular space) or channels in the endo-/sarcoplasmic

reticulum (efflux from internal stores) [9, 17, 84].

The most accurate approach to modelling the spatio-temporal patterns of [Ca2+]i would be

to take the spatial heterogeneity and diffusion, stochastic release events of Ca2+ and mobile

Ca2+ buffers into account. Such a formulation would give stochastic partial differential

equations with explicit buffer concentrations. A general review of Ca2+ modelling is given

in [34].

Whole-cell models with several simplifying assumptions have been studied extensively and

have considerable predictive power in certain cells [19, 23, 60, 84]. First, it is assumed

that Ca2+ is homogenously distributed within compartments such as the cytosol and the

ER/SR, which effectively allows modellers to neglect spatial components [68]. Assuming

that Ca2+ buffers are fast, immobile and linear (e.g., buffers do not saturate) enables



4 Introduction

Ca2+ fluxes to be replaced by effective fluxes, thereby neglecting the explicit inclusion

of Ca2+ buffer binding and dissociation [34]. Single channel gating dynamics are gov-

erned by stochastic events such as conformational changes and binding of molecules [33].

However, deterministic models have been applied to Ca2+ signalling components with

substantial predictive power [19]. Whether such simplifying assumptions are reasonable

depends greatly on the specific question and the cell that is under investigation. Under

the assumptions of spatial homogeneity, fast, immobile, non-saturating buffers and de-

terministic gating mechanisms, the whole-cell Ca2+ model can be formulated as ordinary

differential equations [34].

In the second part of this thesis, we will take the approach of studying the Ca2+ dy-

namics in ASMC with ordinary differential equations. Previous work has demonstrated

good agreements of whole-cell Ca2+ fluorescence measurements with predictions by this

modelling approach [19, 23, 94].

The motivation for studying Ca2+ dynamics in ASMC is that the contraction of ASMC

during asthma or airway hyperresponsiveness is initiated by increased [Ca2+]i, often in

the form of oscillatory changes in [Ca2+]i. The oscillation frequency of [Ca2+]i has been

linked directly to the strength of muscle contraction [64, 74], showing that an increased

frequency leads to stronger contraction.

In striated skeletal and cardiac muscle the main pathway for contraction is via [Ca2+]i

oscillations as a result of electric stimulation by action potentials [78]. An action poten-

tial opens voltage-gated Ca2+ channels and increases [Ca2+]i, which induces Ca2+-induced

Ca2+ release from internal stores further increasing [Ca2+]i. Periodic opening of voltage-

gated Ca2+ channels, Ca2+-induced Ca2+ release, reuptake by internal stores, and extru-

sion of Ca2+ leads to oscillations. The timescale of these oscillations is set by refilling of

internal stores through elevated Ca2+ influx [84].

In smooth muscle cells stronger contractions, accompanied by faster oscillations of [Ca2+]i,

can be elicited by contractile agonists [50]. The pathway is that an agonist binds to G-

protein coupled receptors in the plasma membrane. As a downstream effect, inositol

(1,4,5)-trisphosphate (IP3) is produced and diffuses into the cytosol [7]. The IP3 can

bind to IP3-receptors (IPR), which show an increased open probability in the presence of

IP3. The IPR have a biphasic open probability curve, which means that Ca2+ ions have

an activatory effect at low concentrations and an inhibitory effect at high concentrations

[87, 93]. Reuptake by pumps and extrusion of Ca2+ can lead to oscillations in [Ca2+]i,

typically much faster than oscillations elicited by external Ca2+ influx. The timescale of

these oscillations is set by the channel gating kinetics of IPR [19, 94].
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The effect of voltage dynamics during agonist-induced [Ca2+]i oscillations is not known. In

the second part of this thesis we construct a mathematical model to study the influence of

voltage dynamics and the contributions of two types of plasma membrane Ca2+ channels

on the intracellular Ca2+ dynamics.

Specifically, in the second part of this thesis, we will study the two following questions:

• Do variations in voltage across the membrane during agonist-induced oscillations

have a significant effect on the [Ca2+]i oscillation frequency?

• What are the relative contributions to overall Ca2+ influx of different Ca2+ ion

channels in the plasma membrane for the two different stimuli?

We introduce the model in detail in chapter 5. In chapter 6 we present a comparison be-

tween experimental data and model simulations. In the same chapter, we make predictions

about the effect of voltage dynamics during agonist-induced oscillations, and the effect

of blocking different plasma membrane Ca2+ channels on [Ca2+]i oscillations. In chapter

7, we conclude by identifiying predictions that have not been tested experimentally and

discuss the general caveats of the model.

The results of the second part of this thesis have been included in a manuscript that will

be submitted for publication soon [12]. The model is parametrized to reproduce experi-

mental data, obtained in mouse lung slices, by Jun Chen and Michael J. Sanderson at the

University of Massachusetts Medical School. In contrast to the manuscript, this thesis

presents a comparison between experimental data and numerical simulations without the

experimental details. Furthermore, we introduce the mathematical model in more detail

than it appears in the manuscript.
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2
Quasi-steady-state reduction in

mathematical models with oscillations

2.1 Introduction

For well over 50 years, oscillations in cell biology have been of major interest to both

theoreticians and experimentalists. In neurons, for example, oscillation of the membrane

potential is one of the fundamental behaviours that underlie neuronal function, while in

almost every cell type oscillations in the concentration of cytoplasmic calcium control a

wide variety of cellular behaviours, including secretion, water transport, movement, gene

expression and differentiation. These are but two examples from many of current interest

to scientists.

In addition to their physiological interest, models of oscillations in cell physiology often

have interesting mathematical properties. In particular, they commonly contain variables

that operate on different time scales; thus, mathematical analyses of these models require

the use of mathematical techniques that can cope with multiple, widely varying, time

scales.

7
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One method that has commonly been used to study such multiple timescale systems is

quasi-steady state reduction (QSSR), also sometimes referred to as pseudo-steady state

reduction or adiabatic elimination. In this approach, one or more fast variables are as-

sumed to be at quasi-steady state, so transient response in these variables is ignored and

the differential equations for their evolution are replaced by algebraic equations, thereby

reducing the dimension of the model. QSSR was introduced by Michaelis and Menten

over 100 years ago to simplify a mathematical description of enzyme kinetics [65]. The

simplification was also discussed by Briggs and Haldane [18] and, more recently, in great

detail in [85]. An extension to QSSR, named total quasi-steady-state reduction (tQSSR),

was introduced in [15], and further developed in [22] and [71]. In tQSSR, a coordinate

transformation is first applied, followed by regular QSSR; the coordinate transformation

effectively attempts to align model variables more closely with time scales, and thereby to

overcome difficulties arising when the evolution equation for a physical variable contains

terms corresponding to a mix of timescales.

The approach of equilibrating some variables instantaneously is intuitively satisfying, but

it is only justified if the model under consideration possesses a globally attracting slow

manifold to which the dynamics are confined after the initial transient phase [85]. Most

studies of QSSR (or tQSSR) are devoted to studying the accuracy of the simplified system

in comparison to the full system when the system has a globally attracting, slow invariant

manifold. Some recent papers note that application of QSSR can lead to qualitatively

different predictions compared with the original model, especially with regard to oscilla-

tions [32, 37, 71, 97], but a comprehensive understanding of what can go wrong, and why,

is still lacking.

Because of the widespread use of QSSR resulting from its ease of use and its ability

to present understandable and simplified versions of complex models, it is important to

know, as precisely as possible, when a QSSR approach is valid and when it is not.

In section 2.2, we motivate our interest in this issue by showing the effect of QSSR on

a selection of well-known biophysical models, all which have oscillatory solutions arising

in Hopf bifurcations. In some cases, the dynamics of the original model is minimally

disrupted by QSSR but in other cases substantial dynamical changes are induced by

QSSR. In chapter 3 we look in more mathematical detail at the effect of QSSR and state

our main result about the consequences of QSSR for Hopf bifurcations; this result is

proved in section 3.6. Section 4.1 presents some guidelines for the application of QSSR

if one wishes to use the method while minimizing the risk of inadvertently destroying

essential dynamics of the original model. Concluding remarks are presented in chapter 4.
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2.2 Motivating examples

In this section we show the effect of QSSR on the dynamics of a selection of well-known or-

dinary differential equation models, all of which have the feature that oscillatory solutions

are introduced via one or more Hopf bifurcations as a bifurcation parameter is varied. It

is not a priori clear how QSSR affects the onset of oscillations, the interval of parameter

values for which the emanating branch of periodic orbit exists, or characteristics of the

periodic orbits such as frequency and amplitude. As these examples will demonstrate, it

turns out that in some cases the dynamics are minimally disrupted by the application of

QSSR but in other cases significant qualitative changes are induced by the reduction.

All the numerical investigations in this section were done with the bifurcation and con-

tinuation software AUTO [27].

2.2.1 Hodgkin-Huxley model

The first example is the well-known Hodgkin-Huxley (HH) model [45] for the membrane

action potential in the squid giant axon. The version of the model we use is formulated

as a system of four ordinary differential equations [83]:

Cm
dv

dt
= I − gNam

3h(v − ENa)− gKn
4(v − EK)− gL(v − EL), (2.2.1)

dm

dt
=

1

τmtm(v)
(m∞(v)−m) , (2.2.2)

dh

dt
=

1

τhth(v)
(h∞(v)− h) , (2.2.3)

dn

dt
=

1

τntn(v)
(n∞(v)− n) , (2.2.4)

where v represents the membrane potential, m represents the activation of the sodium

channel, h describes the inactivation of the sodium channel and n the activation of the

potassium channel. The parameter I represents the applied current, and will be used

as the main bifurcation parameter. Expressions for the functions m∞(v), h∞(v), n∞(v),

etc. and the values of constants used are given in Appendix A.

Since sodium channel activation is observed in experiments to occur more rapidly than

sodium channel inactivation or potassium channel activation, m is usually regarded as

a faster variable than either n or h. It is common to assume, therefore, that m relaxes

instantaneously to its quasi-steady state value, m∞(v), [31, 51, 66, 79, 83] and to replace m



10 Quasi-steady-state reduction in mathematical models with oscillations

by m∞(v) in equation (Eq. (2.2.1)). Then the HH equations reduce to a three-dimensional

system of ordinary differential equations for v, h and n:

Cm
dv

dt
= I − gNa(m∞(v))3h(v − ENa)− gKn

4(v − EK)− gL(v − EL), (2.2.5)

dh

dt
=

1

τhth(v)
(h∞(v)− h) , (2.2.6)

dn

dt
=

1

τntn(v)
(n∞(v)− n) . (2.2.7)

A careful nondimensionalization and comparison of the time scales, over the physiologi-

cally relevant range of v ∈ (−77 mV, 50 mV), reveals that v, not m, is the fastest variable

in the HH equations [83]. From a mathematical point of view, therefore, v might be a

more natural candidate for removal via QSSR than m, although this is not usually done.

If we assume that v equilibrates instantaneously so that dv/dt = 0, then we can set the

right hand side of equation (2.2.1) to zero and use this expression to write v as a function

of the remaining variables:

v̄(m,h, n) =
I + gNam

3hENa + gKn
4EK + gLEL

gNam3h+ gKn4 + gL

.

Substituting this expression into the remaining three equations, we get an alternative

simplified form of the HH equations:

dm

dt
=

1

τmtm(v̄)
(m∞(v̄)−m) , (2.2.8)

dh

dt
=

1

τhth(v̄)
(h∞(v̄)− h) , (2.2.9)

dn

dt
=

1

τntn(v̄)
(n∞(v̄)− n) . (2.2.10)

It turns out that both variants of quasi-steady state reduction preserve the main features

of the dynamics of the HH model. Fig. 2.1 shows the bifurcation diagram for the full HH

model, along with the bifurcation diagrams for each simplified version of the model. In the

full model, a branch of periodic orbits emanates from a subcritical Hopf bifurcation (HB1),

goes through a sequence of fold bifurcations, and ultimately disappears in a supercritical

Hopf bifurcation (HB2). In the simplified models the positions of the Hopf bifurcations

move, and the amplitudes and frequencies of the periodic orbits change, but the basic

structure, including criticality of the Hopf bifurcations, is unaffected by QSSR. Note that

stability of the equilibrium and periodic solutions is not indicated on the figure. For each

version of the model, the equilibrium solutions are unstable between the relevant pair of
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Figure 2.1: Partial bifurcation diagrams for various versions of the Hodgkin-Huxley model. The black
curve shows the curve of equilibria, which is common to all versions of the model. Each
coloured curve shows the maximum voltage for the periodic orbits in the corresponding
model: orbits of the full model, equations (2.2.1)-(2.2.4), are shown in blue; orbits of the
model with m removed, equations (2.2.5)-(2.2.7), are shown in red; and orbits of the model
with v removed, equations (2.2.8)-(2.2.10), are shown in green. Stability of solutions is not
indicated.

Hopf bifurcations and stable otherwise, while the branch of periodic solutions is stable

from the rightmost Hopf through to the saddle-node of periodic orbits in the top left of

each branch. Note that in the case that v is removed by QSSR, the corresponding curve

in Fig. 2.1 was computed by integrating the simplified model and using the resulting m, h

and n values in the formula for v̄ to obtain a ‘time series’ for v; the maximum value of this

‘time series’ for each choice of the bifurcation parameter I was then plotted, producing

the curve shown.

Thus, the HH equations provide an example where QSSR does not significantly change

the qualitative features of the dynamics of the model; either of the simplified models

might be regarded as an acceptable approximation to the full model.
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2.2.2 Hindmarsh-Rose model

Our second example is the Hindmarsh-Rose (HR) model [44], which was derived as a

model of burst generating neurons. The HR equations are

v̇ = I − v3 + 3v2 +m− n, (2.2.11)

ṁ = 1− 5v2 −m, (2.2.12)

ṅ = ε(4(v + 1.6)− n), (2.2.13)

where v represents the membrane potential, m represents the combination of a recovery

process and an inward current, and n is a slow adaptation current which is directed

outwards. Once again, we use I as the main bifurcation parameter.

With the choice ε = 0.001, n evolves much more slowly than v and m, and so v and m

are candidates for removal by QSSR. If we assume that m equilibrates rapidly, then m

can be replaced by m∞(v) ≡ 1−5v2 in equation (2.2.11), yielding the following simplified

system:

v̇ = I − v3 − 2v2 + 1− n, (2.2.14)

ṅ = ε(4(v + 1.6)− n). (2.2.15)

This system has significantly different dynamics to the full HR model, as Fig. 2.2 shows.

In particular, the full system has four Hopf bifurcations (labelled HB1 to HB4 in Fig. 2.2),

while the simplified system has just two (at almost the same values of I as HB1 and HB2

in the full system). As a result, the range of values of I for which there exist oscillatory

solutions is significantly smaller in the reduced model compared with the full model. Also,

in the full system the branches of periodic orbits created at HB1 and HB2 both terminate

in homoclinic bifurcations whereas in the simplified system the branch of periodic orbits

created at HB1 terminates at HB2. We note that, as is well known, the full HR model

has bursting oscillations for some parameter values. For the values of system parameters

used in creating Fig. 2.2, bursting occurs for I in the range 1.26 mA to 3.25 mA, i.e., in

the gap between the branches of periodic orbits starting at HB1 and HB4. The bursting

involves oscillations in the fast variables and is absent in the simplified system. Since

the bursting does not arise via a Hopf bifurcation in this model, we do not investigate it

further.

Note that while v and m are both fast compared with n, it is not feasible to remove v

from the full HR model by assuming that v equilibrates to its quasi-steady state value.
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This is because the equation for dv/dt is cubic in v and so it is not possible to replace v

in (2.2.12) and (2.2.13) globally as a function of m and n.

In summary, the HR equations provide an example in which QSSR substantially alters the

dynamics of the model; the simplified version of the HR equations has fewer Hopf bifur-

cations and a significantly smaller range of parameter values for which periodic solutions

exist. The simplified model would not, therefore, normally be regarded as an adequate

approximation to the full model.
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Figure 2.2: Partial bifurcation diagrams for two versions of the Hindmarsh-Rose equations. The black
curve shows the curve of equilibria, which is common to both versions of the model. The
coloured curves show the maximum voltages for the families of periodic orbits created in
the Hopf bifurcations: orbits of the full model, equations (2.2.11)-(2.2.13), are shown in
blue; orbits of the model with m removed, equations (2.2.14)-(2.2.15), are shown in red.
Bursting oscillations can be found in the gap of the blue curves (I in the range of 1.26 mA
to 3.25 mA). Stability of solutions is not indicated. Hopf bifurcations of the full model are
labelled HB1-HB4. The Hopf bifurcations of the simplified model occur very close to HB1

and HB2. Bursting oscillations are absent in the simplified model.
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2.2.3 Chay-Keizer model

The Chay-Keizer (CK) model is a minimal model for membrane potential oscillations in

pancreatic β-cells [21]. We follow [51] and use the model in the form

Cm
dv

dt
= I −

(
gK,Ca

c

Kd + c
+ gKn

4

)
(v − EK)

− 2gCam
3h (v − ECa)− gL (v − EL) , (2.2.16)

dm

dt
=

1

τmtm(v)
(m∞(v)−m) , (2.2.17)

dh

dt
=

1

τhth(v)
(h∞(v)− h) , (2.2.18)

dn

dt
=

1

τntn(v)
(n∞(v)− n) , (2.2.19)

dc

dt
= f

(
−k1gCam

3h (v − ECa)− kcc
)
, (2.2.20)

where v represents the membrane potential, m and h describe activation and inactivation

of the calcium channel, n represents the gating variable of the voltage-gated potassium

channel and c represents the intracellular calcium concentration.

The bifurcation diagram for the CK equations is shown in Fig. 2.3; the black curve shows

the equilibrium solutions of the model and the dark blue curves show the maximum value

of v for the periodic solutions. As can be seen, the model has two Hopf bifurcations,

labelled HB1 and HB2, which are connected by a family of periodic orbits.

From physiological considerations, the variables v and m might be regarded as faster than

the variables h, n and c and are thus candidates for removal by QSSR. We first consider

the effect of removing m from the equations, by setting m = m∞(v), which removes

equation (2.2.17) and modifies equations (2.2.16) and (2.2.20). Doing so does not change

the equilibrium solutions of the model, but does move the branch of periodic solutions as

shown by the red curve in Fig. 2.3. We find that both Hopf bifurcations are preserved

under this reduction, with HB1 staying in essentially the same place but HB2 moving

somewhat to the right. A consequence is that the region for oscillatory solutions is larger

and the amplitude of the resulting periodic orbits has increased for a wide range of the

applied current.

It is also possible to remove v via QSSR, just as we did for the HH model earlier. Doing so

produces a bifurcation diagram similar in many ways to the original CK model; there are

still two Hopf bifurcations, but each produces a branch of periodic orbits that terminates

in a homoclinic bifurcation. The rightmost branch is shown in green in Fig. 2.3. The
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Figure 2.3: Partial bifurcation diagram for various versions of the Chay-Keizer model. The black curve
is the curve of equilibria, and is the same for all versions of the model. Each coloured
curve shows the maximum voltage for the periodic orbits in the corresponding model: blue
corresponds to the original model, red when m is removed, green when v is removed, pink
when h is removed and cyan when m and h are removed. The Hopf bifurcations of the full
model are labelled HB1 and HB2. The blue, red, magenta and cyan curves are all continuous
and terminate on the left near the label HB1; near this point they lie on top of one another
on the scale of this figure. The green curve has two disjoint pieces: the right one is clearly
visible but the left one is a very short, lies near the label HB1 and is nearly invisible on the
scale of this figure.

leftmost branch exists only in a very small interval of I near I = 0 and is essentially

invisible on the scale of Fig. 2.3. A plot of the periods of the orbits corresponding to the

blue, red and green curves can be seen in Fig. 2.4, with corresponding frequencies shown in

Fig. 2.5. The periods of the orbits on the green branches tend to infinity (or, frequencies

tend to zero) at certain parameter values, suggesting that both branches terminate in

homoclinic bifurcations. Even though the blue branch and the red branch are unbroken,

the corresponding frequencies become very small in a small parameter interval, possibly

because the corresponding periodic orbits pass near an equilibrium and are therefore near

a homoclinic bifurcation. From Fig. 2.4 it can be seen that the periods of the orbits

corresponding to the green, blue and red curves are very similar over a relatively large

interval of parameters, suggesting that both of the simplified versions yield reasonable
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Figure 2.4: Partial bifurcation diagram for various versions of the Chay-Keizer model, showing the
period of the periodic orbit branches for the full system (blue), the system with m removed
(red) and the system with v removed (green). As in Fig, 2.3, the blue and red curves are
continuous, but the left ends of both curves lie beyond the upper edge of this figure; see
also Fig. 2.5. The green curve has two pieces, with one end of each piece lying beyond the
upper edge of this figure.

approximations to the full system dynamics for this range of parameter values.

A different version of the model that has been studied in the literature is obtained by

removing both m and h via QSSR [28, 35, 80]. Even though h is not as fast as v and

m, it evolves faster than c, and, formally, h can be removed from the model by setting

h = h∞ just as if h were a fast variable. The resulting bifurcation diagram is shown by

the black and pink curves in Fig. 2.3. It can be seen that the right Hopf bifurcation is

moved significantly to the left, resulting in a smaller interval of parameters for which there

exists a periodic solution. By checking the bifurcation diagram for the case where the

m equation is retained but the h variable is removed by QSSR (pink curve in Fig. 2.3),

it can be seen that most of the movement in the second Hopf bifurcation is due to this

removal of h. It is perhaps not surprising that removing h by assuming that this variable

equilibrates rapidly results in a significant change to the bifurcation diagram since h is

known to be a slower variable than v and m.
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Figure 2.5: Frequencies of the periodic orbits shown in Fig. 2.4 near HB1; colours have the same meaning
as in Fig. 2.4. The blue and red curves are continuous but there are two pieces of green
curve.

In summary, the CK equations provide an example in which the use of QSSR to remove

fast variables of the model preserves the Hopf bifurcations in the model but can move them

a significant distance, hence altering the amplitude of the periodic orbits significantly.

In one case, QSSR introduced a homoclinic bifurcation to the bifurcation diagram by

disconnecting a previously continuous branch of periodic solutions. The CK equations

also provide an example from the literature where a slower variable is removed from a

model via QSSR, despite the fact that QSSR implicitly assumes that removed variables

are fast compared with other variables.
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3
Results on quasi-steady-state reduction

The three examples discussed in the previous chapter show that applying QSSR to a

model with multiple timescales sometimes leads to minimal disruption of the dynamics of

the model and sometimes causes significant changes, such as removing oscillations from

the dynamics or changing the amplitude of the oscillations by an order one amount. In

this chapter we look in more mathematical detail at the process of QSSR. We show why

QSSR works well if we are only concerned with equilibrium solutions of a model and

investigate the effect of QSSR on oscillatory solutions by looking at the persistence and

criticality of Hopf bifurcations under QSSR.

3.1 Preliminaries

We consider models that can be written in standard slow-fast form

ẋ = εf(x, y, α),

ẏ = g(x, y, α),
(3.1.1)

19
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where x ∈ Rm, y ∈ Rn, f and g are order one vector-valued functions, α ∈ R is a

parameter, and ε is a constant satisfying 0 < ε � 1. In such a system, the x variables

evolve much slower than the y variables and the time scale separation is encoded by ε.

We note that in many models of biological systems, even if different processes are known

to evolve on different timescales, it may not be possible to write down a model of the

form of (3.1.1) in which there is explicit timescale separation of variables. Nevertheless,

it is helpful to start by considering this relatively simple situation.

In QSSR, one or more of the fast variables is assumed to equilibrate instantaneously and

is replaced in the model by functions of the remaining variables. Dividing the y variables

into two groups, u ∈ Rp and w ∈ Rq with p+ q = n, we can rewrite (3.1.1) as

ẋ = εf(x, u, w, α),

u̇ = h(x, u, w, α),

ẇ = k(x, u, w, α).

(3.1.2)

QSSR can then be applied to remove the u variables using the following procedure. First

it is assumed that u equilibrates instantaneously, which amounts to assuming

h(x, u, w, α) = 0. (3.1.3)

So long as the matrix given by

Duh =

(
∂hi
∂uj

)
1≤i,j≤p

(3.1.4)

evaluated along h = 0 is invertible, (3.1.3) can be reorganised to give u as a function

of x and w, i.e., u = ū(x,w, α). Here ∂hi
∂uj

is the derivative of the i-th component of h

with respect to the j-th component of u. That this works is a consequence of the Implicit

Function Theorem.

Replacing u in (3.1.2) by this expression for ū then yields the following simplified system:

ẋ = εf(x, ū(x,w), w, α),

ẇ = k(x, ū(x,w), w, α).
(3.1.5)
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It is helpful in what follows to also consider the system in the form

ẋ = εf(x, u, w, α),

δu̇ = h(x, u, w, α),

ẇ = k(x, u, w, α),

(3.1.6)

where δ is a constant with 0 ≤ δ ≤ 1. The original system (3.1.1) corresponds to choosing

δ = 1, and letting δ decrease corresponds to speeding up the evolution of u relative to the

other variables. In the limit δ → 0, Eq. (3.1.6) becomes the differential-algebraic system:

ẋ = εf(x, u, w, α),

0 = h(x, u, w, α),

ẇ = k(x, u, w, α),

(3.1.7)

which is equivalent to the simplified system (3.1.5). Hence, investigating the behaviour of

(3.1.6) as δ decreases to zero allows us to understand how the dynamics of (3.1.1) changes

in response to QSSR.

3.2 The effect of QSSR on equilibria

In this section we show that equilibria cannot be created or destroyed by QSSR.

The set of equilibria of Eq. (3.1.2) is the set of points

{(x, u, w) ∈ Rm+p+q | f = h = k = 0}. (3.2.1)

The simplified system obtained by using QSSR evolves on the quasi-steady-state manifold

(QSSM) given by

QSSM = {(x, u, w) ∈ Rm+p+q | h = 0}. (3.2.2)

Thus, equilibria of Eq. (3.1.2) are contained in the manifold defined by Eq. (3.2.2). This

means that if (x∗, u∗, w∗) is an equilibrium of Eq. (3.1.2), then (x∗, w∗) is an equilibrium

of Eq. (3.1.5).

Eq. (3.1.5) can be equivalently formulated as the differential-algebraic system (3.1.7),

meaning that equilibria of Eq. (3.1.5) are equilibria of Eq. (3.1.7) and vice versa. An
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equilibrium of Eq. (3.1.7) is a point (x∗, u∗, w∗) such that

0 = f(x∗, u∗, w∗, α),

0 = h(x∗, u∗, w∗, α),

0 = k(x∗, u∗, w∗, α).

These conditions also ensure that (x∗, u∗, w∗) is an equilibrium of the original system,

Eq. (3.1.2).

Thus, we see that equilibria can be neither destroyed nor created by the process of QSSR.

However, the stability of an equilibrium can change under QSSR. For instance, the sta-

bilities of some equilibria close to Hopf bifurcations can change and consequently Hopf

bifurcations can move or disappear under QSSR, as was seen in the examples in section 2.2.

3.3 Note on geometric singular perturbation theory

and QSSR

When ε = 0 then equilibria of Eq. (3.1.2) lie on the manifold

S0 = {(x, u, w) ∈ Rm+p+q | h = k = 0}. (3.3.1)

This manifold is known in geometric singular perturbation theory (GSPT) as the critical

manifold for system (3.1.2). GSPT can be used to show that if S0 is globally attracting

when ε = 0, solutions of Eq. (3.1.2) with ε small but non-zero will rapidly approach S0

and thereafter stay close to S0 [36].

On the other hand, when all fast variables of Eq. (3.1.2) are eliminated by QSSR, the

simplified system evolves on S0. Thus, if S0 is globally attracting when ε = 0, the dynamics

of Eq. (3.1.2) after the initial transient has subsided, is well captured by the simplified

system (3.1.5) or, indeed, by a simplified system in which both u and w are removed by

QSSR, i.e., using QSSR to remove fast variables from a multiple timescales model leads

to good predictions about the long term behaviour of solutions if the critical manifold S0

is globally attracting [85]. However, critical manifolds need not be globally attracting,

and, in particular, oscillatory solutions are often associated with critical manifolds that

are not globally attracting.
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3.4 Note on ε-dependence of the equations

In the previous section, ε characterises the time-scale separation between slow and fast

variables and does not explicitly appear in the functions f, h and k. The more general

situation, which occurs frequently in physiological models, is that ε occurs explicitly in

one or more of these functions. In this case system (3.1.2) becomes

ẋ = εf(x, u, w, α, ε),

u̇ = h(x, u, w, α, ε),

ẇ = k(x, u, w, α, ε).

(3.4.1)

Most of the arguments of the previous sections are effectively unchanged by this modifi-

cation. For instance, if we assume that u equilibrates instantaneously,

h(x, u, w, α, ε) = 0, (3.4.2)

and the Jacobian matrix of h with respect to u (previously defined in Eq. (3.1.4)) is now

dependent on ε. However, provided that the matrix is invertible, u can be expressed as

function of (x,w, α, ε) and the simplified system can be defined as before. Equilibria of

Eq. (3.4.1) are generally dependent on ε, but the argument of section 3.2 can be carried out

as before to show that equilibria cannot be created or destroyed by QSSR. Furthermore,

the equilibria of Eq. (3.1.2) are on the critical manifold, S0, defined by Eq. (3.3.1) (with

ε = 0), while the equilibria of Eq. (3.4.1) need not be on S0 but are within a distance

of O(ε) of S0. Under the assumption that S0 is globally attracting with respect to the

dynamics of Eq. (3.1.2) with ε = 0, removal by QSSR of all fast variables of Eq. (3.4.1)

leads to a simplified system that evolves on a manifold that is O(ε) away from S0; this

follows from Fenichel’s theorem [36] and is just as was the case for systems of the form of

Eq. (3.1.2).

3.5 The effect of QSSR on oscillatory solutions

We saw in section 2.2 that Hopf bifurcations may be removed from the dynamics by

QSSR. Certain types of Hopf bifurcation might be expected a priori to be more robust

under QSSR than others. For instance, Hopf bifurcations that involve just slow variables

might be expected to persist under QSSR since it removes only fast variables, while Hopf

bifurcations that involve only fast variables might disappear if those variables are the ones
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removed by QSSR. An aim of this work, therefore, is to derive conditions under which a

Hopf bifurcation will persist under QSSR.

We start with a categorization of Hopf bifurcations. We assume that Eq. (3.1.1) has a

non-degenerate Hopf bifurcation for α = αH and ε 6= 0. More precisely, we assume that:

A1: there is a family of equilibria µ(α) = (x∗(α), y∗(α)) for α in a neighbourhood of αH ,

such that the Jacobian matrix has a pair of eigenvalues λ(α) = σ(α) ± iω(α) with

σ(αH) = 0 and ω(αH) ∈ R \ {0};

A2:
∂σ

∂α

∣∣∣∣
α=αH

6= 0;

A3: l1(αH) 6= 0, where l1 is the first Lyapunov coefficient [57].

The sign of l1(αH) determines the criticality of a Hopf bifurcation and, hence, whether

the branch of periodic orbits created in the Hopf bifurcation is stable or unstable.

Depending on the way ω scales with variation of ε, the Hopf bifurcation can be classified

in the following way.

(i) If ω = O(1), the Hopf bifurcation involves only fast variables. This means that a

corresponding Hopf bifurcation will be seen in the fast subsystem, which is the limit

as ε→ 0 of Eq. (3.1.1).

(ii) If ω = O(ε), the Hopf bifurcation involves only slow variables. More specifically, we

can apply the change in variables τ = εt to system (3.1.1) to obtain an equivalent

system on the slow timescale, τ :

∂x

∂τ
= f(x, y, α),

ε
∂y

∂τ
= g(x, y, α).

(3.5.1)

If the Hopf bifurcation of the original system involves only slow variables, it will

persist in the singular limit as ε→ 0 of this rescaled system.

(iii) If ω = O(
√
ε) the Hopf bifurcation is a singular Hopf bifurcation [42, 55, 97] and

involves both fast and slow variables. Singular Hopf bifurcations do not persist in

the limit ε → 0 of either Eq. (3.1.1) or Eq. (3.5.1). This means that both slow

variables and fast variables are crucially involved in the bifurcation.
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A Hopf bifurcation of type (i) can be eliminated under QSSR. An example of this was

shown in subsection 2.2.2, where a fast Hopf bifurcation was removed from the HR model

by QSSR. However, type (i) Hopf bifurcations are not necessarily eliminated by QSSR;

whether or not this occurs depends on whether the variable(s) removed by QSSR are

involved in the bifurcation. That this is the case is clear if one considers a system in

which the fast variables involved in the Hopf bifurcation are decoupled from the fast

variable(s) to be removed by QSSR.

Hopf bifurcations involving only slow variables (type (ii)) survive QSSR, at least for ε

sufficiently small. This is independent of how many and which fast variables are kept.

The reason for the persistence of slow Hopf bifurcations is that, in the limit of ε → 0,

the centre manifold associated with the Hopf bifurcation is contained within the linear

subspace tangent to the QSSM at the Hopf bifurcation (the tangent space of the QSSM at

that point). This ensures that the Hopf bifurcation is preserved in the simplified system,

and it will not change from subcritical to supercritical or vice versa. Furthermore, for

the same reason, the amplitude and frequency of the periodic orbit are not significantly

affected by QSSR, at least sufficiently close to the Hopf bifurcation.

Singular Hopf bifurcations (type (iii)) persist under QSSR as long as the matrix given by

Eq. (3.1.4), evaluated along h = 0, is invertible and ε is sufficiently small; details of the

proof of this statement are contained in section 3.6. The singular Hopf bifurcation may

occur at a different parameter value in the simplified system compared to the original

system. However, the new parameter value will be within O(ε) in the simplified system.

We note that for Eq. (3.1.4) to be invertible at least one fast variable must remain after

QSSR (see section 3.6), i.e., a singular Hopf bifurcation will be removed if all fast variables

are eliminated by QSSR. This is consistent with the observation that a singular Hopf

bifurcation involves both fast and slow variables, and so it cannot persist in the dynamics

if all fast variables are removed.

Remark The persistence of a Hopf bifurcation under QSSR does not, in general, guar-

antee that the resulting branch of periodic orbits has the same amplitude as the corre-

sponding branch in the original model. In fact, we have seen in the HH model and, more

dramatically, in the CK model that the resulting branch of periodic orbits can have a

significantly different amplitude. For the HH model, removal of m by QSSR leads to an

increase in the amplitude of the periodic orbit at a given parameter value but removal

of v does not have a significant effect (Fig. 2.1). For the CK model removal of m or v

via QSSR also leads to an increase in the amplitude of the periodic orbits, but in this
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case removal of v produces a much more significant change in amplitude (Fig. 2.3). We

did not observe significant changes in the frequency in response to QSSR applied to HH

and CK; see, e.g., Fig. 2.5 and the associated discussion in subsection 2.2.3. QSSR can

also induce a change in criticality of a Hopf bifurcation, i.e., the stability of the branch of

periodic orbits emanating from the Hopf bifurcation can in principle change after QSSR;

this is discussed in subsection 3.6.2 in the context of singular Hopf bifurcations. We note,

however, that in many cases, any change in criticality affects only a small portion of the

branch of periodic solutions (because the branch is very steep near the Hopf bifurcation)

and so may have little overall effect on the system dynamics.

3.6 Singular Hopf bifurcations and QSSR

3.6.1 Persistence of singular Hopf bifurcations

In this subsection we show that if a system has a singular Hopf bifurcation, the corre-

sponding system obtained by removal of one or more fast variables via QSSR also has a

singular Hopf bifurcation so long as the condition given in Assumption 2, below, is sat-

isfied. The proof relies on the observation that a singular Hopf bifurcation is associated

with a phenomenon called a folded saddle-node type II (FSNII) bifurcation [25, 42, 43];

we prove the persistence of FSNII bifurcations under QSSR and deduce the persistence

of singular Hopf bifurcations. The proof relies on some concepts of GSPT, which we

introduce in the following few paragraphs.

We begin with the system

ẋ = εf(x, y, α, ε),

ẏ = g(x, y, α, ε), (3.6.1)

where x ∈ Rm and y ∈ Rn. The dot indicates differentiation with respect to time, t, and

the functions f and g are of order one. The parameter α is the bifurcation parameter for

the system, and is assumed to lie in some open interval I. The parameter ε encodes the

time-scale separation between x and y; we assume 0 ≤ ε� 1.

In the case that ε 6= 0, an equivalent formulation of system (3.6.1) can be obtained by



3.6 Singular Hopf bifurcations and QSSR 27

rescaling time, using t = τ/ε, to obtain

x′ = f(x, y, α, ε),

εy′ = g(x, y, α, ε), (3.6.2)

where the prime now indicates differentiation with respect to τ .

In the limit ε→ 0, system (3.6.1) gives rise to the layer problem

ẋ = 0,

ẏ = g(x, y, α, 0), (3.6.3)

while system (3.6.2) yields the reduced problem

x′ = f(x, y, α, 0),

0 = g(x, y, α, 0). (3.6.4)

The phase space of the reduced problem is the critical manifold, S, defined by

S = {(x, y) | g(x, y, α, 0) = 0}. (3.6.5)

The critical manifold is also the set of equilibria of the layer problem.

The critical manifold may be folded with respect to one or more fast variables. Folds are

located at the set of points, L ⊂ S, that satisfy

rank (Dyg) (x, y, α, 0) = n− 1, (3.6.6)

s ·
[(
D2
yyg
)

(x, y, α, 0)(r, r)
]
6= 0, (3.6.7)

s · [(Dxg) (x, y, α, 0)] 6= 0, (3.6.8)

where s and r are the left and right null vectors of (Dyg)(x, y, α, 0) [95]. The matrices

(Dyg) (x, y, α, 0) and (Dxg) (x, y, α, 0) are the matrices of first derivatives of g with re-

spect to y and x respectively, and
(
D2
yyg
)

(x, y, α, 0) is the tensor of second derivatives.

Generically, the set of fold points separates sections (usually called sheets or branches) of

the critical manifold that are of different stabilities with respect to the fast dynamics.

It is useful to compute the flow on the critical manifold. This is obtained by differentiating
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the expression g = 0 with respect to τ , and then rewriting (3.6.4) in the form

x′ = f(x, y, α, 0),

(−Dyg) · y′ = ((Dxg) · f)(x, y, α, 0).
(3.6.9)

This can be rearranged as

x′ = f(x, y, α, 0),

− det(Dyg) · y′ = (adj(Dyg) · (Dxg) · f)(x, y, α, 0),
(3.6.10)

where adj(Dyg) is the adjoint matrix of (Dyg). This flow is singular when det(Dyg) = 0

(e.g., on folds of S); we remove the singularity by rescaling time by det(Dyg), yielding

the desingularized reduced problem

dx

dT
= −(det(Dyg) · f)(x, y, α, 0),

dy

dT
= (adj(Dyg) · (Dxg) · f)(x, y, α, 0),

(3.6.11)

where time has been rescaled so that dT = − det(Dyg)(x, y, α, 0) · dτ .

An equilibrium point of the desingularised reduced system that also lies on the fold curve

L is called a folded singularity. Thus, (xF, yF) ∈ L is a folded singularity when α = αF if

(adj(Dyg) · (Dxg) · f)(xF , yF , αF , 0) = 0. (3.6.12)

The equation (3.6.12) represents a single condition, since adj(Dyg) has rank one along L.

The eigenvalues of the Jacobian of Eq. (3.6.11) determine the type of folded singularity;

a folded singularity is a folded saddle-node if there is just one non-zero eigenvalue [95].

A folded singularity is a type II folded saddle-node if it has the additional property that

f(xF, yF, αF , 0) = 0.

In order to study the effect of QSSR on the persistence of singular Hopf bifurcations it is

convenient to split the fast variables of the model by writing y =

(
u

w

)
. Here we assume

that u ∈ Rn−1 and w ∈ R. This simplifies the notation in the following proof. A proof

for u ∈ Rp and w ∈ Rq works using the same argumentation, albeit with more indices.
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Consider the system in the form

ẋ = εf(x, u, w, α, ε),

u̇ = h(x, u, w, α, ε),

ẇ = k(x, u, w, α, ε),

(3.6.13)

where g =

(
h

k

)
. We will assume that u reaches quasi-steady state rapidly, so that

u̇ rapidly approaches 0 and we can approximate the differential equation for u by the

algebraic equation h = 0. The following generic condition on h then allows us to remove

u from Eq. (3.6.13).

Assumption 1 Duh evaluated at points such that h(x, u, w, α, 0) = 0 is invertible, for

all α ∈ I, where I is an open interval.

Under Assumption 1, u can be written as a function of the remaining variables and

the parameters, i.e., u = ū(x,w, α, ε) for some function ū and for ε sufficiently small.

Substituting this into Eq. (3.6.13) yields

ẋ = εf(x, ū(x,w, α, ε), w, α, ε) ≡ εF (x,w, α, ε),

ẇ = k(x, ū(x,w, α, ε), w, α, ε) ≡ K(x,w, α, ε).
(3.6.14)

The desingularized reduced system corresponding to Eq. (3.6.14) can be obtained by the

process outlined above, and is

dx

dT̃
= − (DwK · F ) (x,w, α, 0),

dw

dT̃
= (DxK · F ) (x,w, α, 0),

(3.6.15)

where time has been rescaled so that dT̃ = − (DwK) (x,w, α, 0)dτ , and τ is related to

t just as earlier. Note that we have used adj (DwK) = 1 and det (DwK) = DwK, since

DwK is a scalar.

We make a further assumption about system (3.6.13).

Assumption 2 The critical manifold of system (3.6.13) is locally folded for all α ∈ I,

i.e., conditions (3.6.6)-(3.6.8) are satisfied.
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We now show that certain properties of system (3.6.13) are inherited by (3.6.14).

Proposition 1 If Assumptions 1 and 2 hold for system (3.6.13), then the critical man-

ifold of system (3.6.14) is locally folded for all α ∈ I.

Proof of Proposition 1 The Jacobian of the fast subsystem of (3.6.13) is

Dyg(x, y, α, 0) =

(
Duh Dwh

Duk Dwk

)
(x, y, α, 0). (3.6.16)

From Assumption 2 it follows that the Jacobian has a zero eigenvalue for all (x, y) ∈ L.

Assumption 1 guarantees the regularity of the submatrix Duh. Using the Leibniz formula

for determinants then yields

det (Dyg) = det (Duh) det
(
Dwk −Duk (Duh)−1Dwh

)
= 0 (3.6.17)

for (x, y) ∈ L, i.e.,

det
(
Dwk −Duk (Duh)−1Dwh

)
= 0 (3.6.18)

or

Dwk −Duk (Duh)−1Dwh = 0 (3.6.19)

since the matrix in (3.6.18) is just a scalar.

To prove Proposition 1, we need to show that equivalent conditions to Eq. (3.6.6)-(3.6.8)

are satisfied for system (3.6.14). The Jacobian of the fast subsystem of Eq. (3.6.14) is

DwK = DukDwū+Dwk

= −Duk (Duh)−1Dwh+Dwk,
(3.6.20)

since h = 0 implies that

Dwh+DuhDwū = 0, (3.6.21)

and, hence, that

Dwū = −(Duh)−1Dwh. (3.6.22)

Comparing (3.6.19) and (3.6.20), we see that DwK is zero at points on L and thus the

zero eigenvalue from (3.6.13) is preserved under QSSR, i.e., condition (3.6.6) is satisfied

for Eq. (3.6.14).

Now we turn to condition (3.6.7). If s is the left null vector of (Dyg)(x, y, α, 0) we write



3.6 Singular Hopf bifurcations and QSSR 31

s = (s1, s2) where s1 is a row vector of dimension n− 1 and s2 ∈ R. Then

(
s1 s2

)(Duh Dwh

Duk Dwk

)
= 0 (3.6.23)

from which it follows, using Assumption 1, that

s =
(
−s2Duk (Duh)−1 s2

)
. (3.6.24)

Similarly, if r is the right null vector of Dyg(x, y, α, 0) we write

r =

(
r1

r2

)

where r1 is a column vector of dimension n− 1 and r2 ∈ R, and find that

r =

(
− (Duh)−1Dwh r2

r2

)
. (3.6.25)

We see from Eq. (3.6.24) that s2 6= 0; otherwise s would be the zero vector and would not

be a valid eigenvector of (Dyg). By the same argument, we see from Eq. (3.6.25) that r2

is non-zero. A straightforward calculation then shows that condition (3.6.7) is satisfied

for (3.6.13) if and only if

D2
wwk − 2D2

wukξ +D2
uukξ

2

− ζD2
wwh+ 2ζD2

wuhξ − ζD2
uuhξ

2 6= 0,
(3.6.26)

where ξ = (Duh)−1Dwh and ζ = Duk (Duh)−1 . Note that we use the fact that s2 and r2

are nonzero here.

A similar calculation shows an analogous result for Eq. (3.6.14), i.e.,

ŝ ·
[(
D2
wwK

)
(x,w, α, 0)(r̂, r̂)

]
6= 0

if and only if Eq. (3.6.26) is satisfied, where ŝ and r̂ are the left and right null vectors of

(DwK). Note that, because of the dimensions involved, ŝ and r̂ are scalar and therefore

necessarily non-zero. Thus we conclude that if (3.6.7) holds for (3.6.13) then the equivalent

condition holds for (3.6.14).

We now check condition (3.6.8). Condition (3.6.8) written in terms of h and k for (3.6.13)
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is

s · [(Dxg) (x, y, α, 0)] = s2

(
−Duk (Duh)−1Dxh+Dxk

)
6= 0. (3.6.27)

For system (3.6.14), the condition equivalent to (3.6.8) is

ŝ · (DxK) 6= 0. (3.6.28)

Since ŝ is scalar and since h = 0 implies that Dxū = − (Duh)−1Dxh

DxK = Dxk +DukDxū = Dxk −Duk (Duh)−1Dxh 6= 0. (3.6.29)

Equation (3.6.29) is equivalent to condition (3.6.27). Hence, if (3.6.8) is fulfilled for

Eq. (3.6.13) then the equivalent condition is also satisfied for Eq. (3.6.14). This completes

the proof of Proposition 1.

We now make another assumption about the dynamics of the original system (3.6.1),

or, more specifically, about the dynamics of (3.6.11), the desingularized reduced system

corresponding to (3.6.1).

Assumption 3 System (3.6.11) has a folded saddle-node type II singularity, (xF , yF ),

for some αF ∈ I.

Proposition 2 If Assumptions 1, 2 and 3 are satisfied for system (3.6.11) then system

(3.6.15) has a folded saddle-node singularity of type II for the same parameter value,

αF ∈ I, as in Assumption 3.

Proof of Proposition 2 Using the notation (xF , yF ) = (xF , uF , wF ), it follows from

Assumption 1 that uF = ū(xF , wF , αF , 0). Since (xF , yF ) is a true equilibrium of system

(3.6.1) for αF , it follows from section 3.2 that (xF , wF ) is an equilibrium of system (3.6.14)

for αF . Furthermore, Proposition 1 guarantees that the critical manifold of system (3.6.14)

is locally folded at (xF , wF ) for the parameter value αF .

In general, equilibria of system (3.6.14) do not inherit their stability from their counter-

parts in system (3.6.1). Thus, it is not immediately apparent that (xF , wF ) is a folded

saddle-node type II singularity of the desingularized reduced system (3.6.15). Here we

show that (xF , wF ) is indeed of folded saddle-node type in system (3.6.15) at αF .

The desingularized reduced system of system (3.6.1) is (3.6.11), which can be expressed
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using u and w coordinates as

dx

dT
= (− det (Dyg) · f) (x, u, w, α, 0), (3.6.30)

d

dT

(
u

w

)
=

(
adj

(
Duh Dwh

Duk Dwk

)(
Dxh

Dxk

)
· f

)
(x, u, w, α, 0). (3.6.31)

Equations (3.6.30) and (3.6.31) describe the dynamics on the m-dimensional critical man-

ifold. Using DwK = Dwk−Duk (Duh)−1Dwh and Eq. (3.6.17), the first equation becomes

dx

dT
= (− det (Duh) · (DwK) · f)) (x, u, w, α, 0). (3.6.32)

The next step is to evaluate the adjoint matrix, to compare Eq. (3.6.31) with the second

equation of system (3.6.15). We use LDU decomposition to factorize the adjoint matrix

to

adj

(
Duh Dwh

Duk Dwk

)
= adj

((
1 0

Duk (Duh)−1
1

)
(
Duh 0

0 DwK

)(
1 (Duh)−1Dwh

0 1

))
,

(3.6.33)

where 1 is the identity matrix of appropriate dimension. This is equal to the product of

adjoint matrices in reverse order

adj

(
Duh Dwh

Duk Dwk

)
=

(
1 − (Duh)−1Dwh

0 1

)
(
DwK det (Duh) (Duh)−1 0

0 det (Duh)

)(
1 0

−Duk (Duh)−1
1

)
.

(3.6.34)

The equation for w is then given by

dw

dT
=
(
det (Duh) ·

(
Dxk −Duk (Duh)−1Dxh

)
· f
)

(x, u, w, α, 0). (3.6.35)

The desingularized reduced system after QSSR is given by Eq. (3.6.15) and using the

definition of F (x,w, α, 0) = f(x, u, w, α, 0)|u=ū can be written as

dx

dT̃
= (− (DwK) · f) (x, u, w, α, 0)|u=ū ,

dw

dT̃
=
((
Dxk −Duk (Duh)−1Dxh

)
· f
)

(x, u, w, α, 0)
∣∣
u=ū

.

(3.6.36)

Comparing equations (3.6.32) and (3.6.35), restricted to u = ū(x,w, α, 0), with system

(3.6.36) and noting that dT = det (Duh) ·dT̃ , we see that they describe identical dynamics
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on the respective critical manifolds. This means that, when each is projected to the

appropriate critical manifold, the flow of system (3.6.11) is identical to the flow of system

(3.6.15). Since folded singularities are characterised according to their linearisation on

the critical manifold, it follows that the folded saddle-node equilibrium of system (3.6.11)

corresponds to a folded saddle-node equilibrium of system (3.6.15). This completes the

proof of Proposition 2.

The existence of a folded saddle-node type II singularity is generically associated with the

existence of a singular Hopf bifurcation [25, 42]. Thus we have a corollary to Proposition

2:

Corollary If Assumptions 1, 2 and 3 are satisfied for system (3.6.11) then (3.6.15) has

a singular Hopf bifurcation within O(ε) of αF .

One subtlety worth mentioning is that the singular Hopf bifurcation in system (3.6.14)

does not necessarily occur at the same parameter value as in system (3.6.1). Proposition

2 guarantees that the desingularized reduced system (3.6.15), has a folded-saddle node

type II bifurcation at the same parameter value as system (3.6.11), but the singular Hopf

bifurcation is only within O(ε) of the folded-saddle node type II bifurcation and can occur

at different parameter values in system (3.6.14) compared to system (3.6.1).

The persistence of a singular Hopf bifurcation in system (3.6.14) does not mean that the

onset of oscillations is unchanged by QSSR. It is evident from the examples discussed in

2.2 that even when Hopf bifurcations persist under QSSR, the amplitude and frequency

of the oscillations near the bifurcation can change significantly. Less evident is that the

criticality of the Hopf bifurcation, and hence the stability of the branch of oscillations at

the onset, can also change under QSSR.

3.6.2 Criticality of singular Hopf bifurcations

The criticality of a Hopf bifurcation is determined by the sign of the first Lyapunov

coefficient [57]. In the following, we show the general derivation of the criticality of a

Hopf bifurcation and then make an argument of how the criticality of a singular Hopf

bifurcation may be affected by QSSR. The argument for the change in criticality of QSSR

is inspired by the argument given in [97]. The authors of [97] show that the criticality
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of a Hopf bifurcation that exists in the full model and persists in the layer problem can

be different in the full model compared to the layer problem. We focus on changes in

criticality of singular Hopf bifurcations in slow-fast systems of the form Eq. (3.6.13) as

fast variables are removed.

Consider the system

ż = G(z, µ), (3.6.37)

where z ∈ RN and µ ∈ RK . Under the assumption that Eq. (3.6.37) has a Hopf bifurcation

at z = 0 and µ = µH , the Taylor expansion around (0, µH) is

G(z, µH) = Az +
1

2
B(z, z) +

1

6
C(z, z, z) +O(‖z4‖), (3.6.38)

where A is the Jacobian matrix evaluated at (0, µH), and B(x, y) and C(x, y, z) are the

following multilinear forms:

Bj(x, y) =
N∑

k,l=1

∂2Gj(ξ, µH)

∂ξk∂ξl

∣∣∣∣
ξ=0

xkyl, (3.6.39)

Cj(x, y, z) =
N∑

k,l,r=1

∂3Gj(ξ, µH)

∂ξk∂ξl∂ξr

∣∣∣∣
ξ=0

xkylzr, (3.6.40)

for j = 1, 2, . . . , N . At (0, µH), A has two complex conjugate eigenvalues ±iω. We denote

the eigenvector corresponding to iω by q, and the adjoint eigenvector by p, so that

Aq = iωq, (3.6.41)

ATp = −iωp. (3.6.42)

The first Lyapunov coefficient is

l1 =
1

2ω
Re
[
〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉

+〈p,B(q̄, (2iω1− A)−1B(q, q))〉
]
.

(3.6.43)

where 〈., .〉 denotes the usual inner product. The sign of l1 determines the criticality of

the Hopf bifurcation and, hence, the stability of the resulting periodic orbit at the onset

of the oscillations.

Without loss of generality we assume that system (3.6.13) has a singular Hopf bifurcation

at (x, u, w) = (0, 0, 0) for α = αH , and that Assumptions 1, 2 and 3 from the previous

subsection are satisfied so that the Hopf bifurcation persists in the reduced system (3.6.14).



36 Results on quasi-steady-state reduction

In order to get comparable expressions for the eigenvectors q and p, we revert to system

(3.1.6). For δ = 1 system (3.1.6) is the same as system (3.6.13); in the limit δ → 0 it

represents Eq. (3.6.14) embedded in the (m+n)-dimensional phase space of Eq. (3.6.13).

That means it follows the dynamics of the system (3.6.14), restricted to the quasi-steady-

state manifold (as defined in Eq. (3.2.2)), in the phase space of the full system.

As mentioned in the last subsection, the singular Hopf bifurcation in Eq. (3.6.14) does not

necessarily occur at the origin nor at the same value of the parameter, α, as in Eq. (3.6.13).

We assume that the singular Hopf bifurcation in Eq. (3.1.6) for δ ≤ 1 occurs at a position

in phase space given by õ(δ) for the parameter value α̃H(δ).

In the last subsection we have seen that the folded saddle-node singularity of type II

occurs in system (3.6.14) at the same parameter value αF and at the same location in

phase space as in system (3.6.13). It follows from the corollary in the previous subsection

that

||õ(δ)|| = O(ε), (3.6.44)

α̃H(δ) = αH +O(ε). (3.6.45)

This means that õ(δ) is within O(ε) of the origin, and the parameter value α̃H(δ) is within

O(ε) of αH .

Zhang et al. [97] present an argument that the criticality of a Hopf bifurcation in a slow-

fast system can be different in the layer problem compared to the full slow-fast problem.

The argument is based on evaluating Eq. (3.6.43) for the layer problem and the full slow-

fast problem and comparing the individual summands. If the summands differ by O(1),

the resulting first Lyapunov coefficient may also differ by O(1). We follow this procedure

and compare the three summands for δ = 1 and δ → 0. From this, we deduce that the

criticality of a singular Hopf bifurcation may change under QSSR. We give two examples

where a change of criticality occurs at the end of the subsection.

The eigenvector q satisfiesεDxf − iω̃1 εDuf εDwf
1
δ
Dxh

1
δ
Duh− iω̃1 1

δ
Dwh

Dxk Duk Dwk − iω̃


q1

q2

q3

 (õ, α̃H , ε) = 0 (3.6.46)

with q1 ∈ Cm, q2 ∈ Cn−1, q3 ∈ C and where 1 is the identity matrix of appropriate

dimension.
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Note that the value of ω̃ may also change as δ changes. The change in ω̃ is of O(ε) since

ω̃ is the magnitude of the complex conjugate eigenvalues at a singular Hopf bifurcation

(see section (3.5)).

Eq. (3.6.46) is equal to1 0 0

0 1
δ
· 1 0

0 0 1


εDxf − iω̃1 εDuf εDwf

Dxh Duh− iδω̃1 Dwh

Dxk Duk Dwk − iω̃


q1

q2

q3

 (õ, α̃H , ε) = 0. (3.6.47)

For δ > 0 the matrix in front is regular and, hence, invertible. For δ > 0 Eq. (3.6.46) is

equivalent to

εDxf − iω̃1 εDuf εDwf

Dxh Duh− iδω̃1 Dwh

Dxk Duk Dwk − iω̃


q1

q2

q3

 (õ, α̃H , ε) = 0. (3.6.48)

The matrix in Eq. (3.6.48) is not invertible, and has determinant zero. A consequence is

that small changes in coefficients do not necessarily lead to small changes in the solution.

Hence, the eigenvector q for δ < 1 is not necessarily a small perturbation of the eigenvector

q at δ = 1. A similiar argument can be made for the right eigenvector p.

In order to compare terms in Eq. (3.6.43) for the singular Hopf bifurcation of system

(3.6.14) with the singular Hopf bifurcation in (3.6.13), it is useful to obtain an expression

for the eigenvector p:εDxf + iω̃1 1
δ
Dxh Dxk

εDuf
1
δ
Duh+ iω̃1 Duk

εDwf
1
δ
Dwh Dwk + iω̃


p1

p2

p3

 (õ, α̃H , ε) = 0. (3.6.49)

The second row yields(
εDuf · p1 +

(
1

δ
Duh+ iωδ1

)
· p2 +Duk · p3

)
(õ, α̃H , ε) = 0. (3.6.50)

For δ > 0, the matrix
(

1
δ
Duh+ iωδ1

)
is invertible. It follows that

p2 = −δ (Duh+ iδω̃1)−1 (εDuf · p1 +Duk · p3) . (3.6.51)
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The multilinear forms defined above become:

B1(x, y) =
m+n∑
k,l=1

ε
∂2f(ξ, α̃H , ε)

∂ξk∂ξl

∣∣∣∣
ξ=õ

xkyl,

B2(x, y) =
m+n∑
k,l=1

1

δ

∂2h(ξ, α̃H , ε)

∂ξk∂ξl

∣∣∣∣
ξ=õ

xkyl,

B3(x, y) =
m+n∑
k,l=1

∂2k(ξ, α̃H , ε)

∂ξk∂ξl

∣∣∣∣
ξ=õ

xkyl,

C1(x, y, z) =
m+n∑
k,l,r=1

ε
∂3f(ξ, α̃H , ε)

∂ξk∂ξl∂ξr

∣∣∣∣
ξ=õ

xkylzr,

C2(x, y, z) =
m+n∑
k,l,r=1

1

δ

∂3h(ξ, α̃H , ε)

∂ξk∂ξl∂ξr

∣∣∣∣
ξ=õ

xkylzr,

C3(x, y, z) =
m+n∑
k,l,r=1

∂3k(ξ, α̃H , ε)

∂ξk∂ξl∂ξr

∣∣∣∣
ξ=õ

xkylzr.

(3.6.52)

The first Lyapunov coefficient l1 is a function of δ, and we are interested in the difference:

|l1(1)− l1(δ)| . (3.6.53)

Evaluating the scalar products in the expressions 〈p, C(q, q, q̄)〉, 〈p,B(q, A−1B(q, q̄))〉 and

〈p,B(q̄, (2iω1−A)−1B(q, q))〉 one notes that δ only appears as factor in front of ω̃. The δ

in the denominator of B2 and C2 is cancelled by δ in the numerator of Eq. (3.6.51). The

δ appears in front of a small value (ω̃) and in combination with a non-zero term (Duh).

Hence the explicit δ in each of these summands does not lead to large changes. On the

other hand, the eigenvectors p and q may change significantly as δ is varied. Hence l1(δ)

is in general not a small perturbation of l1(1).

In summary, the first Lyapunov coefficient corresponding to a singular Hopf bifurcation

may change by an order one amount under QSSR. This can, in principle, result in a sign

change in l1 and, hence, in a change of criticality of the Hopf bifurcation.

In fact, in two of the motivating examples considered in section 2.2, singular Hopf bi-

furcations persist but change criticality under QSSR. In particular, we observe a change

from subcritical to supercritical of HB1 in the Hindmarsh-Rose model (Fig. 3.1) and in

the Chay-Keizer model (Fig. 3.2).

We note that a change in the criticality of a Hopf bifurcation does not necessarily corre-

spond to observable changes on the scale of interest. For instance, the branches of periodic



3.7 Other effects of QSSR 39

orbits arising from HB1 in Fig. 2.2 and in Fig. 2.3 are essentially vertical on the scale of

those figures, and one needs to look very close to each bifurcation to see the change of

criticality. For instance, the branch of periodic orbits produced in the Hopf bifurcation

labelled HB1 in the full Hindmarsh-Rose model is initially unstable (Fig. 3.1, left panel)

while the corresponding branch in the model reduced by QSSR is initially stable (Fig. 3.1,

right panel). However, both branches increase in amplitude very rapidly over a very small

interval of the bifurcation parameter and emerge as stable branches lying to the right of

HB1. As a consequence, the change in criticality of the Hopf bifurcation is not important

from a modelling point of view. Similiar comments apply to the Hopf bifurcation labelled

HB1 in the Chay-Keizer model (see Fig. 3.2).

3.7 Other effects of QSSR

Various other changes to the dynamics can be introduced by the application of QSSR;

we describe two possibilities in this section. The statements in this section are based on

numerical observations and have not been proved rigorously.

3.7.1 Homoclinic bifurcations

Homoclinic bifurcations may be destroyed by QSSR. We have observed this in the HR

model (see Fig. 2.2). The periodic orbits emanating from HB1 and HB2 terminate in

homoclinic bifurcations in the full model but in the simplified model, a family of periodic

orbits connects the two Hopf bifurcations (red dashed curve).

In the CK model we also observed the creation of homoclinic bifurcations in response

to the removal of v by QSSR. In the full model the families of periodic orbits connect

two Hopf bifurcations (see Fig. 2.3, blue curve), but when v is removed, the emanating

branches of periodic orbits terminate in homoclinic bifurcations (see Fig. 2.5). However,

as already noted, the periodic orbits in the full system have very small frequencies near

the parameter values for the homoclinic bifurcations of the system with v reduced (see

Fig. 2.5). This is because the orbits of the simplified system come very close to the

equilibrium solutions at these parameter values. It is likely that a slight modification of

other parameters would lead to a homoclinic bifurcation in the full system.
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Figure 3.1: The panel on the left is a partial bifurcation diagramm for the Hindmarsh-Rose model near
the singular Hopf bifurcation HB1 (Eq. (2.2.11)-Eq. (2.2.13), c.f. Fig. 2.2). The bifurcation
is subcritical and the resulting periodic orbits are unstable. The panel on the right shows
the singular Hopf bifurcation HB1 after removing m by QSSR (Eq. (2.2.14)-Eq. (2.2.15)).
The criticality has changed and the resulting periodic orbits are stable. Stable equilibria
and periodic orbits are indicated by solid lines and unstable equilibria and periodic orbits
are shown by dashed lines.
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Figure 3.2: The panel on the left shows a subcritical singular Hopf bifurcation in the Chay-Keizer model
Eq. (2.2.16)-Eq. (2.2.20) (c.f. Fig. 2.3). The panel on the right shows the CK model with v
removed by QSSR. This leads to a supercritical singular Hopf bifurcation. Stable equilibria
and periodic orbits are indicated by solid lines and unstable equilibria and periodic orbits
are shown by dashed lines.
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3.7.2 Saddle-node bifurcations of periodic orbits

QSSR may change the number of saddle-node bifurcations of periodic orbits, thereby

potentially significantly changing the range of parameter values in which there is an

attracting periodic solution. An example of this is seen when QSSR is applied to a model

of the Gonadotropin Releasing Hormone (GnRH) neuron.

The GnRH neuron sits in the pituitary gland and is involved in the control of fertility of

all mammals. Lee et al. proposed a mathematical model of this neuron formulated as a

system of eight ordinary differential equations [59]. The model was revised in [67] and it

was concluded that a six-dimensional version captures the main features of the dynamics

of the full model.

The six-dimensional model is given by

Cm
dV

dt
= Iapp − Ikm − Ical − Inaf − sIAHP−SK − sIAHP−UCL + Ileak,

dNkm

dt
=

1

τNkm

(Nkm∞ −Nkm) ,

dHnaf

dt
=

1

τHnaf

(Hnaf∞ −Hnaf) ,

dO∗ucl

dt
= knew · (1−O∗ucl)− k33O

∗
ucl,

dc

dt
= Jrelease − Jserca + ρ (Jin − Jpm) ,

dct

dt
= ρ(Jin − Jpm),

(3.7.1)

where V is the voltage across the neuron’s membrane, Nkm, Hnaf and O∗ucl are gating

variables, c is the calcium concentration in the cytosol and ct is the total calcium con-

centration in the cell. The functions and parameter values can be found in Appendix A.

On variation of Iapp it is seen that the full model has a Hopf bifurcation which produces

the branch of periodic orbits shown in blue in Fig. 3.3. Note that the branch of periodic

orbits has a single fold (saddle-node bifurcation of periodic orbits).

By comparing time scales and magnitudes of the variables, Nan [67] concluded that V ,

Nkm and Hnaf evolve at a rate at least an order of magnitude faster than the remaining

variables, suggesting that one or more of these variable might plausibly be removed by

QSSR. A simplified version of the model obtained by setting Nkm = Nkm∞ produces a

bifurcation diagram that is also shown in Fig. 3.3. By comparing the two versions of the

bifurcation diagram, it can be seen that QSSR causes the Hopf bifurcation to move to the
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left, and similarly moves the rightmost fold. The curve of periodic orbits also gains two

additional folds (SP1 and SP2), with each fold being associated with a change in stability of

the branch of periodic orbits. The combined effect of movement of the rightmost fold and

the introduction of two new folds is to drastically reduce the interval of parameter values

for which the branch of periodic solutions is stable. Significantly, part of the stable branch

of periodic solutions lost under QSSR corresponded to bursting solutions [67]. Thus, the

simplified model would not normally be regarded as an acceptable approximation to the

full model, at least over the range of values of applied current shown in Fig. 3.3.
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Figure 3.3: Partial bifurcation diagram for the GnRH neuron model, equations Eq. (3.7.1) with param-
eters as in Appendix A.3. Equilibrium solutions are indicated by the black curve. The blue
curve shows the maximum voltage of the periodic orbits emanating from the Hopf bifurca-
tion HB1 in the six-dimensional version of the model (solid for stable, dashed for unstable).
For small applied currents (near Iapp = 0) the periodic orbits are bursting oscillations. The
red curve shows the corresponding family of periodic orbits in the five-dimensional system
obtained by setting Nkm = Nkm∞ (again, solid for stable, dashed for unstable). None of
the periodic solutions corresponding to this branch are bursting solutions. Both curves (red
and blue) terminate in homoclinic bifurcations when the applied current is near zero.



4
Applying quasi-steady-state reduction

4.1 Appropriate application of quasi-steady-state re-

duction

We have shown that when a model has oscillatory solutions, the application of QSSR

can significantly change the qualitative behaviour of solutions by, for example, moving

or removing Hopf bifurcations or folds of periodic orbits. Thus, when confronted with a

model in which oscillatory solutions are thought to be important, it would be safest to

avoid using QSSR in an attempt to simplify the model. On the other hand, QSSR is a

widely used reduction method that is simple to apply, and can in some cases vastly simplify

a model without appearing to adversely affect model predictions; it is very tempting,

therefore, for modellers and others to use QSSR. In this section we present some guidelines

for how and when to apply QSSR if one wishes to minimise the risk of inadvertently

destroying essential features of the original model.

It is worth noting that, with the current wide availability of fast computers and software

packages such as XPPAUT [30], AUTO [27] and MatCont [26] that enable easy numerical

integration of ordinary differential equations and the accurate detection and continua-

43
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tion of bifurcations, the historical imperative for model reduction is somewhat diluted;

adequate information about model dynamics might well be obtained by numerical compu-

tations using the full model. However, model reduction can make numerical computations

faster (particularly for stiff systems, where removing fast variables can reduce or eliminate

the stiffness). This may be important if the “full” model is just one component of a larger

model. Furthermore, reducing the dimension of a model frequently simplifies explanations

about underlying mathematical causes for complicated dynamics, since visualisation of

geometric features, and hence understanding of dynamical properties, is only feasible for

low-dimensional systems. We proceed on the assumption that working with the full model

is undesirable for some reason.

The first step in our recommended approach to using QSSR is to perform numerical

computations on the full model, with the aim of determining typical behaviour for the

full model; either look at time series by integrating the system for typical initial conditions

and parameter values, or compute a bifurcation diagram using continuation software like

XPPAUT or AUTO. If the system has oscillations, it is reasonable to look at typical time

series of oscillating solutions to get an idea about the time scales involved. Of course, this

step can only be carried out if the modeller has access to the full model.

The next step is to decide which variables might be considered fast and which ones slow.

This can be a difficult and subjective decision, and identifying clear, globally valid time

scale separation between variables may not always be possible. A common way to start

is to look for a nondimensionalized formulation of the model by

(i) algebraically manipulating the model equations to aggregate parameters, and

(ii) multiplying variables by characteristic scales, which take the units of a physical

quantity and rescale the corresponding variables so that the maximum magnitude

of each is about 1.

An example illustrating the construction of a nondimensionalized model in this way can

be found in [83].

High dimensional systems or systems with many parameters might be very hard to ma-

nipulate into meaningful nondimensionalized systems, and time scales often can only be

identified roughly based on the modeller’s intuition. Most commonly, a two time scale

splitting of variables is assumed. In many models there are actually more than two time

scales involved and it is not clear how to divide variables into fast and slow groups. For ex-

ample, both the Hodgkin-Huxley model and the Chay-Keizer model from section 2.2 can
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plausibly be considered to be three time scale problems. Recent work of Vo et al. [92] sug-

gests that if more than two timescales are involved, or there is ambiguity about whether

a variable should be grouped with the fast or slow variables, insight might be gained

by comparing different assignments of variables to fast or slow groups. Furthermore,

for conductance-based models where the equations of the gating variables depend only on

voltage and the respective gating variable, a systematic approach to identifying timescales

has been proposed by [53]. Nevertheless, for the purposes of QSSR, a reasonable aim is to

identify the fastest group of variables, regardless of whether the slower variables form one

or more subgroups; the fastest variables are the ones that might justifiably be removed

using QSSR.

Another problem that arises is that some variables might be fast in some regions of the

phase space but slower in other regions of the phase space, making it difficult to define

a globally valid splitting. In such cases, some division of time scales is assumed, with

the justification for that particular splitting being made after the fact (if at all) based on

whether the resulting model has the desired properties. More work on a mathematically

rigorous way to proceed in cases where there is no globally valid splitting of time scales

is needed. A systematic approach to identifying an explicit splitting of slow and fast

variables in the context of globally attracting critical manifolds is presented in [41].

Once a decision has been made about which variables form the fast subsystem, the next

step is to analyse the fast subsystem alone. In analysis of the fast subsystem (also known

as the layer problem), the slow variables are treated as parameters. It is in this step that

an informed decision can be made about the validity of using QSSR. In particular, one

should use a numerical package such as XPPAUT or AUTO, and look for bifurcations

producing oscillations by varying one or more slow variables and the main bifurcation

parameter. If it is found that the layer problem has a globally, exponentially attracting

manifold of equilibria (and provided that the identification of the fast variables is correct),

the modeller may remove all fast variables by QSSR and expect that the simplified system

captures the dynamics of the full system apart from the initial transient period.

On the other hand, if oscillations are found in the layer problem, the modeller has to be

careful when applying QSSR. It cannot, without further investigation, be decided which

variables have to be kept to preserve the oscillations in a simplified model, although it is

certain that at least two fast variables are needed in the simplified model to preserve this

type of oscillation.

If oscillations are seen in the full problem but are not found in the layer problem then slow

variables are needed for the oscillation, and QSSR might well preserve important features
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of the oscillations. In particular, if the manifold of equilibria of the layer problem is folded

relative to a fast variable, then there is a chance that oscillations in the full model are

induced by a singular Hopf bifurcation. In this case at least one fast variable must be

kept when applying QSSR, but QSSR will preserve the Hopf bifurcation; the resulting

oscillations will have segments on which the evolution is fast and segments on which it is

slow.

Alternatively, the full system oscillations may involve only slow variables. One can check

if this is the case by examining the reduced problem, which is the system obtained by

assuming that all fast variables have equilibrated. More formally, one obtains the reduced

problem for a system in the form of (3.1.1) by setting f = 0 and rescaling time by t = τ/ε

to get the differential-algebraic system

0 = f(x, y, α),

y′ = g(x, y, α),
(4.1.1)

where the prime denotes differentiation with respect to the new time τ . Oscillations in

this system can be searched for using XPPAUT or AUTO. Oscillations of this type will

be preserved under QSSR.

At the end of this process, there will be better information about whether QSSR is

advisable. In short:

• if there are oscillations in the layer problem, QSSR should not be attempted without

further investigation into which fast variables are involved. If QSSR is used at least

two fast variables must be retained;

• if oscillations arise through a singular Hopf bifurcation or relaxation oscillations are

observed, at least one fast variable must be retained under QSSR;

• in all other cases, one would expect QSSR to preserve any Hopf bifurcations even if

all fast variables are removed.

Note that our rigorous results tell us about the persistence of Hopf bifurcations only;

as discussed in chapter 3, QSSR may substantially alter the dynamics of a system by

introducing or removing other bifurcations (e.g., by the introduction of folds of periodic

solutions, as discussed in section 3.7). Furthermore, even if Hopf bifurcations persist,

QSSR may significantly change the amplitude or frequency of oscillation, change the

range of parameters for which oscillations exist, or change the stability of the periodic

orbits emanating from the Hopf bifurcation (see 3.6). For this reason, the last step in
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a careful application of QSSR is to compute the bifurcation diagram for the simplified

system and compare this with the full system bifurcation diagram.

We now illustrate the process outlined above for the HR model, equations (2.2.11)-(2.2.13).

The time scale separation for the HR model is explicit in the equations: the right hand

sides of the v̇ and ṁ equations are already appropriately nondimensionalized, so for small

ε, v and m are fast and n is slow. The layer problem is obtained by taking the limit ε→ 0

in equations (2.2.11)-(2.2.13), yielding

v̇ = I − v3 + 3v2 +m− n0,

ṁ = 1− 5v2 −m.

The slow variable n is here replaced by the parameter n0. Since the parameters I and n0

enter the equations only in the combination I − n0, the two parameters can be replaced

by one parameter, Ī = I − n0. The layer problem then becomes

v̇ = Ī − v3 + 3v2 +m,

ṁ = 1− 5v2 −m.
(4.1.2)

A partial bifurcation diagram for the layer problem is shown in Fig. 4.1, from which it is

clear that the layer problem has two Hopf bifurcations which are connected by a family

of periodic orbits. According to the guidelines outlined above, the HR system is therefore

a poor candidate for QSSR; one knows a priori that full system oscillations that are

preserved in the layer problem might be removed by QSSR. In fact, for the HR system, a

stronger statement can be made: since a Hopf bifurcation can only occur in systems with

two or more dimensions, removing one of the fast variables by QSSR must destroy the

‘fast’ Hopf bifurcation. This is precisely what was seen in Fig. 2.2. We note that only two

of the four Hopf bifurcations observed in the full HR model (Fig. 2.2) persist in the layer

problem (with their positions moved somewhat). The other two Hopf bifurcations must

involve at least one slow variable, and are therefore expected to be preserved by QSSR.

This expectation is confirmed by Fig. 2.2.

In this example, analysis of the layer problem in the HR model was particularly easy,

because the HR model has only one slow variable and the slow variable can be aggregated

with the applied current I to give a single parameter Ī. In other models analysing the layer

problem may not be so easy. To illustrate this, we look at the GnRH model, Eq. (3.7.1).

Nondimensionalization of the model suggests that the model possesses three fast variables
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Figure 4.1: Partial bifurcation diagram for the fast subsystem of the HR model given by Eq. (4.1.2).
Equilibria are indicated by the black curve (solid for stable, dashed for unstable). This
subsystem has two Hopf bifurcations, at HBL

1 and HBL
2 . The blue curves show the maximum

value of V for each periodic orbit on the branches emanating from the Hopf bifurcations;
stability of the periodic orbits is not indicated. The labels LPL

1 and LPL
2 mark saddle-node

bifurcations of equilibria.

and three slow variables [67]. This leads to the following layer problem:

Cm
dV

dt
= Iapp − Ikm − Ical − Inaf − sIAHP−SK − sIAHP−UCL + Ileak,

dNkm

dt
=

1

τNkm

(Nkm∞ −Nkm) ,

dHnaf

dt
=

1

τHnaf

(Hnaf∞ −Hnaf) .

(4.1.3)

The main parameter is the applied current Iapp, but the slow variables of Eq. (3.7.1)

are now treated as three additional parameters O∗ucl,0, c0 and ct,0. In principle, one would

have to explore the four-dimensional parameter space to check for bifurcations in the layer

problem. In this case it is sufficient for our purposes to take representative combinations

of O∗ucl,0, c0 and ct,0 while varying the parameter Iapp. Partial bifurcation diagrams for
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two choices of parameter values are shown in Fig. 4.2 and Fig. 4.3. For the parameter

values used for the bifurcation diagram shown in Fig. 4.2, the layer problem has no Hopf

bifurcations and the manifold of equilibria is exponentially attracting, suggesting that

there would be no problem with using QSSR. However, for the parameter values used for

the bifurcation diagram shown in Fig. 4.3, the layer problem shows two Hopf bifurcations

(HBL
1 and HBL

2 ) and a family of periodic orbits (blue curve); in this case the critical

manifold is not globally attracting, meaning that the dynamics of a simplified model may

be qualitatively different from that of the full model, and, hence, that it is not advisable

to attempt the removal of one or more fast variables by QSSR.

This example illustrates the point that it may not be straightforward to determine whether

the layer problem has a globally exponentially attracting manifold of equilibria based on

numerical integration of the layer problem; specifically, in cases where there is more than

one parameter of the layer problem (remembering to include slow variables of the full

problem as parameters of the layer problem) an exhaustive search of the parameter space

looking for parameter values where the layer problem loses asymptotic stability may be

difficult, and crucial regions of parameter space may easily be missed, possibly leading to

erroneous conclusions about the validity of using QSSR.
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Figure 4.2: Partial bifurcation diagram for the fast subsystem of the GnRH model given by Eq. (4.1.3)
with O∗ucl,0 = 0.1, c0 = 0.5 and ct,0 = 80. The black curve represents stable equilibria.
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Figure 4.3: Partial bifurcation diagram for the fast subsystem of the GnRH model given by Eq. (4.1.3)
with O∗ucl,0 = 0.0454, c0 = 50.3688 and ct,0 = 52.9475. Equilibria are indicated by the black
curve (solid for stable, dashed for unstable). This subsystem has two Hopf bifurcations, at
HBL

1 and HBL
2 . The blue curve shows the maximum value of V for each periodic orbit on

the branch connecting the Hopf bifurcations; stability of the periodic orbits is not indicated.

4.2 Conclusions

QSSR is a technique that is widely used to simplify mathematical models with multiple

time scales, particularly models of chemical kinetics or biophysical phenomena. This is the

case despite it being known for some time that QSSR may introduce qualitative changes

to the dynamics by removing oscillations [37], [32]. The method is popular because it

is intuitive and easy to apply, and can lead to significantly simpler models. Our aim

in this part of the thesis has been to increase understanding of the circumstances under

which QSSR leads to qualitatively correct predictions about model dynamics, especially

when the original model shows oscillations, and hence to provide guidance on when it is

appropriate to use QSSR for model simplification.

We have shown examples where application of QSSR significantly changes the oscillatory

behaviour in a model, either by destroying one or more Hopf bifurcations or by moving

Hopf bifurcations a relatively long way in the parameter space or by introducing new

bifurcations (such as folds of periodic orbits) to the dynamics. In a two time scale setting,

we proved that singular Hopf bifurcations, which involve both fast and slow variables, are
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robust in the sense that they are preserved under QSSR when at least one fast variable is

kept and the matrix defined in Eq. (3.1.4) is invertible. The persistence of a singular Hopf

bifurcation does not imply that all features of the oscillations near the Hopf bifurcation

are unchanged, and changes in stability of the emanating periodic orbits as well as changes

in their amplitude and frequency near onset can occur.

We have argued that Hopf bifurcations involving only slow variables are also robust under

QSSR, but that Hopf bifurcations involving only fast variables can be destroyed by QSSR.

Our results were formulated in the context of models that are expressed globally in stan-

dard slow-fast form, as in Eq. (3.1.1). We conjecture that similar results about persistence

of Hopf bifurcations would hold in systems which only allow a local decomposition into

standard slow-fast form near the Hopf bifurcation.

The dynamics associated with Hopf bifurcations is not the only concern when applying

QSSR. We saw in the examples that QSSR can also remove or introduce homoclinic

bifurcations and folds of periodic orbits, thereby altering the oscillatory behaviour of the

model in a major way.

With these results in mind, we have proposed a way to determine whether the dynamics of

a particular system is likely to be adversely affected by QSSR; this method relies on being

able to identify which system variables are fast and which are slow, and then analysing

the fast subsystem (layer problem). We acknowledge that finding an explicit time scale

separation and analysing the fast subsystem can be tedious and is sometimes not feasible,

but doing so does provide information about one of the likely problems of the application

of QSSR, i.e., the removal of oscillations involving only fast variables.

Despite all words of warning, we believe that QSSR will continue to be widely used

for simplification of biophysical models with multiple time scales. Hence, more work is

necessary to understand as well as possible the conditions under which QSSR leads to

qualitatively accurate models.
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5
Excitation-contraction coupling in

airway smooth muscle cells

5.1 Introduction

During asthma attacks or airway hyperresponsiveness the airway diameter can reduce

dramatically in size. The reduction of the airway diameter is induced by a contraction

of airway smooth muscle cells (ASMC) [24, 77]. ASMC, like skeletal and cardiac muscle

cells, are regulated by transient changes of the cytosolic Ca2+ concentration ([Ca2+]i).

The contractile mechanisms are different for different muscle types; an overview including

mathematical models of contraction mechanisms can be found in [52].

In this thesis, we focus on the Ca2+ signalling that drives the contraction. Intracellular

Ca2+ acts as a messenger which activates the contractile apparatus following an extra-

cellular stimulus. Typically, [Ca2+]i oscillates and the frequency directly influences the

strength of contraction [6, 24, 64, 74].

There are two different types of stimuli that can lead to oscillations of the cytosolic Ca2+

53
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concentration. One pathway is via depolarization, e.g., by changing the ion concentrations

in the extracellular space. Depolarization leads to opening of voltage-gated Ca2+ channels

(VGCC) which are located in the plasma membrane [47]. The Ca2+ concentration in the

extracellular space is higher than in the cytosol [51], and the opening of VGCC increases

[Ca2+]i. An initial increase of [Ca2+]i can result in overfilling of the SR. As a consequence,

ryanodine receptors (RyR) can open and release Ca2+ from the SR into the cytosol. This

mechanism is called calcium-induced calcium release (CICR). When the SR has lost the

excess Ca2+, the RyR close and the pumps transport Ca2+ back into the SR and out of

the cell [88]. This process can repeat periodically and cause oscillations in [Ca2+]i. The

period of depolarization-induced [Ca2+]i oscillations, set by the time it takes to refill the

SR, is 20 s - 60 s [5, 74].

In other muscle cells (striated muscle [38], vascular smooth muscle [48], gastrointestinal

smooth muscle [14] and heart muscle [10]) depolarization followed by increased [Ca2+]i

and contraction provides the main pathway for muscle contraction.

A second pathway is that an agonist (e.g., 5-hydroxytrypamine (5-HT), acetylcholine

(ACh), histamine or methacholine (MCh)) binds to G-protein coupled receptors in the

plasma membrane [24]. This leads to the production of inositol (1,4,5)-trisphosphate

(IP3), which diffuses into the cytosol and binds to IP3-receptors (IPR) in the membrane

of the SR. IPR have an increased open probability in the presence of IP3 and release Ca2+

from the SR into the cytosol. Periodic release from the IPR and reuptake by the SR via

pumps lead to [Ca2+]i oscillations with periods of 1 s - 15 s [74].

Both pathways rely on Ca2+ release and reuptake from the SR. A schematic overview of

the Ca2+ fluxes is shown in Fig. 5.1. The pathways involve different release mechanisms

from the SR. In general, both release mechanisms can interact, and [Ca2+]i oscillations

are controlled by the interaction of IPR and RyR [88].

During [Ca2+]i oscillations the cell loses Ca2+ through the plasma membrane pump (PM)

and sustained oscillations require Ca2+ influx through plasma membrane channels (see

Fig. 5.1). In ASMC store-operated Ca2+ channels (SOCC), receptor-operated Ca2+ chan-

nels (ROCC) and VGCC have been identified [64].

All Ca2+ influxes depend on the voltage across the plasma membrane. Some channels

(VGCC) are actively-gated by changes in voltage, and for other channels the difference

in voltage provides an electrical forcing which aids or hinders the transport of Ca2+ ions

into the cell. ZhuGe et al. [98] present experimental evidence that local Ca2+ releases

lead to biphasic responses in the voltage across the membrane. In order to study the
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Figure 5.1: Schematic diagram of Ca2+ fluxes. During [Ca2+]i oscillations most of the Ca2+ transport
is between the SR and the cytosol (release and uptake). When [Ca2+]i is elevated, the
cell also loses Ca2+ to the extracellular space (efflux). Oscillations can be triggered by the
presence of IP3 or by an increased influx due to depolarization.

contributions of Ca2+ fluxes for the two different stimuli, the effect of changes in voltage

on the influxes need to be included.

The importance of SOCC in ASMC has been reported by various studies [3, 4, 11, 23, 70,

72, 75]. SOCC are activated by interaction of stromal interaction molecules (STIM) and

Orai proteins. The STIM molecules, located in the SR membrane, function as sensors

for the SR Ca2+ concentration. When the Ca2+ concentration in the SR is low, STIM

oligomerize and colocate near Orai proteins in the plasma membrane. The Orai proteins

provide the gating mechanism and open in response to STIM binding [11, 63, 69, 72, 73].

The contributions to the overall influx of the different types of Ca2+ channels are unknown.

The main aim of the work in the second half of this thesis was to determine relative

contributions of SOCC and VGCC. The balance between the fluxes through SOCC and

VGCC is important to understand the effect of depolarization in controlling the Ca2+

dynamics.

The voltage across the membrane is affected by other ion fluxes across the membrane.

Following the work of [82], we have included Na+, K+ and Cl− channels. An overview of

all channels can be found in Fig. 5.2.
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Figure 5.2: Schematic diagram of the model. Agonist binding to G-coupled receptors stimulates the
production and diffusion of IP3 into the cytosol. Calcium is released from the sarcoplasmic
reticulum (SR) through IPR and RyR. The Ca2+ release from the IPR is released into
the microdomain with concentration cb, and diffuses into the cytosol. Reuptake is via
the pumps (SERCA). Calcium efflux is via the plasma membrane pump (PM) and influx
is through receptor-operated (ROCC), store-operated (SOCC) and L-type voltage-gated
(VGCC) Ca2+ channels. The model includes Ca2+-activated K+ and Cl− channels (KCa)
and (ClCa), the delayed rectifier K+ currents (Kdr), basal Na+ (bNa) and K+ currents
(bK) and the Na+-K+ exchanger (NaK).

5.2 Model construction

The differential equations of the full model are:

ċ = JRelease − JSERCA − δ (JVGCC + JROCC + JSOCC + JPM) , (5.2.1)

ċb = γ1(JIPR − Jdiff), (5.2.2)

ċt = −δ (JVGCC + JROCC + JSOCC + JPM) , (5.2.3)

ḣ42 = λh42

(
k3
−42

c3
b + k3

−42

− h42

)
, (5.2.4)

Ṗso =
1

TSocc

(P∞so − Pso) , (5.2.5)

V̇ = − 1

Cm

(JPM + JROCC + JSOCC + JVGCC + IKdr + IClCa

+IbK + IbNa + INaK + IKCa) . (5.2.6)
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The variable c is the Ca2+ concentration in the cytosol ([Ca2+]i), while cb is the Ca2+

concentration in a microdomain around the cytosolic side of the IPR to account for high

Ca2+ after release (see Fig. 5.2); details can be found in [19]. The variable ct is the total

Ca2+ concentration in the cell and h42 is a gating variable of the IPR; low values of h42

inhibit the IPR. Pso is a gating variable for the store-operated Ca2+ channel as introduced

in [94] and V is the voltage across the plasma membrane.

The constant γ1 is the volume ratio between the volume of the cytoplasm and the volume

of the microdomain. The function λh42 (Eq. (5.2.19)) is responsible for the timescale of

opening and closing of the IPR. Likewise, the constant TSocc sets the timescale over which

the SOCC adapt. The [IP3]-dependent function k−42 determines the strength of the cb-

dependent inhibition of the IPR and P∞so (Eq. (5.2.26)) is the deterministic equivalent

of the steady-state open probability of SOCC. The factor Cm is the capacitance of the

plasma membrane. Calcium fluxes are denoted by J , and K+, Na+ and Cl− fluxes are

represented by the letter I.

The fluxes across the plasma membrane are measured in nA, where the fluxes that con-

tribute to the Ca2+ concentrations are effective fluxes measured in µM
s

. Effective fluxes

contribute to the free Ca2+ concentration and are not buffered [51].

The factor δ takes the different units into account and we have estimated it to be

δ =
1

2F · Vol
· 10−3 ≈ 1.449

mol

C l
, (5.2.7)

where F is the Faraday constant and Vol is the volume of the cell in mol. We approximate

the volume to be Vol = 3.58 · 10−12 l based on the data in [49]. Since most of the Ca2+

influx is directly taken up by buffers and only the free cytosolic Ca2+ is taken into account

in Eq. (5.2.1) and Eq. (5.2.3), it is estimated that the effective flux is 1000 times smaller

than the flux accross the cell membrane.

The ionic currents across the plasma membrane depend on the voltage difference between

the Nernst potential of the ion and the voltage across the plasma membrane [51]. The

Nernst potentials of the ions Ca2+, Na+, K+ and Cl− are

EIon =
RT

nF
log

(
[Ion]ext

[Ion]int

)
, (5.2.8)

where R is the gas constant, F is the Faraday constant and T is the temperature. The

constant n takes the charge of the ion into account and is two for Ca2+, one for Na+ and

K+ and minus one for Cl−.
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5.2.1 Calcium transport between the cytosol and the SR

The Ca2+ concentration in the SR is determined by the conservation relationship

ct = c+ cb/γ1 + cs/γ2, where γ2 is the volume ratio between cytoplasm and SR, and γ1 is

as before. The Ca2+ concentration in the SR is:

cs = γ2

(
ct − c−

cb

γ1

)
. (5.2.9)

The release of Ca2+ from internal stores into the cytosol is given by

JRelease = Jdiff + Jleak + JRyR,

Jdiff = kdiff(cb − c),

Jleak = kleak(cs − c),

JRyR = kRyRPRyR(cs − c),

(5.2.10)

where Jdiff is the Ca2+ current from the microdomain at the cytosolic site of the IPR, Jleak

is a generic leak from the SR to the cytosol and JRyR is the current through the RyR.

The constants kdiff and kleak are proportionality constants and kRyR represents the density

of RyR. The function PRyR determines the fraction of open RyR and is a deterministic

equivalent of the open probability.

We include RyR by a model proposed for bullfrog sympathetic neurons [39], extended by

a store-dependent term by [86, 94]. The open state of the RyR is determined by:

PRyR =

(
kryr0 +

kryr1c
3

k3
ryr2 + c3

)
c4

s

k4
ryr3 + c4

s

, (5.2.11)

where kryr0 represents the c-independent fraction of open RyR, kryr1 represents the c-

dependent fraction of open RyR and kryr2 determines the Ca2+ concentration where the

second term is half-maximally activated.

For ASMC, it has been shown that [Ca2+]i oscillations can be elicited with constant IP3

concentration [19, 94], demonstrating that the system has a class I feedback mechanism.

A class I feedback mechanism means that oscillations are the result of the IPR kinetics,

and oscillations of the IP3 concentration are not necessary. A class II feedback mech-

anism requires oscillations of the IP3 concentration to produce agonist-induced [Ca2+]i

oscillations [89]. Hence, the concentration of IP3 appears as parameter p in our model.

The model for the IPR has been proposed by [19], and is a deterministic version of
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the stochastic model of [87]. While Ca2+ puffs originating from IPR cluster activity are

inherently stochastic, it has been shown that periodic [Ca2+]i oscillations can be described

acurately by a deterministic model [19].

The current through the IPR is modelled by:

JIPR = kIPRPIPR(cs − cb), (5.2.12)

where the constant kIPR represents the density of IPR, and PIPR is the open probability.

The authors show that the receptors have two modes, the drive and park mode (see

Fig. 5.3). The drive mode has three closed states and one open state. In order to simplify

the six state model, the states C1, C3 and O5 are neglected, since the probability that

IPR are in any of those states is less than 0.03 [19].

The transition rates between park and drive mode are

q24 = a24 + V24(1−m24h24),

q42 = a42 + V42m42h42,
(5.2.13)

which involve the functions

a42 = 1.8
p2

p2 + 0.34
,

a24 = 1 +
5

p2 + 0.25
,

V24 = 62 +
880

p2 + 4
,

V42 =
110p2

p2 + 0.01
.

When the IPR are in the drive mode, the transition between the states are independent

of ligands. The open probability within the drive mode is roughly 0.7. Hence, Cao et

al. introduced a new, partially open state D [19].

The fraction of IPR in the partially open state D are:

dD

dt
= q42 (1−D)− q24q62

q62 + q26

D, (5.2.14)

where the transition rate q24 has been rescaled to account for the fact that a transition

into the park mode is only allowed from state C2.
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The open probability of the IPR becomes

PIPR = D
q26

q62 + q26

. (5.2.15)

The authors [19] eliminated three gating variables and D by QSSR

D =
q42 (q62 + q26)

q42q62 + q42q26 + q24q62

,

m24 = m24,∞,

h24 = h24,∞,

m42 = m42,∞.

The justification of using QSSR to eliminate the gating variables m24, h24, m42 and D

is entirely based upon comparing the simplified model with experimental data [19]. The

authors conclude that the agreement between experimental data and model simulations

of the simplified model is sufficiently good that using QSSR is reasonable. We do not

investigate the effects of QSSR on this particular model any further.

The steady-state functions are:

h24,∞ =
k2
−24

c2
p + k2

−24

,

m42,∞ =
c3

b

c3
b + k3

42

,

m24,∞ =
c3

p

c3
p + k3

24

.

The functions h24,∞ and m24,∞ depend on the Ca2+ concentration at the channel pore

located inside the SR (cp), which is approximated by a linear function of cs

cp = cp0cs/100. (5.2.16)

The following functions have been chosen by [19] to generate accurate [IP]3-dependend

open probabilities:

k−42 = 0.41 + 25
p3

p3 + 274.6
, (5.2.17)

k42 = 0.49 +
0.543p3

p3 + 64
. (5.2.18)
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Figure 5.3: Overview of the six-state IPR model, reproduced from [19]. The model has two modes,
park and drive. In the park mode the receptor is mostly closed and in the drive mode the
receptor is open about 70% of the time. The transitions within a mode are independent of
Ca2+. The mode transitions q42 and q24 are Ca2+-dependent.

The IPR are quickly inhibited by large concentrations of cb and recover slowly. Hence,

the timescale of the inhibition of the IPR depends on the state of the IPR.

Cao et al. modelled the timescale on which the gating variable h42 evolves by

λh42 = (1−D)L+DH, (5.2.19)

where H is significantly larger than L (see table 5.3).

The flux through the SERCA pump is modelled by

JSERCA =
Vsc

ns

Kns
s + cns

, (5.2.20)

which is a Hill function with Hill coefficient ns and maximal pump strength Vs. This form

of the model is taken from [20]. The constant Ks sets the concentration c for which the

pump is operating at half of its full strength.
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5.2.2 Calcium transport across the plasma membrane

Elevated [IP3] causes an increased Ca2+ influx that is neither voltage-gated nor dependent

on the Ca2+ concentration in the SR. These channels are called receptor-operated channels

(ROCC), and are modelled by a linear function of IP3, as has been done previously [90, 94].

We modify the model of ROCC by a voltage-dependent forcing term, which leads to:

JROCC = Vroccp(V − ECa), (5.2.21)

where the constant Vrocc represents the density of ROCC.

Voltage-gated Ca2+ entry by VGCC is modelled by an activation-gating variable and a

Goldman-Hodgkin-Katz driving force:

JVGCC = gCam
2
VoccVCa, (5.2.22)

as has been previously suggested [58, 94]. The constant gCa represents the conductivity,

mVocc is the activation-gating function, and the function VCa represents a driving force

which originates from a Goldman-Hodgkin-Katz equation [61]. The activation-gating

function for the VGCC is [94]:

mVocc =
1

1 + exp(−(V − Vm)/km)
, (5.2.23)

where Vm represents the voltage where VGCC are half-maximally activated and km de-

termines the steepness of the activation. The driving force is given by the Goldman-

Hodgkin-Katz equation:

VCa = V
c− [Ca]ext exp(−2V F/(RT ))

1− exp(−2V F/(RT ))
. (5.2.24)

The SOCC model consists of a steady-state open probability (Eq. (5.2.26)) and a dynamic

variable, which takes into account that SOCC do not adjust instantaneously to changes

in the SR Ca2+ concentration. The equation is:

JSOCC = VsoccPso(V − ECa), (5.2.25)

which has been adapted from [23]; Vsocc represents the density of SOCC, and Pso deter-

mines the fraction of open receptors (Eq. (5.2.5)) and is the deterministic equivalent to

the open probability. Furthermore, we added the voltage-dependent forcing term.
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The steady-state open probability of the store-operated Ca2+ channel is

P∞so =
K4

Socc

K4
Socc + c4

s

, (5.2.26)

which is modelled as a Hill function with Hill coefficient 4 [23]. The constant KSocc

determines where SOCC are half-maximally activated.

The plasma membrane pump for the extrusion of Ca2+ is modelled by

JPM =
Vpc

np − ω[Ca]ext

Knp
p + cnp

. (5.2.27)

The pump is derived from a Hill function with maximal pumping strength Vp with Hill

coefficient np and half activation constant Kp [94]. We have added an additional term

−ω[Ca]ext that depends on the external Ca2+ concentration, which can cause the pump

to run in reverse mode [51]. The additional term leads to lower, more realistic fluxes at

rest.

5.3 Sodium, potassium and chloride transport across

the plasma membrane

The big-conductance Ca2+-activated K+ channels (IKCa) are an important contributor to

membrane hyperpolarization [56, 62, 96, 98]. The model for IKCa is taken from [82].

The Ca2+-activated K+ current is

IKCa = gKCaxCa1,∞B(V − EK), (5.3.1)

where gKCa is the conductivity, xCa1,∞ and B are gating functions. The gating functions

for the Ca2+-activated K+ current are [82]:

xCa1,∞ =
c2 +K4c

c2 +K4c(1 + (α/β)) +K4K2(α/β)
,

B =
K1cxCa1,∞

K−1

,

(5.3.2)
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which depend on the voltage-dependent transition rates:

K1 = 0.85 exp(0.04V ),

K−1 = 0.24 exp(−0.012V ),

K2 = 0.000275 exp

(
−1.51V F

RT

)
,

K4 = 0.0000125 exp

(
−1.99V F

RT

)
.

(5.3.3)

The delayed-rectifier K+ channel (IKdr) further hyperpolarizes the cell. The model is

taken from [82] based on work in porcine and canine airway smooth muscle cells [16, 54].

The delayed-rectifier K+ current is

IKdr = gKdr(γKSS + (xi1,∞ + xi2,∞)(1− γKSS))x2
a,∞(V − EK), (5.3.4)

where gKdr is the conductivity. The γKSS is the ratio of activity at rest [82], xa is

the voltage-dependent activation-gating function and xi1,∞, xi2,∞ are voltage-dependent

inactivation-gating functions. The activation-gating function xa,∞ and the inactivation-

gating functions xi1,∞, xi2,∞ of the delayed rectifier K+ current are [82]:

xi1,∞ =
1

1 + exp((V + 4.3)/7.5)
,

xi2,∞ =
1

1 + exp((V + 4.3)/7.5)
,

xa,∞ =
1

1 + exp((5.5− V )/6)
.

(5.3.5)

The Ca2+-activated Cl− channel (IClCa) depolarizes the cell [40]. The model has been

constructed by [82] using experimental data of rat tracheal myocytes [81].

The Ca2+-activated Cl− current is modelled by

IClCa = gCl
V − ECl

1 + (CaCT/c)3
, (5.3.6)

where gCl is the conductivity, ECl is the Nernst potential of Cl− and CaCT represents the

Ca2+ concentration for which the Ca2+-activated Cl− channel is half-maximally activated.

Furthermore, contributions of Na+-K+ ATPases (INaK), background Na+ (IbNa) and K+

(IbK) channels are included.
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The Na+-K+ exchanger current is

INaK = INaK,max
[K]ext

KmK + [K]ext

[Na]int

KmNa + [Na]int

, (5.3.7)

where INaK,max is the maximum current, [K]ext is the extracellular K+ concentration,

KmK is the K+ concentration for which the first term is half of its maximum, [Na]int is the

intracellular Na+ concentration and KmNa is the K+ for which the second term is half of

its maximum.

The background currents for K+ and Na+ are

IbK = gbK(V − EK), (5.3.8)

IbNa = gbNa(V − ENa), (5.3.9)

where gbK and gbNa are the conductivities of the background K+ and Na+ currents and

EK and ENa (Eq. (5.2.8)) are the respective Nernst potentials of K+ and Na+.

In their model, Roux et al. [82] take non-specific Ca2+, K+ and Na+ channels into account

but mention that their contributions are very small, hence, we omit them from the model.
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Parameter values can be found in the table below:

Parameter Value Parameter Value

cp0 120 µM γ1 100

q26 10500 s−1 q62 4010 s−1

γ2 10 H 40 s−1

L 1.0 s−1 kdiff 10 s−1

kleak 0.0032 s−1 Ks 0.26 µM

Vs 13.25 µMs−1 ns 1.75

Ksocc 450 µM Vrocc 0.0005 µS µmol−1

Vsocc 0.0015 µS s−1 Kp 0.5 µM

Vp 0.614 nA np 2

kIPR 0.07 s−1 k24 0.35 µM

k−24 80 µM kryr0 0.0072 s−1

Tsocc 30 s kRyR 0.1 s−1

kryr1 0.12 s−1 kryr2 0.33 µM

kryr3 700 µM T 310 K

Cm 0.00002 µF R 8314.4621 mJ (mol K)−1

F 96485.3415 C mol−1 [K]ext 8 mM

[K]int 120 mM [Na]ext 130 mM

[Na]int 12 mM [Cl]int 55 mM

[Cl]ext 140 mM [Ca]ext 2 mM

gKdr 0.035 µS γKss 0.15

gCa 0.009 µS µM−1 Vm -18 mV

δ 1.449 mol (C l)−1 km 17.5 mV

gKCa 2.45 µS α 280 s−1

β 480 s−1 gCl 0.01 µS

CaCT 0.5 µM KmnsCa 1.2 mM

gbK 0.008729 µS INaKMax 0.7 nA

KmK 1 mM KmNa 40 mM

gbNa 0.003263 µS ω 2.8 · 10−6 (µM)−1

Table 5.1: Parameter values for model as presented in 5.2.



6
Contributions of plasma membrane

calcium channels

6.1 Importance of voltage-gated Ca2+ entry

In this section we look at the contributions of VGCC during agonist-induced and depolariz-

ation-induced [Ca2+]i oscillations in mouse airway smooth muscle cells. We use experimen-

tal data on blocking VGCC to parametrize our mathematical model. The experimental

data presented in the first two panels in Fig. 6.1 and the first two rows in Fig. 6.2 in

chapter 6 were obtained by Jun Chen and Michael J. Sanderson at the University of Mas-

sachusetts Medical School. The experimental measurements show changes in fluorescence

intensity, corresponding to changes in cytosolic Ca2+ concentration, in airway smooth

muscle cells in mice lung slices. A detailed description of the experimental procedure can

be found in [12].

This data was used to adjust the parameters of the voltage-gated Ca2+ channels (gCa, km

and Vm), such that the mathematical model reproduced the qualitative behaviour. By

observing the effect of blocking VGCC on [Ca2+]i oscillations, we get an indirect measure

67
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of the relative contribution of VGCC to total influx for the two different stimuli.

First, the cells are stimulated by 50 mM KCl, which causes depolarization and increased

voltage-gated Ca2+ entry. Internal stores overfill and CICR follows, as can be seen in the

top panel of Fig. 6.1. Subsequently inhibiting the VGCC by 10 µM nifedipine abolishes

the slow [Ca2+]i oscillations quickly (see middle panel of Fig. 6.1). Model simulations

for depolarization-induced [Ca2+]i oscillations by 50 mM KCl and subsequent blocking of

VGCC by nifedipine are shown in the bottom panel of Fig. 6.1.

In the top row of Fig. 6.2 the cells were treated with 400 nM MCh, which causes fast

[Ca2+]i oscillations (periods of about 1.3 s). The second row shows oscillations triggered

by 400 nM MCh (left panel), followed by blocking VGCC by 100 µM nifedipine (right

panel). The oscillations gradually slow down to a period of approximately 2.3 s. Hence,

the frequency has reduced by roughly a half after blocking VGCC. The corresponding

model simulations are shown in the bottom panel of Fig. 6.2.

Both experiments are reproduced in the mathematical model. During depolarization-

induced [Ca2+]i oscillations the flux through the VGCC is the largest Ca2+ influx (see

Fig. 6.3, top panel). The depolarization leads to substantial opening VGCC and the

current through VGCC increases nearly threefold. During agonist-induced [Ca2+]i oscil-

lations, the contributions due to VGCC and SOCC are of similiar magnitude (see Fig. 6.3,

bottom panel). We will make predictions about blocking SOCC in section 6.2.

Agonist-induced [Ca2+]i oscillations are accompanied by oscillations in the membrane

voltage (see Fig. 6.4). During Ca2+ release from the SR, the cell hyperpolarizes to nearly

-54 mV and during the reuptake of Ca2+ the cell depolarizes to about -44 mV. The range

about which the voltage oscillates is consistent with experimental recordings by [98].

In the bottom panels of Fig. 6.4 we compare a model with oscillating membrane voltage

(blue curves) to a model with voltage fixed at the resting value of Vrest = −46.7 mV (red

curves). Oscillations in the membrane voltage do not have a significant effect on [Ca2+]i

oscillations. Transient changes in the membrane voltage do not affect intracellular Ca2+

handling significantly.

For a measureable reduction in frequency, hyperpolarization has to be sustained over

many Ca2+ oscillation periods, and consequently VGCC have to be inhibited for a long

period of time. During agonist-induced [Ca2+]i oscillations, the timescale of the [Ca2+]i

oscillations is set by IPR kinetics. While a reduced total Ca2+ concentration, i.e., the

available Ca2+ in the cytosol and SR, manifests in slower oscillations, Ca2+ is extruded
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slowly compared to the timescale of individual spikes in [Ca2+]i.
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Figure 6.1: Intracellular [Ca2+]i oscillations in mouse airway smooth muscle cells induced by depolar-
ization by 50 mM KCl. Depolarization causes elevated Ca2+ entry through VGCC and leads
to overfilling of internal stores. The result is periodic CICR with periods about 30 s (top
panel). Subsequently blocking VGCC by 10 µM nifedipine causes the oscillations to stop
abruptly (middle panel). The elevated cytosolic Ca2+ is extruded and the Ca2+ concentra-
tion slowly returns to values close to the resting state before depolarization. Measurements
are shown as relative fluorescence values Ft/F0. Simulations of oscillations in the Ca2+
concentration by depolarization by 50 mM KCl (bottom panel). Blocking VGCC, in the
model, leads to an abrupt stop of [Ca2+]i oscillations and the plateau of Ca2+ concentration
decreases back to baseline. The model results are shown in µM.
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Figure 6.2: The top panel shows oscillations triggered by 400 nM MCh followed by consecutively block-
ing voltage-gated Ca2+ entry by 100 µM nifedipine. The first 30 s (middle left) show fast
oscillations with periods of about 1 s. Nifedipine slows down the oscillations to a period of
about 2 s (middle right). The third row shows model simulations. An agonist binding to
the G-coupled receptor leads to the production of IP3. For the simulations of the left panel
[IP3] = 0.05 µM. The period is in good agreement with the results of Fig. 6.2 (about 1.3 s).
Blocking VGCC by nifedipine leads to slower oscillations with period about 2.3 s (Note the
different scale on the x-axis).

6.2 Importance of store-operated Ca2+ entry

It has been observed by various groups that SOCC are upregulated under conditions

where the SR Ca2+ concentration is low in ASMC [11, 72, 75]. Furthermore, some groups

argue that the Ca2+ influx during agonist-induced oscillations is largely due to SOCC

[11, 91]. This hypothesis is consistent with all aforementioned findings. We simulate the
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Figure 6.3: Simulations of the currents through plasma membrane Ca2+ channels for different stimuli.
The top panel shows the currents of SOCC, ROCC, VGCC and PM for depolarization-
induced [Ca2+]i oscillations (50 mM KCl). The bottom panel shows the same currents for
agonist-induced [Ca2+]i oscillations ([IP3] = 0.05 µM).

effect of partially blocking SOCC on [Ca2+]i oscillations. The [Ca2+]i oscillations slow

down with reduced Ca2+ influx through SOCC as can be seen in the top panel of Fig. 6.5.

We show two time series with the contributions of SOCC reduced to 50% (middle panel

of Fig. 6.5) and to 20% (bottom panel in Fig. 6.5).

If the influx through SOCC is reduced to less than roughly 10%, the [Ca2+]i oscillations

cease entirely. We simulate blocking SOCC completely and compare this to agonist-

induced [Ca2+]i oscillations in a Ca2+-free medium (Fig. 6.6). As predicted in Fig. 6.5,

the [Ca2+]i oscillations cease completely. Furthermore, it takes about three times as long

as in the absence of extracellular Ca2+. The difference of blocking SOCC to simulations

in a Ca2+-free medium is that ROCC and VGCC are still transporting Ca2+ into the cell.

Based on our simulations we make the following predictions:

• During agonist-induced [Ca2+]i oscillations the influx through SOCC is larger than

the influx through VGCC. This balance changes to a much stronger contribution of

VGCC in depolarized cells (see Fig. 6.3).

• Fully blocking VGCC has the same effect on the frequency of [Ca2+]i oscillations as
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Figure 6.4: Top panel: Simulations of [Ca2+]i oscillations triggered by [IP3] = 0.05 µM and corre-
sponding changes in Voltage across the plasma membrane. Calcium release from the SR
is accompanied by hyperpolarization of the cell, followed by a depolarization during the
reuptake of Ca2+ by the SR. Bottom panel: Comparison of models with oscillating volt-
age (blue curves) versus fixed voltage at Vrest = −46.7 mV (red curves). The left panel
shows the resting state (dashed lines) and the maximum of the Ca2+ concentration during
oscillations (solid lines) for different values of IP3-concentration. Thick lines indicate stable
solutions and thin lines indicate unstable solutions. The frequency as a function of IP3 is
shown in the right panel. A higher IP3-concentration is associated with a higher oscillation
frequency.

blocking SOCC partially to about 25% of its full strength (see Fig. 6.5). Blocking

SOCC partially slows down oscillations of [Ca2+]i.

• If the influx through SOCC is completely blocked, [Ca2+]i oscillations disappear.

Our model predicts that it takes about three times longer until the [Ca2+]i oscil-

lations cease when SOCC are fully blocked compared to agonist-induced [Ca2+]i

oscillations in a Ca2+-free medium (see Fig. 6.6).

These predictions remain to be tested experimentally by our collaborators.

6.3 Dynamics of store-operated Ca2+ channels

Given the prediction that SOCC is the most significant Ca2+-entry pathway during

agonist-induced [Ca2+]i oscillations, a natural question to investigate is how the SOCC
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Figure 6.5: The top panel shows simulations of partially blocking JSOCC for fixed concentration of [IP3]
= 0.05 µM. The x-axis shows the strength of JSOCC relative to the full strength. Thick
lines indicate stable solutions and thin lines indicate unstable solutions. The black dot
indicates where unstable and stable solutions meet and disappear. To the left of the black
dot, no stable oscillations are found. The middle and bottom panel show stable oscillations
of [Ca2+]i at [IP3] = 0.05 µM, followed by partially blocking JSOCC (50% and 20% of the
full strength respectively).

gating kinetics affects oscillations of [Ca2+]i. Store-operated Ca2+ channels are controlled

by a complex set of reactions. Stromal interaction molecules (STIM1 and STIM2) are

located in the SR membrane. STIM are mobile and able to oligomerize, yet it is not

clear how many molecules form oligomers [46]. STIM molecules function as Ca2+ sensors

to the Ca2+ concentration in the SR. STIM2 tend to form oligomers for higher Ca2+

concentration in the SR compared to STIM1 [1, 46]. STIM1 oligomers form at lower
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Figure 6.6: The top panel shows [Ca2+]i oscillations stimulated by [IP3] = 0.05 µM in the absence of
extracellular Ca2+. During the oscillations the cell loses Ca2+ and the oscillations cease
after 40 s. In the bottom panel the cell is subjected to the same stimulus and then the
SOCC are blocked. Blocking SOCC stops the oscillations after about 140 s.

Ca2+ concentration in the SR, but lead to a stronger Ca2+ influx through Orai proteins.

The STIM colocate near Orai proteins located in the plasma membrane. There are three

Orai homologs (Orai1, Orai2 and Orai3). STIM bind to N- and C-terminals of the Orai

proteins and induce conformational changes in the Orai proteins [1, 46, 69, 76]. Ong et

al. suggest that STIM2 activity promotes mobility of STIM1 and supports puncta for-

mation with Orai under conditions of low agonist concentration and minimal Ca2+ store

depletion. This increases the agonist sensitivity of SOCC [69].

A model with a single gating variable for the open probability (Pso) and adaptation

time (Tsocc), taking the delay between Ca2+ depletion of the SR and channel opening

into account, certainly does not do justice to the complex channel kinetics. Yet, simple

models are a first step to study the effect of different gating kinetics on the [Ca2+]i

oscillations. The adaptation time determines how rapidly SOCC react to changes in

[Ca2+]SR (Eq. (5.2.5)). For small values of Tsocc the SOCC reach their steady-state open

probability (P∞so ) rapidly and large values of Tsocc cause a longer delay between the open

probability and P∞so .
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A comparison of SR Ca2+ concentrations during agonist-induced [Ca2+]i oscillations for

different values of Tsocc can be seen in Fig. 6.7. The counter-intuitive result is that the

SR Ca2+ concentration is not significantly affected by the SOCC gating kinetics (Fig. 6.7,

top panel).
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Figure 6.7: Comparison of [Ca2+]i oscillations with different SOCC gating kinetics. Oscillations have
been triggered by [IP3] = 0.045 µM. The constant Tsocc represents the adaptation time
with which SOCC adapts to changes in the SR Ca2+ concentration. The top panel shows
the Ca2+ concentration in the SR, which decreases slowly over many oscillation periods
and plateaus near 80% of the resting value for different Tsocc. The bottom panel shows the
relative open probability of SOCC for different adaptation times. The SOCC adaptation
time has little influence on the SR Ca2+ concentration. Note that for Tsocc = 0.0025 s
the SOCC open probability oscillates and for Tsocc = 500 s the SOCC open probability
increases slowly in a non-oscillating manner.

During each Ca2+ oscillation the SR only gets minimally depleted and the Ca2+ loss of the

SR becomes significant only after many oscillation cycles. Furthermore, agonist-induced

[Ca2+]i oscillations do not fully deplete the SR; the Ca2+ concentration in the SR plateaus

around 80% of the resting value. Hence, while SOCC are crucial in sustaining [Ca2+]i

oscillations, their gating kinetics do not affect the cytosolic Ca2+ signal significantly.

Note, that the SOCC open probability oscillates for fast adapting channels (bottom panel,

blue curve) whereas slower kinetics leads to gradual opening of SOCC (bottom panel,

green and red curve). These findings suggest that modellers who are interested only in

whole-cell [Ca2+]i oscillations may not need a detailed model of SOCC gating kinetics.
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7
Discussion of model predictions

In the second part of the thesis we focus on the role of VGCC, SOCC and voltage dynamics

in airway smooth muscle cells. Our work is based on the work on plasma membrane ion

channels by [82]. We have adapted their models for K+, Na+ and Cl− channels, and use

models for VGCC and ROCC from [94]. The model for SOCC is from [23].

Roux et al. used forced equations to mimic the release of Ca2+ from internal stores and

studied the voltage dynamics of ASMC. We, on the other hand, use a model for Ca2+

handling that allows [Ca2+]i oscillations based on Ca2+ release through IP3-receptors [19]

and ryanodine receptors [94] and reuptake by the SR through pumps.

Roux et al. find that cholinergic stimulation (e.g., stimulation by an agonist) does not lead

to substantial Ca2+ influx through VGCC. We confirm this indirectly by demonstrating

the reduction of the agonist-induced [Ca2+]i oscillation frequency in response to blocking

voltage-gated Ca2+ entry.

When ASMC are depolarized (by 50 mM KCl) increased Ca2+ influx results in overfilling

of the SR and CICR. Blocking VGCC stops depolarization-induced [Ca2+]i oscillations

abruptly. This shows that voltage-gated Ca2+ entry is the main Ca2+ entry pathway in

depolarized conditions.
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In summary, our modelling shows that voltage-gated Ca2+ entry is the main driving force

behind CICR when ASMC are in conditions of sustained depolarization, e.g., when the

extracellular ion concentrations change. Agonists that trigger [Ca2+]i oscillations do not

result in sustained depolarizations or hyperpolarizations. Only sustained and significant

changes in membrane voltage affect the Ca2+ handling significantly. The main Ca2+ influx

during agonist-induced [Ca2+]i oscillations is via SOCC.

Spatial inhomogeneities may affect the depolarization and hyperpolarization during [Ca2+]i

oscillations. The hyperpolarization is mainly established by the big-conductance K+ and

the delayed-rectifier K+ channels. Depolarization is mainly induced by the activity of

the Ca2+-activated Cl− channels. In our case these channels “see” the cytosolic Ca2+

concentration whereas in reality the Ca2+ at their respective channel mouth may be very

different. Yet, the time course of the membrane potential in our model is consistent with

recordings by [98].

Our results are in contrast with a conclusion drawn by [96]. The authors measure the

effect of L-Type VGCC blockers in isolated mouse ASMC. They find that specific VGCC

blockers are a potent drug to reverse the MCh-induced contraction of ASMC. From this

finding they deduce that the VGCC are the major contributor to Ca2+ influx during

agonist-induced contraction. They employ a protocol of depolarization (by 20 mM KCl)

combined with MCh. Such a depolarization upregulates VGCC and shifts the balance to

a stronger contribution of VGCC compared to SOCC.

We predict that changes in voltage during agonist-induced [Ca2+]i oscillations do not have

a significant effect on Ca2+ oscillation frequency. The Ca2+ signaling components that

set the timescale of agonist-induced [Ca2+]i oscillations are the IPR and the refilling of

internal stores. Changes in voltage only manifest by changes in total Ca2+ available inside

the cell. Significant changes in the total available Ca2+ occur much slower than individual

oscillations in [Ca2+]i.

In ASMC there is evidence that SOCC are upregulated when SR Ca2+ concentration is

sufficiently depleted [3, 4, 70, 75]. We predict that partially blocking SOCC leads to a

reduced frequency of [Ca2+]i oscillations. Furthermore, blocking SOCC entirely leads to

a complete stop of [Ca2+]i oscillations. Our model shows that fully blocking SOCC stops

[Ca2+]i oscillations, but it takes about three times longer compared to oscillations with

all influxes blocked (such as in Ca2+-free medium).

There are two remaining questions concerning the role of SOCC during [Ca2+]i oscillations

in ASMC.
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1. To what extent is the SR depleted during sustained [Ca2+]i oscillations?

Our mathematical model shows that sustained [Ca2+]i oscillations do not fully deplete

the SR but rather that SR Ca2+ concentration plateaus around 80% of the resting Ca2+

concentration. The depletion of the SR Ca2+ depends on the amplitude of the [Ca2+]i

oscillations, as well as on the size of the SR, which is different for different species.

Hence, the exact value of the plateau found in our simulations might not be universally

valid. However, the existence of a plateau demonstrates that stable [Ca2+]i oscillations

are possible without dramatically depleting the SR. We discuss the general caveats of the

mathematical model at the end of this chapter.

2. Given that agonist-induced [Ca2+]i oscillations do not lead to dramatic depletion of

the SR, what are the contributions of SOCC to Ca2+ influx during submaximal depletion

of the SR Ca2+ concentration?

Sweeney et al. [91] show that the SOCC contributes significantly to agonist-induced con-

traction in rat and human ASMC. They argue that the maintenance of strong contraction

is due to significant Ca2+ influx through SOCC when cells are stimulated by ACh. We

confirm this by blocking SOCC in our mathematical model and find that [Ca2+]i oscil-

lations stop after over 2 minutes. While the quantitative prediction of the time it takes

until the oscillations cease should be treated with caution, we believe that the qualitative

prediction that the oscillations cease is robust.

The type of model (ordinary differential equations) is appropriate when Ca2+ and IP3 are

in sufficient supply and homogenously distributed. For low cellular Ca2+ concentrations

the stochastic nature of IP3-receptor kinetics becomes more important, leading to longer

interspike intervals when [Ca2+]i is low during stimulation in a Ca2+-free medium or when

SOCC are blocked (Fig. 6.6). Likewise spatial inhomogeneity in the distribution of IPR

and RyR may affect the time it takes until oscillations cease.

Stromal interaction molecules (STIM1 and STIM2) are located in the SR membrane and

have a Ca2+ binding side exposed to Ca2+ in the SR. Upon depletion of the SR, STIM1

undergo a conformational change that increases their mobility and they oligomerize and

colocate near Orai proteins in the plasma membrane pump. The binding of STIM1 to C-

and N-terminals of Orai proteins provide the gating mechanism of SOCC [1, 46, 76].

STIM2 are mobilized by minimal depletion of the SR. The activity of STIM2 may explain

the strong contribution of SOCC to Ca2+ influx during agonist-induced [Ca2+]i oscilla-

tions while the SR is not substantially depleted [69]. The time course of this SOCC
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gating mechanism is far from clear. The mobility of STIM2 in the SR membrane and the

time constants of STIM2-STIM1 interaction and puncta formation with Orai proteins are

unknown. Thus, we have investigated the effect of different gating kinetics on agonist-

induced [Ca2+]i oscillations. We demonstrate that SR and cytosolic Ca2+ concentrations

are not significantly affected by the precise gating kinetics of SOCC. This suggests that

a detailed model of SOCC may not be necessary for [Ca2+]i oscillations in ASMC.

The following word of caution by Roux et al. applies to our study as well [82]. The

mathematical model is contructed based on data for different species. The models for the

ion channels are constructed and parametrized for canine, porcine, rat and mice. Likewise

the model for RyR is based on bullfrog sympathetic neurons and the model for IPR is

parametrized by IPR data obtained in DT40 cells [93]. There is no dataset available

characterizing the main ion channels and Ca2+ handling pathways for a single species.

Despite all words of caution, the qualitative predictions of the mathematical model agree

with all available experimental data of Ca2+ measurements during agonist-induced and

depolarization-induced [Ca2+]i oscillations and yield testable predictions about the im-

portance of voltage dynamics on the intracellular Ca2+ handling, the effect of (partially)

blocking SOCC and the time it takes until oscillations stop in the absence of influx through

SOCC. The qualitative predictions are not sensitive to parameter fine tuning, which gives

us confidence in the model’s predictive power and the predicted behaviour.



8
Concluding remarks and future

directions

8.1 Quasi-steady-state reduction

Quasi-steady-state reduction is a commonly used technique for the simplification of math-

ematical models with multiple timescales. It has been known for some time that the

application of QSSR to a model can result in significant qualitative differences in the

dynamics of a model [32, 37]. In particular, qualitative changes can be introduced by

QSSR in mathematical models that show oscillations.

This prompts the question why QSSR is often used even in models that have oscillatory

solutions, given that computational power and efficient algorithms for solving ordinary

differential equations is often widely available. The appeal of QSSR is that it is based

on an intuitively satisfying approach and often easy to utilize. QSSR may reduce stiff-

ness of a given model and may allow for easier geometrical understanding of underlying

mathematical structures.
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Despite the fact that quasi-steady-state reduction (QSSR) can lead to erroneous predic-

tions about the behaviour of a given model, we believe that QSSR will remain widely used

in the modelling community. Hence, it is an important task to understand the conditions

under which dynamical properties of a given model are preserved by QSSR.

A common mechanism for the onset of oscillations is a Hopf bifurcation, in which an

equilibrium changes stability as a system parameter is varied. We have shown examples

where oscillations are removed by QSSR through removing Hopf bifurcations. We have

made progress on establishing conditions under which Hopf bifurcations are robust. In

particular, we showed rigorously that singular Hopf bifurcations, involving fast and slow

variables, are generically preserved under QSSR. Furthermore, we have demonstrated with

examples that Hopf bifurcations involving only fast variables may be removed by QSSR,

and have argued that Hopf bifurcations only involving slow variables are preserved by

QSSR.

Persistence of a Hopf bifurcation does not mean that the resulting periodic orbits are

unchanged. We have shown that the criticality of a singular Hopf bifurcation may be

changed by QSSR, which implies that the resulting periodic orbits are of different stability

in the vicinity of the singular Hopf bifurcation. This result is similiar to the result of Zhang

et al. [97].

Furthermore, we have shown that the frequency and amplitude of the branches of the

periodic orbits resulting from persistence of Hopf bifurcations may be changed by QSSR.

Bifurcations of periodic orbits other than Hopf bifurcations may also be affected by QSSR.

We have also seen numerically that homoclinic bifurcations may be removed or introduced

by QSSR. In one example, QSSR introduced a saddle-node bifurcation of periodic orbits,

changing the stability of the corresponding branch of periodic orbits for a wide range of

parameters.

We have suggested a way to mitigate the risks of using QSSR. Specifically, we recommend

that the fast subsystem of a model (with slow variables treated as parameters) be explored.

If the fast subsystem possesses a manifold of equilibria that is not globally attracting,

adverse effects of QSSR can be expected.

There are many open questions about the consequences of using QSSR in mathematical

models with oscillations. For example, bursting oscillations frequently arise through other

mechanisms than Hopf bifurcations. We have not studied the effect of QSSR on bursting

solutions that don’t arise through Hopf bifurcations. Furthermore, we have only studied

systems with explicit timescale splitting. Much less is known about the effect of QSSR in
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systems without an explicit timescale splitting.

A natural extension of this work would be to explore the changes of stability of the

critical manifold induced by QSSR. In this work, we have used the Leibniz formula for

determinants (Eq. (3.6.17)) to show that a zero eigenvalue of the layer problem is preserved

by QSSR. In fact, this approach can also be used to see the changes in stability of normally

hyperbolic sheets of the critical manifold. This allows a connection between eigenvalues

of the critical manifold of the full system, treated as equilibria of the fast subsystem, and

eigenvalues of the critical manifold of the system after QSSR. Normally hyperbolic sheets

of the critical manifold perturb to sheets in the full system, along which the evolution

of a trajectory is “slow”. These sheets inherit their stability properties from the critical

manifold. Such an extension would be a first step towards obtaining results valid away

from the neighbourhood of equilibria.

Many important properties of periodic solutions can be affected by changes away from the

critical manifold. It is not clear how to study the effect of QSSR on dynamic structures

away from the critical manifold if one does not restrict the investigations to concrete

examples.

8.2 Airway smooth muscle cells

We have constructed a model for the excitation-contraction coupling based on previously

published models for the voltage dynamics [23, 82, 94] and Ca2+ handling [19, 23, 94]

in airway smooth muscle cells. The model is parametrized to reproduce available ex-

perimental data on blocking voltage-gated Ca2+ channels, which was obtained by our

collaborators at the University of Massachussetts Medical School.

The modelling effort is an attempt to understand the influence of voltage dynamics during

agonist-induced Ca2+ oscillations in ASMC. Like all muscle cells, ASMC contract as a

result of action potentials opening voltage-gated Ca2+ channels increasing [Ca2+]i. When

[Ca2+]i exceeds a (local) threshold, ryanodine receptors open and yield Ca2+-induced Ca2+

release from internal stores, initiating muscle contraction.

On the other hand, ASMC show stronger contraction in response to agonists binding

to G-coupled receptor proteins in the plasma membrane [74]. This pathway relies on

production of IP3, which binds to IPR and results in IP3-mediated Ca2+ release from

internal stores.
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Both types of Ca2+ release mechanisms can support periodic changes of [Ca2+]i when

combined with the activity of pumps, which transport most of the Ca2+ back into internal

stores, and some Ca2+ ions out of the cell. The voltage across the plasma membrane

changes with each Ca2+ release from internal stores, based on the feedback that [Ca2+]i

exerts on the plasma membrane channels [98].

We have shown in the mathematical model, in the work described in chapter 6, that

variations in voltage have little influence on frequency and amplitude of oscillations in

[Ca2+]i. Voltage modulates the transport of Ca2+ across the plasma membrane. Overall,

the Ca2+ transport across the plasma membrane is smaller than the Ca2+ transport within

internal compartments. Hence, only prolonged elevated or reduced influxes change total

Ca2+ concentration significantly and affect the dynamics of [Ca2+]i.

Based on our simulations we make the following predictions:

• During agonist-induced Ca2+ oscillations store-operated Ca2+ channels are the most

significant Ca2+ entry pathways. Our model predicts that after fully blocking SOCC

the Ca2+ oscillations cease. Furthermore, the model shows that the exact kinetics

of SOCC do not affect the Ca2+ oscillations significantly. This is consistent with

the idea that only sustained changes in influx or efflux has a significant effect on the

intracellular Ca2+ handling.

• Our model also shows that variations in voltage due to agonist-induced Ca2+ os-

cillations do not lead to prolonged elevation or reduction of Ca2+ influx from the

extracellular space. Furthermore, fixing the voltage does not change agonist-induced

Ca2+ oscillations significantly.

• During Ca2+ oscillations the SR does not fully deplete. Our simulations show that

agonist-induced oscillations only deplete the SR to about 80% of its resting value.

While the exact value of the predicted depletion may not be quantitatively accu-

rate (see chapter 7), the model robustly shows that stable oscillations are possible

without full SR depletion.

These predictions remain to be tested experimentally. Our model is based on data ob-

tained in mouse lung slices. Hence, the second and third prediction may be challenging to

validate experimentally, since it is very hard to measure the Ca2+ concentration in the SR

as well as to measure or clamp the voltage for cells inside lung slices. The first prediction

will be tested in the future by our collaborators.

A potentially very useful model modification would be to take calmodulin and other Ca2+
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buffers explicitly into account. The model presented is a model for effective fluxes, based

on the assumptions that buffers are fast and do not saturate. Saturating buffers or buffers

with different kinetic properties may well have a large impact on the observed behaviour.

Only a small fraction of Ca2+ (less than 1%) are available as free Ca2+. Even small

changes in buffer kinetics or (local) concentrations may have large consequences on the

Ca2+ dynamics. A problem with including buffer kinetics is that experimental results

are coarse and only allow for fluorescence measurements indicative of the whole-cell free

[Ca2+]i, and it would not be clear which buffer concentrations and binding kinetics are

realistic. It would be helpful to study the effect of the buffer kinetics systematically with

saturating and non-saturating buffers.
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A
Model functions and parameters

A.1 Hodgkin-Huxley model

The discussion of the Hodgkin-Huxley model in section 2.2 uses the model in the form

found in [83], i.e.,

Cm
dv

dt
= I − gNam

3h(v − ENa)− gKn
4(v − EK)− gL(v − EL),

dm

dt
=

1

τmtm(v)
(m∞(v)−m) ,

dh

dt
=

1

τhth(v)
(h∞(v)− h) ,

dn

dt
=

1

τntn(v)
(n∞(v)− n) ,

with the definitions

x∞(v) =
ax(v)

ax(v) + bx(v)
,

tx(v) =
1

ax(v) + bx(v)
,

(A.1.1)
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for x = m,h, n. The functions are:

am(v) = 0.1
v + 40

1− exp
[
−v+40

10

] , (A.1.2)

bm(v) = 4 exp

[
−v + 65

18

]
, (A.1.3)

ah(v) = 0.07 exp

[
−v + 65

20

]
, (A.1.4)

bh(v) =
1

1 + exp
[
−v+35

10

] , (A.1.5)

an(v) = 0.01
v + 55

1− exp
[
−v+55

10

] , (A.1.6)

bn(v) = 0.125 exp

[
−v + 65

80

]
. (A.1.7)

(A.1.8)

The parameters are given in the following table:

gNa 120 mS/cm2 ENa 50 mV

gK 36 mS/cm2 EK -77 mV

gL 0.3 mS/cm2 EL -54.4 mV

Cm 1 µF/cm2 τm 1

τh 1 τn 1

Table A.1: Functions and parameters for the Hodgkin-Huxley model as used in section 2.2.
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A.2 Chay-Keizer model

The Chay-Keizer model for the pancreatic β-cell was first proposed in [21]. In the discus-

sion in section 2.2 we use the model in the form presented in [51]:

Cm
dv

dt
= I −

(
gK,Ca

c

Kd + c
+ gKn

4

)
(v − EK)

− 2gCam
3h (v − ECa)− gL (v − EL) ,

dm

dt
=

1

τmtm(v)
(m∞(v)−m) ,

dh

dt
=

1

τhth(v)
(h∞(v)− h) ,

dn

dt
=

1

τntn(v)
(n∞(v)− n) ,

dc

dt
= f

(
−k1gCam

3h (v − ECa)− kcc
)
.

In the equations for the gating variables m,h and n we use the definitions

x∞(v) =
ax(v)

ax(v) + bx(v)
,

tx(v) =
1

ax(v) + bx(v)
,

(A.2.1)

for x = m,h, n. The functions are:

am(v) = 0.1
25− (v + v′)

exp
[

25−(v+v′)
10

]
− 1

,

bm(v) = 4 exp

[
−v + v′

18

]
,

ah(v) = 0.07 exp

[
−v + v′

20

]
,

bh(v) =
1

exp
[

30−(v+v′)
10

]
+ 1

,

an(v) = 0.01
10− (v + v∗)

exp
[

10−(v+v∗)
10

]
− 1

,

bn(v) = 0.125 exp

[
−v + v∗

80

]
.
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The parameters are given in the following table:

gK,Ca 0.09 mS/cm2 gK 12 mS/cm2

gCa 6.5 mS/cm2 gL 0.04 mS/cm 2

τm 0.3 k1 0.035 µMcm2/nC

kc 0.04 ms−1 v∗ 30 mV

v′ 50 mV Kd 1 µM

EK -75 mV ECa 100 mV

EL -40 mV τn 0.3

τh 0.3 Cm 1 µF/cm2

f 0.002

Table A.2: Parameter values for the Chay-Keizer model as used in section 2.2.

A.3 GnRH neuron model

A model for the GnRH neuron was proposed by Lee et. al in [59]. We use a simplified

version from [67], in which some of the ionic currents are averaged:

Cm
dV

dt
= Iapp − Ikm − Ical − Inaf − sIAHP−SK − sIAHP−UCL + Ileak,

dNkm

dt
=

1

τNkm

(Nkm∞ −Nkm) ,

dHnaf

dt
=

1

τHnaf

(Hnaf∞ −Hnaf) ,

dO∗ucl

dt
= knew · (1−O∗ucl)− k33O

∗
ucl,

dc

dt
= Jrelease − Jserca + ρ (Jin − Jpm) ,

dct
dt

= ρ(Jin − Jpm),
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with the currents being

Ikm = gkmNkm(V − VK),

Ical = gcalM
2
cal∞(V − VCa),

Inaf = gnafM
3
naf,∞Hnaf(V − VNaf),

sIAHP−SK = gsk

(
cnsk

cnsk +Knsk
sk

)
(V − VK),

sIAHP−UCL = gucl(Oucl +O∗ucl)(V − VK),

Ileak = gleak(V − Vleak),

Jrelease = (kfO4 + Jer) · (ce − c),

Jserca = Prate
c− a1ce

a2 + a3c+ a4ce + a5cce

,

Jin = −αIcal + β · IP3,

Jpm = Vp
c2

K2
p + c2

+ Vnaca
c4

K4
naca + c4

.

The functions are:

Mnaf∞ =
1

1 + exp[−(V + 40)/4.3]
,

Hnaf∞ =
1

1 + exp[(V + 66.1)/10.8]
,

Nkm∞ =
1

1 + exp[−(V + 37)/4
,

Mcal∞ =
1

1 + exp[−(V + 30)/2]
,

τhnaf =
75

exp[(V + 80)/19] + 2 exp[−2 · (V + 80)/19]
,

τnkm
=

11.5

exp[(V + 30)/15] + exp[−(V + 30)/15]
,

O4 =
q12q32q24

q12q32q24 + q23q12 + q42q32q12 + q42q32q21

,

q23 = a23 −
(

V23

k2
23 + c2

+ b23

)(
V−23c

5

k5
−23 + c5

+ b−23

)
,

q32 =

(
V32

k3
32 + c3 + b32

)(
V−32c

7

k7
−32 + c7

+ b−32

)
,

ce = 27 · (ct − c).

The parameters are given in the following table.
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Cm 16 pF VNaf 60 mV

VK -80 mV VCa 100 mV

Vleak 100 mV gnaf 200 nS

gkm 8.14 nS gcal 0.05 nS

gsk 0.1 nS gucl 950 nS

gleak 0.04 nS Ksk 1 µM

Oucl 0 nsk 2

kf 1.92 · 10−4 ms−1 k33 3 · 10−5 ms−1

ρ 0.5 Jer 4 · 10−7 ms−1

a1 10−4 q12 0.74 ms−1

q21 0.11 ms−1 q24 7.84 ms−1

q42 3.6 ms−1 α 4.8 · 10−3 µM pA−1

β 2 · 10−5 ms−1 IP3 0.3 µM

V−32 1.06 Vp 4.2 · 10−3 µM ms−1

a4 7 µM ms−1 b−32 0.03

Kp 0.425 µM Knaca 0.05 µM

Prate 1 a23 1/1.023 ms−1

a2 35 ms a3 300 µM−1 ms

Vnaca 3.5 · 10−4 µM ms−1 a5 35 µM−2 ms−1

V23 1.08 µM2 ms−1 k23 2 µM

b23 2.2 ms−1 V−23 0.3545

k−23 0.072 µM b−23 0.042

V32 0.007 µM3 ms−1 k32 0.52 µM

b32 0.005 ms−1 knew 2.9 · 10−8

k−32 0.15 µM

Table A.3: Parameter values for the Gonadotropin Releasing Hormone neuron model as used in section
4.1.
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