Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Lin, Y. W., Wotherspoon, L. M., Scott, A., & Ingham, J. M. (2014). In-Plane
Strengthening of Clay Brick Unreinforced Masonry Wallettes using ECC
Shotcrete. Engineering Structures, 66, 57-65.
doi:10.1016/j.engstruct.2014.01.043

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

© 2014, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International

For more information, see General copyright, Publisher copyright,
SHERPA/ROMEO.



http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.engstruct.2014.01.043
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://webauthor.lbr.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.elsevier.com/about/company-information/policies/sharing
http://www.sherpa.ac.uk/romeo/issn/0141-0296/

*Abstract
Click here to download Abstract: Abstract.docx

1 In-Plane Strengthening of Clay Brick Unreinforced Masonry Wallettes using ECC Shotcrete

2

3 Yi-Wei Lin®

4 8PhD Candidate, Department of Civil & Environmental Engineering, University of Auckland, New Zealand.
5 Private Bag 92019, Auckland Mail Centre, Auckland 1142. ylin126@aucklanduni.ac.nz

6

7 Liam Wotherspoonb

8 Y EQC Research Fellow, Department of Civil & Environmental Engineering, University of Auckland, Auckland,

9 New Zealand. Private Bag 92019, Auckland Mail Centre, Auckland 1142. l.wotherspoon@auckland.ac.nz
10
11 Allan Scott*
12 ¢ Lecturer, Department of Civil & Natural Resource Engineering, University of Canterbury, Christchurch,
13 New Zealand. Private Bag 4800, Christchurch 8140, New Zealand allan.scott@canterbury.ac.nz
14
15 Jason M. Ingham®
16 ¢ Associate Professor, Department of Civil & Environmental Engineering, University of Auckland, Auckland,
17 New Zealand. Private Bag 92019, Auckland Mail Centre, Auckland 1142. New Zealand
18 j.ingham@auckland.ac.nz

19


mailto:l.wotherspoon@auckland.ac.nz
mailto:allan.scott@canterbury.ac.nz
mailto:j.ingham@auckland.ac.nz
http://ees.elsevier.com/engstruct/download.aspx?id=471090&guid=04d7b10b-5e9c-4486-aae8-807c3d61c2c2&scheme=1

10

11

12

13

14

15

16

17

18

19

20

21

22
23

ABSTRACT

New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed
between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly
vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile
force-resisting elements in their construction. The poor seismic performance of URM buildings was recently
demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable
damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes
that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by
earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern
due to the reversed cyclic nature of earthquake accelerations.

Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a
strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal
material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay
brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the
masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing
return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown
that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes,
but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the
strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is

effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes.

Keywords: Seismic; Masonry; Fiber Reinforced; Shotcrete; Strengthening
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1 1.0 Introduction

2 There are approximately 3800 unreinforced masottRN) bearing wall buildings in New Zealand,
3 comprising a significant proportion of the natiohsritage building stock [1] with the majority dfése URM
4  buildings constructed between 1880 and 1935. As Nmaland is located at the boundary between the
5 Australian Plate and the Pacific Plate, it is antouwith high seismicity. Unfortunately, seismimrées were not
6  appropriately considered when these URM buildingsenoriginally constructed, and consequently thassc of
7  building typically lacks the tensile resisting stiwral elements that are necessary to sustain fegsmic forces.
8 The earthquake vulnerability of New Zealand URMIdinigs has been clearly demonstrated in a number of
9 previous earthquakes with the 1931 M7.8 Hawke's Bagthquake [2] and more recently in the 2010 M7.1
10 Darfield earthquake [3-4] and 2011 M6.3 Christchuearthquake [5-6] being responsible for causirg th
11  greatest extent of damage to URM buildings. Theellef damage to URM buildings in these earthquakes
12  included complete collapse (see Figure 1(a)), iddal walls having completely or partially collapse
13 out-of-plane for earthquake loading oriented pedpmnar to the wall (see Figure 1(b)); or varyireyéls of
14  damage, including pier diagonal shear cracking,nwerthquake loading was oriented parallel to th# (gee
15  Figure 1 (c)).
16 While both in-plane and out-of-plane earthquakelilog can cause significant damage to URM walls and
17  piers, it is typically the wall characteristics time in-plane direction that dictate the structundégrity of the
18 complete building, as these walls are the strutaleanents that are required to transfer laterahgaake forces
19 into the foundation. URM bearing walls are typigatomposed of multi-leaf construction, with 2 andeafs
20  being the most common wall thickness, althoughlsitegf thick walls are also observed, typicallypast of
21  cavity wall construction. Wall thicknesses excegdi leaf are also encountered and tend to be used m
22 commonly in URM buildings having a height exceeding stories. Multiple in-plane failure modes exist
23 URM walls [8-10], with the type of failure exhibdeby a wall being dependent on wall geometry, dtresit
24 material properties and the level of axial loadingt the wall is subjected to. Of the multiple dial modes, four
25  common in-plane failure modes are shown in Figuf#02. The research reported here focused on thgodial
26 cracking failure mode, as this mode is regardedeisg the most detrimental to the vertical loadrygag
27  capacity of a URM wall or pier [11].
28 Multiple techniques and products are availablenprove the seismic performance of URM buildings,

29  including, but not limited to: post-tensioning ugisteel reinforcing bars or strands; Near Surfacaued
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(NSM) reinforcement using steel reinforcing bard-dyer Reinforced Polymer (FRP) strips; and surtaaeded
reinforcement such as shotcreting or FRP sheet24].2

Engineered Cementitious Composite (ECC) shotceetecement composite that is reinforced with sytithe
fibers. When loaded in tension, ECC exhibits a isth@rdening characteristic through the process of
micro-cracking, where stresses are taken up byditiet bridge the cracks. The strain-hardeningaheristic
of ECC makes it an ideal material for earthquakengthening of URM buildings, as ECC can add both
pseudo-ductility and strength to the building. Roas researchers [25-29] have tested URM elements
strengthened with ECC and demonstrated signifitaptovements in ductility and strength when comgaie
the performance of the corresponding unstrengtheledents.

The study reported here investigated the effeceissrof ECC shotcrete as a seismic retrofittingrtiegte to
improve the in-plane response of URM walls witheparate study investigating the effectiveness oCEC
shotcrete to improve the out-of-plane response BMUwalls presented elsewhere [30]. The ECC mix
proportions used are summarized in Table 1, whieh similar to those used by previous researchety [3
Preliminary investigations using the ECC mix addpie this study indicated that a build thickness16fto
15 mm in a single spray can be achieved, so angifiggk shotcrete thickness in excess of 10 mm thiels

applied successively in overlays of 10 mm, aftergheviously applied layers had hardened suffibyent
2.0 Experimental Program

An experimental program was undertaken to invesighe effectiveness of sprayed ECC for in-plane
strengthening of unreinforced clay brick masonryietes. Figure 3 diagrammatically summarized theps of
the test scheme, which was designed to determitiethe strength increase as additional ECC ovenegie
applied, and the reduction in effectiveness ofakéernally bonded shotcrete as the wallette thiskriecreased.
Two samples were tested for each geometric corgtgur, with the exception of the one ECC overlapliol

on a two leaf wallette, where three samples westede
2.1 Wallette specimens

25 unreinforced masonry wallettes were construetedi tested, with the wallettes intentionally constied
in a manner that simulated the typical current @ of existing historical URM buildings. The wettes were
approximately 1.2 m high x 1.2 m long, with the kmess varying between 100 mm to 470 mm depending on
the number of masonry leafs used. The vintage lofeoks used to construct the wallettes were recyflem

demolished URM buildings and ASTM type O mortar waed with a cement: lime: sand ratio of 1:2:9 [32]
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Researchers such as U. Andreaus, G. Ceradini aigpaliti [8, 33-34] have recommended testing ofsorary
macro-elements such as wallettes for investigatiegn-plane behavior of masonry walls.

It should also be noted that the experimental Enogwas separated into two series, with series ammd
four wallettes and series two having 21 walletidee two series were constructed at different tilmatsutilized
identical mortar proportions and ECC mix ratioseMallettes included in each series are reportaétiémext
sub-section. The Common bond pattern was adopttsisting of one header course after every fousixo
stretcher courses, as illustrated in Figure 4. Nua while the surface bond pattern for singlé \eallettes was
identical to that for 2 and 4 leaf wallettes, tleadier courses were replaced by half bricks asibtigpossible to
include a header course for one leaf wallettesoAthie to slight variations in brick dimensionsgréh were
minor differences in the number of courses in emalette (typically a wallette was 13+1 course inghe). The
compression strengths of the brick, mortar and mgswere determined using ASTM C67-00 [35], ASTM
C109-09 [36] and ASTM C1314-00 [37] respectively,raported in Table 2. Table 2 also summarize€€
material properties used in this study.

2.2 Implementation procedure

After the wallettes were built, the mortar wasaired for 28 days and then ECC shotcrete was spray®
those wallettes that were to be strengthened. Ryigpraying, the wallette surfaces were watertbthto both
remove loose material and to pre-wet the surfactysBrene planks were then attached to the sidldbeo
wallettes, to serve as an indicator of the thicknelSECC that needed to be sprayed. The ECC shetaras
supplied in bagged form and added to a two stagemisee Figure 5(a)) from which the mixed matenabk
pumped through a hose and sprayed onto the mas@tisttes (see Figure 5 (b)). An interval of appnoately
45 minutes was provided between the applicationsach successive ECC layer, which allowed the presly
applied layer to harden. Each sprayed layer waselfed flat so that the following layer of ECC wapplied
onto a flat surface (see Figure 5 (c)). Once spawas completed, the polystyrene planks were recheand a
constant water mist was applied onto the ECC sktamtil the testing date.

The full testing configuration is shown in Tablev@th the wallette configurations designated ugimg code
SX-YL-Z, where X, Y and Z represent the thickne6&£6C overlay applied in mm, the number of leafshia
wallette thickness and the specimen number for tusfiguration, respectively. For example, S30-1L-2
represents a 30 mm ECC overlay applied on a silegliethick masonry wallette, with the wallette kgpithe

second specimen with this configuration. Tables® aéports the wallettes contained in each series.
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2.3 Test setup

Wallette testing was conducted 14 days after spoagf the ECC overlay, using a modified versiorthaf
ASTM E519-07 test method [38]. The same modifiedhoe was used previously in studies to investigate
in-plane response of masonry wall sections extdaftem existing URM buildings [39], and the respersf
laboratory strengthened wallettes [20, 22]. A schienof the test setup is illustrated in FigureTéo steel
loading shoes were placed on two diagonally oppasirners of the wallette, and were connected usitng
high-strength steel rods oriented along the walldiagonal. A hydraulic actuator was attached eadp loading
shoe to apply a diagonal compression load to tHietka The load exerted on the wallette was mesabsby a
load cell positioned between the hydraulic actuatat the top loading shoe. Two potentiometers \aéeehed

to the wallette to measure the diagonal displacésnghen the wallette was subjected to load.
3.0 Experimental results and discussions

Of the 25 wallettes tested, measurements werengatauccessfully for 23 wallettes, with the displaent
response for S10-2L-1 not recorded due to datafémtnce but the shear stress measured. Measuremerg
not obtained for S30-3L-2 due to the recordingvsalfe experiencing an unexpected error.

The diagonal compression force (P) applied to ttadlette was converted into shear stregs using
Equation 1, where. is the angle between the horizontal axis of thBetta and the diagonal load applied, equal
to 45 degrees in this test. t, H and B represemttittkness, height and length of the wallette eéetipely. The
displacements measured by the two potentiometems eaverted into horizontal drift using Equatignahere
AS and AL are the diagonal shortening and elongation of tinalette respectively, as measured by
potentiometers placed parallel and perpendiculéinéadiagonal compression load. g represents thgegength

measured by each potentiometer.

Pcosa "

T 0EtH+B) (3
AS+ AL

4= 29 {tan o + cot) 2)

The shear stress-drift response of the tested tesdlés shown in Figure 7. Note that the figureswshg
the strengthened wallette response also includediresponding as-built response. The maximum siteess,

ratio of strengthened and as-built strength, pselwility and shear modulus are presented in Tdbl€hese
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factors are described in the following sections.
3.1 General response of tested wallettes

The as-built wallette test results are presenteligure 8, showing the measured average stresksesu
well as the measured stress from each individudlette. The in-plane response of each individuabuaitt
wallette is presented in Figure 7 (a,c,i,k). Altaslt wallettes had similar response charactesstivith an
almost linear relationship up to peak stress, ¥afid by the formation of a diagonal stepped crackglthe
mortar joints, which resulting in a steep declindlie stress. The stress then remained relativeigtant as the
cracked upper section of the wallettes slid aldrgHorizontal mortar joints of the stepped diagamatk. All
strengthened wallettes had similar response claisiits, increasing linearly up to the first criexckstress. The
stress level resisted by the wallette then remaneéatively constant as cracks developed and tresstwas
transferred and distributed across the ECC oveHigal failure occurred when the ECC overlay delshftom
the masonry surface. Representative crack pattérie as-built and strengthened wallettes are shavrigure
9. As-built wallettes typically exhibited a singiéagonal crack after testing, while the strengtidenallettes

exhibited multiple cracks spread over an area®fthllette surface, oriented in the direction @ libad path.
3.2 Shear strength

As the thickness of the as-built wallette thicknesseased, the peak shear stress that the wadlestained
did not remain constant (see Figure 8), and instieaic® was a significant decrease in the peak tezss with
increased thickness. This inconsistency in pealrssteess was most likely due to slight variationhie transfer
of the applied load through the loading shoe aswvib#ette thickness increased. Therefore, compasisaf
results have been made between wallettes of elgjchess and not across wallettes of varying treskes.

All strengthened wallettes showed an increase irxiimam strength when compared with their
unstrengthened counterparts. The overall incraaseréngth was between 130% and 469% (see Tabléglire
10 compares the strength increase with number & B@rlays applied on a two leaf wallette, showinat as
additional ECC overlays were applied, the ratiosoength increase to number of ECC overlays deeceas
Figure 10 indicated that any ECC overlay with @khess in excess of 30 mm will provide a diminighiaturn
in terms of the strength increase of the wallette.

A factor K,; was defined to represent the variable effectivenelSECC due to wall thickness, where wt
represents wall thickness. The measufgdfactors from the testing are shown in Table 5, whe&lues have

been normalized against two leaf thick wallettest #re used as the reference thickness in thiy $tadause
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that is the most commonly used wall thickness inWZM buildings. TheK,, factor remains relatively constant
between one and two leaf wallettes, with one leafrig a slightly lower value of 0.9, most likelyused by the
variation in the ECC shotcrete strength. Kygfactors decreased significantly for three and feaf wallettes,
indicating that there was not sufficient physicakcbemical bonds between the different leafs ofwhdette to
ensure they behaved in unison under load. Therefors recommended for design purposes that either
additional wall connections should be installedi@ls exceeding two leafs in thickness, or therappateK,,
factor should be applied to reduce the design ¢gpaccordingly.

Since the critical failure mode was debonding,abaation developed by the Japan Concrete Ins{id@g [40]

to predict FRP bond failure to concrete was modifie predict ECC bond strength to vintage claykori@sonry.
The shear bond strengtW £c¢) is calculated using Equation 3, whétg is the brick compression strength in
MPa andEgcc is the Young's modulus of ECC, also in Mgeng represents the bond area if, and due to the
diagonal crack that splits the wallette into tw@agximately equal areas, is equal to half of 1. @2 m in this
study. The values dK,; have been previously summarized in Table 5 biht a function that describes the
saturated increment in shear strength provided veuksitional ECC overlay is appliet¥ is calculated using
Equation 4, wher#-cc denotes the thickness of ECC in meters. Figurdetionstrates the correlation between
the strengths calculated using Equation 3 and theahtesting results, with a regression coeffitieh92.2%

indicating a good agreement between the two.

Vizce = Kie X 012f5 X Exge X M X Aggpg 3)

M = 0.0033(1 — g~ 5Ec) @

3.3 Pseudo-ductility

Previous research has demonstrated that masonly avalcapable of energy dissipation and can beimave
a ductile manner when subjected to lateral fordds43]. However, the non-linear behavior of masonalls
results in difficulty when quantifying the strucédiductility. This difficulty arises from the amhigy of defining
a distinct yield point when considering the asseddorce-displacement response. To overcome fffisudty,
multiple researchers have suggested the use atéiliidealization of the masonry force-displacemesponse
[44-45], where the total hysteretic energy disgifais identical for the bilinear idealization artk toriginal

force-displacement curve. With a bilinear ideal@atof the masonry wall response, adopting theilityctalue
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as the ratio of the ultimate displacement to yaikplacement (of the bilinear idealization) is gutee in various
publications [44-47] and such ductility is refertedas pseudo-ductility.

Equation 5 was used to determine the pseudo-dyatilithe wallettes in this study, where p représene
pseudo-ductilityp, is the ultimate drift and is defined as the peihere the strength had degraded to 80% of the
peak strength, and the yield dridj was determined from a bilinear response that haetgy absorption
equivalent to the measured in-plane response.demasios where the strength did not degrade beG & the
peak strength prior to wallette failure, the ultimdrift was defined as the drift value at theueel strength. The
adopted definition and calculation method for demieing pseudo-ductility was also used by numerous

researchers [47-51] when calculating the ductditynasonry wallettes.

u=— (5)

The calculated pseudo-ductility (Table 4) showedt ths-built wallettes had a mean value of 2.4 weith
coefficient of variation (CoV) of 66%, while theshgthened wallettes had a mean pseudo-ductilisydfnd a
CoV of 52%. The CoV of both as-built and strengtiiemwallettes indicate a high variability in pseudicstility,
which was partially attributed to the stress reibstion that occurs prior to peak load. Howevegsgite the
large variability, the strengthened wallettes oerage exhibited a 220% increase in pseudo-ducbhigr the

as-built wallettes, demonstrating the additionargg absorption that was achieved with strengthlgenin
3.4 Shear modulus

The shear modulus (also known as modulus of rigidiG, is the ratio of the shear stress to sheainst
measured as the secant modulus between 5-7@%,0h thet-5 curve along the initial loading arm prior tQay.
The calculated G values are presented in Tablaofn fwhich the elastic modulus (E) was derived using

Equation 6, wherel is the Poisson’s ratio and is assumed to be @25tical to that used in [22].

E=26(1+uv) (6)

The strengthened wallettes exhibited lower stiffnggn their as-built counterparts, which was pHyticaused
by minor cracking and deformation of the masongnents as they transferred stresses to the ECQagver
during the loading stage. It was also observedtti@strengthened wallettes exhibited a tendeneyaip in the

out-of-plane direction due to uneven stiffness leemvthe strengthened and unstrengthen surfacesh wtso



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

contributed to the lower stiffness.

3.5 Design procedure

Based on the results obtained in this study, tHevitng design procedures are proposed for in-plane

strengthening of masonry walls using ECC.

1.

Determine the expected in-plane failure mode arel design shear force of the wall using an
appropriate guideline such as [47]. If the expedallire mode is diagonal cracking, proceed to the
next step, otherwise alternative strengtheningrtiegtes is required.

Assume the total thickness of ECC that will be aapbver the wall surface (either on a single sigfa
or both surfaces) and calculate the shear streofgtie ECC sectionMzcc) according to Equation 7, as
reproduced from Japan Society of Civil Enginee®0H) [52], wherdecc is the thickness of the ECC
overlay in mm and ¢ the ECC tensile strength in MPais the moment lever arm distance in mm
and taken as 0.72 of the wall length that ECC il applied to, exclusive of any wall length that
crosses wall openings. Wecc exceeds the design shear force, proceed to thiestep, otherwise

increase the ECC overlay thickness and recalctliateection shear strength.

Vecr =taee X 2 X fizee (7

Determine the shear bond strength:{c), calculated using Equation 3 with an appropriaded area
(doubled if ECC is to be applied on both surfacéEghe shear bond strength exceeds the desigr shea
force then the design is complete, otherwise aatuhliconnections will be required to increase thedd

strength and alternative equations should be addptealculate the new bond strength.

4.0 Conclusions

Testing was conducted on 25 masonry wallettes terchine the effectiveness of in-plane strengthening

using sprayed ECC. The study investigated the emite on strength gain of the number of ECC overlays

applied as well as the reduction of strength gesmfapplied ECC overlays when the thickness ofvithéette

increased. The following conclusions were made:

1. All strengthened wallettes had increased sheangtineover their as-built counterparts, with this

strength increase being between 130% and 514%. ¢ke BBCC overlay was applied, the additional

strength increase provided by each additional E@lay decreased.

2. The effectiveness of the ECC overlay were similatween one leaf and two leaf wallettes, but
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decreased as the wallette thickness increasedde #nd four leafs. It is recommended that in dgsig
wall connections should be installed for walls theg more than two leafs, or the approprigiefactor
be adopted to reduce the design capacity.

3. All strengthened wallettes had a significantly gipseudo-ductility than their as-built counterpart
with an average increase of 220% times over thbuds-wallettes. The stiffness of strengthened
wallettes was found to be lower than that of adtlwallettes, which indicates that there is no @ase
in stiffness with the application of ECC shotcrete.

4. A three step design procedure on strengthening mmaswalls using ECC is provided based on the

results of this study as well as equations derlwedapan Society of Civil Engineers.
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Tablel
ECC mix proportion
used in this study

Materials  Kg/m®

Sand 640
Cement 800
Fly ast 24C
Watel 374
Fiber 26
Additives 0.3
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Table2
Masonry and ECC aterial propertie used in this
study

Masonry Materie

Series 1

', (N/mnt) f (N/mn) ' (N/mn)
26.5 0.8 6.6

Series 2

', (N/mn) 'y (N/mn) ' (N/mn)
16.: 1.C 5.3

ECC material

' (N/mm?) '« (N/mm?)

3 40
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Table3

Summary of wallette testii configuratiors

Wallette Wallette dimension (mm) Thickness of ECC Number of
configuration Heighi Lengtt Thicknessleaf) overlay (mm) samples
SO-11° 1200 1200 100 (1) 0 2
S3(-1L2 120C 120( 10C (1) 30 2

sc-2Lt 120C 120( 220 (2 0 2
s10-21 1200 1200 220 (2) 10 3
s20-21 1200 1200 220 (2) 20 2
S3(-2Lt 120C 120( 220 (2 30 2
S4(-2L.2 120C 120( 220 (2 40 2
S50-212 1200 1200 220 (2) 50 2
S0-312 1200 1200 350 (3) 0 2
S3(-3L2 120C 120C 350 (3) 30 2

SC-412 120C 120C 47C (4) 0 2
S30-412 1200 1200 470 (4) 30 2

" The first sample othis configuration belors to series with the res belonginc to series
2 All samples of this configuration belongs to sefle



Table 4

Summary of results from wallette testing

Wallette Sample  Prax Fmax  Tmax TmadTo1 Oy Su Gx10 Ex10
configuration Number (kN)  (kN)  (N/mn¥?) (%) (%) (%) (N/mn?)  (N/mn?)
SO-1L 1 27.4 19.4 0.16 N/A 0.5 1.7 1.0 1.8 4.4
2 27.% 19.c 0.1€ N/A 1.€ 1.€ 3€ 2.C 5.C
S3C-1L 1 140.&¢  99.€ 0.7t 468.6 0.4 3.7 94 0.1 0.3
2 140.6 99.4 0.75 468.8 2.8 11.8 42 0.2 0.5
S0-2L 1 30.2 21.3 0.07 N/A 0.2 0.8 48 3.5 8.8
2 29.7 21.0 0.09 N/A 0.5 0.5 1.0 45 11.2
S1C-2L 1 67.2 47.5 0.1¢ 186.( N/A
2 130.9 925 0.35 362.1 3.1 154 50 0.6 13
3 81.9 57.9 0.21 226.7 6.2 24.0 3.7 0.1 0.3
S20-2L 1 123.2 87.1 0.33 341.0 0.1 1.4 105 0.09 2 0.
2 104.€¢ 73.C 0.2¢ 289.: 3. 7.5 1.8 0.0z 0.0¢€
S30-2L 1 179.2 126.7 0.48 496.0 1.2 4.9 42 0.04 110.
2 139.2 984 0.35 385.1 0.8 3.2 32 03 0.8
S4C-2L 1 156.1 110.2 0.4¢ 432.C 0.8 6.5 85 0.2 0.8
2 148.2 104.¢ 0.3z 410.7 4.€ 13.c 2¢ 0.0 0.07
S50-2L 1 116.8 82.6 0.28 3232 0.6 4.6 8.0 1.4 35
2 186.8 131.3 0.56 5140 3.2 11.1 35 0.05 0.1
S0-3L 1 55.7 39.4 0.09 N/A 0.4 0.4 1.0 5.9 14.8
2 46.1 32.€ 0.0¢ N/A 1.2 3.4 2.8 04 1.1
S30-3L 1 95.1 67.2 0.15 1869 6.8 159 24 0.04 0.1
2 N/A
S0-4L 1 50.1 35.4 0.07 N/A 0.5 0.5 1.0 55 13.7
2 69.4 49.1 0.0¢ N/A 0.4 1.€ 39 0E 1.2
S30-4L 1 95.9 67.8 0.11 160.4 3.7 26.0 7.0 0.5 1.4
2 77.8 55.0 0.09 130.2 1.4 5.7 4.0 0.1 0.3

WhereP;,.x = maximum applied diagonal fort Fn,, = maximum horizontal shear for; t,,,x= maximum shes
Stress,tmadTo1 = ratio of max shear stress to as-built walledter % drift at yield;5, = % drift at failure; u =
pseudo-ductility; G = shear modulus and E = modafusasticity



Table 5
Kt factor to account for effectiveness of
ECC as wall thickness increases

Wall thicknes (leaf) K, factor

1 0.9
2 1.0
3 0.6
4 0.5
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(a) Damage caused by the 1931 (b) Collapse of out-of plane Ioadec(c) In-plane dlagonal cracks cau
M7.8 Hawke’s Bay earthquake, URM walls in the 2010 M7.1 Darfield by the 2011 M6.3 Christchurch
[reproduced from 7] earthquake earthquake
Figure 1: Examples of damage to New Zealand URNtmgs as a result of seismic loading
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(a) Diagonal cracking (b) Shear sliding (c) Rocking (d) Toe Crushing
Figure2: Masonry ir-plane failure mode
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Figure3: Test spectrul of range of wallette thickne:
and number of ECC overlays
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(a) Front and side view of 1, 2 andeafwallette: (b) Front and side view of leaf wallette
Figure 4: Wallette bond patterns



(a) Adding prebagged ECC into mixer (b) Spraying@fC (c) Trowelling sprayed ECC flat prior to
shotcrete onto wallette  the spraying of successive layers

Figure5: Images of the application of ECC onto the wallsfiecimen



Steel channeb———p,

Load cel
Hydraulic actuator

Loading shoe—*

Potentiometer
(behind steel rod)

High-strength
steel rod

D
Test wallette

Potentiometer 2

Timber support

Figure 6: Modified wallette test setup
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Figure 7: Shear stress-drift plots of tested witet
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Figure 8: Peak shear stress of as-built wallettes




(a) As-built wallette  (b) Strengthened wallette (c) As-built wallette (d) Strengthened wallette
(S0-2L-2) (S30-2L-2) (S0-4L-1) (S30-4L-2)
Figure9: Examples of wallette crack patte
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overlays applied to two leaf wallettes
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