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Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy 

ABSTRACT 

Introduction: Cerebral palsy (CP) is associated with reduced muscle volumes, but 1 

previous studies have reported deficits in only a small number of muscles. The extent of volume 2 

deficits across lower limb muscles is not known. This study presents an imaging-based 3 

assessment of muscle volume and length deficits in 35 lower limb muscles.  4 

Methods: We imaged and segmented 35 muscles in 10 subjects with CP and 8 typically 5 

developing (TD) controls using MRI. Muscle volumes were normalized, and Z-scores were 6 

computed using TD data. Volume Z-scores and percent deficits in volume, length, and cross-7 

sectional area are reported. 8 

Results: Muscle volumes are 20% lower on average for subjects with CP. Volume 9 

deficits differ significantly between muscles (12%-43%) and display significant heterogeneity 10 

across subjects. Distal muscles, especially the soleus, are commonly and severely small. 11 

Discussion: Heterogeneity across muscles and across subjects reinforces the subject-12 

specificity of CP and the need for individualized treatment planning. 13 

Keywords: MRI, cerebral palsy, muscle, heterogeneity, lower limb 14 

15 
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INTRODUCTION 16 

Cerebral palsy (CP) is a neuromusculoskeletal disorder caused by a developmental brain 17 

injury occurring in utero or around birth1–4. Among the pathologies associated with CP are 18 

impaired gait5,6, muscle spasticity7–9, and skeletal malformation2,10. In addition, decreased muscle 19 

size has been nearly unanimously identified in CP by different research groups using MRI11–16 20 

and ultrasound17–21 in various lower limb muscles. The functional consequences of decreased 21 

muscle size are diminished capacity to generate muscle force, diminished range of motion, 22 

and/or diminished maximum velocity of muscle contraction22. Functional deficits will manifest 23 

for muscles that are accordingly decreased in size, but all muscles may or may not be similarly 24 

reduced in size for CP subjects.  25 

In addition to variability in muscle size within a CP subject, there may be variability in 26 

muscle size across subjects. CP is generally regarded as manifesting heterogeneously across 27 

subjects2,10,23, because it can involve different pathologies stemming from the primary neural 28 

lesion4. In light of the general heterogeneity of CP, it may be that muscle size profiles are also 29 

heterogeneous and differ across subjects. The possibility of inter-subject heterogeneity is 30 

interesting and may emphasize the importance of subject-specific muscle assessments in 31 

treatment planning. The extent of inter-subject variability of muscle sizes is unknown, since 32 

previous assessments of CP muscle size have reported only a small number of muscles and have 33 

not focused on variance of muscle profiles across subjects. An assessment of the heterogeneity of 34 

muscle size profiles in CP is needed to fully appreciate whether heterogeneity within and across 35 

subjects’ muscles should be a consideration in diagnosing and treating CP. 36 

Previous research has attempted to better understand the role of strength limitations in CP 37 

gait pathologies via strength training interventions and computational approaches. Using both 38 
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general and targeted strength training interventions, previous studies have reported strength gains 39 

in subjects with CP24–28, but it is unclear whether and how strength gains translate to functional 40 

improvements27,29–32. Historically, identification of weak muscles for targeted strengthening has 41 

relied on qualitative assessments by physiotherapists33 or analysis of motion capture data27, 42 

which are subjective and do not provide muscle-specific information. Musculoskeletal models 43 

may be used clinically in order to estimate muscle-tendon lengths and velocities, which provide 44 

insight into the need for tendon lengthening procedures34–37. These modeling approaches have 45 

also been applied to understanding the role of specific muscles in gait pathologies31,38,39 but have 46 

been limited by an unavailability of CP-specific muscle size data. Non-invasive imaging 47 

approaches offer more objective measures of individual muscles. Ultrasound imaging, for 48 

instance, has been used clinically as a guide for botulinum toxin injections40,41.  A 49 

comprehensive imaging assessment of CP lower limb muscles may provide more objective 50 

muscle size data that can be used to understand CP muscle strength and can be incorporated into 51 

musculoskeletal models to empower more CP-specific muscle force simulations. 52 

In this study, we used MRI to assess muscle volumes and lengths in 35 lower limb 53 

muscles in subjects with CP. We report volume and length deficits in CP muscles compared to 54 

typically developing (TD) controls, and we compute deficits in cross-sectional areas (CSA). To 55 

assess individual muscle size deficits in individual subjects, we compute and use Z-scores of 56 

muscle volumes normalized to body size. We use these methods to non-invasively identify 57 

abnormally small muscles and identify heterogeneity in muscle profiles across CP subjects. 58 

59 
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MATERIALS AND METHODS 60 

Subject Characteristics 61 

Ten children with CP with the following characteristics [mean ± SD (range)]: age: 13.9 ± 1.9 62 

(11-17) years, height: 159.1 ± 12.6 (134.5-175.3) cm, body mass: 59.4 ± 16.7 (36.4-96.1) kg, 63 

body mass index: 23.2 ± 4.7 (17.6-31.5) kg/m2 were recruited from University of Virginia 64 

Clinics (see Tables 1a and 1b for individual subject characteristics). The CP population was 65 

heterogeneous and included hemiplegic and diplegic subjects ranging from levels I to III on the 66 

Gross Motor Function Classification System (GMFCS). Also, many subjects previously had 67 

surgical interventions including hamstrings release, Achilles lengthening, hamstrings 68 

lengthening, and dorsal rhizotomy. No subject had undergone surgery within 12 months prior to 69 

scanning. Subject inclusion criteria included: age between 11 and 17 years, the ability to 70 

ambulate, the ability to safely undergo MRI, and the ability to remain motionless in the MRI 71 

scanner for the duration of the imaging time. Our study was approved by the University of 72 

Virginia Institutional Review Board; informed consent was obtained from all subjects’ legal 73 

guardians and all subjects provided assent. Eight typically developing adolescent controls from a 74 

similar age range were recruited and imaged using the same methods as the subjects with CP. 75 

The control subject parameters were: age: 14.0 ± 1.5 (12-17), height: 165.7 ± 10.1 (145.4-178.4) 76 

cm, body mass: 64.9 ± 12.1 (47.5-83.5) kg, body mass index: 23.5 ± 3.0 (20.2-29.7) kg/m2. 77 

 78 

Imaging and Segmentation 79 

Subjects were scanned on a 3T Siemens (Munich, Germany) Trio MRI Scanner using a 2D 80 

multi-slice gradient-echo pulse sequence with an interleaved spiral k-space trajectory42. The 81 

scanning parameters used were: TE/TR/α: 3.8 ms/ 800 ms/ 90°; FOV: 400 mm × 400 mm; slice 82 
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thickness: 5 mm; in-plane spatial resolution: 1.1 mm × 1.1 mm; body receiver coil; and 4 signal 83 

averages. Spectral-spatial excitation pulses were used for fat suppression43. Additionally, a 84 

Chebyshev approximation was applied for semi-automatic off-resonance correction to 85 

compensate for spatial variations of the magnetic field44.  Contiguous axial images were obtained 86 

from the iliac crest to the ankle joint. Scan time was approximately 20 minutes per subject. 87 

Each of 35 muscles in the paretic limb for hemiplegic subjects and the most affected 88 

limbs for diplegic subjects were segmented using in-house segmentation and image processing 89 

software written in Matlab (The Mathworks Inc., Natick, MA, USA). For diplegic subjects, the 90 

most affected limb was identified by clinicians as the limb that experienced shorter duration of 91 

single-limb stance and reduced excursions over the gait cycle. Segmentations were performed by 92 

a team of 4 trained individuals, each provided with a detailed slice-by-slice segmentation atlas 93 

created from 1 of our data sets. Observers identified boundaries of individual muscles in axial 94 

slices. A single highly trained observer evaluated and refined all segmentations before further 95 

analysis to ensure consistency across users. The volume of each muscle was calculated by 96 

summing all of the slice-wise voxel volumes for each muscle; no corrections were made for fatty 97 

infiltration or connective tissue inside CP muscle volumes. Total lower limb muscle volume was 98 

computed as the sum of all 35 muscles segmented for each subject. Muscle belly lengths were 99 

defined as the linear distance from the most superior to the most inferior extent of the muscle, 100 

similar to previously published definitions45,46. Four muscles in this study displayed in vivo 101 

curvature such that their linear lengths were not consistent with line-of-action muscle lengths 102 

measured in previous anatomical studies46. For these muscles (rectus femoris, sartorius, psoas, 103 

and semimembranosus) muscle belly lengths were defined as the distance along the muscle’s 104 

centroid path47,48.  105 
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To examine consistency of segmentation, we assessed inter- and intra-observer variability 106 

by assigning the same image data to 2 different observers for segmentation. One observer was 107 

later assigned the same image data again. All 3 segmentations were vetted by the highly-trained 108 

observer, each on different days. Inter- and intra-observer variability was assessed by computing 109 

the percent error in volumes and lengths between the 2 observers and between the 2 trials of the 110 

same observer, respectively.    111 

 112 

Normalization and Analysis of Muscle Volumes 113 

Subjects with CP are often smaller in body mass and height than their typically developing 114 

counterparts49–63. It was previously shown that lower limb muscle volumes of healthy subjects 115 

scale with the product of height and mass48. To reduce the effects of body size on muscle size 116 

differences when comparing typically developing and CP muscle volumes, we normalized 117 

muscle volumes by the product of height and mass according to equation 1: 118 

 

 

(1) 

where volumenorm denotes the normalized muscle volume of a given muscle and a given subject 119 

(i.e. we calculated 35 volumenorm for each subject), muscle volume is the volume of each muscle 120 

obtained from image post-processing in units of cm3, height is subject height in m, and mass is 121 

body mass in kg.  122 

To assess how typical or atypical an individual muscle is in subjects with CP, we used Z-123 

scores. A Z-score is the number of standard deviations an individual measurement is from the 124 

population mean of that measurement. For normally distributed data, the 95% confidence 125 

interval of a measurement resides between Z = -1.96 and Z = +1.96. In this way, Z-scores can be 126 
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used to compare individual measurements against confidence intervals of a reference population. 127 

For subjects with CP, we computed Z-scores to compare the volume of each muscle against the 128 

volumes observed in our typically developing control subjects. Volume Z-scores were computed 129 

according to Equation 2: 130 

 

 

(2) 

where Zvolume is the Z-score of a normalized muscle volume (i.e. we computed 35 Zvolumes for 131 

each subject), volumenorm
CP is the normalized muscle volume for a CP subject’s muscle (see 132 

Equation 1), μ(volumenorm
TD)is the population mean of normalized muscle volume in the 133 

typically developing control group, and σ(volumenorm
TD) is the standard deviation of normalized 134 

muscle volume in the typically developing control group.  135 

In this case, a volume Z-score is a measure of how many TD standard deviations (σ) a CP 136 

muscle is away from the TD mean. We consider Z-scores greater than 2 or less than -2 to be 137 

significantly atypical. Ranking of the control subject data revealed that these limits correspond to 138 

the 99% confidence interval of the typically developing muscle volume Z-scores. We used Z-139 

scores to determine muscles that were commonly significantly small and severely significantly 140 

small within this population. Commonly small muscles were defined as muscles for which 80% 141 

or more of subjects presented volume Z-scores that were less than -2. Severely small muscles 142 

were defined as muscles with a population average volume Z-score that was less than -2. 143 

  144 

Normalization and Analysis of Lengths and Cross-Sectional Areas 145 

Geometrically, observed differences in muscle volume may be due to differences in 146 

length or in cross-sectional area (CSA); therefore we also examined differences in these 2 147 
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parameters. To reduce the effects of body size on muscle length comparisons, we normalized 148 

muscle belly lengths by limb length:  149 

 

 

(3) 

where lengthnorm denotes the normalized muscle belly length of a given muscle, muscle length is 150 

the muscle belly length acquired from images, and limb length is the sum of the linear lengths of 151 

the femur and tibia. 152 

Muscle cross-sectional areas were computed by dividing muscle volume by muscle 153 

length:  154 

 

 

(4) 

where CSA is the average area of the muscle perpendicular to the direction of the muscle’s 155 

length. To reduce the effects of body size on muscle CSA, this parameter was normalized by 156 

body mass:  157 

 
 

(5) 

 158 

Statistical Methods 159 

Correlations between total muscle volume and the height-mass product were compared 160 

between CP and TD groups using ANCOVA. Values of Z-scores were used to indicate 161 

significant differences for individual muscles in individual subjects. Z-scores outside of ±2 were 162 

considered to be significantly atypical (see Normalization and Analysis of Muscle Volumes). 163 

Group-wise comparisons of normalized muscle sizes—volumenorm, lengthnorm, and CSAnorm—164 

warranted a non-parametric test and we used the Wilcoxon rank-sum test. We used Levene’s 165 
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Test to compare variances of measurements between the CP and TD populations and between 166 

muscles within the CP population. An alpha value of 0.05 was used for statistical tests and 167 

analysis was conducted in Matlab R2013b.  168 

169 
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RESULTS 170 

Segmentation Variability 171 

Across all muscles in the lower limb, the mean inter-observer variability was 4.7% for volume 172 

and 3.2% for length, and the mean intra-observer variability was 4.4% for volume and 1.8% for 173 

length. Eight muscles displayed volume variability greater than 10% for either inter- or intra-174 

observer variability: the vastus intermedius (10.5%), flexor digitorum longus (12.1%), piriformis 175 

(14.3%), gluteus minimus (19.2%), gemelli (22.2%), pectineus (22.5%), quadratus femorus 176 

(22.7%), and obturator internus (26.9%). Three muscles displayed length variability greater than 177 

10%: the gracilis (10.6%), obturator externus (13.7%), and piriformis (38.6%). Variability was 178 

higher in small muscles, in muscles with ill-defined or hard to identify boundaries (e.g. vastus 179 

intermedius), and in muscles with a medial-lateral orientation. Inter-observer variability was 180 

higher than intra-observer variability for all measurements except for vastus intermedius volume 181 

and gracilis length. 182 

 183 

Total Muscle Volume Deficits in CP 184 

The total muscle volume per height-mass was significantly reduced for CP subjects compared to 185 

their TD counterparts. For both TD and CP subjects, lower limb muscle volume scaled well with 186 

the product of height and mass, but the slope of this curve was significantly reduced for subjects 187 

with CP compared to TD adolescents (P<0.0001) (Fig. 1A). There was not a significant 188 

difference in the slope of this curve between TD adolescents and the TD adults from Handsfield 189 

et al.48 (P=0.72). Normalized muscle volume for CP subjects was 46.2 ± 6.9 cm3/kg-m (mean ± 190 

SD) compared to 58.5 ± 4.5 cm3/kg-m for TD adolescents (Fig. 1B).  The difference in variance 191 

of normalized muscle volume was not significantly different between CP and TD populations 192 
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(P=0.11). Although we lacked the statistical power to rigorously compare muscle volume per 193 

height mass across GMFCS levels, there was an observable stratification of GMFCS level with 194 

normalized muscle volume. Subjects with GMFCS level of I were within the 95% confidence 195 

interval for normalized muscle volume of typically developing subjects. All other subjects fell 196 

outside of this interval. The 1 subject with a GMFCS level of III had the lowest normalized 197 

muscle volume of the CP population (Fig. 1B). 198 

 199 

Individual Muscle Volume Deficits in CP 200 

Volume Z-scores of CP muscles revealed significant volume deficits in lower limb muscles. Of 201 

the 350 muscles assessed in CP subjects, 117 muscles (33%) were outside of the 2σ confidence 202 

interval, and 78 (22%) were more than 2.5σ smaller than the TD mean. Twenty-three muscles in 203 

the CP cohort (6.5%) were more than 4σ smaller than the TD mean, indicating a severe degree of 204 

muscle volume impairment. By definition of volume Z-score, only 0.5% of the TD volume Z-205 

scores would be expected to be less than -2. In fact, 1 muscle out of 280 (0.4%) TD muscles was 206 

below this threshold. Five muscles were found to be commonly small in the CP population: 207 

soleus and tibialis anterior were significantly small in 9 subjects, while medial gastrocnemius, 208 

digital extensors (EDL & EHL), and semimembranosus were each significantly small in 8 209 

subjects (Fig. 2B). Eight muscles were severely significantly small: soleus (average Z = -4.0), 210 

digital extensors (-3.4), medial gastrocnemius (-3.0), tibialis anterior (-2.9), semimembranosus (-211 

2.6), rectus femoris (-2.1), vastus medialis (-2.1), and semitendinosus (-2.1) (Table 2). 212 

 213 

Heterogeneity of Muscle Deficits in CP 214 
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Visualization of Z-scores color mapped onto subject-specific lower limb reconstructions (Fig. 3) 215 

illustrates the heterogeneity of muscle volume deficits. Heterogeneity of muscles was found to be 216 

statistically significant (P<0.002) as determined by unequal variance of Z-scores across muscles 217 

within the CP population. The most heterogeneous muscles in this study were the gluteus 218 

minimus, quadratus femoris, iliacus, semitendinosus, and vastus medialis (Table 2). Subjects 219 

who had undergone semitendinosus lengthening or release had significantly smaller normalized 220 

semitendinosus volumes than those who had undergone no semitendinosus surgery (0.3 vs. 2.2 221 

cm3/kg-m, P<0.05). Subjects who had undergone Achilles lengthening had significantly smaller 222 

normalized soleus volumes (2.0 vs. 2.6 cm3/kg-m, P<0.01) than those who had not undergone 223 

the surgery. There were no significant differences in normalized volumes of either gastrocnemius 224 

muscle between Achilles surgery groups (P>0.5).  225 

 226 

Group-wise Comparison of Muscle Volumes 227 

Comparison of normalized muscle volumes across functional muscle groups reveals volume 228 

deficits among the CP group. The hip abductors and external rotators were the only 2 functional 229 

muscle groups out of 9 that were not small in the CP group compared to the TD group (Fig. 4). 230 

The muscle groups with the largest differences were the dorsiflexors (37%), plantarflexors 231 

(34%), and hamstrings (29%). Muscles with the largest percent differences were the tibialis 232 

anterior (43%), medial gastrocnemius (42%), soleus (39%), lateral gastrocnemius (36%), 233 

semitendinosus (35%), and semimembranosus (31%). The ratios of muscle volume for agonist-234 

antagonist pairs for the CP group were similar to the TD sample except for the abductor-adductor 235 

ratio, which was markedly larger for the CP group.  236 

 237 
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CSA and Length Deficits in CP 238 

Muscles displaying volume deficits present deficits in both CSA and length (Table 3). 239 

Statistically significant volume deficits were more often accompanied by significant deficits in 240 

CSA than by significant deficits in length (Table 3). Significant CSA deficits were larger on 241 

average than significant length deficits. Six muscles displayed significant deficits in volume, 242 

CSA, and length. They were the medial gastrocnemius, soleus, lateral gastrocnemius, 243 

semitendinosus, digital extensors, and fibularis muscles. Only 1 muscle, the gracilis, displayed 244 

significant length deficits that were also greater than CSA deficits.    245 

246 
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DISCUSSION 247 

The results of the present study show that muscles in subjects with CP are small overall, the 248 

magnitude of muscle volume deficits varies across individuals and across muscles, and small 249 

muscle volumes are most commonly associated with small cross-sectional areas (CSAs) but in 250 

some cases are due to short muscle belly lengths. These results highlight the array of muscle size 251 

deficits in the lower limb and indicate a general heterogeneity of muscle deficits across and 252 

within CP. Heterogeneity notwithstanding, the most commonly and severely affected muscles 253 

among subjects with CP were the soleus, digital extensors, gastrocnemius, tibialis anterior, and 254 

semimembranosus—all plantarflexors, dorsiflexors, and one hamstrings muscle. 255 

Inter- and intra-observer analysis of segmentation revealed an average volume 256 

discrepancy of approximately 5% and an average length discrepancy of around 3%, which is 257 

similar to other published variability assessments47,82. High volume variability was associated 258 

with muscles that have ill-defined or hard to identify boundaries. Small muscles are also more 259 

sensitive to errors since we had a fixed spatial resolution. Muscles with a medial-lateral 260 

orientation were difficult to segment since we conducted axial imaging. Variability in length 261 

resulted from variations in identifying the most proximal and distal slices of a muscle. With the 262 

exception of vastus intermedius volume and gracilis length, inter-observer variability was higher 263 

than intra-observer variability, indicating that systematically defining muscle boundaries, origins, 264 

and insertions across researchers may improve the precision of segmentation. 265 

  Several previous studies have reported muscle volumes in individuals with CP11,14,15 for 266 

several muscle groups and muscles. Our study builds upon this work by reporting volume, 267 

length, and CSA deficits in 35 lower limb muscles, including 25 muscles for which volumes in 268 

CP were previously unreported. The findings from previous MRI-based measurements of muscle 269 
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volumes in CP demonstrated diminished muscle volumes overall. Our results are consistent with 270 

these studies, and our group means are especially consistent with those of Noble et al.15 who had 271 

a larger population and studied 9 muscles. Nevertheless, previous studies are not all consistent 272 

with regards to which muscles are significantly small. For example, while Oberhofer et al.14 273 

found substantially diminished volumes in the hamstrings and vasti but not in the plantarflexors, 274 

Noble et al.15 found substantially diminished volumes in the hamstrings and plantarflexors but 275 

not in the vasti. We found diminished volumes in the hamstrings, vasti, and plantarflexors.  276 

Because sample sizes were relatively small and varied in these studies, disparate results are not 277 

entirely surprising. Differences between studies may be related to heterogeneity of muscle 278 

volume deficits in CP subjects. The lack of significant soleus volume deficits reported by 279 

Oberhofer et al.14, for example, is interesting considering the magnitude and frequency of soleus 280 

deficits we observed. This could be explained by the fact that Oberhofer et al. found a relatively 281 

high variance in normalized soleus volume among CP subjects14. It may be that heterogeneity 282 

within their population influenced the lack of significance in soleus deficit.  283 

In this study, we accounted for the disparate body sizes across subjects by normalizing 284 

muscle volumes by the product of height and mass, which is somewhat distinct from previous 285 

studies. We previously showed very good scaling of TD muscle volumes with the height-mass 286 

product48.  Previous research into body size scaling of humans has suggested that a parameter of 287 

both stature (i.e. height) and size (i.e. mass) are needed to normalize muscle volume, since 288 

humans vary widely in size and shape64,65. This may be especially true of subjects with CP who 289 

are known to be shorter and smaller than their TD counterparts49–63. In our study, the height-mass 290 

product was a good predictor of muscle volumes in subjects with CP, but the slope of the CP 291 

curve was significantly lower than the slope of the TD curve. This indicates reduced muscle 292 



CP Muscle Size Heterogeneity 17 

 

volume for a given body stature and size in CP subjects. To indicate whether normalization 293 

technique could contribute to differences between studies, we re-examined muscle volume 294 

deficits when volumes were normalized by body mass. Normalization by mass increased the 295 

percent deficits of CP muscle volumes for all muscles in the lower limb by an average of 3.5% 296 

(Table 4). This difference is small and indicates that normalization by mass results in larger 297 

deficits between CP and TD groups. Since muscle volume is shown to scale with height-mass, 298 

and CP subjects are shorter than their TD counterparts56–63, we argue that height-mass may be a 299 

more sensitive and appropriate metric for normalizing muscle volumes. Additionally, the use of 300 

height-mass to normalize muscle volume is dimensionally consistent with normalizing muscle 301 

length by height or limb length and normalizing muscle cross-sectional area by mass, which we 302 

have done in this study.  303 

 Muscle volume deficits may be due either to CSA or muscle belly length. We found that 304 

CSA deficits were larger and more common than length deficits. While muscle shortness was 305 

less common in our data, certain subjects displayed substantial deficits in length for muscles 306 

such as the gracilis and semitendinosus. This fact should reinforce the inter-subject variability of 307 

CP and the need to approach muscle deficiencies with a subject-by-subject perspective. 308 

Functionally, physiological cross-sectional area (PCSA) and muscle fiber length are more 309 

meaningful parameters than CSA and muscle belly length, as they relate to muscle force 310 

capacity22,66 and range of motion22, respectively. Holzbaur et al.47 previously multiplied CSAs by 311 

mean values of muscle-length-to-optimal-fiber-length ratios (Lm/Lf
0) from the literature to 312 

estimate PCSAs. Similar computation of PCSA for CP subjects would have been questionable, 313 

since we did not measure optimal fiber lengths and thus could not account for CP-specific 314 

Lm/Lf
0. To our knowledge, there are no reports of CP-specific Lm/Lf

0 for most muscles, although 315 
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it is known that pennation angles and sarcomere operating ranges may differ from TD 316 

subjects19,67–70. Future in vivo determination of Lm/Lf
0

 in CP subjects may shed light on this issue 317 

and may be enabled with recent techniques for imaging fibers and sarcomeres in vivo71–74. 318 

We found significant heterogeneity in individual normalized muscle volumes among our 319 

10 subjects. Our population was heterogeneous in GMFCS level, surgical history, and 320 

manifestation of CP, but we did not recruit the full range of possible manifestations of CP.  Our 321 

inclusion criteria excluded subjects with GMFCS levels of IV or V, since the imaging portion of 322 

the study required subjects who could remain motionless for 20 minutes in the scanner. 323 

Considering the broad range of severities and manifestations of CP, we believe that muscle size 324 

heterogeneity is present in the general CP community. Conversely, it may be that subject 325 

populations with CP presentations that are more homogeneous than our population may have less 326 

inter-subject heterogeneity of muscle volumes than we found. This would be an interesting 327 

finding and would suggest that certain clinical diagnoses are associated with specific muscle 328 

volume profiles. 329 

We found a statistically significant reduction in normalized muscle volume in subjects 330 

who had undergone muscle/tendon surgeries compared to those who had not. While this is an 331 

interesting result, we cannot conclude that such surgeries contribute to muscle volume deficits, 332 

since this was not a longitudinal study. It may simply be that the subjects with the smallest 333 

muscles were candidates for surgery on those muscle-tendon units. Future longitudinal studies of 334 

muscle volumes before and after surgery will better indicate how surgery affects muscle 335 

volumes.  336 

There are several limitations to this study that should be considered.  First, we did not 337 

distinguish intramuscular fatty infiltration75 or fibrotic tissue9 from healthy muscle in the 338 
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computation of muscle volume from images. Thus, the reported CP volume measurements likely 339 

include non-contractile tissue and over-predict the true volume of functional muscle tissue. To 340 

precisely determine the volume of functional contractile muscle tissue, future studies would need 341 

to subtract image voxels that correspond to fatty or fibrotic intramuscular tissue76–78. Our study 342 

population was overwhelmingly male. While there may be gender differences in normalized 343 

muscle volumes, our previous studies demonstrated similarity of muscle volume per height-mass 344 

in TD males and females48.   Because MRI is not capable of detecting fiber type distribution 345 

within muscle tissue, we were unable to link volume deficits with atrophy of specific fiber types 346 

in CP. Previous studies have reported variability in type I fiber distribution in CP79–81. It is 347 

unclear to what extent this variability is subject- and muscle-specific and how fiber-type deficits 348 

relate to bulk muscle volume deficits. Future work linking fiber-type distribution and whole 349 

muscle volume deficiencies would be an interesting complement to this study. Lastly, 350 

segmentation of muscles from MRI remains a subjective process as it relies on manual user 351 

identification of muscle boundaries. Our variability assessment revealed reasonably low 352 

variability in volume and length. However, small muscles and muscles with difficult to define 353 

origins and insertions were the most sensitive to volume and length discrepancies. 354 

Further technical developments of this in vivo muscle analysis may promote increased 355 

accessibility for researchers and clinicians. Currently, the measurements presented here rely on a 356 

custom rapid MRI sequence48 that is not widely available on all MRI scanners. This sequence 357 

required no accessory coils to be placed on subjects but did require subjects to remain motionless 358 

for approximately 20 minutes in the scanner. Application of these methods to more severely 359 

affected subjects with CP may require use of accessory coils to reduce scan time or may not be 360 

possible for subjects who have difficulty remaining motionless for several minutes. Manual 361 
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segmentation of muscles is time-intensive and not conducive for the clinical setting. The 362 

translation of our MRI sequence to built-in scanner sequences and the development of semi- or 363 

fully-automated muscle segmentation routines83,84 will promote more widespread availability of 364 

the techniques presented here. Additionally, we did not link muscle size deficits to common 365 

clinical measurements of strength, range of motion, or spasticity. It may be possible to assess 366 

heterogeneity of muscle distribution with accurate and systematic use of clinical assessments. 367 

Future research may suggest how to use currently available clinical assessments or develop new 368 

clinical assessments to understand heterogeneity on a patient-specific basis. 369 

Small muscles in CP subjects may be the result of a combination of many factors, such as 370 

denervation, spasticity, disuse atrophy, or altered gait mechanics that change the muscle forces 371 

needed to produce movement. While the precise causes of muscle volume deficits are not 372 

entirely clear, this study showed that muscle volume deficits are heterogeneous in lower limb 373 

muscles in adolescents with CP.  The effects of muscle volume deficits are reduced strength 374 

capacity and/or reduced muscle operating range, among other consequences. In this study, 375 

muscle deficits were common and pronounced in the distal hamstrings, plantarflexors, and 376 

dorsiflexors, but especially in the soleus. These results implicate reduced plantarflexor power 377 

during mid-stance of gait and reduced dorsiflexor power for foot contact and swing as potential 378 

common gait pathologies in CP. Gait disorders are mechanically complex, however, and linking 379 

of muscle volume deficits with gait pathology is an area that requires further study.  Prior 380 

research into improving CP gait with strength training has produced mixed results24,27,29,31. 381 

Specifically, some studies have questioned whether increases in muscle strength will translate to 382 

improved movement27,29. However, in light of the well-established relationship between muscle 383 

size and strength capacity, we suggest that Shortland’s contention85 that preservation or increases 384 
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in muscle size may prevent degenerative mobility that occurs with growth and aging in CP, 385 

reduce energy costs, or delay the onset of fatigue. CP muscle physiology is complex, however, 386 

and further study is needed to understand optimal strategies for building or preserving CP muscle 387 

size and function. 388 

389 
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LIST OF ABBREVIATIONS 390 

CP – Cerebral Palsy 391 

CSA – Cross Sectional Area 392 

EDL – Extensor Digitorum Longus 393 

EHL – Extensor Hallucis Longus 394 

FOV – Field Of View 395 

GMFCS – Gross Motor Function Classification System 396 

Lf
0 – optimal fiber length (of a muscle) 397 

Lm – muscle length 398 

MRI – Magnetic Resonance Imaging 399 

PCSA – Physiological Cross Sectional Area 400 

TD – Typically Developing 401 

TE – Time to Echo 402 

TR – Time to Repetition 403 

α – flip angle 404 

405 
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TABLES 

Subject 1 2 3 4 5 

GMFCS  I I II II II 
Gender m m m m m 
Age 14 15 15 12 13 
Ethnicity white white white white white 
Mass (kg) 41.5 54.6 65.1 63.1 60 
Height (m) 1.535 1.753 1.625 1.534 1.544 
BMI(kg/m2) 17.6 17.8 24.7 26.8 25.2 
CP Etiology placenta 

previa 
stroke prematurity stroke stroke 

CP subtype diplegia hemiplegia diplegia hemiplegia hemiplegia 
Most 
Affected Side 

left right right right right 

Surgical 
History none none 

hamstring 
release 

(semitend), 
previous 

botox 

gastroc-
soleus-
achilles 

lengthening none 

Gait foot drag equinovarus crouch  
equinus, 
crouch equinus  

Orthosis Use 

over-the-
counter 

arch 
supports none 

over-the-
counter 

arch 
supports 

posterior 
shell ankle-

foot-
orthosis 

articulated 
ankle-foot-

orthosis 
Table 1a: Subjects 1-5 Characteristics 
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Subject 6 7 8 9 10 
GMFCS  II II II II III 
Gender m f m f m 
Age 17 13 16 11 13 
Ethnicity white other white white white 
Mass (kg) 96.1 53.6 52.2 36.4 71.5 
Height (m) 1.748 1.499 1.698 1.345 1.632 
BMI(kg/m2) 31.5 23.9 18.1 20.1 26.8 
CP Etiology unknown prematurity hemorrhage/ 

infarct 
prematurity stroke / 

hemorrhage 
CP subtype diplegia hemiplegia hemiplegia hemiplegia diplegia 
Most 
Affected Side 

right right right left left 

Surgical 
History 

gastroc-
soleus-
achilles 

lengthening 

femoral 
derotation 
osteotomy, 

gastroc-
soleus-
achilles 

lengthening 

gastroc-
soleus-
achilles 

lengthening 

gastroc-
soleus-
achilles 

lengthening 

hamstring lengthening 
(semitend.),  

dorsal rhizotomy 

Gait 

claw toe, 
bilateral 

cavus feet 
in-toeing, 
equinus equinovalgus equinus crouch  

Orthosis Use none 
ankle-foot-

orthosis 

Right 
articulated 
ankle-foot-

orthosis 

over-the-
counter 

arch 
supports 

right Loftstrand crutch, 
bilateral floor reaction 

ankle-foot-orthoses, left 
thigh cuff 

Table 1b: Subjects 6-10 Characteristics 
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Muscles Ranked by Severity of Volume 
Deficit 

Muscles Ranked by Heterogeneity Across 
Subjects 

muscle average Z-score muscle variance of Z-score 
soleus -4.0 gluteus minimus 4.0 
digital extensors -3.4 quadratus femoris 3.9 
medial gastrocnemius -3.0 iliacus 3.7 
tibialis anterior -2.9 semitendinosus 3.2 
semimembranosus -2.6 vastus medialis 3.2 
rectus femoris -2.1 semimembranosus 2.7 
vastus medialis -2.1 vastus lateralis 2.7 
semitendinosus -2.1 adductor magnus 2.6 
adductor magnus -2.0 gemelli 2.5 
psoas major -1.9 digital extensors 2.2 
vastus lateralis -1.9 obturator internus 2.1 
fibularis muscles -1.8 flexor digitorum longus 2.1 
lateral gastrocnemius -1.8 vastus intermedius 2.0 
adductor brevis -1.4 tibialis posterior 2.0 
biceps femoris: l.h. -1.3 adductor brevis 1.9 
flexor hallucis longus -1.3 gracilis 1.7 
adductor longus -1.2 piriformis 1.6 
gluteus maximus -1.1 popliteus 1.6 
biceps femoris: s.h. -1.0 fibularis muscles 1.5 
obturator externus -1.0 sartorius 1.5 
gluteus minimus -0.8 soleus 1.3 
tibialis posterior -0.8 medial gastrocnemius 1.1 
popliteus -0.8 psoas major 1.1 
gracilis -0.6 flexor hallucis longus 1.0 
sartorius -0.6 rectus femoris 1.0 
pectineus -0.4 biceps femoris: l.h. 0.9 
tensor fasciae latae -0.4 gluteus maximus 0.8 
flexor digitorum longus -0.4 obturator externus 0.8 
vastus intermedius -0.4 adductor longus 0.7 
gemelli -0.3 lateral gastrocnemius 0.7 
obturator internus -0.3 tensor fasciae latae 0.7 
quadratus femoris 0.0 gluteus medius 0.7 
iliacus 0.0 biceps femoris: s.h. 0.5 
piriformis 0.1 tibialis anterior 0.4 
gluteus medius 0.1 pectineus 0.4 
Table 2: Muscles ranked by severity (left) and heterogeneity (right) of volume Z-scores. Average 

Z-scores: means computed across 10 CP subjects for each muscle. Variance of Z-scores: 

variances computed across 10 CP subjects for each muscle. 
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lower limb muscle 
 

% volumenorm 
difference of 

CP group 
(* P<0.05 
** P<0.01 

*** P<0.001) 

%CSAnorm 
difference of 

CP group 
(* P<0.05 
** P<0.01 

*** P<0.001) 

%lengthnorm 
difference of 

CP group 
(* P<0.05 
** P<0.01 

*** P<0.001) 

# of CP 
muscles 
small in 
volume 
(ZV < -2) 

# of CP 
muscles 
small in 

CSA 
(ZCSA < -2) 

 
 
 
 

# of CP 
muscles 
short in 
length 

(ZL < -2) 

# of CP 
muscles 
small in 
CSA and 
short in 
length 

tibialis anterior -43.4*** -40.1*** -6.0 9 7 4 3 
medial gastrocnemius -42.2*** -32.2*** -15.5** 8 5 9 5 
soleus -39.3*** -34.0*** -7.5* 9 9 1 1 
lateral gastrocnemius -35.8*** -24.8** -14.4* 4 4 5 2 
semitendinosus -35.3** -23.5* -19.5* 4 3 4 2 
semimembranosus -30.5** -25.2* -7.2 8 7 0 0 
flexor hallucis longus -30.5** -33.5** 3.7 3 3 2 1 
rectus femoris -29.2*** -28.9*** -0.9 5 4 1 1 
digital ext. (EDL&EHL) -28.6*** -24.2** -5.6** 8 6 1 0 
psoas -27.4** -23.7** -4.9 6 4 1 0 
fibularis muscles -27.3** -24.1* -4.9* 5 3 4 2 
biceps femoris: l.head -24.6* -22.9** -3.5 3 1 0 0 
adductor longus -22.3* -17.4 -5.5 2 2 3 0 
biceps femoris: s.head -22.2 -16.9* -5.4 1 2 2 1 
vastus medialis -21.4* -19.3* -3.0 6 6 2 2 
adductor magnus -20.8* -15.1 -6.3 5 6 3 1 
vastus lateralis -20.6* -20.2* -0.8 5 5 3 2 
obturator externus -20.4 -14.5 -12.7 2 0 0 0 
adductor brevis -19.2* -16.7 -2.3 4 3 1 0 
gracilis -16.0 0.8 -17.7** 1 0 7 0 
tibialis posterior -14.3 -12.3 -3.4 3 1 1 1 
pectineus -14.1 -5.9 -6.8 0 0 1 0 
gluteus maximus -11.5* -9.3 -2.1 1 3 1 0 
tensor fasciae latae -11.3 -11.9 2.5 0 3 0 0 
flex. digitorum longus -10.5 -6.1 -6.2 1 3 0 0 
popliteus -9.8 -9.6 -0.2 1 1 0 0 
gluteus minimus -9.2 -8.1 -2.2 3 3 0 0 
sartorius -6.7 -3.3 -4.3 2 0 1 0 
vastus intermedius -6.6 -10.4 3.5 2 2 0 0 
obturator internus -6.2 -6.2 -1.5 1 4 0 0 
gemelli -6.0 -10.5 0.8 2 0 0 0 
quadratus femoris -0.7 -11.8 10.0 2 0 1 0 
iliacus -0.1 0.4 -0.8 0 0 1 0 
gluteus medius 1.4 -2.1 3.8 0 0 0 0 
piriformis 2.0 6.4 4.0 0 0 0 0 
Table 3: Mean deficits in muscle volume, anatomical cross sectional area (CSA), and length, and 

number of muscles with Z-scores outside of the 2σ confidence interval for subjects with CP. 

Volumes, CSAs, and lengths were normalized to height, mass, and leg length according to 
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Equations 1, 3, and 5. Significant CP-TD differences are shown in bold and levels of significance 

are denoted by asterisks.   
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Comparison of % Volume Deficit using Height-Mass vs. Mass Normalization 
muscle %Deficit in V/H-M %Deficit in V/M 

tibialis anterior -43.3 -45.8 
medial gastrocnemius -42.2 -44.3 
soleus -39.3 -41.5 
lateral gastrocnemius -35.8 -37.9 
semitendinosus -35.3 -37.6 
semimembranosus -30.5 -34.9 
flexor hallucis longus -30.5 -32.6 
rectus femoris -29.2 -32.1 
digital extensors (EDL&EHL) -28.6 -32.2 
psoas -27.4 -30.8 
fibularis muscles -27.3 -30.3 
biceps femoris: long head -24.6 -27.2 
adductor longus -22.3 -26.0 
biceps femoris: short head -22.2 -25.6 
vastus medialis -21.4 -25.3 
adductor magnus -20.8 -24.1 
vastus lateralis -20.6 -24.2 
obturator externus -20.4 -23.8 
adductor brevis -19.2 -22.2 
gracilis -16.0 -19.1 
tibialis posterior -14.3 -19.4 
pectineus -14.1 -17.8 
gluteus maximus -11.5 -15.3 
tensor fasciae latae -11.3 -16.3 
flexor digitorum longus -10.5 -16.1 
popliteus -9.8 -13.8 
gluteus minimus -9.2 -13.5 
sartorius -6.7 -11.1 
vastus intermedius -6.6 -10.7 
obturator internus -6.2 -10.6 
gemelli -6.0 -8.9 
quadratus femoris -0.7 -3.8 
iliacus -0.1 -4.4 
gluteus medius 1.4 -3.1 
piriformis 2.0 -2.2 
Table 4: Normalization of muscle volume by height-mass yields slightly smaller deficits between 

CP and TD subjects than normalization by mass. Average percent differences between CP and 

TD populations for muscle volume per height-mass (See Equation 1) are shown in Column 2. 
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Average percent differences between CP and TD populations for muscle volume per mass are 

shown in Column 3. Column 2 data is duplicated from Figure 4.  
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FIGURE LEGENDS 

Fig.1: Total muscle volume in the lower limb scales with height∙mass in typically developing 

adolescent controls, typically developing adults (from Handsfield et al.48), and subjects with 

cerebral palsy. The slope of muscle volume per height-mass is significantly reduced for CP 

subjects (A). Lower limb normalized muscle volume is 20% lower in subjects with cerebral 

palsy and is stratified by GMFCS level (B). Error bar displays standard deviation; individual data 

points are overlaid. 

Fig. 2: Grid display of Z-scores allows visual comparisons across subjects for a given muscle or 

across muscles for a given subject (A). Z-scores between ±2 represent the 99% confidence 

interval for TD muscles. CP muscles with a Z-score less than -2 are considered significantly 

small. Muscle volumes are normalized by height∙mass to reduce the effects of body size 

differences between TD and CP subjects. Tabulation of significantly small Z-scores (Z < -2) 

across subjects indicates muscles that are commonly significantly small in the CP cohort (B). 

Fig. 3: Z-scores are mapped onto subject-specific limb reconstructions. Profiles of muscle size 

deficits differ within and across subjects. Distal muscles, especially the soleus, were commonly 

and severely small as evidenced by very low Z-scores in 9 of 10 subjects. Color map from Fig. 2 

is duplicated here; 3D visualization effects (e.g. shadowing) may slightly alter perceived color. 

Fig. 4: Height-mass normalized muscle volumes are reduced in subjects with cerebral palsy for 

muscles and muscle groups crossing the ankle (A), knee (B), hip sagittal plane (C), and hip 

frontal plane (D). Antagonist volume ratios for muscle groups are only significantly different for 
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the Abduction/Adduction (D) ratio. Muscle groups are underlined, and muscles displaying 

significant differences are shown in bold.  

 

 

 

 

 

 

 


